Chris Lattner | e941291 | 2003-03-31 19:55:43 +0000 | [diff] [blame^] | 1 | //===- PRE.cpp - Partial Redundancy Elimination ---------------------------===// |
| 2 | // |
| 3 | // This file implements the well known Partial Redundancy Elimination |
| 4 | // optimization, using an SSA formulation based on e-paths. See this paper for |
| 5 | // more information: |
| 6 | // |
| 7 | // E-path_PRE: partial redundancy elimination made easy |
| 8 | // By: Dhananjay M. Dhamdhere In: ACM SIGPLAN Notices. Vol 37, #8, 2002 |
| 9 | // http://doi.acm.org/10.1145/596992.597004 |
| 10 | // |
| 11 | // This file actually implements a sparse version of the algorithm, using SSA |
| 12 | // and CFG properties instead of bit-vectors. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/Pass.h" |
| 17 | #include "llvm/Function.h" |
| 18 | #include "llvm/Type.h" |
| 19 | #include "llvm/iPHINode.h" |
| 20 | #include "llvm/iMemory.h" |
| 21 | #include "llvm/Support/CFG.h" |
| 22 | #include "llvm/Analysis/Dominators.h" |
| 23 | #include "llvm/Analysis/PostDominators.h" |
| 24 | #include "llvm/Analysis/ValueNumbering.h" |
| 25 | #include "llvm/Transforms/Scalar.h" |
| 26 | #include "Support/DepthFirstIterator.h" |
| 27 | #include "Support/PostOrderIterator.h" |
| 28 | #include "Support/Statistic.h" |
| 29 | #include "Support/hash_set" |
| 30 | |
| 31 | namespace { |
| 32 | Statistic<> NumExprsEliminated("pre", "Number of expressions constantified"); |
| 33 | Statistic<> NumRedundant ("pre", "Number of redundant exprs eliminated"); |
| 34 | Statistic<> NumInserted ("pre", "Number of expressions inserted"); |
| 35 | |
| 36 | struct PRE : public FunctionPass { |
| 37 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 38 | AU.addRequiredID(BreakCriticalEdgesID); // No critical edges for now! |
| 39 | AU.addRequired<PostDominatorTree>(); |
| 40 | AU.addRequired<PostDominanceFrontier>(); |
| 41 | AU.addRequired<DominatorSet>(); |
| 42 | AU.addRequired<DominatorTree>(); |
| 43 | AU.addRequired<DominanceFrontier>(); |
| 44 | AU.addRequired<ValueNumbering>(); |
| 45 | } |
| 46 | virtual bool runOnFunction(Function &F); |
| 47 | |
| 48 | private: |
| 49 | // Block information - Map basic blocks in a function back and forth to |
| 50 | // unsigned integers. |
| 51 | std::vector<BasicBlock*> BlockMapping; |
| 52 | hash_map<BasicBlock*, unsigned> BlockNumbering; |
| 53 | |
| 54 | // ProcessedExpressions - Keep track of which expressions have already been |
| 55 | // processed. |
| 56 | hash_set<Instruction*> ProcessedExpressions; |
| 57 | |
| 58 | // Provide access to the various analyses used... |
| 59 | DominatorSet *DS; |
| 60 | DominatorTree *DT; PostDominatorTree *PDT; |
| 61 | DominanceFrontier *DF; PostDominanceFrontier *PDF; |
| 62 | ValueNumbering *VN; |
| 63 | |
| 64 | // AvailableBlocks - Contain a mapping of blocks with available expression |
| 65 | // values to the expression value itself. This can be used as an efficient |
| 66 | // way to find out if the expression is available in the block, and if so, |
| 67 | // which version to use. This map is only used while processing a single |
| 68 | // expression. |
| 69 | // |
| 70 | typedef hash_map<BasicBlock*, Instruction*> AvailableBlocksTy; |
| 71 | AvailableBlocksTy AvailableBlocks; |
| 72 | |
| 73 | bool ProcessBlock(BasicBlock *BB); |
| 74 | |
| 75 | // Anticipatibility calculation... |
| 76 | void MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N, |
| 77 | std::vector<char> &AntBlocks, |
