blob: cbc71bd6e7394ec61b5f2ed10c29fbe788d68c80 [file] [log] [blame]
Sebastian Popad434992012-10-11 07:32:34 +00001//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an (incomplete) implementation of the approach
12// described in
13//
14// Practical Dependence Testing
15// Goff, Kennedy, Tseng
16// PLDI 1991
17//
18// There's a single entry point that analyzes the dependence between a pair
19// of memory references in a function, returning either NULL, for no dependence,
20// or a more-or-less detailed description of the dependence between them.
21//
22// Currently, the implementation cannot propagate constraints between
23// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24// Both of these are conservative weaknesses;
25// that is, not a source of correctness problems.
26//
27// The implementation depends on the GEP instruction to
28// differentiate subscripts. Since Clang linearizes subscripts
29// for most arrays, we give up some precision (though the existing MIV tests
30// will help). We trust that the GEP instruction will eventually be extended.
31// In the meantime, we should explore Maslov's ideas about delinearization.
32//
33// We should pay some careful attention to the possibility of integer overflow
34// in the implementation of the various tests. This could happen with Add,
35// Subtract, or Multiply, with both APInt's and SCEV's.
36//
37// Some non-linear subscript pairs can be handled by the GCD test
38// (and perhaps other tests).
39// Should explore how often these things occur.
40//
41// Finally, it seems like certain test cases expose weaknesses in the SCEV
42// simplification, especially in the handling of sign and zero extensions.
43// It could be useful to spend time exploring these.
44//
45// Please note that this is work in progress and the interface is subject to
46// change.
47//
48//===----------------------------------------------------------------------===//
49// //
50// In memory of Ken Kennedy, 1945 - 2007 //
51// //
52//===----------------------------------------------------------------------===//
53
54#define DEBUG_TYPE "da"
55
56#include "llvm/Analysis/DependenceAnalysis.h"
57#include "llvm/ADT/Statistic.h"
Benjamin Kramer8e4e0072012-10-25 16:15:22 +000058#include "llvm/Analysis/AliasAnalysis.h"
59#include "llvm/Analysis/LoopInfo.h"
Benjamin Kramer8e4e0072012-10-25 16:15:22 +000060#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000063#include "llvm/IR/Operator.h"
Sebastian Popad434992012-10-11 07:32:34 +000064#include "llvm/Support/Debug.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/InstIterator.h"
Benjamin Kramer8e4e0072012-10-25 16:15:22 +000067#include "llvm/Support/raw_ostream.h"
Sebastian Popad434992012-10-11 07:32:34 +000068
69using namespace llvm;
70
71//===----------------------------------------------------------------------===//
72// statistics
73
74STATISTIC(TotalArrayPairs, "Array pairs tested");
75STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
76STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
77STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
78STATISTIC(ZIVapplications, "ZIV applications");
79STATISTIC(ZIVindependence, "ZIV independence");
80STATISTIC(StrongSIVapplications, "Strong SIV applications");
81STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
82STATISTIC(StrongSIVindependence, "Strong SIV independence");
83STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
84STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
85STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
86STATISTIC(ExactSIVapplications, "Exact SIV applications");
87STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
88STATISTIC(ExactSIVindependence, "Exact SIV independence");
89STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
90STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
91STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
92STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
93STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
94STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
95STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
96STATISTIC(DeltaApplications, "Delta applications");
97STATISTIC(DeltaSuccesses, "Delta successes");
98STATISTIC(DeltaIndependence, "Delta independence");
99STATISTIC(DeltaPropagations, "Delta propagations");
100STATISTIC(GCDapplications, "GCD applications");
101STATISTIC(GCDsuccesses, "GCD successes");
102STATISTIC(GCDindependence, "GCD independence");
103STATISTIC(BanerjeeApplications, "Banerjee applications");
104STATISTIC(BanerjeeIndependence, "Banerjee independence");
105STATISTIC(BanerjeeSuccesses, "Banerjee successes");
106
107//===----------------------------------------------------------------------===//
108// basics
109
110INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
111 "Dependence Analysis", true, true)
112INITIALIZE_PASS_DEPENDENCY(LoopInfo)
113INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
114INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
115INITIALIZE_PASS_END(DependenceAnalysis, "da",
116 "Dependence Analysis", true, true)
117
118char DependenceAnalysis::ID = 0;
119
120
121FunctionPass *llvm::createDependenceAnalysisPass() {
122 return new DependenceAnalysis();
123}
124
125
126bool DependenceAnalysis::runOnFunction(Function &F) {
127 this->F = &F;
128 AA = &getAnalysis<AliasAnalysis>();
129 SE = &getAnalysis<ScalarEvolution>();
130 LI = &getAnalysis<LoopInfo>();
131 return false;
132}
133
134
135void DependenceAnalysis::releaseMemory() {
136}
137
138
139void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
140 AU.setPreservesAll();
141 AU.addRequiredTransitive<AliasAnalysis>();
142 AU.addRequiredTransitive<ScalarEvolution>();
143 AU.addRequiredTransitive<LoopInfo>();
144}
145
146
147// Used to test the dependence analyzer.
