blob: 03be8ef6fb707c2c26a3b0c5c7d427616b3ac53d [file] [log] [blame]
Chris Lattner53a19b72010-01-05 07:18:46 +00001//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000016#include "llvm/IR/DataLayout.h"
Chris Lattner53a19b72010-01-05 07:18:46 +000017#include "llvm/Support/GetElementPtrTypeIterator.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Shuxin Yang1a315002012-12-18 23:10:12 +000022namespace {
23
24 /// Class representing coefficient of floating-point addend.
25 /// This class needs to be highly efficient, which is especially true for
26 /// the constructor. As of I write this comment, the cost of the default
27 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
28 /// perform write-merging).
29 ///
30 class FAddendCoef {
31 public:
32 // The constructor has to initialize a APFloat, which is uncessary for
33 // most addends which have coefficient either 1 or -1. So, the constructor
34 // is expensive. In order to avoid the cost of the constructor, we should
35 // reuse some instances whenever possible. The pre-created instances
36 // FAddCombine::Add[0-5] embodies this idea.
37 //
38 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
39 ~FAddendCoef();
40
41 void set(short C) {
42 assert(!insaneIntVal(C) && "Insane coefficient");
43 IsFp = false; IntVal = C;
44 }
45
46 void set(const APFloat& C);
47
48 void negate();
49
50 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
51 Value *getValue(Type *) const;
52
53 // If possible, don't define operator+/operator- etc because these
54 // operators inevitably call FAddendCoef's constructor which is not cheap.
55 void operator=(const FAddendCoef &A);
56 void operator+=(const FAddendCoef &A);
57 void operator-=(const FAddendCoef &A);
58 void operator*=(const FAddendCoef &S);
59
60 bool isOne() const { return isInt() && IntVal == 1; }
61 bool isTwo() const { return isInt() && IntVal == 2; }
62 bool isMinusOne() const { return isInt() && IntVal == -1; }
63 bool isMinusTwo() const { return isInt() && IntVal == -2; }
64
65 private:
66 bool insaneIntVal(int V) { return V > 4 || V < -4; }
67 APFloat *getFpValPtr(void)
Shuxin Yangd6b51d12012-12-19 01:10:17 +000068 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
David Greene4ee576f2013-01-14 21:04:40 +000069 const APFloat *getFpValPtr(void) const
70 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
Shuxin Yang1a315002012-12-18 23:10:12 +000071
72 const APFloat &getFpVal(void) const {
73 assert(IsFp && BufHasFpVal && "Incorret state");
David Greene4ee576f2013-01-14 21:04:40 +000074 return *getFpValPtr();
Shuxin Yang1a315002012-12-18 23:10:12 +000075 }
76
77 APFloat &getFpVal(void)
78 { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
79
80 bool isInt() const { return !IsFp; }
81
82 private:
Shuxin Yangd6b51d12012-12-19 01:10:17 +000083
Shuxin Yang1a315002012-12-18 23:10:12 +000084 bool IsFp;
85
86 // True iff FpValBuf contains an instance of APFloat.
87 bool BufHasFpVal;
88
89 // The integer coefficient of an individual addend is either 1 or -1,
90 // and we try to simplify at most 4 addends from neighboring at most
91 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
92 // is overkill of this end.
93 short IntVal;
Shuxin Yangd6b51d12012-12-19 01:10:17 +000094
95 AlignedCharArrayUnion<APFloat> FpValBuf;
Shuxin Yang1a315002012-12-18 23:10:12 +000096 };
97
98 /// FAddend is used to represent floating-point addend. An addend is
99 /// represented as <C, V>, where the V is a symbolic value, and C is a
100 /// constant coefficient. A constant addend is represented as <C, 0>.
101 ///
102 class FAddend {
103 public:
104 FAddend() { Val = 0; }
105
106 Value *getSymVal (void) const { return Val; }
107 const FAddendCoef &getCoef(void) const { return Coeff; }
108
109 bool isConstant() const { return Val == 0; }
110 bool isZero() const { return Coeff.isZero(); }
111
112 void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
113 void set(const APFloat& Coefficient, Value *V)
114 { Coeff.set(Coefficient); Val = V; }
115 void set(const ConstantFP* Coefficient, Value *V)
116 { Coeff.set(Coefficient->getValueAPF()); Val = V; }
117
118 void negate() { Coeff.negate(); }
119
120 /// Drill down the U-D chain one step to find the definition of V, and
121 /// try to break the definition into one or two addends.
122 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
123
124 /// Similar to FAddend::drillDownOneStep() except that the value being
125 /// splitted is the addend itself.
126 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
127
128 void operator+=(const FAddend &T) {
129 assert((Val == T.Val) && "Symbolic-values disagree");
130 Coeff += T.Coeff;
131 }
132
133 private:
134 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
135
136 // This addend has the value of "Coeff * Val".
137 Value *Val;
138 FAddendCoef Coeff;
139 };
140
141 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
142 /// with its neighboring at most two instructions.
143 ///
144 class FAddCombine {
145 public:
146 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
147 Value *simplify(Instruction *FAdd);
148
149 private:
150 typedef SmallVector<const FAddend*, 4> AddendVect;
151
152 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
153
154 /// Convert given addend to a Value
155 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
156
157 /// Return the number of instructions needed to emit the N-ary addition.
158 unsigned calcInstrNumber(const AddendVect& Vect);
159 Value *createFSub(Value *Opnd0, Value *Opnd1);
160 Value *createFAdd(Value *Opnd0, Value *Opnd1);
161 Value *createFMul(Value *Opnd0, Value *Opnd1);
162 Value *createFNeg(Value *V);
163 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
164 void createInstPostProc(Instruction *NewInst);
165
166 InstCombiner::BuilderTy *Builder;
167 Instruction *Instr;
168
169 private:
170 // Debugging stuff are clustered here.
171 #ifndef NDEBUG
172 unsigned CreateInstrNum;
173 void initCreateInstNum() { CreateInstrNum = 0; }
174 void incCreateInstNum() { CreateInstrNum++; }
175 #else
176 void initCreateInstNum() {}
177 void incCreateInstNum() {}
178 #endif
179 };
180}
181
182//===----------------------------------------------------------------------===//
183//
184// Implementation of
185// {FAddendCoef, FAddend, FAddition, FAddCombine}.