| 78 | Instruction *Occurance); |
| 79 | void CalculateAnticipatiblityForOccurance(unsigned BlockNo, |
| 80 | std::vector<char> &AntBlocks, |
| 81 | Instruction *Occurance); |
| 82 | void CalculateAnticipatibleBlocks(const std::map<unsigned, Instruction*> &D, |
| 83 | std::vector<char> &AnticipatibleBlocks); |
| 84 | |
| 85 | // PRE for an expression |
| 86 | void MarkOccuranceAvailableInAllDominatedBlocks(Instruction *Occurance, |
| 87 | BasicBlock *StartBlock); |
| 88 | void ReplaceDominatedAvailableOccurancesWith(Instruction *NewOcc, |
| 89 | DominatorTree::Node *N); |
| 90 | bool ProcessExpression(Instruction *I); |
| 91 | }; |
| 92 | |
| 93 | RegisterOpt<PRE> Z("pre", "Partial Redundancy Elimination"); |
| 94 | } |
| 95 | |
| 96 | |
| 97 | bool PRE::runOnFunction(Function &F) { |
| 98 | VN = &getAnalysis<ValueNumbering>(); |
| 99 | DS = &getAnalysis<DominatorSet>(); |
| 100 | DT = &getAnalysis<DominatorTree>(); |
| 101 | DF = &getAnalysis<DominanceFrontier>(); |
| 102 | PDT = &getAnalysis<PostDominatorTree>(); |
| 103 | PDF = &getAnalysis<PostDominanceFrontier>(); |
| 104 | |
| 105 | DEBUG(std::cerr << "\n*** Running PRE on func '" << F.getName() << "'...\n"); |
| 106 | |
| 107 | // Number the basic blocks based on a reverse post-order traversal of the CFG |
| 108 | // so that all predecessors of a block (ignoring back edges) are visited |
| 109 | // before a block is visited. |
| 110 | // |
| 111 | BlockMapping.reserve(F.size()); |
| 112 | { |
| 113 | ReversePostOrderTraversal<Function*> RPOT(&F); |
| 114 | DEBUG(std::cerr << "Block order: "); |
| 115 | for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), |
| 116 | E = RPOT.end(); I != E; ++I) { |
| 117 | // Keep track of mapping... |
| 118 | BasicBlock *BB = *I; |
| 119 | BlockNumbering.insert(std::make_pair(BB, BlockMapping.size())); |
| 120 | BlockMapping.push_back(BB); |
| 121 | DEBUG(std::cerr << BB->getName() << " "); |
| 122 | } |
| 123 | DEBUG(std::cerr << "\n"); |
| 124 | } |
| 125 | |
| 126 | // Traverse the current function depth-first in dominator-tree order. This |
| 127 | // ensures that we see all definitions before their uses (except for PHI |
| 128 | // nodes), allowing us to hoist dependent expressions correctly. |
| 129 | bool Changed = false; |
| 130 | for (unsigned i = 0, e = BlockMapping.size(); i != e; ++i) |
| 131 | Changed |= ProcessBlock(BlockMapping[i]); |
| 132 | |
| 133 | // Free memory |
| 134 | BlockMapping.clear(); |
| 135 | BlockNumbering.clear(); |
| 136 | ProcessedExpressions.clear(); |
| 137 | return Changed; |
| 138 | } |
| 139 | |
| 140 | |
| 141 | // ProcessBlock - Process any expressions first seen in this block... |
| 142 | // |
| 143 | bool PRE::ProcessBlock(BasicBlock *BB) { |
| 144 | bool Changed = false; |
| 145 | |
| 146 | // PRE expressions first defined in this block... |
| 147 | Instruction *PrevInst = 0; |
| 148 | for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ) |
| 149 | if (ProcessExpression(I)) { |
| 150 | // The current instruction may have been deleted, make sure to back up to |
| 151 | // PrevInst instead. |
| 152 | if (PrevInst) |
| 153 | I = PrevInst; |
| 154 | else |
| 155 | I = BB->begin(); |
| 156 | Changed = true; |
| 157 | } else { |
| 158 | PrevInst = I++; |
| 159 | } |
| 160 | |
| 161 | return Changed; |
| 162 | } |
| 163 | |
| 164 | void PRE::MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N, |
| 165 | std::vector<char> &AntBlocks, |
| 166 | Instruction *Occurance) { |
