blob: 4954c7262a3f030331fd8ae685d8f64b083aadbe [file] [log] [blame]
Chris Lattner01d1ee32002-05-21 20:50:24 +00001//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner01d1ee32002-05-21 20:50:24 +00009//
Chris Lattnerbb190ac2002-10-08 21:36:33 +000010// Peephole optimize the CFG.
Chris Lattner01d1ee32002-05-21 20:50:24 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner218a8222004-06-20 01:13:18 +000014#define DEBUG_TYPE "simplifycfg"
Chris Lattner01d1ee32002-05-21 20:50:24 +000015#include "llvm/Transforms/Utils/Local.h"
Chris Lattner723c66d2004-02-11 03:36:04 +000016#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Chris Lattner0d560082004-02-24 05:38:11 +000018#include "llvm/Type.h"
Chris Lattner01d1ee32002-05-21 20:50:24 +000019#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000020#include "llvm/Support/Debug.h"
Chris Lattner01d1ee32002-05-21 20:50:24 +000021#include <algorithm>
22#include <functional>
Chris Lattnerd52c2612004-02-24 07:23:58 +000023#include <set>
Chris Lattner698f96f2004-10-18 04:07:22 +000024#include <map>
Chris Lattnerf7703df2004-01-09 06:12:26 +000025using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner0d560082004-02-24 05:38:11 +000027// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
28// predecessors from "BB". This is a little tricky because "Succ" has PHI
29// nodes, which need to have extra slots added to them to hold the merge edges
30// from BB's predecessors, and BB itself might have had PHI nodes in it. This
31// function returns true (failure) if the Succ BB already has a predecessor that
32// is a predecessor of BB and incoming PHI arguments would not be discernible.
Chris Lattner01d1ee32002-05-21 20:50:24 +000033//
34// Assumption: Succ is the single successor for BB.
35//
Misha Brukmana3bbcb52002-10-29 23:06:16 +000036static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
Chris Lattner01d1ee32002-05-21 20:50:24 +000037 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
Chris Lattner3abb95d2002-09-24 00:09:26 +000038
39 if (!isa<PHINode>(Succ->front()))
40 return false; // We can make the transformation, no problem.
Chris Lattner01d1ee32002-05-21 20:50:24 +000041
42 // If there is more than one predecessor, and there are PHI nodes in
43 // the successor, then we need to add incoming edges for the PHI nodes
44 //
45 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
46
47 // Check to see if one of the predecessors of BB is already a predecessor of
Chris Lattnere2ca5402003-03-05 21:01:52 +000048 // Succ. If so, we cannot do the transformation if there are any PHI nodes
49 // with incompatible values coming in from the two edges!
Chris Lattner01d1ee32002-05-21 20:50:24 +000050 //
Chris Lattnere2ca5402003-03-05 21:01:52 +000051 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000052 if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
Chris Lattnere2ca5402003-03-05 21:01:52 +000053 // Loop over all of the PHI nodes checking to see if there are
54 // incompatible values coming in.
Reid Spencer2da5c3d2004-09-15 17:06:42 +000055 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
56 PHINode *PN = cast<PHINode>(I);
Chris Lattnere2ca5402003-03-05 21:01:52 +000057 // Loop up the entries in the PHI node for BB and for *PI if the values
58 // coming in are non-equal, we cannot merge these two blocks (instead we
59 // should insert a conditional move or something, then merge the
60 // blocks).
61 int Idx1 = PN->getBasicBlockIndex(BB);
62 int Idx2 = PN->getBasicBlockIndex(*PI);
63 assert(Idx1 != -1 && Idx2 != -1 &&
64 "Didn't have entries for my predecessors??");
65 if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
66 return true; // Values are not equal...
67 }
68 }
Chris Lattner01d1ee32002-05-21 20:50:24 +000069
Chris Lattner218a8222004-06-20 01:13:18 +000070 // Loop over all of the PHI nodes in the successor BB.
Reid Spencer2da5c3d2004-09-15 17:06:42 +000071 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
72 PHINode *PN = cast<PHINode>(I);
Chris Lattnerbb190ac2002-10-08 21:36:33 +000073 Value *OldVal = PN->removeIncomingValue(BB, false);
Chris Lattner01d1ee32002-05-21 20:50:24 +000074 assert(OldVal && "No entry in PHI for Pred BB!");
75
Chris Lattner218a8222004-06-20 01:13:18 +000076 // If this incoming value is one of the PHI nodes in BB, the new entries in
77 // the PHI node are the entries from the old PHI.
Chris Lattner46a5f1f2003-03-05 21:36:33 +000078 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
79 PHINode *OldValPN = cast<PHINode>(OldVal);
Chris Lattner218a8222004-06-20 01:13:18 +000080 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
81 PN->addIncoming(OldValPN->getIncomingValue(i),
82 OldValPN->getIncomingBlock(i));
Chris Lattner46a5f1f2003-03-05 21:36:33 +000083 } else {
84 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
85 End = BBPreds.end(); PredI != End; ++PredI) {
86 // Add an incoming value for each of the new incoming values...
87 PN->addIncoming(OldVal, *PredI);
88 }
Chris Lattner01d1ee32002-05-21 20:50:24 +000089 }
90 }
91 return false;
92}
93
Chris Lattner723c66d2004-02-11 03:36:04 +000094/// GetIfCondition - Given a basic block (BB) with two predecessors (and
95/// presumably PHI nodes in it), check to see if the merge at this block is due
96/// to an "if condition". If so, return the boolean condition that determines
97/// which entry into BB will be taken. Also, return by references the block
98/// that will be entered from if the condition is true, and the block that will
99/// be entered if the condition is false.
100///
101///
102static Value *GetIfCondition(BasicBlock *BB,
103 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
104 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
105 "Function can only handle blocks with 2 predecessors!");
106 BasicBlock *Pred1 = *pred_begin(BB);
107 BasicBlock *Pred2 = *++pred_begin(BB);
108
109 // We can only handle branches. Other control flow will be lowered to
110 // branches if possible anyway.
111 if (!isa<BranchInst>(Pred1->getTerminator()) ||
112 !isa<BranchInst>(Pred2->getTerminator()))
113 return 0;
114 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
115 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
116
117 // Eliminate code duplication by ensuring that Pred1Br is conditional if
118 // either are.
119 if (Pred2Br->isConditional()) {
120 // If both branches are conditional, we don't have an "if statement". In
121 // reality, we could transform this case, but since the condition will be
122 // required anyway, we stand no chance of eliminating it, so the xform is
123 // probably not profitable.
124 if (Pred1Br->isConditional())
125 return 0;
126
127 std::swap(Pred1, Pred2);
128 std::swap(Pred1Br, Pred2Br);
129 }
130
131 if (Pred1Br->isConditional()) {
132 // If we found a conditional branch predecessor, make sure that it branches
133 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
134 if (Pred1Br->getSuccessor(0) == BB &&
135 Pred1Br->getSuccessor(1) == Pred2) {
136 IfTrue = Pred1;
137 IfFalse = Pred2;
138 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
139 Pred1Br->getSuccessor(1) == BB) {
140 IfTrue = Pred2;
141 IfFalse = Pred1;
142 } else {
143 // We know that one arm of the conditional goes to BB, so the other must
144 // go somewhere unrelated, and this must not be an "if statement".
145 return 0;
146 }
147
148 // The only thing we have to watch out for here is to make sure that Pred2
149 // doesn't have incoming edges from other blocks. If it does, the condition
150 // doesn't dominate BB.
151 if (++pred_begin(Pred2) != pred_end(Pred2))
152 return 0;
153
154 return Pred1Br->getCondition();
155 }
156
157 // Ok, if we got here, both predecessors end with an unconditional branch to
158 // BB. Don't panic! If both blocks only have a single (identical)
159 // predecessor, and THAT is a conditional branch, then we're all ok!
160 if (pred_begin(Pred1) == pred_end(Pred1) ||
161 ++pred_begin(Pred1) != pred_end(Pred1) ||
162 pred_begin(Pred2) == pred_end(Pred2) ||
163 ++pred_begin(Pred2) != pred_end(Pred2) ||
164 *pred_begin(Pred1) != *pred_begin(Pred2))
165 return 0;
166
167 // Otherwise, if this is a conditional branch, then we can use it!
168 BasicBlock *CommonPred = *pred_begin(Pred1);
169 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
170 assert(BI->isConditional() && "Two successors but not conditional?");
171 if (BI->getSuccessor(0) == Pred1) {
172 IfTrue = Pred1;
173 IfFalse = Pred2;
174 } else {
175 IfTrue = Pred2;
176 IfFalse = Pred1;
177 }
178 return BI->getCondition();
179 }
180 return 0;
181}
182
183
184// If we have a merge point of an "if condition" as accepted above, return true
185// if the specified value dominates the block. We don't handle the true
186// generality of domination here, just a special case which works well enough
187// for us.
