blob: d4d26f8e348bce7c1361896b326232ccbeab6f4b [file] [log] [blame]
Chris Lattnerac8f2fd2010-01-04 07:12:23 +00001//===- InstCombine.h - Main InstCombine pass definition -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef INSTCOMBINE_INSTCOMBINE_H
11#define INSTCOMBINE_INSTCOMBINE_H
12
13#include "InstCombineWorklist.h"
14#include "llvm/Pass.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Support/IRBuilder.h"
17#include "llvm/Support/InstVisitor.h"
18#include "llvm/Support/TargetFolder.h"
19
20namespace llvm {
21 class CallSite;
22 class TargetData;
23 class DbgDeclareInst;
24 class MemIntrinsic;
25 class MemSetInst;
26
27/// SelectPatternFlavor - We can match a variety of different patterns for
28/// select operations.
29enum SelectPatternFlavor {
30 SPF_UNKNOWN = 0,
31 SPF_SMIN, SPF_UMIN,
32 SPF_SMAX, SPF_UMAX
33 //SPF_ABS - TODO.
34};
35
36
37/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
38/// just like the normal insertion helper, but also adds any new instructions
39/// to the instcombine worklist.
40class VISIBILITY_HIDDEN InstCombineIRInserter
41 : public IRBuilderDefaultInserter<true> {
42 InstCombineWorklist &Worklist;
43public:
44 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
45
46 void InsertHelper(Instruction *I, const Twine &Name,
47 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
48 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
49 Worklist.Add(I);
50 }
51};
52
53/// InstCombiner - The -instcombine pass.
54class VISIBILITY_HIDDEN InstCombiner
55 : public FunctionPass,
56 public InstVisitor<InstCombiner, Instruction*> {
57 TargetData *TD;
58 bool MustPreserveLCSSA;
59 bool MadeIRChange;
60public:
61 /// Worklist - All of the instructions that need to be simplified.
62 InstCombineWorklist Worklist;
63
64 /// Builder - This is an IRBuilder that automatically inserts new
65 /// instructions into the worklist when they are created.
66 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
67 BuilderTy *Builder;
68
69 static char ID; // Pass identification, replacement for typeid
70 InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
71
72public:
73 virtual bool runOnFunction(Function &F);
74
75 bool DoOneIteration(Function &F, unsigned ItNum);
76
Chris Lattnere0b4b722010-01-04 07:17:19 +000077 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
78
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000079 TargetData *getTargetData() const { return TD; }
80
81 // Visitation implementation - Implement instruction combining for different
82 // instruction types. The semantics are as follows:
83 // Return Value:
84 // null - No change was made
85 // I - Change was made, I is still valid, I may be dead though
86 // otherwise - Change was made, replace I with returned instruction
87 //
88 Instruction *visitAdd(BinaryOperator &I);
89 Instruction *visitFAdd(BinaryOperator &I);
90 Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
91 Instruction *visitSub(BinaryOperator &I);
92 Instruction *visitFSub(BinaryOperator &I);
93 Instruction *visitMul(BinaryOperator &I);
94 Instruction *visitFMul(BinaryOperator &I);
95 Instruction *visitURem(BinaryOperator &I);
96 Instruction *visitSRem(BinaryOperator &I);
97 Instruction *visitFRem(BinaryOperator &I);
98 bool SimplifyDivRemOfSelect(BinaryOperator &I);
99 Instruction *commonRemTransforms(BinaryOperator &I);
100 Instruction *commonIRemTransforms(BinaryOperator &I);
101 Instruction *commonDivTransforms(BinaryOperator &I);
102 Instruction *commonIDivTransforms(BinaryOperator &I);
103 Instruction *visitUDiv(BinaryOperator &I);
104 Instruction *visitSDiv(BinaryOperator &I);
105 Instruction *visitFDiv(BinaryOperator &I);
106 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
107 Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
108 Instruction *visitAnd(BinaryOperator &I);
109 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
110 Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
111 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
112 Value *A, Value *B, Value *C);
113 Instruction *visitOr (BinaryOperator &I);
114 Instruction *visitXor(BinaryOperator &I);
115 Instruction *visitShl(BinaryOperator &I);
116 Instruction *visitAShr(BinaryOperator &I);
117 Instruction *visitLShr(BinaryOperator &I);
118 Instruction *commonShiftTransforms(BinaryOperator &I);
119 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
120 Constant *RHSC);
121 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
122 GlobalVariable *GV, CmpInst &ICI,
123 ConstantInt *AndCst = 0);
124 Instruction *visitFCmpInst(FCmpInst &I);
125 Instruction *visitICmpInst(ICmpInst &I);
126 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
127 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
128 Instruction *LHS,
129 ConstantInt *RHS);
130 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
131 ConstantInt *DivRHS);
132 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
133 ICmpInst::Predicate Pred, Value *TheAdd);
134 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
135 ICmpInst::Predicate Cond, Instruction &I);
136 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
137 BinaryOperator &I);
138 Instruction *commonCastTransforms(CastInst &CI);
139 Instruction *commonIntCastTransforms(CastInst &CI);
140 Instruction *commonPointerCastTransforms(CastInst &CI);
141 Instruction *visitTrunc(TruncInst &CI);
142 Instruction *visitZExt(ZExtInst &CI);
143 Instruction *visitSExt(SExtInst &CI);
144 Instruction *visitFPTrunc(FPTruncInst &CI);
145 Instruction *visitFPExt(CastInst &CI);
146 Instruction *visitFPToUI(FPToUIInst &FI);
147 Instruction *visitFPToSI(FPToSIInst &FI);
148 Instruction *visitUIToFP(CastInst &CI);
149 Instruction *visitSIToFP(CastInst &CI);
150 Instruction *visitPtrToInt(PtrToIntInst &CI);
151 Instruction *visitIntToPtr(IntToPtrInst &CI);
152 Instruction *visitBitCast(BitCastInst &CI);
153 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
154 Instruction *FI);
155 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
156 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
157 Value *A, Value *B, Instruction &Outer,
158 SelectPatternFlavor SPF2, Value *C);
159 Instruction *visitSelectInst(SelectInst &SI);
160 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
161 Instruction *visitCallInst(CallInst &CI);
162 Instruction *visitInvokeInst(InvokeInst &II);
163
164 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
165 Instruction *visitPHINode(PHINode &PN);
166 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
167 Instruction *visitAllocaInst(AllocaInst &AI);
168 Instruction *visitFree(Instruction &FI);
169 Instruction *visitLoadInst(LoadInst &LI);
170 Instruction *visitStoreInst(StoreInst &SI);
171 Instruction *visitBranchInst(BranchInst &BI);
172 Instruction *visitSwitchInst(SwitchInst &SI);
173 Instruction *visitInsertElementInst(InsertElementInst &IE);
174 Instruction *visitExtractElementInst(ExtractElementInst &EI);
175 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
176 Instruction *visitExtractValueInst(ExtractValueInst &EV);
177
178 // visitInstruction - Specify what to return for unhandled instructions...