| 167 | unsigned BlockNo = BlockNumbering[N->getNode()]; |
| 168 | |
| 169 | if (AntBlocks[BlockNo]) return; // Already known to be anticipatible?? |
| 170 | |
| 171 | // Check to see if any of the operands are defined in this block, if so, the |
| 172 | // entry of this block does not anticipate the expression. This computes |
| 173 | // "transparency". |
| 174 | for (unsigned i = 0, e = Occurance->getNumOperands(); i != e; ++i) |
| 175 | if (Instruction *I = dyn_cast<Instruction>(Occurance->getOperand(i))) |
| 176 | if (I->getParent() == N->getNode()) // Operand is defined in this block! |
| 177 | return; |
| 178 | |
| 179 | if (isa<LoadInst>(Occurance)) |
| 180 | return; // FIXME: compute transparency for load instructions using AA |
| 181 | |
| 182 | // Insert block into AntBlocks list... |
| 183 | AntBlocks[BlockNo] = true; |
| 184 | |
| 185 | for (PostDominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E; |
| 186 | ++I) |
| 187 | MarkPostDominatingBlocksAnticipatible(*I, AntBlocks, Occurance); |
| 188 | } |
| 189 | |
| 190 | void PRE::CalculateAnticipatiblityForOccurance(unsigned BlockNo, |
| 191 | std::vector<char> &AntBlocks, |
| 192 | Instruction *Occurance) { |
| 193 | if (AntBlocks[BlockNo]) return; // Block already anticipatible! |
| 194 | |
| 195 | BasicBlock *BB = BlockMapping[BlockNo]; |
| 196 | |
| 197 | // For each occurance, mark all post-dominated blocks as anticipatible... |
| 198 | MarkPostDominatingBlocksAnticipatible(PDT->getNode(BB), AntBlocks, |
| 199 | Occurance); |
| 200 | |
| 201 | // Next, mark any blocks in the post-dominance frontier as anticipatible iff |
| 202 | // all successors are anticipatible. |
| 203 | // |
| 204 | PostDominanceFrontier::iterator PDFI = PDF->find(BB); |
| 205 | if (PDFI != DF->end()) |
| 206 | for (std::set<BasicBlock*>::iterator DI = PDFI->second.begin(); |
| 207 | DI != PDFI->second.end(); ++DI) { |
| 208 | BasicBlock *PDFBlock = *DI; |
| 209 | bool AllSuccessorsAnticipatible = true; |
| 210 | for (succ_iterator SI = succ_begin(PDFBlock), SE = succ_end(PDFBlock); |
| 211 | SI != SE; ++SI) |
| 212 | if (!AntBlocks[BlockNumbering[*SI]]) { |
| 213 | AllSuccessorsAnticipatible = false; |
| 214 | break; |
| 215 | } |
| 216 | |
| 217 | if (AllSuccessorsAnticipatible) |
| 218 | CalculateAnticipatiblityForOccurance(BlockNumbering[PDFBlock], |
| 219 | AntBlocks, Occurance); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | |
| 224 | void PRE::CalculateAnticipatibleBlocks(const std::map<unsigned, |
| 225 | Instruction*> &Defs, |
| 226 | std::vector<char> &AntBlocks) { |
| 227 | // Initialize to zeros... |
| 228 | AntBlocks.resize(BlockMapping.size()); |
| 229 | |
| 230 | // Loop over all of the expressions... |
| 231 | for (std::map<unsigned, Instruction*>::const_iterator I = Defs.begin(), |
| 232 | E = Defs.end(); I != E; ++I) |
| 233 | CalculateAnticipatiblityForOccurance(I->first, AntBlocks, I->second); |
| 234 | } |
| 235 | |
| 236 | /// MarkOccuranceAvailableInAllDominatedBlocks - Add entries to AvailableBlocks |
| 237 | /// for all nodes dominated by the occurance to indicate that it is now the |
| 238 | /// available occurance to use in any of these blocks. |
| 239 | /// |
| 240 | void PRE::MarkOccuranceAvailableInAllDominatedBlocks(Instruction *Occurance, |
| 241 | BasicBlock *BB) { |
| 242 | // FIXME: There are much more efficient ways to get the blocks dominated |
| 243 | // by a block. Use them. |
| 244 | // |
| 245 | DominatorTree::Node *N = DT->getNode(Occurance->getParent()); |