Chris Lattner9c078662004-10-14 05:13:36 +0000188//
189// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
190// see if V (which must be an instruction) is cheap to compute and is
191// non-trapping. If both are true, the instruction is inserted into the set and
192// true is returned.
193static bool DominatesMergePoint(Value *V, BasicBlock *BB,
194 std::set<Instruction*> *AggressiveInsts) {
Chris Lattner570751c2004-04-09 22:50:22 +0000195 Instruction *I = dyn_cast<Instruction>(V);
196 if (!I) return true; // Non-instructions all dominate instructions.
197 BasicBlock *PBB = I->getParent();
Chris Lattner723c66d2004-02-11 03:36:04 +0000198
Chris Lattnerda895d62005-02-27 06:18:25 +0000199 // We don't want to allow weird loops that might have the "if condition" in
Chris Lattner570751c2004-04-09 22:50:22 +0000200 // the bottom of this block.
201 if (PBB == BB) return false;
Chris Lattner723c66d2004-02-11 03:36:04 +0000202
Chris Lattner570751c2004-04-09 22:50:22 +0000203 // If this instruction is defined in a block that contains an unconditional
204 // branch to BB, then it must be in the 'conditional' part of the "if
205 // statement".
206 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
207 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
Chris Lattner9c078662004-10-14 05:13:36 +0000208 if (!AggressiveInsts) return false;
Chris Lattner570751c2004-04-09 22:50:22 +0000209 // Okay, it looks like the instruction IS in the "condition". Check to
210 // see if its a cheap instruction to unconditionally compute, and if it
211 // only uses stuff defined outside of the condition. If so, hoist it out.
212 switch (I->getOpcode()) {
213 default: return false; // Cannot hoist this out safely.
214 case Instruction::Load:
215 // We can hoist loads that are non-volatile and obviously cannot trap.
216 if (cast<LoadInst>(I)->isVolatile())
217 return false;
218 if (!isa<AllocaInst>(I->getOperand(0)) &&
Reid Spencer460f16c2004-07-18 00:32:14 +0000219 !isa<Constant>(I->getOperand(0)))
Chris Lattner570751c2004-04-09 22:50:22 +0000220 return false;
221
222 // Finally, we have to check to make sure there are no instructions
223 // before the load in its basic block, as we are going to hoist the loop
224 // out to its predecessor.
225 if (PBB->begin() != BasicBlock::iterator(I))
226 return false;
227 break;
228 case Instruction::Add:
229 case Instruction::Sub:
230 case Instruction::And:
231 case Instruction::Or:
232 case Instruction::Xor:
233 case Instruction::Shl:
234 case Instruction::Shr:
235 break; // These are all cheap and non-trapping instructions.
236 }
237
238 // Okay, we can only really hoist these out if their operands are not
239 // defined in the conditional region.
240 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
Chris Lattner9c078662004-10-14 05:13:36 +0000241 if (!DominatesMergePoint(I->getOperand(i), BB, 0))
Chris Lattner570751c2004-04-09 22:50:22 +0000242 return false;
Chris Lattner9c078662004-10-14 05:13:36 +0000243 // Okay, it's safe to do this! Remember this instruction.
244 AggressiveInsts->insert(I);
Chris Lattner570751c2004-04-09 22:50:22 +0000245 }
246
Chris Lattner723c66d2004-02-11 03:36:04 +0000247 return true;
248}
Chris Lattner01d1ee32002-05-21 20:50:24 +0000249
Chris Lattner0d560082004-02-24 05:38:11 +0000250// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
251// instructions that compare a value against a constant, return the value being
252// compared, and stick the constant into the Values vector.
Chris Lattner1654cff2004-06-19 07:02:14 +0000253static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
Chris Lattner0d560082004-02-24 05:38:11 +0000254 if (Instruction *Inst = dyn_cast<Instruction>(V))
255 if (Inst->getOpcode() == Instruction::SetEQ) {
Chris Lattner1654cff2004-06-19 07:02:14 +0000256 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Chris Lattner0d560082004-02-24 05:38:11 +0000257 Values.push_back(C);
258 return Inst->getOperand(0);
Chris Lattner1654cff2004-06-19 07:02:14 +0000259 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Chris Lattner0d560082004-02-24 05:38:11 +0000260 Values.push_back(C);
261 return Inst->getOperand(1);
262 }
263 } else if (Inst->getOpcode() == Instruction::Or) {
264 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
265 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
266 if (LHS == RHS)
267 return LHS;
268 }
269 return 0;
270}
271
272// GatherConstantSetNEs - Given a potentially 'and'd together collection of
273// setne instructions that compare a value against a constant, return the value
274// being compared, and stick the constant into the Values vector.
Chris Lattner1654cff2004-06-19 07:02:14 +0000275static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
Chris Lattner0d560082004-02-24 05:38:11 +0000276 if (Instruction *Inst = dyn_cast<Instruction>(V))
277 if (Inst->getOpcode() == Instruction::SetNE) {
Chris Lattner1654cff2004-06-19 07:02:14 +0000278 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Chris Lattner0d560082004-02-24 05:38:11 +0000279 Values.push_back(C);
280 return Inst->getOperand(0);
Chris Lattner1654cff2004-06-19 07:02:14 +0000281 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Chris Lattner0d560082004-02-24 05:38:11 +0000282 Values.push_back(C);
283 return Inst->getOperand(1);
284 }
285 } else if (Inst->getOpcode() == Instruction::Cast) {
286 // Cast of X to bool is really a comparison against zero.
287 assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
Chris Lattner1654cff2004-06-19 07:02:14 +0000288 Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
Chris Lattner0d560082004-02-24 05:38:11 +0000289 return Inst->getOperand(0);
290 } else if (Inst->getOpcode() == Instruction::And) {
291 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
292 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
293 if (LHS == RHS)
294 return LHS;
295 }
296 return 0;
297}
298
299
300
301/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
302/// bunch of comparisons of one value against constants, return the value and
303/// the constants being compared.
304static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
Chris Lattner1654cff2004-06-19 07:02:14 +0000305 std::vector<ConstantInt*> &Values) {
Chris Lattner0d560082004-02-24 05:38:11 +0000306 if (Cond->getOpcode() == Instruction::Or) {
307 CompVal = GatherConstantSetEQs(Cond, Values);
308
309 // Return true to indicate that the condition is true if the CompVal is
310 // equal to one of the constants.
311 return true;
312 } else if (Cond->getOpcode() == Instruction::And) {
313 CompVal = GatherConstantSetNEs(Cond, Values);
314
315 // Return false to indicate that the condition is false if the CompVal is
316 // equal to one of the constants.
317 return false;
318 }
319 return false;
320}
321
322/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
323/// has no side effects, nuke it. If it uses any instructions that become dead
324/// because the instruction is now gone, nuke them too.
325static void ErasePossiblyDeadInstructionTree(Instruction *I) {
326 if (isInstructionTriviallyDead(I)) {
327 std::vector<Value*> Operands(I->op_begin(), I->op_end());
328 I->getParent()->getInstList().erase(I);
329 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
330 if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
331 ErasePossiblyDeadInstructionTree(OpI);
332 }
333}
334
Chris Lattnerd52c2612004-02-24 07:23:58 +0000335/// SafeToMergeTerminators - Return true if it is safe to merge these two
336/// terminator instructions together.
337///
338static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
339 if (SI1 == SI2) return false; // Can't merge with self!
340
341 // It is not safe to merge these two switch instructions if they have a common
Chris Lattner2636c1b2004-06-21 07:19:01 +0000342 // successor, and if that successor has a PHI node, and if *that* PHI node has
Chris Lattnerd52c2612004-02-24 07:23:58 +0000343 // conflicting incoming values from the two switch blocks.
344 BasicBlock *SI1BB = SI1->getParent();
345 BasicBlock *SI2BB = SI2->getParent();
346 std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
347
348 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
349 if (SI1Succs.count(*I))
350 for (BasicBlock::iterator BBI = (*I)->begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000351 isa<PHINode>(BBI); ++BBI) {
352 PHINode *PN = cast<PHINode>(BBI);
Chris Lattnerd52c2612004-02-24 07:23:58 +0000353 if (PN->getIncomingValueForBlock(SI1BB) !=
354 PN->getIncomingValueForBlock(SI2BB))
355 return false;
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000356 }
Chris Lattnerd52c2612004-02-24 07:23:58 +0000357
358 return true;
359}
360
361/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
362/// now be entries in it from the 'NewPred' block. The values that will be
363/// flowing into the PHI nodes will be the same as those coming in from
Chris Lattner2636c1b2004-06-21 07:19:01 +0000364/// ExistPred, an existing predecessor of Succ.