186//
187//===----------------------------------------------------------------------===//
188FAddendCoef::~FAddendCoef() {
189 if (BufHasFpVal)
190 getFpValPtr()->~APFloat();
191}
192
193void FAddendCoef::set(const APFloat& C) {
194 APFloat *P = getFpValPtr();
195
196 if (isInt()) {
197 // As the buffer is meanless byte stream, we cannot call
198 // APFloat::operator=().
199 new(P) APFloat(C);
200 } else
201 *P = C;
202
203 IsFp = BufHasFpVal = true;
204}
205
206void FAddendCoef::operator=(const FAddendCoef& That) {
207 if (That.isInt())
208 set(That.IntVal);
209 else
210 set(That.getFpVal());
211}
212
213void FAddendCoef::operator+=(const FAddendCoef &That) {
214 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
215 if (isInt() == That.isInt()) {
216 if (isInt())
217 IntVal += That.IntVal;
218 else
219 getFpVal().add(That.getFpVal(), RndMode);
220 return;
221 }
222
223 if (isInt()) {
224 const APFloat &T = That.getFpVal();
225 set(T);
226 getFpVal().add(APFloat(T.getSemantics(), IntVal), RndMode);
227 return;
228 }
229
230 APFloat &T = getFpVal();
231 T.add(APFloat(T.getSemantics(), That.IntVal), RndMode);
232}
233
234void FAddendCoef::operator-=(const FAddendCoef &That) {
235 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
236 if (isInt() == That.isInt()) {
237 if (isInt())
238 IntVal -= That.IntVal;
239 else
240 getFpVal().subtract(That.getFpVal(), RndMode);
241 return;
242 }
243
244 if (isInt()) {
245 const APFloat &T = That.getFpVal();
246 set(T);
247 getFpVal().subtract(APFloat(T.getSemantics(), IntVal), RndMode);
248 return;
249 }
250
251 APFloat &T = getFpVal();
252 T.subtract(APFloat(T.getSemantics(), IntVal), RndMode);
253}
254
255void FAddendCoef::operator*=(const FAddendCoef &That) {
256 if (That.isOne())
257 return;
258
259 if (That.isMinusOne()) {
260 negate();
261 return;
262 }
263
264 if (isInt() && That.isInt()) {
265 int Res = IntVal * (int)That.IntVal;
266 assert(!insaneIntVal(Res) && "Insane int value");
267 IntVal = Res;
268 return;
269 }
270
271 const fltSemantics &Semantic =
272 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
273
274 if (isInt())
275 set(APFloat(Semantic, IntVal));
276 APFloat &F0 = getFpVal();
277
278 if (That.isInt())
279 F0.multiply(APFloat(Semantic, That.IntVal), APFloat::rmNearestTiesToEven);
280 else
281 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
282
283 return;
284}
285
286void FAddendCoef::negate() {
287 if (isInt())
288 IntVal = 0 - IntVal;
289 else
290 getFpVal().changeSign();
291}
292
293Value *FAddendCoef::getValue(Type *Ty) const {
294 return isInt() ?
295 ConstantFP::get(Ty, float(IntVal)) :
296 ConstantFP::get(Ty->getContext(), getFpVal());
297}
298
299// The definition of <Val> Addends
300// =========================================
301// A + B <1, A>, <1,B>
302// A - B <1, A>, <1,B>
303// 0 - B <-1, B>
304// C * A, <C, A>
305// A + C <1, A> <C, NULL>
306// 0 +/- 0 <0, NULL> (corner case)
307//
308// Legend: A and B are not constant, C is constant
309//
310unsigned FAddend::drillValueDownOneStep
311 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
312 Instruction *I = 0;
313 if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
314 return 0;
315
316 unsigned Opcode = I->getOpcode();
317
318 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
319 ConstantFP *C0, *C1;
320 Value *Opnd0 = I->getOperand(0);
321 Value *Opnd1 = I->getOperand(1);
322 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
323 Opnd0 = 0;
324
325 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
326 Opnd1 = 0;
327
328 if (Opnd0) {
329 if (!C0)
330 Addend0.set(1, Opnd0);
331 else
332 Addend0.set(C0, 0);
333 }
334
335 if (Opnd1) {
336 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
337 if (!C1)
338 Addend.set(1, Opnd1);
339 else
340 Addend.set(C1, 0);
341 if (Opcode == Instruction::FSub)
342 Addend.negate();
343 }
344
345 if (Opnd0 || Opnd1)
346 return Opnd0 && Opnd1 ? 2 : 1;
347
348 // Both operands are zero. Weird!
349 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
350 return 1;
351 }
352
353 if (I->getOpcode() == Instruction::FMul) {
354 Value *V0 = I->getOperand(0);
355 Value *V1 = I->getOperand(1);
356 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
357 Addend0.set(C, V1);
358 return 1;
359 }
360
361 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
362 Addend0.set(C, V0);
363 return 1;
364 }
365 }
366
367 return 0;
368}
369
370// Try to break *this* addend into two addends. e.g. Suppose this addend is
371// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
372// i.e. <2.3, X> and <2.3, Y>.
373//
374unsigned FAddend::drillAddendDownOneStep
375 (FAddend &Addend0, FAddend &Addend1) const {
376 if (isConstant())
377 return 0;
378
379 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
380 if (!BreakNum || Coeff.isOne())
381 return BreakNum;
382
383 Addend0.Scale(Coeff);
384
385 if (BreakNum == 2)
386 Addend1.Scale(Coeff);
387
388 return BreakNum;
389}
390
391Value *FAddCombine::simplify(Instruction *I) {
392 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
393
394 // Currently we are not able to handle vector type.
395 if (I->getType()->isVectorTy())
396 return 0;
397
398 assert((I->getOpcode() == Instruction::FAdd ||
399 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
400
401 // Save the instruction before calling other member-functions.
402 Instr = I;
403
404 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
405
406 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
407
408 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
409 unsigned Opnd0_ExpNum = 0;
410 unsigned Opnd1_ExpNum = 0;
411
412 if (!Opnd0.isConstant())
413 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
414
415 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
416 if (OpndNum == 2 && !Opnd1.isConstant())
417 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
418
419 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
420 if (Opnd0_ExpNum && Opnd1_ExpNum) {
421 AddendVect AllOpnds;
422 AllOpnds.push_back(&Opnd0_0);
423 AllOpnds.push_back(&Opnd1_0);
424 if (Opnd0_ExpNum == 2)
425 AllOpnds.push_back(&Opnd0_1);
426 if (Opnd1_ExpNum == 2)
427 AllOpnds.push_back(&Opnd1_1);
428
429 // Compute instruction quota. We should save at least one instruction.