| 246 | for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N); |
| 247 | DI != E; ++DI) |
| 248 | AvailableBlocks[(*DI)->getNode()] = Occurance; |
| 249 | } |
| 250 | |
| 251 | /// ReplaceDominatedAvailableOccurancesWith - This loops over the region |
| 252 | /// dominated by N, replacing any available expressions with NewOcc. |
| 253 | void PRE::ReplaceDominatedAvailableOccurancesWith(Instruction *NewOcc, |
| 254 | DominatorTree::Node *N) { |
| 255 | BasicBlock *BB = N->getNode(); |
| 256 | Instruction *&ExistingAvailableVal = AvailableBlocks[BB]; |
| 257 | |
| 258 | // If there isn't a definition already active in this node, make this the new |
| 259 | // active definition... |
| 260 | if (ExistingAvailableVal == 0) { |
| 261 | ExistingAvailableVal = NewOcc; |
| 262 | |
| 263 | for (DominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E;++I) |
| 264 | ReplaceDominatedAvailableOccurancesWith(NewOcc, *I); |
| 265 | } else { |
| 266 | // If there is already an active definition in this block, replace it with |
| 267 | // NewOcc, and force it into all dominated blocks. |
| 268 | DEBUG(std::cerr << " Replacing dominated occ %" |
| 269 | << ExistingAvailableVal->getName() << " with %" << NewOcc->getName() |
| 270 | << "\n"); |
| 271 | assert(ExistingAvailableVal != NewOcc && "NewOcc already inserted??"); |
| 272 | ExistingAvailableVal->replaceAllUsesWith(NewOcc); |
| 273 | ++NumRedundant; |
| 274 | |
| 275 | assert(ExistingAvailableVal->getParent() == BB && |
| 276 | "OldOcc not defined in current block?"); |
| 277 | BB->getInstList().erase(ExistingAvailableVal); |
| 278 | |
| 279 | // Mark NewOCC as the Available expression in all blocks dominated by BB |
| 280 | for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N); |
| 281 | DI != E; ++DI) |
| 282 | AvailableBlocks[(*DI)->getNode()] = NewOcc; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | |
| 287 | /// ProcessExpression - Given an expression (instruction) process the |
| 288 | /// instruction to remove any partial redundancies induced by equivalent |
| 289 | /// computations. Note that we only need to PRE each expression once, so we |
| 290 | /// keep track of whether an expression has been PRE'd already, and don't PRE an |
| 291 | /// expression again. Expressions may be seen multiple times because process |
| 292 | /// the entire equivalence class at once, which may leave expressions later in |
| 293 | /// the control path. |
| 294 | /// |
| 295 | bool PRE::ProcessExpression(Instruction *Expr) { |
| 296 | if (Expr->mayWriteToMemory() || Expr->getType() == Type::VoidTy || |
| 297 | isa<PHINode>(Expr)) |
| 298 | return false; // Cannot move expression |
| 299 | if (ProcessedExpressions.count(Expr)) return false; // Already processed. |
| 300 | |
| 301 | // Ok, this is the first time we have seen the expression. Build a set of |
| 302 | // equivalent expressions using SSA def/use information. We consider |
| 303 | // expressions to be equivalent if they are the same opcode and have |
| 304 | // equivalent operands. As a special case for SSA, values produced by PHI |
| 305 | // nodes are considered to be equivalent to all of their operands. |
| 306 | // |
| 307 | std::vector<Value*> Values; |
| 308 | VN->getEqualNumberNodes(Expr, Values); |
| 309 | |
| 310 | // We have to be careful to handle expression definitions which dominated by |
| 311 | // other expressions. These can be directly eliminated in favor of their |
