blob: e77fbd1667d418ceaa49385288eae9bdcb6850cb [file] [log] [blame]
Dan Gohmane4aeec02009-10-13 18:30:07 +00001//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/InlineCost.h"
15#include "llvm/Support/CallSite.h"
16#include "llvm/CallingConv.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/ADT/SmallPtrSet.h"
19using namespace llvm;
20
21// CountCodeReductionForConstant - Figure out an approximation for how many
22// instructions will be constant folded if the specified value is constant.
23//
24unsigned InlineCostAnalyzer::RegionInfo::
25 CountCodeReductionForConstant(Value *V) {
26 unsigned Reduction = 0;
27 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
28 if (isa<BranchInst>(*UI))
29 Reduction += 40; // Eliminating a conditional branch is a big win
30 else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
31 // Eliminating a switch is a big win, proportional to the number of edges
32 // deleted.
33 Reduction += (SI->getNumSuccessors()-1) * 40;
34 else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
35 // Turning an indirect call into a direct call is a BIG win
36 Reduction += CI->getCalledValue() == V ? 500 : 0;
37 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
38 // Turning an indirect call into a direct call is a BIG win
39 Reduction += II->getCalledValue() == V ? 500 : 0;
40 } else {
41 // Figure out if this instruction will be removed due to simple constant
42 // propagation.
43 Instruction &Inst = cast<Instruction>(**UI);
44
45 // We can't constant propagate instructions which have effects or
46 // read memory.
47 //
48 // FIXME: It would be nice to capture the fact that a load from a
49 // pointer-to-constant-global is actually a *really* good thing to zap.
50 // Unfortunately, we don't know the pointer that may get propagated here,
51 // so we can't make this decision.
52 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
53 isa<AllocationInst>(Inst))
54 continue;
55
56 bool AllOperandsConstant = true;
57 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
58 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
59 AllOperandsConstant = false;
60 break;
61 }
62
63 if (AllOperandsConstant) {
64 // We will get to remove this instruction...
65 Reduction += 7;
66
67 // And any other instructions that use it which become constants
68 // themselves.
69 Reduction += CountCodeReductionForConstant(&Inst);
70 }
71 }
72
73 return Reduction;
74}
75
76// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
77// the function will be if it is inlined into a context where an argument
78// becomes an alloca.
79//
80unsigned InlineCostAnalyzer::RegionInfo::
81 CountCodeReductionForAlloca(Value *V) {
82 if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
83 unsigned Reduction = 0;
84 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
85 Instruction *I = cast<Instruction>(*UI);
86 if (isa<LoadInst>(I) || isa<StoreInst>(I))
87 Reduction += 10;
88 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
89 // If the GEP has variable indices, we won't be able to do much with it.
90 if (!GEP->hasAllConstantIndices())
91 Reduction += CountCodeReductionForAlloca(GEP)+15;
92 } else {
93 // If there is some other strange instruction, we're not going to be able
94 // to do much if we inline this.
95 return 0;
96 }
97 }
98
99 return Reduction;
100}
101
102/// analyzeBasicBlock - Fill in the current structure with information gleaned
103/// from the specified block.
104void InlineCostAnalyzer::RegionInfo::analyzeBasicBlock(const BasicBlock *BB) {
105 ++NumBlocks;
106
107 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
108 II != E; ++II) {
109 if (isa<PHINode>(II)) continue; // PHI nodes don't count.
110
111 // Special handling for calls.
112 if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
113 if (isa<DbgInfoIntrinsic>(II))
114 continue; // Debug intrinsics don't count as size.
115
116 CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
117
118 // If this function contains a call to setjmp or _setjmp, never inline
119 // it. This is a hack because we depend on the user marking their local
120 // variables as volatile if they are live across a setjmp call, and they
121 // probably won't do this in callers.
122 if (Function *F = CS.getCalledFunction())
123 if (F->isDeclaration() &&
124 (F->getName() == "setjmp" || F->getName() == "_setjmp")) {
125 NeverInline = true;
126 return;
127 }
128
129 // Calls often compile into many machine instructions. Bump up their
130 // cost to reflect this.
131 if (!isa<IntrinsicInst>(II))
132 NumInsts += InlineConstants::CallPenalty;
133 }
134
135 // These, too, are calls.
136 if (isa<MallocInst>(II) || isa<FreeInst>(II))
137 NumInsts += InlineConstants::CallPenalty;
138
139 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
140 if (!AI->isStaticAlloca())
141 this->usesDynamicAlloca = true;
142 }
143
144 if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
145 ++NumVectorInsts;
146
147 // Noop casts, including ptr <-> int, don't count.
148 if (const CastInst *CI = dyn_cast<CastInst>(II)) {
149 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
150 isa<PtrToIntInst>(CI))
151 continue;
152 } else if (const GetElementPtrInst *GEPI =
153 dyn_cast<GetElementPtrInst>(II)) {
154 // If a GEP has all constant indices, it will probably be folded with
155 // a load/store.
156 if (GEPI->hasAllConstantIndices())
157 continue;
158 }
159
160 if (isa<ReturnInst>(II))
161 ++NumRets;
162
163 ++NumInsts;
164 }
165}
166
167/// analyzeFunction - Fill in the current structure with information gleaned
168/// from the specified function.
169void InlineCostAnalyzer::RegionInfo::analyzeFunction(Function *F) {
170 // Look at the size of the callee. Each basic block counts as 20 units, and
171 // each instruction counts as 5.
172 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
173 analyzeBasicBlock(&*BB);
174
175 // A function with exactly one return has it removed during the inlining
176 // process (see InlineFunction), so don't count it.
177 // FIXME: This knowledge should really be encoded outside of RegionInfo.