430 unsigned InstQuota = 0;
431
432 Value *V0 = I->getOperand(0);
433 Value *V1 = I->getOperand(1);
434 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
435 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
436
437 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
438 return R;
439 }
440
441 if (OpndNum != 2) {
442 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
443 // splitted into two addends, say "V = X - Y", the instruction would have
444 // been optimized into "I = Y - X" in the previous steps.
445 //
446 const FAddendCoef &CE = Opnd0.getCoef();
447 return CE.isOne() ? Opnd0.getSymVal() : 0;
448 }
449
450 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
451 if (Opnd1_ExpNum) {
452 AddendVect AllOpnds;
453 AllOpnds.push_back(&Opnd0);
454 AllOpnds.push_back(&Opnd1_0);
455 if (Opnd1_ExpNum == 2)
456 AllOpnds.push_back(&Opnd1_1);
457
458 if (Value *R = simplifyFAdd(AllOpnds, 1))
459 return R;
460 }
461
462 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
463 if (Opnd0_ExpNum) {
464 AddendVect AllOpnds;
465 AllOpnds.push_back(&Opnd1);
466 AllOpnds.push_back(&Opnd0_0);
467 if (Opnd0_ExpNum == 2)
468 AllOpnds.push_back(&Opnd0_1);
469
470 if (Value *R = simplifyFAdd(AllOpnds, 1))
471 return R;
472 }
473
474 return 0;
475}
476
477Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
478
479 unsigned AddendNum = Addends.size();
480 assert(AddendNum <= 4 && "Too many addends");
481
482 // For saving intermediate results;
483 unsigned NextTmpIdx = 0;
484 FAddend TmpResult[3];
485
486 // Points to the constant addend of the resulting simplified expression.
487 // If the resulting expr has constant-addend, this constant-addend is
488 // desirable to reside at the top of the resulting expression tree. Placing
489 // constant close to supper-expr(s) will potentially reveal some optimization
490 // opportunities in super-expr(s).
491 //
492 const FAddend *ConstAdd = 0;
493
494 // Simplified addends are placed <SimpVect>.
495 AddendVect SimpVect;
496
497 // The outer loop works on one symbolic-value at a time. Suppose the input
498 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
499 // The symbolic-values will be processed in this order: x, y, z.
500 //
501 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
502
503 const FAddend *ThisAddend = Addends[SymIdx];
504 if (!ThisAddend) {
505 // This addend was processed before.
506 continue;
507 }
508
509 Value *Val = ThisAddend->getSymVal();
510 unsigned StartIdx = SimpVect.size();
511 SimpVect.push_back(ThisAddend);
512
513 // The inner loop collects addends sharing same symbolic-value, and these
514 // addends will be later on folded into a single addend. Following above
515 // example, if the symbolic value "y" is being processed, the inner loop
516 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
517 // be later on folded into "<b1+b2, y>".
518 //
519 for (unsigned SameSymIdx = SymIdx + 1;
520 SameSymIdx < AddendNum; SameSymIdx++) {
521 const FAddend *T = Addends[SameSymIdx];
522 if (T && T->getSymVal() == Val) {
523 // Set null such that next iteration of the outer loop will not process
524 // this addend again.
525 Addends[SameSymIdx] = 0;
526 SimpVect.push_back(T);
527 }
528 }
529
530 // If multiple addends share same symbolic value, fold them together.
531 if (StartIdx + 1 != SimpVect.size()) {
532 FAddend &R = TmpResult[NextTmpIdx ++];
533 R = *SimpVect[StartIdx];
534 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
535 R += *SimpVect[Idx];
536
537 // Pop all addends being folded and push the resulting folded addend.
538 SimpVect.resize(StartIdx);
539 if (Val != 0) {
540 if (!R.isZero()) {
541 SimpVect.push_back(&R);
542 }
543 } else {
544 // Don't push constant addend at this time. It will be the last element
545 // of <SimpVect>.
546 ConstAdd = &R;
547 }
548 }
549 }
550
551 assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
552 "out-of-bound access");
553
554 if (ConstAdd)
555 SimpVect.push_back(ConstAdd);
556
557 Value *Result;
558 if (!SimpVect.empty())
559 Result = createNaryFAdd(SimpVect, InstrQuota);
560 else {
561 // The addition is folded to 0.0.
562 Result = ConstantFP::get(Instr->getType(), 0.0);
563 }
564
565 return Result;
566}
567
568Value *FAddCombine::createNaryFAdd
569 (const AddendVect &Opnds, unsigned InstrQuota) {
570 assert(!Opnds.empty() && "Expect at least one addend");
571
572 // Step 1: Check if the # of instructions needed exceeds the quota.
573 //
574 unsigned InstrNeeded = calcInstrNumber(Opnds);
575 if (InstrNeeded > InstrQuota)
576 return 0;
577
578 initCreateInstNum();
579
580 // step 2: Emit the N-ary addition.
581 // Note that at most three instructions are involved in Fadd-InstCombine: the
582 // addition in question, and at most two neighboring instructions.
583 // The resulting optimized addition should have at least one less instruction
584 // than the original addition expression tree. This implies that the resulting
585 // N-ary addition has at most two instructions, and we don't need to worry
586 // about tree-height when constructing the N-ary addition.
587
588 Value *LastVal = 0;
589 bool LastValNeedNeg = false;
590
591 // Iterate the addends, creating fadd/fsub using adjacent two addends.