| 312 | // dominating value. Keep track of which blocks contain definitions (the key) |
| 313 | // and if a block contains a definition, which instruction it is. |
| 314 | // |
| 315 | std::map<unsigned, Instruction*> Definitions; |
| 316 | Definitions.insert(std::make_pair(BlockNumbering[Expr->getParent()], Expr)); |
| 317 | |
| 318 | bool Changed = false; |
| 319 | |
| 320 | // Look at all of the equal values. If any of the values is not an |
| 321 | // instruction, replace all other expressions immediately with it (it must be |
| 322 | // an argument or a constant or something). Otherwise, convert the list of |
| 323 | // values into a list of expression (instruction) definitions ordering |
| 324 | // according to their dominator tree ordering. |
| 325 | // |
| 326 | Value *NonInstValue = 0; |
| 327 | for (unsigned i = 0, e = Values.size(); i != e; ++i) |
| 328 | if (Instruction *I = dyn_cast<Instruction>(Values[i])) { |
| 329 | Instruction *&BlockInst = Definitions[BlockNumbering[I->getParent()]]; |
| 330 | if (BlockInst && BlockInst != I) { // Eliminate direct redundancy |
| 331 | if (DS->dominates(I, BlockInst)) { // I dom BlockInst |
| 332 | BlockInst->replaceAllUsesWith(I); |
| 333 | BlockInst->getParent()->getInstList().erase(BlockInst); |
| 334 | } else { // BlockInst dom I |
| 335 | I->replaceAllUsesWith(BlockInst); |
| 336 | I->getParent()->getInstList().erase(I); |
| 337 | I = BlockInst; |
| 338 | } |
| 339 | ++NumRedundant; |
| 340 | } |
| 341 | BlockInst = I; |
| 342 | } else { |
| 343 | NonInstValue = Values[i]; |
| 344 | } |
| 345 | |
| 346 | std::vector<Value*>().swap(Values); // Done with the values list |
| 347 | |
| 348 | if (NonInstValue) { |
| 349 | // This is the good, though unlikely, case where we find out that this |
| 350 | // expression is equal to a constant or argument directly. We can replace |
| 351 | // this and all of the other equivalent instructions with the value |
| 352 | // directly. |
| 353 | // |
| 354 | for (std::map<unsigned, Instruction*>::iterator I = Definitions.begin(), |
| 355 | E = Definitions.end(); I != E; ++I) { |
| 356 | Instruction *Inst = I->second; |
| 357 | // Replace the value with the specified non-instruction value. |
| 358 | Inst->replaceAllUsesWith(NonInstValue); // Fixup any uses |
| 359 | Inst->getParent()->getInstList().erase(Inst); // Erase the instruction |
| 360 | } |
| 361 | NumExprsEliminated += Definitions.size(); |
| 362 | return true; // Program modified! |
| 363 | } |
| 364 | |
| 365 | // There are no expressions equal to this one. Exit early. |
| 366 | assert(!Definitions.empty() && "no equal expressions??"); |
| 367 | #if 0 |
| 368 | if (Definitions.size() == 1) { |
| 369 | ProcessedExpressions.insert(Definitions.begin()->second); |
| 370 | return Changed; |
| 371 | } |
| 372 | #endif |
| 373 | DEBUG(std::cerr << "\n====--- Expression: " << Expr); |
| 374 | const Type *ExprType = Expr->getType(); |
| 375 | |
| 376 | // AnticipatibleBlocks - Blocks where the current expression is anticipatible. |
| 377 | // This is logically std::vector<bool> but using 'char' for performance. |
| 378 | std::vector<char> AnticipatibleBlocks; |
| 379 | |
| 380 | // Calculate all of the blocks which the current expression is anticipatible. |
| 381 | CalculateAnticipatibleBlocks(Definitions, AnticipatibleBlocks); |
| 382 | |
| 383 | // Print out anticipatible blocks... |
| 384 | DEBUG(std::cerr << "AntBlocks: "; |
| 385 | for (unsigned i = 0, e = AnticipatibleBlocks.size(); i != e; ++i) |