Benjamin Kramer563e8fc2012-11-13 12:12:02 +0000148// Looks through the function, noting loads and stores.
149// Calls depends() on every possible pair and prints out the result.
Sebastian Popad434992012-10-11 07:32:34 +0000150// Ignores all other instructions.
151static
152void dumpExampleDependence(raw_ostream &OS, Function *F,
153 DependenceAnalysis *DA) {
154 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
155 SrcI != SrcE; ++SrcI) {
Benjamin Kramer563e8fc2012-11-13 12:12:02 +0000156 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
Sebastian Popad434992012-10-11 07:32:34 +0000157 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
158 DstI != DstE; ++DstI) {
Benjamin Kramer563e8fc2012-11-13 12:12:02 +0000159 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
Sebastian Popad434992012-10-11 07:32:34 +0000160 OS << "da analyze - ";
Benjamin Kramer563e8fc2012-11-13 12:12:02 +0000161 if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
Sebastian Popad434992012-10-11 07:32:34 +0000162 D->dump(OS);
163 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
164 if (D->isSplitable(Level)) {
165 OS << "da analyze - split level = " << Level;
166 OS << ", iteration = " << *DA->getSplitIteration(D, Level);
167 OS << "!\n";
168 }
169 }
170 delete D;
171 }
172 else
173 OS << "none!\n";
Sebastian Popad434992012-10-11 07:32:34 +0000174 }
175 }
176 }
177 }
178}
179
180
181void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
182 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
183}
184
185//===----------------------------------------------------------------------===//
186// Dependence methods
187
188// Returns true if this is an input dependence.
189bool Dependence::isInput() const {
190 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
191}
192
193
194// Returns true if this is an output dependence.
195bool Dependence::isOutput() const {
196 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
197}
198
199
200// Returns true if this is an flow (aka true) dependence.
201bool Dependence::isFlow() const {
202 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
203}
204
205
206// Returns true if this is an anti dependence.
207bool Dependence::isAnti() const {
208 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
209}
210
211
212// Returns true if a particular level is scalar; that is,
213// if no subscript in the source or destination mention the induction
214// variable associated with the loop at this level.
215// Leave this out of line, so it will serve as a virtual method anchor
216bool Dependence::isScalar(unsigned level) const {
217 return false;
218}
219
220
221//===----------------------------------------------------------------------===//
222// FullDependence methods
223
Sebastian Pop7372a7d2012-11-20 22:28:04 +0000224FullDependence::FullDependence(Instruction *Source,
225 Instruction *Destination,
Sebastian Popad434992012-10-11 07:32:34 +0000226 bool PossiblyLoopIndependent,
227 unsigned CommonLevels) :
228 Dependence(Source, Destination),
229 Levels(CommonLevels),
230 LoopIndependent(PossiblyLoopIndependent) {
231 Consistent = true;
232 DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
233}
234
235// The rest are simple getters that hide the implementation.
236
237// getDirection - Returns the direction associated with a particular level.
238unsigned FullDependence::getDirection(unsigned Level) const {
239 assert(0 < Level && Level <= Levels && "Level out of range");
240 return DV[Level - 1].Direction;
241}
242
243
244// Returns the distance (or NULL) associated with a particular level.
245const SCEV *FullDependence::getDistance(unsigned Level) const {
246 assert(0 < Level && Level <= Levels && "Level out of range");
247 return DV[Level - 1].Distance;
248}
249
250
251// Returns true if a particular level is scalar; that is,
252// if no subscript in the source or destination mention the induction
253// variable associated with the loop at this level.
254bool FullDependence::isScalar(unsigned Level) const {
255 assert(0 < Level && Level <= Levels && "Level out of range");
256 return DV[Level - 1].Scalar;
257}
258
259
260// Returns true if peeling the first iteration from this loop
261// will break this dependence.
262bool FullDependence::isPeelFirst(unsigned Level) const {
263 assert(0 < Level && Level <= Levels && "Level out of range");
264 return DV[Level - 1].PeelFirst;
265}
266
267
268// Returns true if peeling the last iteration from this loop
269// will break this dependence.