178 if (NumRets==1)
179 --NumInsts;
180
181 // Check out all of the arguments to the function, figuring out how much
182 // code can be eliminated if one of the arguments is a constant.
183 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
184 ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
185 CountCodeReductionForAlloca(I)));
186}
187
188
189
190// getInlineCost - The heuristic used to determine if we should inline the
191// function call or not.
192//
193InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
194 SmallPtrSet<const Function *, 16> &NeverInline) {
195 Instruction *TheCall = CS.getInstruction();
196 Function *Callee = CS.getCalledFunction();
197 Function *Caller = TheCall->getParent()->getParent();
198
199 // Don't inline functions which can be redefined at link-time to mean
200 // something else. Don't inline functions marked noinline.
201 if (Callee->mayBeOverridden() ||
202 Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
203 return llvm::InlineCost::getNever();
204
205 // InlineCost - This value measures how good of an inline candidate this call
206 // site is to inline. A lower inline cost make is more likely for the call to
207 // be inlined. This value may go negative.
208 //
209 int InlineCost = 0;
210
211 // If there is only one call of the function, and it has internal linkage,
212 // make it almost guaranteed to be inlined.
213 //
214 if (Callee->hasLocalLinkage() && Callee->hasOneUse())
215 InlineCost += InlineConstants::LastCallToStaticBonus;
216
217 // If this function uses the coldcc calling convention, prefer not to inline
218 // it.
219 if (Callee->getCallingConv() == CallingConv::Cold)
220 InlineCost += InlineConstants::ColdccPenalty;
221
222 // If the instruction after the call, or if the normal destination of the
223 // invoke is an unreachable instruction, the function is noreturn. As such,
224 // there is little point in inlining this.
225 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
226 if (isa<UnreachableInst>(II->getNormalDest()->begin()))
227 InlineCost += InlineConstants::NoreturnPenalty;
228 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
229 InlineCost += InlineConstants::NoreturnPenalty;
230
231 // Get information about the callee...
232 RegionInfo &CalleeFI = CachedFunctionInfo[Callee];
233
234 // If we haven't calculated this information yet, do so now.
235 if (CalleeFI.NumBlocks == 0)
236 CalleeFI.analyzeFunction(Callee);
237
238 // If we should never inline this, return a huge cost.
239 if (CalleeFI.NeverInline)
240 return InlineCost::getNever();
241
242 // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
243 // could move this up and avoid computing the RegionInfo for
244 // things we are going to just return always inline for. This
245 // requires handling setjmp somewhere else, however.
246 if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
247 return InlineCost::getAlways();
248
249 if (CalleeFI.usesDynamicAlloca) {
250 // Get infomation about the caller...
251 RegionInfo &CallerFI = CachedFunctionInfo[Caller];
252
253 // If we haven't calculated this information yet, do so now.
254 if (CallerFI.NumBlocks == 0)
255 CallerFI.analyzeFunction(Caller);
256
257 // Don't inline a callee with dynamic alloca into a caller without them.
258 // Functions containing dynamic alloca's are inefficient in various ways;
259 // don't create more inefficiency.
260 if (!CallerFI.usesDynamicAlloca)
261 return InlineCost::getNever();
262 }
263
264 // Add to the inline quality for properties that make the call valuable to
265 // inline. This includes factors that indicate that the result of inlining
266 // the function will be optimizable. Currently this just looks at arguments
267 // passed into the function.
268 //
269 unsigned ArgNo = 0;
270 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
271 I != E; ++I, ++ArgNo) {
272 // Each argument passed in has a cost at both the caller and the callee
273 // sides. This favors functions that take many arguments over functions
274 // that take few arguments.
275 InlineCost -= 20;
276
277 // If this is a function being passed in, it is very likely that we will be
278 // able to turn an indirect function call into a direct function call.
279 if (isa<Function>(I))
280 InlineCost -= 100;
281
282 // If an alloca is passed in, inlining this function is likely to allow
283 // significant future optimization possibilities (like scalar promotion, and
284 // scalarization), so encourage the inlining of the function.
285 //
286 else if (isa<AllocaInst>(I)) {
287 if (ArgNo < CalleeFI.ArgumentWeights.size())
288 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
289
290 // If this is a constant being passed into the function, use the argument
291 // weights calculated for the callee to determine how much will be folded
292 // away with this information.
293 } else if (isa<Constant>(I)) {
294 if (ArgNo < CalleeFI.ArgumentWeights.size())
295 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
296 }
297 }
298
299 // Now that we have considered all of the factors that make the call site more
300 // likely to be inlined, look at factors that make us not want to inline it.
301
302 // Don't inline into something too big, which would make it bigger.
303 // "size" here is the number of basic blocks, not instructions.
304 //
305 InlineCost += Caller->size()/15;
306
307 // Look at the size of the callee. Each instruction counts as 5.
308 InlineCost += CalleeFI.NumInsts*5;
309
310 return llvm::InlineCost::get(InlineCost);
311}
312
313// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
314// higher threshold to determine if the function call should be inlined.
315float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
316 Function *Callee = CS.getCalledFunction();
317
318 // Get information about the callee...
319 RegionInfo &CalleeFI = CachedFunctionInfo[Callee];
320
321 // If we haven't calculated this information yet, do so now.
322 if (CalleeFI.NumBlocks == 0)
323 CalleeFI.analyzeFunction(Callee);
324
325 float Factor = 1.0f;
326 // Single BB functions are often written to be inlined.
327 if (CalleeFI.NumBlocks == 1)
328 Factor += 0.5f;
329
330 // Be more aggressive if the function contains a good chunk (if it mades up
331 // at least 10% of the instructions) of vector instructions.
332 if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/2)
333 Factor += 2.0f;
334 else if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10)
335 Factor += 1.5f;
336 return Factor;
337}