| 386 | if (AnticipatibleBlocks[i]) |
| 387 | std::cerr << BlockMapping[i]->getName() <<" "; |
| 388 | std::cerr << "\n";); |
| 389 | |
| 390 | |
| 391 | |
| 392 | // AvailabilityFrontier - Calculates the availability frontier for the current |
| 393 | // expression. The availability frontier contains the blocks on the dominance |
| 394 | // frontier of the current available expressions, iff they anticipate a |
| 395 | // definition of the expression. |
| 396 | hash_set<unsigned> AvailabilityFrontier; |
| 397 | |
| 398 | Instruction *NonPHIOccurance = 0; |
| 399 | |
| 400 | while (!Definitions.empty() || !AvailabilityFrontier.empty()) { |
| 401 | if (!Definitions.empty() && |
| 402 | (AvailabilityFrontier.empty() || |
| 403 | Definitions.begin()->first < *AvailabilityFrontier.begin())) { |
| 404 | Instruction *Occurance = Definitions.begin()->second; |
| 405 | BasicBlock *BB = Occurance->getParent(); |
| 406 | Definitions.erase(Definitions.begin()); |
| 407 | |
| 408 | DEBUG(std::cerr << "PROCESSING Occurance: " << Occurance); |
| 409 | |
| 410 | // Check to see if there is already an incoming value for this block... |
| 411 | AvailableBlocksTy::iterator LBI = AvailableBlocks.find(BB); |
| 412 | if (LBI != AvailableBlocks.end()) { |
| 413 | // Yes, there is a dominating definition for this block. Replace this |
| 414 | // occurance with the incoming value. |
| 415 | if (LBI->second != Occurance) { |
| 416 | DEBUG(std::cerr << " replacing with: " << LBI->second); |
| 417 | Occurance->replaceAllUsesWith(LBI->second); |
| 418 | BB->getInstList().erase(Occurance); // Delete instruction |
| 419 | ++NumRedundant; |
| 420 | } |
| 421 | |
| 422 | } else { |
| 423 | ProcessedExpressions.insert(Occurance); |
| 424 | if (!isa<PHINode>(Occurance)) |
| 425 | NonPHIOccurance = Occurance; // Keep an occurance of this expr |
| 426 | |
| 427 | // Okay, there is no incoming value for this block, so this expression |
| 428 | // is a new definition that is good for this block and all blocks |
| 429 | // dominated by it. Add this information to the AvailableBlocks map. |
| 430 | // |
| 431 | MarkOccuranceAvailableInAllDominatedBlocks(Occurance, BB); |
| 432 | |
| 433 | // Update the dominance frontier for the definitions so far... if a node |
| 434 | // in the dominator frontier now has all of its predecessors available, |
| 435 | // and the block is in an anticipatible region, we can insert a PHI node |
| 436 | // in that block. |
| 437 | DominanceFrontier::iterator DFI = DF->find(BB); |
| 438 | if (DFI != DF->end()) { |
| 439 | for (std::set<BasicBlock*>::iterator DI = DFI->second.begin(); |
| 440 | DI != DFI->second.end(); ++DI) { |
| 441 | BasicBlock *DFBlock = *DI; |
| 442 | unsigned DFBlockID = BlockNumbering[DFBlock]; |
| 443 | if (AnticipatibleBlocks[DFBlockID]) { |
| 444 | // Check to see if any of the predecessors of this block on the |
| 445 | // frontier are not available... |
| 446 | bool AnyNotAvailable = false; |
| 447 | for (pred_iterator PI = pred_begin(DFBlock), |
| 448 | PE = pred_end(DFBlock); PI != PE; ++PI) |
| 449 | if (!AvailableBlocks.count(*PI)) { |
| 450 | AnyNotAvailable = true; |
| 451 | break; |
| 452 | } |
| 453 | |
| 454 | // If any predecessor blocks are not available, add the node to |
| 455 | // the current expression dominance frontier. |
| 456 | if (AnyNotAvailable) { |
| 457 | AvailabilityFrontier.insert(DFBlockID); |
| 458 | } else { |
| 459 | // This block is no longer in the availability frontier, it IS |