592 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
593 I != E; I++) {
594 bool NeedNeg;
595 Value *V = createAddendVal(**I, NeedNeg);
596 if (!LastVal) {
597 LastVal = V;
598 LastValNeedNeg = NeedNeg;
599 continue;
600 }
601
602 if (LastValNeedNeg == NeedNeg) {
603 LastVal = createFAdd(LastVal, V);
604 continue;
605 }
606
607 if (LastValNeedNeg)
608 LastVal = createFSub(V, LastVal);
609 else
610 LastVal = createFSub(LastVal, V);
611
612 LastValNeedNeg = false;
613 }
614
615 if (LastValNeedNeg) {
616 LastVal = createFNeg(LastVal);
617 }
618
619 #ifndef NDEBUG
620 assert(CreateInstrNum == InstrNeeded &&
621 "Inconsistent in instruction numbers");
622 #endif
623
624 return LastVal;
625}
626
627Value *FAddCombine::createFSub
628 (Value *Opnd0, Value *Opnd1) {
629 Value *V = Builder->CreateFSub(Opnd0, Opnd1);
630 createInstPostProc(cast<Instruction>(V));
631 return V;
632}
633
634Value *FAddCombine::createFNeg(Value *V) {
635 Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
636 return createFSub(Zero, V);
637}
638
639Value *FAddCombine::createFAdd
640 (Value *Opnd0, Value *Opnd1) {
641 Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
642 createInstPostProc(cast<Instruction>(V));
643 return V;
644}
645
646Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
647 Value *V = Builder->CreateFMul(Opnd0, Opnd1);
648 createInstPostProc(cast<Instruction>(V));
649 return V;
650}
651
652void FAddCombine::createInstPostProc(Instruction *NewInstr) {
653 NewInstr->setDebugLoc(Instr->getDebugLoc());
654
655 // Keep track of the number of instruction created.
656 incCreateInstNum();
657
658 // Propagate fast-math flags
659 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
660}
661
662// Return the number of instruction needed to emit the N-ary addition.
663// NOTE: Keep this function in sync with createAddendVal().
664unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
665 unsigned OpndNum = Opnds.size();
666 unsigned InstrNeeded = OpndNum - 1;
667
668 // The number of addends in the form of "(-1)*x".
669 unsigned NegOpndNum = 0;
670
671 // Adjust the number of instructions needed to emit the N-ary add.
672 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
673 I != E; I++) {
674 const FAddend *Opnd = *I;
675 if (Opnd->isConstant())
676 continue;
677
678 const FAddendCoef &CE = Opnd->getCoef();
679 if (CE.isMinusOne() || CE.isMinusTwo())
680 NegOpndNum++;
681
682 // Let the addend be "c * x". If "c == +/-1", the value of the addend
683 // is immediately available; otherwise, it needs exactly one instruction
684 // to evaluate the value.
685 if (!CE.isMinusOne() && !CE.isOne())
686 InstrNeeded++;
687 }
688 if (NegOpndNum == OpndNum)
689 InstrNeeded++;
690 return InstrNeeded;
691}
692
693// Input Addend Value NeedNeg(output)
694// ================================================================
695// Constant C C false
696// <+/-1, V> V coefficient is -1
697// <2/-2, V> "fadd V, V" coefficient is -2
698// <C, V> "fmul V, C" false
699//
700// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
701Value *FAddCombine::createAddendVal
702 (const FAddend &Opnd, bool &NeedNeg) {
703 const FAddendCoef &Coeff = Opnd.getCoef();
704
705 if (Opnd.isConstant()) {
706 NeedNeg = false;
707 return Coeff.getValue(Instr->getType());
708 }
709
710 Value *OpndVal = Opnd.getSymVal();
711
712 if (Coeff.isMinusOne() || Coeff.isOne()) {
713 NeedNeg = Coeff.isMinusOne();
714 return OpndVal;
715 }
716
717 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
718 NeedNeg = Coeff.isMinusTwo();
719 return createFAdd(OpndVal, OpndVal);
720 }
721
722 NeedNeg = false;
723 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
724}
725
Chris Lattner53a19b72010-01-05 07:18:46 +0000726/// AddOne - Add one to a ConstantInt.
727static Constant *AddOne(Constant *C) {
728 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
729}
Shuxin Yang1a315002012-12-18 23:10:12 +0000730
Chris Lattner53a19b72010-01-05 07:18:46 +0000731/// SubOne - Subtract one from a ConstantInt.
732static Constant *SubOne(ConstantInt *C) {
733 return ConstantInt::get(C->getContext(), C->getValue()-1);
734}
735
736
737// dyn_castFoldableMul - If this value is a multiply that can be folded into
738// other computations (because it has a constant operand), return the
739// non-constant operand of the multiply, and set CST to point to the multiplier.
740// Otherwise, return null.
741//
742static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000743 if (!V->hasOneUse() || !V->getType()->isIntegerTy())
Chris Lattner3168c7d2010-01-05 20:56:24 +0000744 return 0;
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000745
Chris Lattner3168c7d2010-01-05 20:56:24 +0000746 Instruction *I = dyn_cast<Instruction>(V);
747 if (I == 0) return 0;
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000748
Chris Lattner3168c7d2010-01-05 20:56:24 +0000749 if (I->getOpcode() == Instruction::Mul)
750 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
751 return I->getOperand(0);
752 if (I->getOpcode() == Instruction::Shl)
753 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
754 // The multiplier is really 1 << CST.
755 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
756 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
757 CST = ConstantInt::get(V->getType()->getContext(),
758 APInt(BitWidth, 1).shl(CSTVal));
759 return I->getOperand(0);
Chris Lattner53a19b72010-01-05 07:18:46 +0000760 }
761 return 0;
762}
763
764
765/// WillNotOverflowSignedAdd - Return true if we can prove that:
766/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
767/// This basically requires proving that the add in the original type would not
768/// overflow to change the sign bit or have a carry out.
769bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
770 // There are different heuristics we can use for this. Here are some simple
771 // ones.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000772
773 // Add has the property that adding any two 2's complement numbers can only
Chris Lattner53a19b72010-01-05 07:18:46 +0000774 // have one carry bit which can change a sign. As such, if LHS and RHS each
775 // have at least two sign bits, we know that the addition of the two values
776 // will sign extend fine.