270bool FullDependence::isPeelLast(unsigned Level) const {
271 assert(0 < Level && Level <= Levels && "Level out of range");
272 return DV[Level - 1].PeelLast;
273}
274
275
276// Returns true if splitting this loop will break the dependence.
277bool FullDependence::isSplitable(unsigned Level) const {
278 assert(0 < Level && Level <= Levels && "Level out of range");
279 return DV[Level - 1].Splitable;
280}
281
282
283//===----------------------------------------------------------------------===//
284// DependenceAnalysis::Constraint methods
285
286// If constraint is a point <X, Y>, returns X.
287// Otherwise assert.
288const SCEV *DependenceAnalysis::Constraint::getX() const {
289 assert(Kind == Point && "Kind should be Point");
290 return A;
291}
292
293
294// If constraint is a point <X, Y>, returns Y.
295// Otherwise assert.
296const SCEV *DependenceAnalysis::Constraint::getY() const {
297 assert(Kind == Point && "Kind should be Point");
298 return B;
299}
300
301
302// If constraint is a line AX + BY = C, returns A.
303// Otherwise assert.
304const SCEV *DependenceAnalysis::Constraint::getA() const {
305 assert((Kind == Line || Kind == Distance) &&
306 "Kind should be Line (or Distance)");
307 return A;
308}
309
310
311// If constraint is a line AX + BY = C, returns B.
312// Otherwise assert.
313const SCEV *DependenceAnalysis::Constraint::getB() const {
314 assert((Kind == Line || Kind == Distance) &&
315 "Kind should be Line (or Distance)");
316 return B;
317}
318
319
320// If constraint is a line AX + BY = C, returns C.
321// Otherwise assert.
322const SCEV *DependenceAnalysis::Constraint::getC() const {
323 assert((Kind == Line || Kind == Distance) &&
324 "Kind should be Line (or Distance)");
325 return C;
326}
327
328
329// If constraint is a distance, returns D.
330// Otherwise assert.
331const SCEV *DependenceAnalysis::Constraint::getD() const {
332 assert(Kind == Distance && "Kind should be Distance");
333 return SE->getNegativeSCEV(C);
334}
335
336
337// Returns the loop associated with this constraint.
338const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
339 assert((Kind == Distance || Kind == Line || Kind == Point) &&
340 "Kind should be Distance, Line, or Point");
341 return AssociatedLoop;
342}
343
344
345void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
346 const SCEV *Y,
347 const Loop *CurLoop) {
348 Kind = Point;
349 A = X;
350 B = Y;
351 AssociatedLoop = CurLoop;
352}
353
354
355void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
356 const SCEV *BB,
357 const SCEV *CC,
358 const Loop *CurLoop) {
359 Kind = Line;
360 A = AA;
361 B = BB;
362 C = CC;
363 AssociatedLoop = CurLoop;
364}
365
366
367void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
368 const Loop *CurLoop) {
369 Kind = Distance;
370 A = SE->getConstant(D->getType(), 1);
371 B = SE->getNegativeSCEV(A);
372 C = SE->getNegativeSCEV(D);
373 AssociatedLoop = CurLoop;
374}
375
376
377void DependenceAnalysis::Constraint::setEmpty() {
378 Kind = Empty;
379}
380
381
382void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
383 SE = NewSE;
384 Kind = Any;
385}
386
387
388// For debugging purposes. Dumps the constraint out to OS.
389void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
390 if (isEmpty())
391 OS << " Empty\n";
392 else if (isAny())
393 OS << " Any\n";
394 else if (isPoint())
395 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
396 else if (isDistance())
397 OS << " Distance is " << *getD() <<
398 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
399 else if (isLine())
400 OS << " Line is " << *getA() << "*X + " <<
401 *getB() << "*Y = " << *getC() << "\n";
402 else
403 llvm_unreachable("unknown constraint type in Constraint::dump");
404}
405
406
407// Updates X with the intersection
408// of the Constraints X and Y. Returns true if X has changed.
409// Corresponds to Figure 4 from the paper
410//
411// Practical Dependence Testing
412// Goff, Kennedy, Tseng
413// PLDI 1991
414bool DependenceAnalysis::intersectConstraints(Constraint *X,
415 const Constraint *Y) {
416 ++DeltaApplications;
417 DEBUG(dbgs() << "\tintersect constraints\n");
418 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
419 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
420 assert(!Y->isPoint() && "Y must not be a Point");
421 if (X->isAny()) {
422 if (Y->isAny())
423 return false;
424 *X = *Y;
425 return true;
426 }
427 if (X->isEmpty())
428 return false;
429 if (Y->isEmpty()) {
430 X->setEmpty();
431 return true;
432 }
433
434 if (X->isDistance() && Y->isDistance()) {
435 DEBUG(dbgs() << "\t intersect 2 distances\n");
436 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
437 return false;
438 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
439 X->setEmpty();
440 ++DeltaSuccesses;
441 return true;
442 }
443 // Hmmm, interesting situation.