| 460 | // available. |
| 461 | AvailabilityFrontier.erase(DFBlockID); |
| 462 | |
| 463 | // If all of the predecessor blocks are available (and the block |
| 464 | // anticipates a definition along the path to the exit), we need |
| 465 | // to insert a new PHI node in this block. This block serves as |
| 466 | // a new definition for the expression, extending the available |
| 467 | // region. |
| 468 | // |
| 469 | PHINode *PN = new PHINode(ExprType, Expr->getName()+".pre", |
| 470 | DFBlock->begin()); |
| 471 | ProcessedExpressions.insert(PN); |
| 472 | |
| 473 | DEBUG(std::cerr << " INSERTING PHI on frontier: " << PN); |
| 474 | |
| 475 | // Add the incoming blocks for the PHI node |
| 476 | for (pred_iterator PI = pred_begin(DFBlock), |
| 477 | PE = pred_end(DFBlock); PI != PE; ++PI) |
| 478 | if (*PI != DFBlock) |
| 479 | PN->addIncoming(AvailableBlocks[*PI], *PI); |
| 480 | else // edge from the current block |
| 481 | PN->addIncoming(PN, DFBlock); |
| 482 | |
| 483 | Instruction *&BlockOcc = Definitions[DFBlockID]; |
| 484 | if (BlockOcc) { |
| 485 | DEBUG(std::cerr <<" PHI superceeds occurance: "<<BlockOcc); |
| 486 | BlockOcc->replaceAllUsesWith(PN); |
| 487 | BlockOcc->getParent()->getInstList().erase(BlockOcc); |
| 488 | ++NumRedundant; |
| 489 | } |
| 490 | BlockOcc = PN; |
| 491 | } |
| 492 | } |
| 493 | } |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | } else { |
| 498 | // Otherwise we must be looking at a node in the availability frontier! |
| 499 | unsigned AFBlockID = *AvailabilityFrontier.begin(); |
| 500 | AvailabilityFrontier.erase(AvailabilityFrontier.begin()); |
| 501 | BasicBlock *AFBlock = BlockMapping[AFBlockID]; |
| 502 | |
| 503 | // We eliminate the partial redundancy on this frontier by inserting a PHI |
| 504 | // node into this block, merging any incoming available versions into the |
| 505 | // PHI and inserting a new computation into predecessors without an |
| 506 | // incoming value. Note that we would have to insert the expression on |
| 507 | // the edge if the predecessor didn't anticipate the expression and we |
| 508 | // didn't break critical edges. |
| 509 | // |
| 510 | PHINode *PN = new PHINode(ExprType, Expr->getName()+".PRE", |
| 511 | AFBlock->begin()); |
| 512 | DEBUG(std::cerr << "INSERTING PHI for PR: " << PN); |
| 513 | |
| 514 | // If there is a pending occurance in this block, make sure to replace it |
| 515 | // with the PHI node... |
| 516 | std::map<unsigned, Instruction*>::iterator EDFI = |
| 517 | Definitions.find(AFBlockID); |
| 518 | if (EDFI != Definitions.end()) { |
| 519 | // There is already an occurance in this block. Replace it with PN and |
| 520 | // remove it. |
| 521 | Instruction *OldOcc = EDFI->second; |
| 522 | DEBUG(std::cerr << " Replaces occurance: " << OldOcc); |
| 523 | OldOcc->replaceAllUsesWith(PN); |
| 524 | AFBlock->getInstList().erase(OldOcc); |
| 525 | Definitions.erase(EDFI); |
| 526 | ++NumRedundant; |
| 527 | } |
| 528 | |
| 529 | for (pred_iterator PI = pred_begin(AFBlock), PE = pred_end(AFBlock); |
| 530 | PI != PE; ++PI) { |
| 531 | BasicBlock *Pred = *PI; |
| 532 | AvailableBlocksTy::iterator LBI = AvailableBlocks.find(Pred); |
| 533 | if (LBI != AvailableBlocks.end()) { // If there is a available value |
| 534 | PN->addIncoming(LBI->second, Pred); // for this pred, use it. |
| 535 | } else { // No available value yet... |
| 536 | unsigned PredID = BlockNumbering[Pred]; |
| 537 | |
| 538 | // Is the predecessor the same block that we inserted the PHI into? |