777 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
778 return true;
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000779
780
Chris Lattner53a19b72010-01-05 07:18:46 +0000781 // If one of the operands only has one non-zero bit, and if the other operand
782 // has a known-zero bit in a more significant place than it (not including the
783 // sign bit) the ripple may go up to and fill the zero, but won't change the
784 // sign. For example, (X & ~4) + 1.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000785
Chris Lattner53a19b72010-01-05 07:18:46 +0000786 // TODO: Implement.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000787
Chris Lattner53a19b72010-01-05 07:18:46 +0000788 return false;
789}
790
791Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000792 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner53a19b72010-01-05 07:18:46 +0000793 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
794
795 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
796 I.hasNoUnsignedWrap(), TD))
797 return ReplaceInstUsesWith(I, V);
798
Duncan Sands37bf92b2010-12-22 13:36:08 +0000799 // (A*B)+(A*C) -> A*(B+C) etc
800 if (Value *V = SimplifyUsingDistributiveLaws(I))
801 return ReplaceInstUsesWith(I, V);
802
Chris Lattnerb9b90442011-02-10 05:14:58 +0000803 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
804 // X + (signbit) --> X ^ signbit
805 const APInt &Val = CI->getValue();
806 if (Val.isSignBit())
807 return BinaryOperator::CreateXor(LHS, RHS);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000808
Chris Lattnerb9b90442011-02-10 05:14:58 +0000809 // See if SimplifyDemandedBits can simplify this. This handles stuff like
810 // (X & 254)+1 -> (X&254)|1
811 if (SimplifyDemandedInstructionBits(I))
812 return &I;
813
814 // zext(bool) + C -> bool ? C + 1 : C
815 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
816 if (ZI->getSrcTy()->isIntegerTy(1))
817 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000818
Chris Lattnerb9b90442011-02-10 05:14:58 +0000819 Value *XorLHS = 0; ConstantInt *XorRHS = 0;
820 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Chris Lattner53a19b72010-01-05 07:18:46 +0000821 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
Chris Lattnerb9b90442011-02-10 05:14:58 +0000822 const APInt &RHSVal = CI->getValue();
Eli Friedmanbe7cfa62010-01-31 04:29:12 +0000823 unsigned ExtendAmt = 0;
824 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
825 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
826 if (XorRHS->getValue() == -RHSVal) {
827 if (RHSVal.isPowerOf2())
828 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
829 else if (XorRHS->getValue().isPowerOf2())
830 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
Chris Lattner53a19b72010-01-05 07:18:46 +0000831 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000832
Eli Friedmanbe7cfa62010-01-31 04:29:12 +0000833 if (ExtendAmt) {
834 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
835 if (!MaskedValueIsZero(XorLHS, Mask))
836 ExtendAmt = 0;
837 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000838
Eli Friedmanbe7cfa62010-01-31 04:29:12 +0000839 if (ExtendAmt) {
840 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
841 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
842 return BinaryOperator::CreateAShr(NewShl, ShAmt);
Chris Lattner53a19b72010-01-05 07:18:46 +0000843 }
Benjamin Kramer49064ff2011-12-24 17:31:53 +0000844
845 // If this is a xor that was canonicalized from a sub, turn it back into
846 // a sub and fuse this add with it.
847 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
848 IntegerType *IT = cast<IntegerType>(I.getType());
Benjamin Kramer49064ff2011-12-24 17:31:53 +0000849 APInt LHSKnownOne(IT->getBitWidth(), 0);
850 APInt LHSKnownZero(IT->getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000851 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
Benjamin Kramer49064ff2011-12-24 17:31:53 +0000852 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
853 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
854 XorLHS);
855 }
Chris Lattner53a19b72010-01-05 07:18:46 +0000856 }
857 }
858
Chris Lattnerb9b90442011-02-10 05:14:58 +0000859 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
860 if (Instruction *NV = FoldOpIntoPhi(I))
861 return NV;
862
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000863 if (I.getType()->isIntegerTy(1))
Chris Lattner53a19b72010-01-05 07:18:46 +0000864 return BinaryOperator::CreateXor(LHS, RHS);
865
Chris Lattnerb9b90442011-02-10 05:14:58 +0000866 // X + X --> X << 1
Chris Lattnerbd9f6bf2011-02-17 20:55:29 +0000867 if (LHS == RHS) {
Chris Lattner41429e32011-02-17 02:23:02 +0000868 BinaryOperator *New =
869 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
870 New->setHasNoSignedWrap(I.hasNoSignedWrap());
871 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
872 return New;
873 }
Chris Lattner53a19b72010-01-05 07:18:46 +0000874
875 // -A + B --> B - A
876 // -A + -B --> -(A + B)
877 if (Value *LHSV = dyn_castNegVal(LHS)) {
Nuno Lopes0f68fbb2012-06-08 22:30:05 +0000878 if (!isa<Constant>(RHS))
879 if (Value *RHSV = dyn_castNegVal(RHS)) {
880 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
881 return BinaryOperator::CreateNeg(NewAdd);
882 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000883
Chris Lattner53a19b72010-01-05 07:18:46 +0000884 return BinaryOperator::CreateSub(RHS, LHSV);
885 }
886
887 // A + -B --> A - B
888 if (!isa<Constant>(RHS))
889 if (Value *V = dyn_castNegVal(RHS))
890 return BinaryOperator::CreateSub(LHS, V);
891
892
893 ConstantInt *C2;
894 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
895 if (X == RHS) // X*C + X --> X * (C+1)
896 return BinaryOperator::CreateMul(RHS, AddOne(C2));
897
898 // X*C1 + X*C2 --> X * (C1+C2)
899 ConstantInt *C1;
900 if (X == dyn_castFoldableMul(RHS, C1))
901 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
902 }
903
904 // X + X*C --> X * (C+1)
905 if (dyn_castFoldableMul(RHS, C2) == LHS)
906 return BinaryOperator::CreateMul(LHS, AddOne(C2));
907
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000908 // A+B --> A|B iff A and B have no bits set in common.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000909 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
Chris Lattner53a19b72010-01-05 07:18:46 +0000910 APInt LHSKnownOne(IT->getBitWidth(), 0);
911 APInt LHSKnownZero(IT->getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000912 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
Chris Lattner53a19b72010-01-05 07:18:46 +0000913 if (LHSKnownZero != 0) {
914 APInt RHSKnownOne(IT->getBitWidth(), 0);
915 APInt RHSKnownZero(IT->getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000916 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000917
Chris Lattner53a19b72010-01-05 07:18:46 +0000918 // No bits in common -> bitwise or.