Chris Lattnerd52c2612004-02-24 07:23:58 +0000365static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
366 BasicBlock *ExistPred) {
367 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
368 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
369 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
370
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000371 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
372 PHINode *PN = cast<PHINode>(I);
Chris Lattnerd52c2612004-02-24 07:23:58 +0000373 Value *V = PN->getIncomingValueForBlock(ExistPred);
374 PN->addIncoming(V, NewPred);
375 }
376}
377
Chris Lattner542f1492004-02-28 21:28:10 +0000378// isValueEqualityComparison - Return true if the specified terminator checks to
379// see if a value is equal to constant integer value.
380static Value *isValueEqualityComparison(TerminatorInst *TI) {
Chris Lattner4bebf082004-03-16 19:45:22 +0000381 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
382 // Do not permit merging of large switch instructions into their
383 // predecessors unless there is only one predecessor.
384 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
385 pred_end(SI->getParent())) > 128)
386 return 0;
387
Chris Lattner542f1492004-02-28 21:28:10 +0000388 return SI->getCondition();
Chris Lattner4bebf082004-03-16 19:45:22 +0000389 }
Chris Lattner542f1492004-02-28 21:28:10 +0000390 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
391 if (BI->isConditional() && BI->getCondition()->hasOneUse())
392 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
393 if ((SCI->getOpcode() == Instruction::SetEQ ||
394 SCI->getOpcode() == Instruction::SetNE) &&
395 isa<ConstantInt>(SCI->getOperand(1)))
396 return SCI->getOperand(0);
397 return 0;
398}
399
400// Given a value comparison instruction, decode all of the 'cases' that it
401// represents and return the 'default' block.
402static BasicBlock *
403GetValueEqualityComparisonCases(TerminatorInst *TI,
404 std::vector<std::pair<ConstantInt*,
405 BasicBlock*> > &Cases) {
406 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
407 Cases.reserve(SI->getNumCases());
408 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
Chris Lattnerbe54dcc2005-02-26 18:33:28 +0000409 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
Chris Lattner542f1492004-02-28 21:28:10 +0000410 return SI->getDefaultDest();
411 }
412
413 BranchInst *BI = cast<BranchInst>(TI);
414 SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
415 Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
416 BI->getSuccessor(SCI->getOpcode() ==
417 Instruction::SetNE)));
418 return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
419}
420
421
Chris Lattner623369a2005-02-24 06:17:52 +0000422// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
423// in the list that match the specified block.
424static void EliminateBlockCases(BasicBlock *BB,
425 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
426 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
427 if (Cases[i].second == BB) {
428 Cases.erase(Cases.begin()+i);
429 --i; --e;
430 }
431}
432
433// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
434// well.
435static bool
436ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
437 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
438 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
439
440 // Make V1 be smaller than V2.
441 if (V1->size() > V2->size())
442 std::swap(V1, V2);
443
444 if (V1->size() == 0) return false;
445 if (V1->size() == 1) {
446 // Just scan V2.
447 ConstantInt *TheVal = (*V1)[0].first;
448 for (unsigned i = 0, e = V2->size(); i != e; ++i)
449 if (TheVal == (*V2)[i].first)
450 return true;
451 }
452
453 // Otherwise, just sort both lists and compare element by element.
454 std::sort(V1->begin(), V1->end());
455 std::sort(V2->begin(), V2->end());
456 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
457 while (i1 != e1 && i2 != e2) {
458 if ((*V1)[i1].first == (*V2)[i2].first)
459 return true;
460 if ((*V1)[i1].first < (*V2)[i2].first)
461 ++i1;
462 else
463 ++i2;
464 }
465 return false;
466}
467
468// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
469// terminator instruction and its block is known to only have a single
470// predecessor block, check to see if that predecessor is also a value
471// comparison with the same value, and if that comparison determines the outcome
472// of this comparison. If so, simplify TI. This does a very limited form of
473// jump threading.
474static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
475 BasicBlock *Pred) {
476 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
477 if (!PredVal) return false; // Not a value comparison in predecessor.
478
479 Value *ThisVal = isValueEqualityComparison(TI);
480 assert(ThisVal && "This isn't a value comparison!!");
481 if (ThisVal != PredVal) return false; // Different predicates.
482
483 // Find out information about when control will move from Pred to TI's block.
484 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
485 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
486 PredCases);
487 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
488
489 // Find information about how control leaves this block.
490 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
491 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
492 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
493
494 // If TI's block is the default block from Pred's comparison, potentially
495 // simplify TI based on this knowledge.
496 if (PredDef == TI->getParent()) {
497 // If we are here, we know that the value is none of those cases listed in
498 // PredCases. If there are any cases in ThisCases that are in PredCases, we
499 // can simplify TI.
500 if (ValuesOverlap(PredCases, ThisCases)) {
501 if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
502 // Okay, one of the successors of this condbr is dead. Convert it to a
503 // uncond br.
504 assert(ThisCases.size() == 1 && "Branch can only have one case!");
505 Value *Cond = BTI->getCondition();
506 // Insert the new branch.
507 Instruction *NI = new BranchInst(ThisDef, TI);
508
509 // Remove PHI node entries for the dead edge.
510 ThisCases[0].second->removePredecessor(TI->getParent());
511
512 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
513 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
514
515 TI->eraseFromParent(); // Nuke the old one.
516 // If condition is now dead, nuke it.
517 if (Instruction *CondI = dyn_cast<Instruction>(Cond))
518 ErasePossiblyDeadInstructionTree(CondI);
519 return true;
520
521 } else {
522 SwitchInst *SI = cast<SwitchInst>(TI);
523 // Okay, TI has cases that are statically dead, prune them away.
524 std::set<Constant*> DeadCases;
525 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
526 DeadCases.insert(PredCases[i].first);
527
528 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
529 << "Through successor TI: " << *TI);
530
531 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
532 if (DeadCases.count(SI->getCaseValue(i))) {
533 SI->getSuccessor(i)->removePredecessor(TI->getParent());
534 SI->removeCase(i);
535 }
536
537 DEBUG(std::cerr << "Leaving: " << *TI << "\n");
538 return true;
539 }
540 }
541
542 } else {
543 // Otherwise, TI's block must correspond to some matched value. Find out
544 // which value (or set of values) this is.
545 ConstantInt *TIV = 0;
546 BasicBlock *TIBB = TI->getParent();
547 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
548 if (PredCases[i].second == TIBB)
549 if (TIV == 0)
550 TIV = PredCases[i].first;
551 else
552 return false; // Cannot handle multiple values coming to this block.
553 assert(TIV && "No edge from pred to succ?");
554
555 // Okay, we found the one constant that our value can be if we get into TI's
556 // BB. Find out which successor will unconditionally be branched to.
557 BasicBlock *TheRealDest = 0;
558 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
559 if (ThisCases[i].first == TIV) {
560 TheRealDest = ThisCases[i].second;
561 break;
562 }
563
564 // If not handled by any explicit cases, it is handled by the default case.
565 if (TheRealDest == 0) TheRealDest = ThisDef;
566
567 // Remove PHI node entries for dead edges.
568 BasicBlock *CheckEdge = TheRealDest;
569 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
570 if (*SI != CheckEdge)
571 (*SI)->removePredecessor(TIBB);
572 else
573 CheckEdge = 0;
574
575 // Insert the new branch.
576 Instruction *NI = new BranchInst(TheRealDest, TI);
577
578 DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
579 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
580 Instruction *Cond = 0;
581 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
582 Cond = dyn_cast<Instruction>(BI->getCondition());
583 TI->eraseFromParent(); // Nuke the old one.
584
585 if (Cond) ErasePossiblyDeadInstructionTree(Cond);
586 return true;
587 }
588 return false;
589}
590
Chris Lattner542f1492004-02-28 21:28:10 +0000591// FoldValueComparisonIntoPredecessors - The specified terminator is a value
592// equality comparison instruction (either a switch or a branch on "X == c").
593// See if any of the predecessors of the terminator block are value comparisons
594// on the same value. If so, and if safe to do so, fold them together.
595static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
596 BasicBlock *BB = TI->getParent();
597 Value *CV = isValueEqualityComparison(TI); // CondVal
598 assert(CV && "Not a comparison?");
599 bool Changed = false;
600
601 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
602 while (!Preds.empty()) {
603 BasicBlock *Pred = Preds.back();
604 Preds.pop_back();
605
606 // See if the predecessor is a comparison with the same value.