| 539 | // (self loop) |
| 540 | if (Pred == AFBlock) { |
| 541 | // Yes, reuse the incoming value here... |
| 542 | PN->addIncoming(PN, Pred); |
| 543 | } else { |
| 544 | // No, we must insert a new computation into this block and add it |
| 545 | // to the definitions list... |
| 546 | assert(NonPHIOccurance && "No non-phi occurances seen so far???"); |
| 547 | Instruction *New = NonPHIOccurance->clone(); |
| 548 | New->setName(NonPHIOccurance->getName() + ".PRE-inserted"); |
| 549 | ProcessedExpressions.insert(New); |
| 550 | |
| 551 | DEBUG(std::cerr << " INSERTING OCCURANCE: " << New); |
| 552 | |
| 553 | // Insert it into the bottom of the predecessor, right before the |
| 554 | // terminator instruction... |
| 555 | Pred->getInstList().insert(Pred->getTerminator(), New); |
| 556 | |
| 557 | // Make this block be the available definition for any blocks it |
| 558 | // dominates. The ONLY case that this can affect more than just the |
| 559 | // block itself is when we are moving a computation to a loop |
| 560 | // header. In all other cases, because we don't have critical |
| 561 | // edges, the node is guaranteed to only dominate itself. |
| 562 | // |
| 563 | ReplaceDominatedAvailableOccurancesWith(New, DT->getNode(Pred)); |
| 564 | |
| 565 | // Add it as an incoming value on this edge to the PHI node |
| 566 | PN->addIncoming(New, Pred); |
| 567 | NonPHIOccurance = New; |
| 568 | NumInserted++; |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | // Find out if there is already an available value in this block. If so, |
| 574 | // we need to replace the available value with the PHI node. This can |
| 575 | // only happen when we just inserted a PHI node on a backedge. |
| 576 | // |
| 577 | AvailableBlocksTy::iterator LBBlockAvailableValIt = |
| 578 | AvailableBlocks.find(AFBlock); |
| 579 | if (LBBlockAvailableValIt != AvailableBlocks.end()) { |
| 580 | if (LBBlockAvailableValIt->second->getParent() == AFBlock) { |
| 581 | Instruction *OldVal = LBBlockAvailableValIt->second; |
| 582 | OldVal->replaceAllUsesWith(PN); // Use the new PHI node now |
| 583 | ++NumRedundant; |
| 584 | DEBUG(std::cerr << " PHI replaces available value: %" |
| 585 | << OldVal->getName() << "\n"); |
| 586 | |
| 587 | // Loop over all of the blocks dominated by this PHI node, and change |
| 588 | // the AvailableBlocks entries to be the PHI node instead of the old |
| 589 | // instruction. |
| 590 | MarkOccuranceAvailableInAllDominatedBlocks(PN, AFBlock); |
| 591 | |
| 592 | AFBlock->getInstList().erase(OldVal); // Delete old instruction! |
| 593 | |
| 594 | // The resultant PHI node is a new definition of the value! |
| 595 | Definitions.insert(std::make_pair(AFBlockID, PN)); |
| 596 | } else { |
| 597 | // If the value is not defined in this block, that means that an |
| 598 | // inserted occurance in a predecessor is now the live value for the |
| 599 | // region (occurs when hoisting loop invariants, f.e.). In this case, |
| 600 | // the PHI node should actually just be removed. |
| 601 | assert(PN->use_empty() && "No uses should exist for dead PHI node!"); |
| 602 | PN->getParent()->getInstList().erase(PN); |
| 603 | } |
| 604 | } else { |
| 605 | // The resultant PHI node is a new definition of the value! |
| 606 | Definitions.insert(std::make_pair(AFBlockID, PN)); |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | AvailableBlocks.clear(); |
| 612 | |
| 613 | return Changed; |
| 614 | } |