919 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
920 return BinaryOperator::CreateOr(LHS, RHS);
921 }
922 }
923
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000924 // W*X + Y*Z --> W * (X+Z) iff W == Y
Chris Lattnerb9b90442011-02-10 05:14:58 +0000925 {
Chris Lattner53a19b72010-01-05 07:18:46 +0000926 Value *W, *X, *Y, *Z;
927 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
928 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
929 if (W != Y) {
930 if (W == Z) {
931 std::swap(Y, Z);
932 } else if (Y == X) {
933 std::swap(W, X);
934 } else if (X == Z) {
935 std::swap(Y, Z);
936 std::swap(W, X);
937 }
938 }
939
940 if (W == Y) {
941 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
942 return BinaryOperator::CreateMul(W, NewAdd);
943 }
944 }
945 }
946
947 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
948 Value *X = 0;
949 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
950 return BinaryOperator::CreateSub(SubOne(CRHS), X);
951
952 // (X & FF00) + xx00 -> (X+xx00) & FF00
953 if (LHS->hasOneUse() &&
Chris Lattnerb9b90442011-02-10 05:14:58 +0000954 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
955 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
956 // See if all bits from the first bit set in the Add RHS up are included
957 // in the mask. First, get the rightmost bit.
958 const APInt &AddRHSV = CRHS->getValue();
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000959
Chris Lattnerb9b90442011-02-10 05:14:58 +0000960 // Form a mask of all bits from the lowest bit added through the top.
961 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
Chris Lattner53a19b72010-01-05 07:18:46 +0000962
Chris Lattnerb9b90442011-02-10 05:14:58 +0000963 // See if the and mask includes all of these bits.
964 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
Chris Lattner53a19b72010-01-05 07:18:46 +0000965
Chris Lattnerb9b90442011-02-10 05:14:58 +0000966 if (AddRHSHighBits == AddRHSHighBitsAnd) {
967 // Okay, the xform is safe. Insert the new add pronto.
968 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
969 return BinaryOperator::CreateAnd(NewAdd, C2);
Chris Lattner53a19b72010-01-05 07:18:46 +0000970 }
971 }
972
973 // Try to fold constant add into select arguments.
974 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
975 if (Instruction *R = FoldOpIntoSelect(I, SI))
976 return R;
977 }
978
979 // add (select X 0 (sub n A)) A --> select X A n
980 {
981 SelectInst *SI = dyn_cast<SelectInst>(LHS);
982 Value *A = RHS;
983 if (!SI) {
984 SI = dyn_cast<SelectInst>(RHS);
985 A = LHS;
986 }
987 if (SI && SI->hasOneUse()) {
988 Value *TV = SI->getTrueValue();
989 Value *FV = SI->getFalseValue();
990 Value *N;
991
992 // Can we fold the add into the argument of the select?
993 // We check both true and false select arguments for a matching subtract.
Chris Lattnerb9b90442011-02-10 05:14:58 +0000994 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
Chris Lattner53a19b72010-01-05 07:18:46 +0000995 // Fold the add into the true select value.
996 return SelectInst::Create(SI->getCondition(), N, A);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +0000997
Chris Lattnerb9b90442011-02-10 05:14:58 +0000998 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
Chris Lattner53a19b72010-01-05 07:18:46 +0000999 // Fold the add into the false select value.
1000 return SelectInst::Create(SI->getCondition(), A, N);
1001 }
1002 }
1003
1004 // Check for (add (sext x), y), see if we can merge this into an
1005 // integer add followed by a sext.
1006 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1007 // (add (sext x), cst) --> (sext (add x, cst'))
1008 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001009 Constant *CI =
Chris Lattner53a19b72010-01-05 07:18:46 +00001010 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1011 if (LHSConv->hasOneUse() &&
1012 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1013 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1014 // Insert the new, smaller add.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001015 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
Chris Lattner53a19b72010-01-05 07:18:46 +00001016 CI, "addconv");
1017 return new SExtInst(NewAdd, I.getType());
1018 }
1019 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001020
Chris Lattner53a19b72010-01-05 07:18:46 +00001021 // (add (sext x), (sext y)) --> (sext (add int x, y))
1022 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1023 // Only do this if x/y have the same type, if at last one of them has a
1024 // single use (so we don't increase the number of sexts), and if the
1025 // integer add will not overflow.
1026 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1027 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1028 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1029 RHSConv->getOperand(0))) {
1030 // Insert the new integer add.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001031 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
Chris Lattner3168c7d2010-01-05 20:56:24 +00001032 RHSConv->getOperand(0), "addconv");
Chris Lattner53a19b72010-01-05 07:18:46 +00001033 return new SExtInst(NewAdd, I.getType());
1034 }
1035 }
1036 }
1037
Chad Rosierc1fc5e42012-04-26 23:29:14 +00001038 // Check for (x & y) + (x ^ y)
1039 {
1040 Value *A = 0, *B = 0;
1041 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1042 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1043 match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1044 return BinaryOperator::CreateOr(A, B);
1045
1046 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1047 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1048 match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1049 return BinaryOperator::CreateOr(A, B);
1050 }
1051
Chris Lattner53a19b72010-01-05 07:18:46 +00001052 return Changed ? &I : 0;
1053}
1054
1055Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +00001056 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner53a19b72010-01-05 07:18:46 +00001057 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1058
Michael Ilsemanc244f382012-12-12 00:28:32 +00001059 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
1060 return ReplaceInstUsesWith(I, V);
Chris Lattner53a19b72010-01-05 07:18:46 +00001061
Michael Ilseman07acee72012-12-14 22:08:26 +00001062 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1063 if (Instruction *NV = FoldOpIntoPhi(I))
1064 return NV;
1065
Chris Lattner53a19b72010-01-05 07:18:46 +00001066 // -A + B --> B - A
1067 // -A + -B --> -(A + B)
1068 if (Value *LHSV = dyn_castFNegVal(LHS))
1069 return BinaryOperator::CreateFSub(RHS, LHSV);
1070
1071 // A + -B --> A - B
1072 if (!isa<Constant>(RHS))
1073 if (Value *V = dyn_castFNegVal(RHS))
1074 return BinaryOperator::CreateFSub(LHS, V);
1075
Dan Gohmana9445e12010-03-02 01:11:08 +00001076 // Check for (fadd double (sitofp x), y), see if we can merge this into an
Chris Lattner53a19b72010-01-05 07:18:46 +00001077 // integer add followed by a promotion.
1078 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
Dan Gohmana9445e12010-03-02 01:11:08 +00001079 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
Chris Lattner53a19b72010-01-05 07:18:46 +00001080 // ... if the constant fits in the integer value. This is useful for things
1081 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1082 // requires a constant pool load, and generally allows the add to be better
1083 // instcombined.