607 TerminatorInst *PTI = Pred->getTerminator();
608 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
609
610 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
611 // Figure out which 'cases' to copy from SI to PSI.
612 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
613 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
614
615 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
616 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
617
618 // Based on whether the default edge from PTI goes to BB or not, fill in
619 // PredCases and PredDefault with the new switch cases we would like to
620 // build.
621 std::vector<BasicBlock*> NewSuccessors;
622
623 if (PredDefault == BB) {
624 // If this is the default destination from PTI, only the edges in TI
625 // that don't occur in PTI, or that branch to BB will be activated.
626 std::set<ConstantInt*> PTIHandled;
627 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
628 if (PredCases[i].second != BB)
629 PTIHandled.insert(PredCases[i].first);
630 else {
631 // The default destination is BB, we don't need explicit targets.
632 std::swap(PredCases[i], PredCases.back());
633 PredCases.pop_back();
634 --i; --e;
635 }
636
637 // Reconstruct the new switch statement we will be building.
638 if (PredDefault != BBDefault) {
639 PredDefault->removePredecessor(Pred);
640 PredDefault = BBDefault;
641 NewSuccessors.push_back(BBDefault);
642 }
643 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
644 if (!PTIHandled.count(BBCases[i].first) &&
645 BBCases[i].second != BBDefault) {
646 PredCases.push_back(BBCases[i]);
647 NewSuccessors.push_back(BBCases[i].second);
648 }
649
650 } else {
651 // If this is not the default destination from PSI, only the edges
652 // in SI that occur in PSI with a destination of BB will be
653 // activated.
654 std::set<ConstantInt*> PTIHandled;
655 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
656 if (PredCases[i].second == BB) {
657 PTIHandled.insert(PredCases[i].first);
658 std::swap(PredCases[i], PredCases.back());
659 PredCases.pop_back();
660 --i; --e;
661 }
662
663 // Okay, now we know which constants were sent to BB from the
664 // predecessor. Figure out where they will all go now.
665 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
666 if (PTIHandled.count(BBCases[i].first)) {
667 // If this is one we are capable of getting...
668 PredCases.push_back(BBCases[i]);
669 NewSuccessors.push_back(BBCases[i].second);
670 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
671 }
672
673 // If there are any constants vectored to BB that TI doesn't handle,
674 // they must go to the default destination of TI.
675 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
676 E = PTIHandled.end(); I != E; ++I) {
677 PredCases.push_back(std::make_pair(*I, BBDefault));
678 NewSuccessors.push_back(BBDefault);
679 }
680 }
681
682 // Okay, at this point, we know which new successor Pred will get. Make
683 // sure we update the number of entries in the PHI nodes for these
684 // successors.
685 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
686 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
687
688 // Now that the successors are updated, create the new Switch instruction.
Chris Lattner37880592005-01-29 00:38:26 +0000689 SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
Chris Lattner542f1492004-02-28 21:28:10 +0000690 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
691 NewSI->addCase(PredCases[i].first, PredCases[i].second);
Chris Lattner13b2f762005-01-01 16:02:12 +0000692
693 Instruction *DeadCond = 0;
694 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
695 // If PTI is a branch, remember the condition.
696 DeadCond = dyn_cast<Instruction>(BI->getCondition());
Chris Lattner542f1492004-02-28 21:28:10 +0000697 Pred->getInstList().erase(PTI);
698
Chris Lattner13b2f762005-01-01 16:02:12 +0000699 // If the condition is dead now, remove the instruction tree.
700 if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
701
Chris Lattner542f1492004-02-28 21:28:10 +0000702 // Okay, last check. If BB is still a successor of PSI, then we must
703 // have an infinite loop case. If so, add an infinitely looping block
704 // to handle the case to preserve the behavior of the code.
705 BasicBlock *InfLoopBlock = 0;
706 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
707 if (NewSI->getSuccessor(i) == BB) {
708 if (InfLoopBlock == 0) {
709 // Insert it at the end of the loop, because it's either code,
710 // or it won't matter if it's hot. :)
711 InfLoopBlock = new BasicBlock("infloop", BB->getParent());
712 new BranchInst(InfLoopBlock, InfLoopBlock);
713 }
714 NewSI->setSuccessor(i, InfLoopBlock);
715 }
716
717 Changed = true;
718 }
719 }
720 return Changed;
721}
722
Chris Lattner37dc9382004-11-30 00:29:14 +0000723/// HoistThenElseCodeToIf - Given a conditional branch that codes to BB1 and
724/// BB2, hoist any common code in the two blocks up into the branch block. The
725/// caller of this function guarantees that BI's block dominates BB1 and BB2.
726static bool HoistThenElseCodeToIf(BranchInst *BI) {
727 // This does very trivial matching, with limited scanning, to find identical
728 // instructions in the two blocks. In particular, we don't want to get into
729 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
730 // such, we currently just scan for obviously identical instructions in an
731 // identical order.
732 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
733 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
734
735 Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
736 if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2))
737 return false;
738
739 // If we get here, we can hoist at least one instruction.
740 BasicBlock *BIParent = BI->getParent();
Chris Lattner37dc9382004-11-30 00:29:14 +0000741
742 do {
743 // If we are hoisting the terminator instruction, don't move one (making a
744 // broken BB), instead clone it, and remove BI.
745 if (isa<TerminatorInst>(I1))
746 goto HoistTerminator;
747
748 // For a normal instruction, we just move one to right before the branch,
749 // then replace all uses of the other with the first. Finally, we remove
750 // the now redundant second instruction.
751 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
752 if (!I2->use_empty())
753 I2->replaceAllUsesWith(I1);
754 BB2->getInstList().erase(I2);
755
756 I1 = BB1->begin();
757 I2 = BB2->begin();
Chris Lattner37dc9382004-11-30 00:29:14 +0000758 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
759
760 return true;
761
762HoistTerminator:
763 // Okay, it is safe to hoist the terminator.
764 Instruction *NT = I1->clone();
765 BIParent->getInstList().insert(BI, NT);
766 if (NT->getType() != Type::VoidTy) {
767 I1->replaceAllUsesWith(NT);
768 I2->replaceAllUsesWith(NT);
769 NT->setName(I1->getName());
770 }
771
772 // Hoisting one of the terminators from our successor is a great thing.
773 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
774 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
775 // nodes, so we insert select instruction to compute the final result.
776 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
777 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
778 PHINode *PN;
779 for (BasicBlock::iterator BBI = SI->begin();
Chris Lattner0f535c62004-11-30 07:47:34 +0000780 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Chris Lattner37dc9382004-11-30 00:29:14 +0000781 Value *BB1V = PN->getIncomingValueForBlock(BB1);
782 Value *BB2V = PN->getIncomingValueForBlock(BB2);
783 if (BB1V != BB2V) {
784 // These values do not agree. Insert a select instruction before NT
785 // that determines the right value.
786 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
787 if (SI == 0)
788 SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
789 BB1V->getName()+"."+BB2V->getName(), NT);
790 // Make the PHI node use the select for all incoming values for BB1/BB2
791 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
792 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
793 PN->setIncomingValue(i, SI);
794 }
795 }
796 }
797
798 // Update any PHI nodes in our new successors.
799 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
800 AddPredecessorToBlock(*SI, BIParent, BB1);
801
802 BI->eraseFromParent();
803 return true;
804}
805
Chris Lattner1654cff2004-06-19 07:02:14 +0000806namespace {
807 /// ConstantIntOrdering - This class implements a stable ordering of constant
808 /// integers that does not depend on their address. This is important for
809 /// applications that sort ConstantInt's to ensure uniqueness.
810 struct ConstantIntOrdering {
811 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
812 return LHS->getRawValue() < RHS->getRawValue();
813 }
814 };
815}
816
Chris Lattner542f1492004-02-28 21:28:10 +0000817
Chris Lattner01d1ee32002-05-21 20:50:24 +0000818// SimplifyCFG - This function is used to do simplification of a CFG. For
819// example, it adjusts branches to branches to eliminate the extra hop, it
820// eliminates unreachable basic blocks, and does other "peephole" optimization
Chris Lattnere2ca5402003-03-05 21:01:52 +0000821// of the CFG. It returns true if a modification was made.
Chris Lattner01d1ee32002-05-21 20:50:24 +0000822//
823// WARNING: The entry node of a function may not be simplified.