444 // I guess if either is constant, keep it and ignore the other.
445 if (isa<SCEVConstant>(Y->getD())) {
446 *X = *Y;
447 return true;
448 }
449 return false;
450 }
451
452 // At this point, the pseudo-code in Figure 4 of the paper
453 // checks if (X->isPoint() && Y->isPoint()).
454 // This case can't occur in our implementation,
455 // since a Point can only arise as the result of intersecting
456 // two Line constraints, and the right-hand value, Y, is never
457 // the result of an intersection.
458 assert(!(X->isPoint() && Y->isPoint()) &&
459 "We shouldn't ever see X->isPoint() && Y->isPoint()");
460
461 if (X->isLine() && Y->isLine()) {
462 DEBUG(dbgs() << "\t intersect 2 lines\n");
463 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
464 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
465 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
466 // slopes are equal, so lines are parallel
467 DEBUG(dbgs() << "\t\tsame slope\n");
468 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
469 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
470 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
471 return false;
472 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
473 X->setEmpty();
474 ++DeltaSuccesses;
475 return true;
476 }
477 return false;
478 }
479 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
480 // slopes differ, so lines intersect
481 DEBUG(dbgs() << "\t\tdifferent slopes\n");
482 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
483 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
484 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
485 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
486 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
487 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
488 const SCEVConstant *C1A2_C2A1 =
489 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
490 const SCEVConstant *C1B2_C2B1 =
491 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
492 const SCEVConstant *A1B2_A2B1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
494 const SCEVConstant *A2B1_A1B2 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
496 if (!C1B2_C2B1 || !C1A2_C2A1 ||
497 !A1B2_A2B1 || !A2B1_A1B2)
498 return false;
499 APInt Xtop = C1B2_C2B1->getValue()->getValue();
500 APInt Xbot = A1B2_A2B1->getValue()->getValue();
501 APInt Ytop = C1A2_C2A1->getValue()->getValue();
502 APInt Ybot = A2B1_A1B2->getValue()->getValue();
503 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
504 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
505 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
506 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
507 APInt Xq = Xtop; // these need to be initialized, even
508 APInt Xr = Xtop; // though they're just going to be overwritten
509 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
510 APInt Yq = Ytop;
511 APInt Yr = Ytop;;
512 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
513 if (Xr != 0 || Yr != 0) {
514 X->setEmpty();
515 ++DeltaSuccesses;
516 return true;
517 }
518 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
519 if (Xq.slt(0) || Yq.slt(0)) {
520 X->setEmpty();
521 ++DeltaSuccesses;
522 return true;
523 }
524 if (const SCEVConstant *CUB =
525 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
526 APInt UpperBound = CUB->getValue()->getValue();
527 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
528 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
529 X->setEmpty();
530 ++DeltaSuccesses;
531 return true;
532 }
533 }
534 X->setPoint(SE->getConstant(Xq),
535 SE->getConstant(Yq),
536 X->getAssociatedLoop());
537 ++DeltaSuccesses;
538 return true;
539 }
540 return false;
541 }
542
543 // if (X->isLine() && Y->isPoint()) This case can't occur.
544 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
545
546 if (X->isPoint() && Y->isLine()) {
547 DEBUG(dbgs() << "\t intersect Point and Line\n");
548 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
549 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
550 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
551 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
552 return false;
553 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
554 X->setEmpty();
555 ++DeltaSuccesses;
556 return true;
557 }
558 return false;
559 }
560
561 llvm_unreachable("shouldn't reach the end of Constraint intersection");
562 return false;
563}
564
565
566//===----------------------------------------------------------------------===//
567// DependenceAnalysis methods
568
569// For debugging purposes. Dumps a dependence to OS.