1084 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001085 Constant *CI =
Chris Lattner53a19b72010-01-05 07:18:46 +00001086 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1087 if (LHSConv->hasOneUse() &&
1088 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1089 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1090 // Insert the new integer add.
1091 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1092 CI, "addconv");
1093 return new SIToFPInst(NewAdd, I.getType());
1094 }
1095 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001096
Dan Gohmana9445e12010-03-02 01:11:08 +00001097 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
Chris Lattner53a19b72010-01-05 07:18:46 +00001098 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1099 // Only do this if x/y have the same type, if at last one of them has a
1100 // single use (so we don't increase the number of int->fp conversions),
1101 // and if the integer add will not overflow.
1102 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1103 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1104 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1105 RHSConv->getOperand(0))) {
1106 // Insert the new integer add.
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001107 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
Chris Lattner53a19b72010-01-05 07:18:46 +00001108 RHSConv->getOperand(0),"addconv");
1109 return new SIToFPInst(NewAdd, I.getType());
1110 }
1111 }
1112 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001113
Shuxin Yang1a315002012-12-18 23:10:12 +00001114 if (I.hasUnsafeAlgebra()) {
1115 if (Value *V = FAddCombine(Builder).simplify(&I))
1116 return ReplaceInstUsesWith(I, V);
1117 }
1118
Chris Lattner53a19b72010-01-05 07:18:46 +00001119 return Changed ? &I : 0;
1120}
1121
1122
Chris Lattner53a19b72010-01-05 07:18:46 +00001123/// Optimize pointer differences into the same array into a size. Consider:
1124/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1125/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1126///
1127Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001128 Type *Ty) {
Chris Lattner53a19b72010-01-05 07:18:46 +00001129 assert(TD && "Must have target data info for this");
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001130
Chris Lattner53a19b72010-01-05 07:18:46 +00001131 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1132 // this.
1133 bool Swapped = false;
Benjamin Kramerd2348632012-02-20 14:34:57 +00001134 GEPOperator *GEP1 = 0, *GEP2 = 0;
1135
Chris Lattner53a19b72010-01-05 07:18:46 +00001136 // For now we require one side to be the base pointer "A" or a constant
Benjamin Kramerd2348632012-02-20 14:34:57 +00001137 // GEP derived from it.
1138 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
Chris Lattner53a19b72010-01-05 07:18:46 +00001139 // (gep X, ...) - X
1140 if (LHSGEP->getOperand(0) == RHS) {
Benjamin Kramerd2348632012-02-20 14:34:57 +00001141 GEP1 = LHSGEP;
Chris Lattner53a19b72010-01-05 07:18:46 +00001142 Swapped = false;
Benjamin Kramerd2348632012-02-20 14:34:57 +00001143 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1144 // (gep X, ...) - (gep X, ...)
1145 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1146 RHSGEP->getOperand(0)->stripPointerCasts()) {
1147 GEP2 = RHSGEP;
1148 GEP1 = LHSGEP;
Chris Lattner53a19b72010-01-05 07:18:46 +00001149 Swapped = false;
1150 }
1151 }
1152 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001153
Benjamin Kramerd2348632012-02-20 14:34:57 +00001154 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
Chris Lattner53a19b72010-01-05 07:18:46 +00001155 // X - (gep X, ...)
1156 if (RHSGEP->getOperand(0) == LHS) {
Benjamin Kramerd2348632012-02-20 14:34:57 +00001157 GEP1 = RHSGEP;
Chris Lattner53a19b72010-01-05 07:18:46 +00001158 Swapped = true;
Benjamin Kramerd2348632012-02-20 14:34:57 +00001159 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1160 // (gep X, ...) - (gep X, ...)
1161 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1162 LHSGEP->getOperand(0)->stripPointerCasts()) {
1163 GEP2 = LHSGEP;
1164 GEP1 = RHSGEP;
Chris Lattner53a19b72010-01-05 07:18:46 +00001165 Swapped = true;
1166 }
1167 }
1168 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001169
Benjamin Kramerd2348632012-02-20 14:34:57 +00001170 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1171 // multiple users.
1172 if (GEP1 == 0 ||
1173 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
Chris Lattner53a19b72010-01-05 07:18:46 +00001174 return 0;
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001175
Chris Lattner53a19b72010-01-05 07:18:46 +00001176 // Emit the offset of the GEP and an intptr_t.
Benjamin Kramerd2348632012-02-20 14:34:57 +00001177 Value *Result = EmitGEPOffset(GEP1);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001178
Chris Lattner53a19b72010-01-05 07:18:46 +00001179 // If we had a constant expression GEP on the other side offsetting the
1180 // pointer, subtract it from the offset we have.
Benjamin Kramerd2348632012-02-20 14:34:57 +00001181 if (GEP2) {
1182 Value *Offset = EmitGEPOffset(GEP2);
1183 Result = Builder->CreateSub(Result, Offset);
Chris Lattner53a19b72010-01-05 07:18:46 +00001184 }
Chris Lattner53a19b72010-01-05 07:18:46 +00001185
1186 // If we have p - gep(p, ...) then we have to negate the result.
1187 if (Swapped)
1188 Result = Builder->CreateNeg(Result, "diff.neg");
1189
1190 return Builder->CreateIntCast(Result, Ty, true);
1191}
1192
1193
1194Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1195 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1196
Duncan Sandsfea3b212010-12-15 14:07:39 +00001197 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1198 I.hasNoUnsignedWrap(), TD))
1199 return ReplaceInstUsesWith(I, V);
Chris Lattner53a19b72010-01-05 07:18:46 +00001200
Duncan Sands37bf92b2010-12-22 13:36:08 +00001201 // (A*B)-(A*C) -> A*(B-C) etc
1202 if (Value *V = SimplifyUsingDistributiveLaws(I))
1203 return ReplaceInstUsesWith(I, V);
1204
Chris Lattner53a19b72010-01-05 07:18:46 +00001205 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
1206 if (Value *V = dyn_castNegVal(Op1)) {
1207 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1208 Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1209 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1210 return Res;
1211 }
1212
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001213 if (I.getType()->isIntegerTy(1))
Chris Lattner53a19b72010-01-05 07:18:46 +00001214 return BinaryOperator::CreateXor(Op0, Op1);
Chris Lattnerb9b90442011-02-10 05:14:58 +00001215
1216 // Replace (-1 - A) with (~A).