824//
Chris Lattnerf7703df2004-01-09 06:12:26 +0000825bool llvm::SimplifyCFG(BasicBlock *BB) {
Chris Lattnerdc3602b2003-08-24 18:36:16 +0000826 bool Changed = false;
Chris Lattner01d1ee32002-05-21 20:50:24 +0000827 Function *M = BB->getParent();
828
829 assert(BB && BB->getParent() && "Block not embedded in function!");
830 assert(BB->getTerminator() && "Degenerate basic block encountered!");
Chris Lattner18961502002-06-25 16:12:52 +0000831 assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
Chris Lattner01d1ee32002-05-21 20:50:24 +0000832
Chris Lattner01d1ee32002-05-21 20:50:24 +0000833 // Remove basic blocks that have no predecessors... which are unreachable.
Chris Lattnerd52c2612004-02-24 07:23:58 +0000834 if (pred_begin(BB) == pred_end(BB) ||
835 *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
Chris Lattner30b43442004-07-15 02:06:12 +0000836 DEBUG(std::cerr << "Removing BB: \n" << *BB);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000837
838 // Loop through all of our successors and make sure they know that one
839 // of their predecessors is going away.
840 for_each(succ_begin(BB), succ_end(BB),
841 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
842
843 while (!BB->empty()) {
Chris Lattner18961502002-06-25 16:12:52 +0000844 Instruction &I = BB->back();
Chris Lattner01d1ee32002-05-21 20:50:24 +0000845 // If this instruction is used, replace uses with an arbitrary
846 // constant value. Because control flow can't get here, we don't care
847 // what we replace the value with. Note that since this block is
848 // unreachable, and all values contained within it must dominate their
849 // uses, that all uses will eventually be removed.
Chris Lattner18961502002-06-25 16:12:52 +0000850 if (!I.use_empty())
Chris Lattner01d1ee32002-05-21 20:50:24 +0000851 // Make all users of this instruction reference the constant instead
Chris Lattner18961502002-06-25 16:12:52 +0000852 I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
Chris Lattner01d1ee32002-05-21 20:50:24 +0000853
854 // Remove the instruction from the basic block
Chris Lattner18961502002-06-25 16:12:52 +0000855 BB->getInstList().pop_back();
Chris Lattner01d1ee32002-05-21 20:50:24 +0000856 }
Chris Lattner18961502002-06-25 16:12:52 +0000857 M->getBasicBlockList().erase(BB);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000858 return true;
859 }
860
Chris Lattner694e37f2003-08-17 19:41:53 +0000861 // Check to see if we can constant propagate this terminator instruction
862 // away...
Chris Lattnerdc3602b2003-08-24 18:36:16 +0000863 Changed |= ConstantFoldTerminator(BB);
Chris Lattner694e37f2003-08-17 19:41:53 +0000864
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000865 // Check to see if this block has no non-phi instructions and only a single
866 // successor. If so, replace references to this basic block with references
867 // to the successor.
Chris Lattner01d1ee32002-05-21 20:50:24 +0000868 succ_iterator SI(succ_begin(BB));
869 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000870 BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
871 while (isa<PHINode>(*BBI)) ++BBI;
872
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000873 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
874 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
875 Succ != BB) { // Don't hurt infinite loops!
876 // If our successor has PHI nodes, then we need to update them to include
877 // entries for BB's predecessors, not for BB itself. Be careful though,
878 // if this transformation fails (returns true) then we cannot do this
879 // transformation!
880 //
881 if (!PropagatePredecessorsForPHIs(BB, Succ)) {
882 DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
883
884 if (isa<PHINode>(&BB->front())) {
Chris Lattner3a438372003-03-07 18:13:41 +0000885 std::vector<BasicBlock*>
886 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000887
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000888 // Move all PHI nodes in BB to Succ if they are alive, otherwise
889 // delete them.
890 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
891 if (PN->use_empty())
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000892 BB->getInstList().erase(BB->begin()); // Nuke instruction.
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000893 else {
894 // The instruction is alive, so this means that Succ must have
895 // *ONLY* had BB as a predecessor, and the PHI node is still valid
Chris Lattner3a438372003-03-07 18:13:41 +0000896 // now. Simply move it into Succ, because we know that BB
897 // strictly dominated Succ.
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000898 BB->getInstList().remove(BB->begin());
899 Succ->getInstList().push_front(PN);
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000900
Chris Lattner3a438372003-03-07 18:13:41 +0000901 // We need to add new entries for the PHI node to account for
902 // predecessors of Succ that the PHI node does not take into
903 // account. At this point, since we know that BB dominated succ,
904 // this means that we should any newly added incoming edges should
905 // use the PHI node as the value for these edges, because they are
906 // loop back edges.
Chris Lattner3a438372003-03-07 18:13:41 +0000907 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
908 if (OldSuccPreds[i] != BB)
909 PN->addIncoming(PN, OldSuccPreds[i]);
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000910 }
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000911 }
912
913 // Everything that jumped to BB now goes to Succ.
914 std::string OldName = BB->getName();
915 BB->replaceAllUsesWith(Succ);
916 BB->eraseFromParent(); // Delete the old basic block.
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000917
Chris Lattnerbfd3e522004-11-01 06:53:58 +0000918 if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
919 Succ->setName(OldName);
920 return true;
Chris Lattner01d1ee32002-05-21 20:50:24 +0000921 }
922 }
923 }
924
Chris Lattner19831ec2004-02-16 06:35:48 +0000925 // If this is a returning block with only PHI nodes in it, fold the return
926 // instruction into any unconditional branch predecessors.
Chris Lattner147af6b2004-04-02 18:13:43 +0000927 //
928 // If any predecessor is a conditional branch that just selects among
929 // different return values, fold the replace the branch/return with a select
930 // and return.
Chris Lattner19831ec2004-02-16 06:35:48 +0000931 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
932 BasicBlock::iterator BBI = BB->getTerminator();
933 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
Chris Lattner147af6b2004-04-02 18:13:43 +0000934 // Find predecessors that end with branches.
Chris Lattner19831ec2004-02-16 06:35:48 +0000935 std::vector<BasicBlock*> UncondBranchPreds;
Chris Lattner147af6b2004-04-02 18:13:43 +0000936 std::vector<BranchInst*> CondBranchPreds;
Chris Lattner19831ec2004-02-16 06:35:48 +0000937 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
938 TerminatorInst *PTI = (*PI)->getTerminator();
939 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
940 if (BI->isUnconditional())
941 UncondBranchPreds.push_back(*PI);
Chris Lattner147af6b2004-04-02 18:13:43 +0000942 else
943 CondBranchPreds.push_back(BI);
Chris Lattner19831ec2004-02-16 06:35:48 +0000944 }
945
946 // If we found some, do the transformation!
947 if (!UncondBranchPreds.empty()) {
948 while (!UncondBranchPreds.empty()) {
949 BasicBlock *Pred = UncondBranchPreds.back();
950 UncondBranchPreds.pop_back();
951 Instruction *UncondBranch = Pred->getTerminator();
952 // Clone the return and add it to the end of the predecessor.
953 Instruction *NewRet = RI->clone();
954 Pred->getInstList().push_back(NewRet);
955
956 // If the return instruction returns a value, and if the value was a
957 // PHI node in "BB", propagate the right value into the return.
958 if (NewRet->getNumOperands() == 1)
959 if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
960 if (PN->getParent() == BB)
961 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
962 // Update any PHI nodes in the returning block to realize that we no
963 // longer branch to them.
964 BB->removePredecessor(Pred);
965 Pred->getInstList().erase(UncondBranch);
966 }
967
968 // If we eliminated all predecessors of the block, delete the block now.
969 if (pred_begin(BB) == pred_end(BB))
970 // We know there are no successors, so just nuke the block.
971 M->getBasicBlockList().erase(BB);
972
Chris Lattner19831ec2004-02-16 06:35:48 +0000973 return true;
974 }
Chris Lattner147af6b2004-04-02 18:13:43 +0000975
976 // Check out all of the conditional branches going to this return
977 // instruction. If any of them just select between returns, change the
978 // branch itself into a select/return pair.
979 while (!CondBranchPreds.empty()) {
980 BranchInst *BI = CondBranchPreds.back();
981 CondBranchPreds.pop_back();
982 BasicBlock *TrueSucc = BI->getSuccessor(0);
983 BasicBlock *FalseSucc = BI->getSuccessor(1);
984 BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
985
986 // Check to see if the non-BB successor is also a return block.
987 if (isa<ReturnInst>(OtherSucc->getTerminator())) {
988 // Check to see if there are only PHI instructions in this block.
989 BasicBlock::iterator OSI = OtherSucc->getTerminator();
990 if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
991 // Okay, we found a branch that is going to two return nodes. If
992 // there is no return value for this function, just change the
993 // branch into a return.