179 Instruction *visitInstruction(Instruction &I) { return 0; }
180
181private:
182 Instruction *visitCallSite(CallSite CS);
183 bool transformConstExprCastCall(CallSite CS);
184 Instruction *transformCallThroughTrampoline(CallSite CS);
185 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
186 bool DoXform = true);
187 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
188 DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
189
190
191public:
192 // InsertNewInstBefore - insert an instruction New before instruction Old
193 // in the program. Add the new instruction to the worklist.
194 //
195 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
196 assert(New && New->getParent() == 0 &&
197 "New instruction already inserted into a basic block!");
198 BasicBlock *BB = Old.getParent();
199 BB->getInstList().insert(&Old, New); // Insert inst
200 Worklist.Add(New);
201 return New;
202 }
203
204 // ReplaceInstUsesWith - This method is to be used when an instruction is
205 // found to be dead, replacable with another preexisting expression. Here
206 // we add all uses of I to the worklist, replace all uses of I with the new
207 // value, then return I, so that the inst combiner will know that I was
208 // modified.
209 //
210 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
211 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
212
213 // If we are replacing the instruction with itself, this must be in a
214 // segment of unreachable code, so just clobber the instruction.
215 if (&I == V)
216 V = UndefValue::get(I.getType());
217
218 I.replaceAllUsesWith(V);
219 return &I;
220 }
221
222 // EraseInstFromFunction - When dealing with an instruction that has side
223 // effects or produces a void value, we can't rely on DCE to delete the
224 // instruction. Instead, visit methods should return the value returned by
225 // this function.
226 Instruction *EraseInstFromFunction(Instruction &I) {
227 DEBUG(errs() << "IC: ERASE " << I << '\n');
228
229 assert(I.use_empty() && "Cannot erase instruction that is used!");
230 // Make sure that we reprocess all operands now that we reduced their
231 // use counts.
232 if (I.getNumOperands() < 8) {
233 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
234 if (Instruction *Op = dyn_cast<Instruction>(*i))
235 Worklist.Add(Op);
236 }
237 Worklist.Remove(&I);
238 I.eraseFromParent();
239 MadeIRChange = true;
240 return 0; // Don't do anything with FI
241 }
242
243 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
244 APInt &KnownOne, unsigned Depth = 0) const {
245 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
246 }
247
248 bool MaskedValueIsZero(Value *V, const APInt &Mask,
249 unsigned Depth = 0) const {
250 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
251 }
252 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
253 return llvm::ComputeNumSignBits(Op, TD, Depth);
254 }
255
256private:
257
258 /// SimplifyCommutative - This performs a few simplifications for
259 /// commutative operators.
260 bool SimplifyCommutative(BinaryOperator &I);
261
262 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
263 /// based on the demanded bits.
264 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
265 APInt& KnownZero, APInt& KnownOne,
266 unsigned Depth);
267 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
268 APInt& KnownZero, APInt& KnownOne,
269 unsigned Depth=0);
270
271 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
272 /// SimplifyDemandedBits knows about. See if the instruction has any
273 /// properties that allow us to simplify its operands.
274 bool SimplifyDemandedInstructionBits(Instruction &Inst);
275
276 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
277 APInt& UndefElts, unsigned Depth = 0);
278
279 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
280 // which has a PHI node as operand #0, see if we can fold the instruction
281 // into the PHI (which is only possible if all operands to the PHI are
282 // constants).
283 //
284 // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
285 // that would normally be unprofitable because they strongly encourage jump
286 // threading.
287 Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
288
289 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
290 // operator and they all are only used by the PHI, PHI together their
291 // inputs, and do the operation once, to the result of the PHI.
292 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
293 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
294 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
295 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
296
297
298 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
299 ConstantInt *AndRHS, BinaryOperator &TheAnd);
300
301 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
302 bool isSub, Instruction &I);
303 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
304 bool isSigned, bool Inside, Instruction &IB);
305 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
306 Instruction *MatchBSwap(BinaryOperator &I);
307 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
308 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
309 Instruction *SimplifyMemSet(MemSetInst *MI);
310
311
312 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
313
314 bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
315 unsigned CastOpc, int &NumCastsRemoved);
316 unsigned GetOrEnforceKnownAlignment(Value *V,
317 unsigned PrefAlign = 0);
318
319};
320
321
322
323} // end namespace llvm.
324
325#endif