1217 if (match(Op0, m_AllOnes()))
1218 return BinaryOperator::CreateNot(Op1);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001219
Chris Lattner53a19b72010-01-05 07:18:46 +00001220 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
Chris Lattner53a19b72010-01-05 07:18:46 +00001221 // C - ~X == X + (1+C)
1222 Value *X = 0;
1223 if (match(Op1, m_Not(m_Value(X))))
1224 return BinaryOperator::CreateAdd(X, AddOne(C));
1225
1226 // -(X >>u 31) -> (X >>s 31)
1227 // -(X >>s 31) -> (X >>u 31)
1228 if (C->isZero()) {
Chris Lattnerb9b90442011-02-10 05:14:58 +00001229 Value *X; ConstantInt *CI;
1230 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1231 // Verify we are shifting out everything but the sign bit.
1232 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1233 return BinaryOperator::CreateAShr(X, CI);
1234
1235 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1236 // Verify we are shifting out everything but the sign bit.
1237 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1238 return BinaryOperator::CreateLShr(X, CI);
Chris Lattner53a19b72010-01-05 07:18:46 +00001239 }
1240
1241 // Try to fold constant sub into select arguments.
1242 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1243 if (Instruction *R = FoldOpIntoSelect(I, SI))
1244 return R;
1245
Chris Lattnerb9b90442011-02-10 05:14:58 +00001246 // C-(X+C2) --> (C-C2)-X
1247 ConstantInt *C2;
1248 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
1249 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
Benjamin Kramer1fdfae02011-12-24 17:31:38 +00001250
1251 if (SimplifyDemandedInstructionBits(I))
1252 return &I;
Chris Lattner53a19b72010-01-05 07:18:46 +00001253 }
1254
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001255
Chris Lattnerb9b90442011-02-10 05:14:58 +00001256 { Value *Y;
1257 // X-(X+Y) == -Y X-(Y+X) == -Y
1258 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1259 match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1260 return BinaryOperator::CreateNeg(Y);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001261
Chris Lattnerb9b90442011-02-10 05:14:58 +00001262 // (X-Y)-X == -Y
1263 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1264 return BinaryOperator::CreateNeg(Y);
1265 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001266
Chris Lattnerb9b90442011-02-10 05:14:58 +00001267 if (Op1->hasOneUse()) {
1268 Value *X = 0, *Y = 0, *Z = 0;
1269 Constant *C = 0;
1270 ConstantInt *CI = 0;
1271
1272 // (X - (Y - Z)) --> (X + (Z - Y)).
1273 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1274 return BinaryOperator::CreateAdd(Op0,
1275 Builder->CreateSub(Z, Y, Op1->getName()));
1276
1277 // (X - (X & Y)) --> (X & ~Y)
1278 //
1279 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1280 match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1281 return BinaryOperator::CreateAnd(Op0,
1282 Builder->CreateNot(Y, Y->getName() + ".not"));
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001283
Chris Lattnerb9b90442011-02-10 05:14:58 +00001284 // 0 - (X sdiv C) -> (X sdiv -C)
1285 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1286 match(Op0, m_Zero()))
1287 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1288
1289 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1290 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1291 if (Value *XNeg = dyn_castNegVal(X))
1292 return BinaryOperator::CreateShl(XNeg, Y);
1293
1294 // X - X*C --> X * (1-C)
1295 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
1296 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1297 return BinaryOperator::CreateMul(Op0, CP1);
Chris Lattner53a19b72010-01-05 07:18:46 +00001298 }
1299
Chris Lattnerb9b90442011-02-10 05:14:58 +00001300 // X - X<<C --> X * (1-(1<<C))
1301 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
1302 Constant *One = ConstantInt::get(I.getType(), 1);
1303 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1304 return BinaryOperator::CreateMul(Op0, C);
1305 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001306
Chris Lattnerb9b90442011-02-10 05:14:58 +00001307 // X - A*-B -> X + A*B
1308 // X - -A*B -> X + A*B
1309 Value *A, *B;
1310 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1311 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1312 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001313
Chris Lattnerb9b90442011-02-10 05:14:58 +00001314 // X - A*CI -> X + A*-CI
1315 // X - CI*A -> X + A*-CI
1316 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
1317 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
1318 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1319 return BinaryOperator::CreateAdd(Op0, NewMul);
Chris Lattner53a19b72010-01-05 07:18:46 +00001320 }
1321 }
1322
1323 ConstantInt *C1;
1324 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1325 if (X == Op1) // X*C - X --> X * (C-1)
1326 return BinaryOperator::CreateMul(Op1, SubOne(C1));
1327
1328 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1329 if (X == dyn_castFoldableMul(Op1, C2))
1330 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1331 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001332
Chris Lattner53a19b72010-01-05 07:18:46 +00001333 // Optimize pointer differences into the same array into a size. Consider:
1334 // &A[10] - &A[0]: we should compile this to "10".
1335 if (TD) {
1336 Value *LHSOp, *RHSOp;
1337 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1338 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1339 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1340 return ReplaceInstUsesWith(I, Res);
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001341
Chris Lattner53a19b72010-01-05 07:18:46 +00001342 // trunc(p)-trunc(q) -> trunc(p-q)
1343 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1344 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1345 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1346 return ReplaceInstUsesWith(I, Res);
1347 }
Michael Ilseman4d96e6f2012-12-12 20:57:53 +00001348
Chris Lattner53a19b72010-01-05 07:18:46 +00001349 return 0;
1350}
1351
1352Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1353 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1354
Michael Ilsemanc244f382012-12-12 00:28:32 +00001355 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
1356 return ReplaceInstUsesWith(I, V);
1357
Chris Lattner53a19b72010-01-05 07:18:46 +00001358 // If this is a 'B = x-(-A)', change to B = x+A...
1359 if (Value *V = dyn_castFNegVal(Op1))
1360 return BinaryOperator::CreateFAdd(Op0, V);
1361
Shuxin Yang1a315002012-12-18 23:10:12 +00001362 if (I.hasUnsafeAlgebra()) {
1363 if (Value *V = FAddCombine(Builder).simplify(&I))
1364 return ReplaceInstUsesWith(I, V);
1365 }
1366
Chris Lattner53a19b72010-01-05 07:18:46 +00001367 return 0;
1368}