994 if (RI->getNumOperands() == 0) {
995 TrueSucc->removePredecessor(BI->getParent());
996 FalseSucc->removePredecessor(BI->getParent());
997 new ReturnInst(0, BI);
998 BI->getParent()->getInstList().erase(BI);
999 return true;
1000 }
1001
1002 // Otherwise, figure out what the true and false return values are
1003 // so we can insert a new select instruction.
1004 Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1005 Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1006
1007 // Unwrap any PHI nodes in the return blocks.
1008 if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1009 if (TVPN->getParent() == TrueSucc)
1010 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1011 if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1012 if (FVPN->getParent() == FalseSucc)
1013 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1014
Chris Lattner7aa773b2004-04-02 18:15:10 +00001015 TrueSucc->removePredecessor(BI->getParent());
1016 FalseSucc->removePredecessor(BI->getParent());
1017
Chris Lattner147af6b2004-04-02 18:13:43 +00001018 // Insert a new select instruction.
Chris Lattner0ed7f422004-09-29 05:43:32 +00001019 Value *NewRetVal;
1020 Value *BrCond = BI->getCondition();
1021 if (TrueValue != FalseValue)
1022 NewRetVal = new SelectInst(BrCond, TrueValue,
1023 FalseValue, "retval", BI);
1024 else
1025 NewRetVal = TrueValue;
1026
Chris Lattner147af6b2004-04-02 18:13:43 +00001027 new ReturnInst(NewRetVal, BI);
1028 BI->getParent()->getInstList().erase(BI);
Chris Lattner0ed7f422004-09-29 05:43:32 +00001029 if (BrCond->use_empty())
1030 if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1031 BrCondI->getParent()->getInstList().erase(BrCondI);
Chris Lattner147af6b2004-04-02 18:13:43 +00001032 return true;
1033 }
1034 }
1035 }
Chris Lattner19831ec2004-02-16 06:35:48 +00001036 }
Chris Lattnere14ea082004-02-24 05:54:22 +00001037 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
1038 // Check to see if the first instruction in this block is just an unwind.
1039 // If so, replace any invoke instructions which use this as an exception
Chris Lattneraf17b1d2004-07-20 01:17:38 +00001040 // destination with call instructions, and any unconditional branch
1041 // predecessor with an unwind.
Chris Lattnere14ea082004-02-24 05:54:22 +00001042 //
1043 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1044 while (!Preds.empty()) {
1045 BasicBlock *Pred = Preds.back();
Chris Lattneraf17b1d2004-07-20 01:17:38 +00001046 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1047 if (BI->isUnconditional()) {
1048 Pred->getInstList().pop_back(); // nuke uncond branch
1049 new UnwindInst(Pred); // Use unwind.
1050 Changed = true;
1051 }
1052 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
Chris Lattnere14ea082004-02-24 05:54:22 +00001053 if (II->getUnwindDest() == BB) {
1054 // Insert a new branch instruction before the invoke, because this
1055 // is now a fall through...
1056 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1057 Pred->getInstList().remove(II); // Take out of symbol table
1058
1059 // Insert the call now...
1060 std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1061 CallInst *CI = new CallInst(II->getCalledValue(), Args,
1062 II->getName(), BI);
1063 // If the invoke produced a value, the Call now does instead
1064 II->replaceAllUsesWith(CI);
1065 delete II;
1066 Changed = true;
1067 }
1068
1069 Preds.pop_back();
1070 }
Chris Lattner8e509dd2004-02-24 16:09:21 +00001071
1072 // If this block is now dead, remove it.
1073 if (pred_begin(BB) == pred_end(BB)) {
1074 // We know there are no successors, so just nuke the block.
1075 M->getBasicBlockList().erase(BB);
1076 return true;
1077 }
1078
Chris Lattner623369a2005-02-24 06:17:52 +00001079 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1080 if (isValueEqualityComparison(SI)) {
1081 // If we only have one predecessor, and if it is a branch on this value,
1082 // see if that predecessor totally determines the outcome of this switch.
1083 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1084 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1085 return SimplifyCFG(BB) || 1;
1086
1087 // If the block only contains the switch, see if we can fold the block
1088 // away into any preds.
1089 if (SI == &BB->front())
1090 if (FoldValueComparisonIntoPredecessors(SI))
1091 return SimplifyCFG(BB) || 1;
1092 }
Chris Lattner542f1492004-02-28 21:28:10 +00001093 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
Chris Lattner92da2c22004-05-01 22:36:37 +00001094 if (BI->isConditional()) {
Chris Lattnere67fa052004-05-01 23:35:43 +00001095 if (Value *CompVal = isValueEqualityComparison(BI)) {
Chris Lattner623369a2005-02-24 06:17:52 +00001096 // If we only have one predecessor, and if it is a branch on this value,
1097 // see if that predecessor totally determines the outcome of this
1098 // switch.
1099 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1100 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1101 return SimplifyCFG(BB) || 1;
1102
Chris Lattnere67fa052004-05-01 23:35:43 +00001103 // This block must be empty, except for the setcond inst, if it exists.
1104 BasicBlock::iterator I = BB->begin();
1105 if (&*I == BI ||
1106 (&*I == cast<Instruction>(BI->getCondition()) &&
1107 &*++I == BI))
1108 if (FoldValueComparisonIntoPredecessors(BI))
1109 return SimplifyCFG(BB) | true;
1110 }
1111
1112 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1113 // branches to us and one of our successors, fold the setcc into the
1114 // predecessor and use logical operations to pick the right destination.
Chris Lattner12fe2b12004-05-02 05:02:03 +00001115 BasicBlock *TrueDest = BI->getSuccessor(0);
1116 BasicBlock *FalseDest = BI->getSuccessor(1);
Chris Lattnerbdcc0b82004-05-02 05:19:36 +00001117 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
Chris Lattnere67fa052004-05-01 23:35:43 +00001118 if (Cond->getParent() == BB && &BB->front() == Cond &&
Chris Lattner12fe2b12004-05-02 05:02:03 +00001119 Cond->getNext() == BI && Cond->hasOneUse() &&
1120 TrueDest != BB && FalseDest != BB)
Chris Lattnere67fa052004-05-01 23:35:43 +00001121 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1122 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
Chris Lattnera1f79fb2004-05-02 01:00:44 +00001123 if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
Chris Lattner2636c1b2004-06-21 07:19:01 +00001124 BasicBlock *PredBlock = *PI;
Chris Lattnere67fa052004-05-01 23:35:43 +00001125 if (PBI->getSuccessor(0) == FalseDest ||
1126 PBI->getSuccessor(1) == TrueDest) {
1127 // Invert the predecessors condition test (xor it with true),
1128 // which allows us to write this code once.
1129 Value *NewCond =
1130 BinaryOperator::createNot(PBI->getCondition(),
1131 PBI->getCondition()->getName()+".not", PBI);
1132 PBI->setCondition(NewCond);
1133 BasicBlock *OldTrue = PBI->getSuccessor(0);
1134 BasicBlock *OldFalse = PBI->getSuccessor(1);
1135 PBI->setSuccessor(0, OldFalse);
1136 PBI->setSuccessor(1, OldTrue);
1137 }
1138
1139 if (PBI->getSuccessor(0) == TrueDest ||
1140 PBI->getSuccessor(1) == FalseDest) {
Chris Lattner2636c1b2004-06-21 07:19:01 +00001141 // Clone Cond into the predecessor basic block, and or/and the
Chris Lattnere67fa052004-05-01 23:35:43 +00001142 // two conditions together.
1143 Instruction *New = Cond->clone();
1144 New->setName(Cond->getName());
1145 Cond->setName(Cond->getName()+".old");
Chris Lattner2636c1b2004-06-21 07:19:01 +00001146 PredBlock->getInstList().insert(PBI, New);
Chris Lattnere67fa052004-05-01 23:35:43 +00001147 Instruction::BinaryOps Opcode =
1148 PBI->getSuccessor(0) == TrueDest ?
1149 Instruction::Or : Instruction::And;
1150 Value *NewCond =
1151 BinaryOperator::create(Opcode, PBI->getCondition(),
1152 New, "bothcond", PBI);
1153 PBI->setCondition(NewCond);
1154 if (PBI->getSuccessor(0) == BB) {
Chris Lattner2636c1b2004-06-21 07:19:01 +00001155 AddPredecessorToBlock(TrueDest, PredBlock, BB);
Chris Lattnere67fa052004-05-01 23:35:43 +00001156 PBI->setSuccessor(0, TrueDest);
1157 }
1158 if (PBI->getSuccessor(1) == BB) {
Chris Lattner2636c1b2004-06-21 07:19:01 +00001159 AddPredecessorToBlock(FalseDest, PredBlock, BB);
Chris Lattnere67fa052004-05-01 23:35:43 +00001160 PBI->setSuccessor(1, FalseDest);
1161 }
1162 return SimplifyCFG(BB) | 1;
1163 }
1164 }
Chris Lattnere67fa052004-05-01 23:35:43 +00001165
Chris Lattner92da2c22004-05-01 22:36:37 +00001166 // If this block ends with a branch instruction, and if there is one
1167 // predecessor, see if the previous block ended with a branch on the same
1168 // condition, which makes this conditional branch redundant.
1169 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1170 BasicBlock *OnlyPred = *PI++;
1171 for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
1172 if (*PI != OnlyPred) {
1173 OnlyPred = 0; // There are multiple different predecessors...
1174 break;
1175 }
1176
1177 if (OnlyPred)
1178 if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1179 if (PBI->isConditional() &&
1180 PBI->getCondition() == BI->getCondition() &&
Chris Lattner951fdb92004-05-01 22:41:51 +00001181 (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
Chris Lattner92da2c22004-05-01 22:36:37 +00001182 // Okay, the outcome of this conditional branch is statically
1183 // knowable. Delete the outgoing CFG edge that is impossible to
1184 // execute.
1185 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1186 BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
1187 new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
1188 BB->getInstList().erase(BI);
1189 return SimplifyCFG(BB) | true;
1190 }
Chris Lattnerd52c2612004-02-24 07:23:58 +00001191 }
Chris Lattner698f96f2004-10-18 04:07:22 +00001192 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1193 // If there are any instructions immediately before the unreachable that can
1194 // be removed, do so.
1195 Instruction *Unreachable = BB->getTerminator();
1196 while (Unreachable != BB->begin()) {
1197 BasicBlock::iterator BBI = Unreachable;
1198 --BBI;
1199 if (isa<CallInst>(BBI)) break;
1200 // Delete this instruction
1201 BB->getInstList().erase(BBI);
1202 Changed = true;
1203 }
1204
1205 // If the unreachable instruction is the first in the block, take a gander
1206 // at all of the predecessors of this instruction, and simplify them.
1207 if (&BB->front() == Unreachable) {
1208 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1209 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1210 TerminatorInst *TI = Preds[i]->getTerminator();
1211
1212 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1213 if (BI->isUnconditional()) {
1214 if (BI->getSuccessor(0) == BB) {
1215 new UnreachableInst(TI);
1216 TI->eraseFromParent();
1217 Changed = true;
1218 }
1219 } else {
1220 if (BI->getSuccessor(0) == BB) {
1221 new BranchInst(BI->getSuccessor(1), BI);
1222 BI->eraseFromParent();
1223 } else if (BI->getSuccessor(1) == BB) {
1224 new BranchInst(BI->getSuccessor(0), BI);
1225 BI->eraseFromParent();
1226 Changed = true;
1227 }
1228 }
1229 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1230 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1231 if (SI->getSuccessor(i) == BB) {
1232 SI->removeCase(i);
1233 --i; --e;
1234 Changed = true;
1235 }
1236 // If the default value is unreachable, figure out the most popular
1237 // destination and make it the default.
1238 if (SI->getSuccessor(0) == BB) {
1239 std::map<BasicBlock*, unsigned> Popularity;
1240 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1241 Popularity[SI->getSuccessor(i)]++;
1242
1243 // Find the most popular block.
1244 unsigned MaxPop = 0;
1245 BasicBlock *MaxBlock = 0;
1246 for (std::map<BasicBlock*, unsigned>::iterator
1247 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1248 if (I->second > MaxPop) {
1249 MaxPop = I->second;
1250 MaxBlock = I->first;
1251 }
1252 }
1253 if (MaxBlock) {
1254 // Make this the new default, allowing us to delete any explicit
1255 // edges to it.
1256 SI->setSuccessor(0, MaxBlock);
1257 Changed = true;
1258
1259 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1260 if (SI->getSuccessor(i) == MaxBlock) {
1261 SI->removeCase(i);
1262 --i; --e;
1263 }
1264 }
1265 }
1266 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1267 if (II->getUnwindDest() == BB) {
1268 // Convert the invoke to a call instruction. This would be a good
1269 // place to note that the call does not throw though.
1270 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1271 II->removeFromParent(); // Take out of symbol table
1272
1273 // Insert the call now...
1274 std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1275 CallInst *CI = new CallInst(II->getCalledValue(), Args,
1276 II->getName(), BI);
1277 // If the invoke produced a value, the Call does now instead.
1278 II->replaceAllUsesWith(CI);
1279 delete II;
1280 Changed = true;
1281 }
1282 }
1283 }
1284
1285 // If this block is now dead, remove it.
1286 if (pred_begin(BB) == pred_end(BB)) {
1287 // We know there are no successors, so just nuke the block.
1288 M->getBasicBlockList().erase(BB);
1289 return true;
1290 }
1291 }
Chris Lattner19831ec2004-02-16 06:35:48 +00001292 }
1293
Chris Lattner01d1ee32002-05-21 20:50:24 +00001294 // Merge basic blocks into their predecessor if there is only one distinct
1295 // pred, and if there is only one distinct successor of the predecessor, and
1296 // if there are no PHI nodes.
1297 //
Chris Lattner2355f942004-02-11 01:17:07 +00001298 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1299 BasicBlock *OnlyPred = *PI++;
1300 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
1301 if (*PI != OnlyPred) {
1302 OnlyPred = 0; // There are multiple different predecessors...
1303 break;
1304 }
Chris Lattner92da2c22004-05-01 22:36:37 +00001305
Chris Lattner2355f942004-02-11 01:17:07 +00001306 BasicBlock *OnlySucc = 0;
1307 if (OnlyPred && OnlyPred != BB && // Don't break self loops
1308 OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1309 // Check to see if there is only one distinct successor...
1310 succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1311 OnlySucc = BB;
1312 for (; SI != SE; ++SI)
1313 if (*SI != OnlySucc) {
1314 OnlySucc = 0; // There are multiple distinct successors!
Chris Lattner01d1ee32002-05-21 20:50:24 +00001315 break;
1316 }
Chris Lattner2355f942004-02-11 01:17:07 +00001317 }
1318
1319 if (OnlySucc) {
Chris Lattner30b43442004-07-15 02:06:12 +00001320 DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
Chris Lattner2355f942004-02-11 01:17:07 +00001321 TerminatorInst *Term = OnlyPred->getTerminator();
1322
1323 // Resolve any PHI nodes at the start of the block. They are all
1324 // guaranteed to have exactly one entry if they exist, unless there are
1325 // multiple duplicate (but guaranteed to be equal) entries for the
1326 // incoming edges. This occurs when there are multiple edges from
1327 // OnlyPred to OnlySucc.
1328 //
1329 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1330 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1331 BB->getInstList().pop_front(); // Delete the phi node...
Chris Lattner01d1ee32002-05-21 20:50:24 +00001332 }
1333
Chris Lattner2355f942004-02-11 01:17:07 +00001334 // Delete the unconditional branch from the predecessor...
1335 OnlyPred->getInstList().pop_back();
Chris Lattner01d1ee32002-05-21 20:50:24 +00001336
Chris Lattner2355f942004-02-11 01:17:07 +00001337 // Move all definitions in the successor to the predecessor...
1338 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
Chris Lattner18961502002-06-25 16:12:52 +00001339
Chris Lattner2355f942004-02-11 01:17:07 +00001340 // Make all PHI nodes that referred to BB now refer to Pred as their
1341 // source...
1342 BB->replaceAllUsesWith(OnlyPred);
Chris Lattner18961502002-06-25 16:12:52 +00001343
Chris Lattner2355f942004-02-11 01:17:07 +00001344 std::string OldName = BB->getName();
Chris Lattner18961502002-06-25 16:12:52 +00001345
Chris Lattner2355f942004-02-11 01:17:07 +00001346 // Erase basic block from the function...
1347 M->getBasicBlockList().erase(BB);
Chris Lattner18961502002-06-25 16:12:52 +00001348
Chris Lattner2355f942004-02-11 01:17:07 +00001349 // Inherit predecessors name if it exists...
1350 if (!OldName.empty() && !OnlyPred->hasName())
1351 OnlyPred->setName(OldName);
Chris Lattner01d1ee32002-05-21 20:50:24 +00001352
Chris Lattner2355f942004-02-11 01:17:07 +00001353 return true;
Chris Lattner01d1ee32002-05-21 20:50:24 +00001354 }
Chris Lattner723c66d2004-02-11 03:36:04 +00001355
Chris Lattner37dc9382004-11-30 00:29:14 +00001356 // Otherwise, if this block only has a single predecessor, and if that block
1357 // is a conditional branch, see if we can hoist any code from this block up
1358 // into our predecessor.
1359 if (OnlyPred)
Chris Lattner76134372004-12-10 17:42:31 +00001360 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1361 if (BI->isConditional()) {
1362 // Get the other block.
1363 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1364 PI = pred_begin(OtherBB);
1365 ++PI;
1366 if (PI == pred_end(OtherBB)) {
1367 // We have a conditional branch to two blocks that are only reachable
1368 // from the condbr. We know that the condbr dominates the two blocks,
1369 // so see if there is any identical code in the "then" and "else"
1370 // blocks. If so, we can hoist it up to the branching block.
1371 Changed |= HoistThenElseCodeToIf(BI);
1372 }
Chris Lattner37dc9382004-11-30 00:29:14 +00001373 }
Chris Lattner37dc9382004-11-30 00:29:14 +00001374
Chris Lattner0d560082004-02-24 05:38:11 +00001375 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1376 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1377 // Change br (X == 0 | X == 1), T, F into a switch instruction.
1378 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1379 Instruction *Cond = cast<Instruction>(BI->getCondition());
1380 // If this is a bunch of seteq's or'd together, or if it's a bunch of
1381 // 'setne's and'ed together, collect them.
1382 Value *CompVal = 0;
Chris Lattner1654cff2004-06-19 07:02:14 +00001383 std::vector<ConstantInt*> Values;
Chris Lattner0d560082004-02-24 05:38:11 +00001384 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1385 if (CompVal && CompVal->getType()->isInteger()) {
1386 // There might be duplicate constants in the list, which the switch
1387 // instruction can't handle, remove them now.
Chris Lattner1654cff2004-06-19 07:02:14 +00001388 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
Chris Lattner0d560082004-02-24 05:38:11 +00001389 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1390
1391 // Figure out which block is which destination.
1392 BasicBlock *DefaultBB = BI->getSuccessor(1);
1393 BasicBlock *EdgeBB = BI->getSuccessor(0);
1394 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1395
1396 // Create the new switch instruction now.
Chris Lattner37880592005-01-29 00:38:26 +00001397 SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
Chris Lattner0d560082004-02-24 05:38:11 +00001398
1399 // Add all of the 'cases' to the switch instruction.
1400 for (unsigned i = 0, e = Values.size(); i != e; ++i)
1401 New->addCase(Values[i], EdgeBB);
1402
1403 // We added edges from PI to the EdgeBB. As such, if there were any
1404 // PHI nodes in EdgeBB, they need entries to be added corresponding to
1405 // the number of edges added.
1406 for (BasicBlock::iterator BBI = EdgeBB->begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +00001407 isa<PHINode>(BBI); ++BBI) {
1408 PHINode *PN = cast<PHINode>(BBI);
Chris Lattner0d560082004-02-24 05:38:11 +00001409 Value *InVal = PN->getIncomingValueForBlock(*PI);
1410 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1411 PN->addIncoming(InVal, *PI);
1412 }
1413
1414 // Erase the old branch instruction.
1415 (*PI)->getInstList().erase(BI);
1416
1417 // Erase the potentially condition tree that was used to computed the
1418 // branch condition.
1419 ErasePossiblyDeadInstructionTree(Cond);
1420 return true;
1421 }
1422 }
1423
Chris Lattner723c66d2004-02-11 03:36:04 +00001424 // If there is a trivial two-entry PHI node in this basic block, and we can
1425 // eliminate it, do so now.
1426 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1427 if (PN->getNumIncomingValues() == 2) {
1428 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1429 // statement", which has a very simple dominance structure. Basically, we
1430 // are trying to find the condition that is being branched on, which
1431 // subsequently causes this merge to happen. We really want control
1432 // dependence information for this check, but simplifycfg can't keep it up
1433 // to date, and this catches most of the cases we care about anyway.
1434 //
1435 BasicBlock *IfTrue, *IfFalse;
1436 if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
Chris Lattner218a8222004-06-20 01:13:18 +00001437 DEBUG(std::cerr << "FOUND IF CONDITION! " << *IfCond << " T: "
1438 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
Chris Lattner723c66d2004-02-11 03:36:04 +00001439
Chris Lattner9c078662004-10-14 05:13:36 +00001440 // Loop over the PHI's seeing if we can promote them all to select
1441 // instructions. While we are at it, keep track of the instructions
1442 // that need to be moved to the dominating block.
1443 std::set<Instruction*> AggressiveInsts;
1444 bool CanPromote = true;
1445
Chris Lattner723c66d2004-02-11 03:36:04 +00001446 BasicBlock::iterator AfterPHIIt = BB->begin();
Chris Lattner9c078662004-10-14 05:13:36 +00001447 while (isa<PHINode>(AfterPHIIt)) {
1448 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1449 if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
1450 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1451 else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1452 &AggressiveInsts) ||
1453 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1454 &AggressiveInsts)) {
1455 CanPromote = false;
1456 break;
1457 }
1458 }
Chris Lattner723c66d2004-02-11 03:36:04 +00001459
Chris Lattner9c078662004-10-14 05:13:36 +00001460 // Did we eliminate all PHI's?
1461 CanPromote |= AfterPHIIt == BB->begin();
Chris Lattner723c66d2004-02-11 03:36:04 +00001462
Chris Lattner9c078662004-10-14 05:13:36 +00001463 // If we all PHI nodes are promotable, check to make sure that all
1464 // instructions in the predecessor blocks can be promoted as well. If
1465 // not, we won't be able to get rid of the control flow, so it's not
1466 // worth promoting to select instructions.
Reid Spencer4e073a82004-10-22 16:10:39 +00001467 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
Chris Lattner9c078662004-10-14 05:13:36 +00001468 if (CanPromote) {
1469 PN = cast<PHINode>(BB->begin());
1470 BasicBlock *Pred = PN->getIncomingBlock(0);
1471 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1472 IfBlock1 = Pred;
1473 DomBlock = *pred_begin(Pred);
1474 for (BasicBlock::iterator I = Pred->begin();
1475 !isa<TerminatorInst>(I); ++I)
1476 if (!AggressiveInsts.count(I)) {
1477 // This is not an aggressive instruction that we can promote.
1478 // Because of this, we won't be able to get rid of the control
1479 // flow, so the xform is not worth it.
1480 CanPromote = false;
1481 break;
1482 }
1483 }
1484
1485 Pred = PN->getIncomingBlock(1);
1486 if (CanPromote &&
1487 cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1488 IfBlock2 = Pred;
1489 DomBlock = *pred_begin(Pred);
1490 for (BasicBlock::iterator I = Pred->begin();
1491 !isa<TerminatorInst>(I); ++I)
1492 if (!AggressiveInsts.count(I)) {
1493 // This is not an aggressive instruction that we can promote.
1494 // Because of this, we won't be able to get rid of the control
1495 // flow, so the xform is not worth it.
1496 CanPromote = false;
1497 break;
1498 }
1499 }
1500 }
1501
1502 // If we can still promote the PHI nodes after this gauntlet of tests,
1503 // do all of the PHI's now.
1504 if (CanPromote) {
1505 // Move all 'aggressive' instructions, which are defined in the
1506 // conditional parts of the if's up to the dominating block.
1507 if (IfBlock1) {
1508 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1509 IfBlock1->getInstList(),
1510 IfBlock1->begin(),
1511 IfBlock1->getTerminator());
1512 }
1513 if (IfBlock2) {
1514 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1515 IfBlock2->getInstList(),
1516 IfBlock2->begin(),
1517 IfBlock2->getTerminator());
1518 }
1519
1520 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1521 // Change the PHI node into a select instruction.
Chris Lattner723c66d2004-02-11 03:36:04 +00001522 Value *TrueVal =
1523 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1524 Value *FalseVal =
1525 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1526
Chris Lattner552112f2004-03-30 19:44:05 +00001527 std::string Name = PN->getName(); PN->setName("");
1528 PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
Chris Lattner9c078662004-10-14 05:13:36 +00001529 Name, AfterPHIIt));
Chris Lattner552112f2004-03-30 19:44:05 +00001530 BB->getInstList().erase(PN);
Chris Lattner723c66d2004-02-11 03:36:04 +00001531 }
Chris Lattner9c078662004-10-14 05:13:36 +00001532 Changed = true;
Chris Lattner723c66d2004-02-11 03:36:04 +00001533 }
1534 }
1535 }
Chris Lattner01d1ee32002-05-21 20:50:24 +00001536
Chris Lattner694e37f2003-08-17 19:41:53 +00001537 return Changed;
Chris Lattner01d1ee32002-05-21 20:50:24 +00001538}