570void Dependence::dump(raw_ostream &OS) const {
571 bool Splitable = false;
572 if (isConfused())
573 OS << "confused";
574 else {
575 if (isConsistent())
576 OS << "consistent ";
577 if (isFlow())
578 OS << "flow";
579 else if (isOutput())
580 OS << "output";
581 else if (isAnti())
582 OS << "anti";
583 else if (isInput())
584 OS << "input";
585 unsigned Levels = getLevels();
Preston Briggsa4eff772012-11-30 00:44:47 +0000586 OS << " [";
587 for (unsigned II = 1; II <= Levels; ++II) {
588 if (isSplitable(II))
589 Splitable = true;
590 if (isPeelFirst(II))
591 OS << 'p';
592 const SCEV *Distance = getDistance(II);
593 if (Distance)
594 OS << *Distance;
595 else if (isScalar(II))
596 OS << "S";
597 else {
598 unsigned Direction = getDirection(II);
599 if (Direction == DVEntry::ALL)
600 OS << "*";
Sebastian Popad434992012-10-11 07:32:34 +0000601 else {
Preston Briggsa4eff772012-11-30 00:44:47 +0000602 if (Direction & DVEntry::LT)
603 OS << "<";
604 if (Direction & DVEntry::EQ)
605 OS << "=";
606 if (Direction & DVEntry::GT)
607 OS << ">";
Sebastian Popad434992012-10-11 07:32:34 +0000608 }
Sebastian Popad434992012-10-11 07:32:34 +0000609 }
Preston Briggsa4eff772012-11-30 00:44:47 +0000610 if (isPeelLast(II))
611 OS << 'p';
612 if (II < Levels)
613 OS << " ";
Sebastian Popad434992012-10-11 07:32:34 +0000614 }
Preston Briggsa4eff772012-11-30 00:44:47 +0000615 if (isLoopIndependent())
616 OS << "|<";
617 OS << "]";
618 if (Splitable)
619 OS << " splitable";
Sebastian Popad434992012-10-11 07:32:34 +0000620 }
621 OS << "!\n";
622}
623
624
625
626static
627AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
628 const Value *A,
629 const Value *B) {
630 const Value *AObj = GetUnderlyingObject(A);
631 const Value *BObj = GetUnderlyingObject(B);
632 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
633 BObj, AA->getTypeStoreSize(BObj->getType()));
634}
635
636
637// Returns true if the load or store can be analyzed. Atomic and volatile
638// operations have properties which this analysis does not understand.
639static
640bool isLoadOrStore(const Instruction *I) {
641 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
642 return LI->isUnordered();
643 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
644 return SI->isUnordered();
645 return false;
646}
647
648
649static
Sebastian Pop7372a7d2012-11-20 22:28:04 +0000650Value *getPointerOperand(Instruction *I) {
651 if (LoadInst *LI = dyn_cast<LoadInst>(I))
Sebastian Popad434992012-10-11 07:32:34 +0000652 return LI->getPointerOperand();
Sebastian Pop7372a7d2012-11-20 22:28:04 +0000653 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Sebastian Popad434992012-10-11 07:32:34 +0000654 return SI->getPointerOperand();
655 llvm_unreachable("Value is not load or store instruction");
656 return 0;
657}
658
659
660// Examines the loop nesting of the Src and Dst
661// instructions and establishes their shared loops. Sets the variables
662// CommonLevels, SrcLevels, and MaxLevels.
663// The source and destination instructions needn't be contained in the same
664// loop. The routine establishNestingLevels finds the level of most deeply
665// nested loop that contains them both, CommonLevels. An instruction that's
666// not contained in a loop is at level = 0. MaxLevels is equal to the level
667// of the source plus the level of the destination, minus CommonLevels.
668// This lets us allocate vectors MaxLevels in length, with room for every
669// distinct loop referenced in both the source and destination subscripts.
670// The variable SrcLevels is the nesting depth of the source instruction.
671// It's used to help calculate distinct loops referenced by the destination.
672// Here's the map from loops to levels:
673// 0 - unused
674// 1 - outermost common loop
675// ... - other common loops
676// CommonLevels - innermost common loop
677// ... - loops containing Src but not Dst
678// SrcLevels - innermost loop containing Src but not Dst
679// ... - loops containing Dst but not Src
680// MaxLevels - innermost loops containing Dst but not Src
681// Consider the follow code fragment:
682// for (a = ...) {
683// for (b = ...) {
684// for (c = ...) {
685// for (d = ...) {
686// A[] = ...;
687// }
688// }
689// for (e = ...) {
690// for (f = ...) {
691// for (g = ...) {
692// ... = A[];
693// }
694// }
695// }
696// }
697// }
698// If we're looking at the possibility of a dependence between the store
699// to A (the Src) and the load from A (the Dst), we'll note that they
700// have 2 loops in common, so CommonLevels will equal 2 and the direction
701// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
702// A map from loop names to loop numbers would look like
703// a - 1
704// b - 2 = CommonLevels
705// c - 3
706// d - 4 = SrcLevels
707// e - 5
708// f - 6
709// g - 7 = MaxLevels
710void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
711 const Instruction *Dst) {
712 const BasicBlock *SrcBlock = Src->getParent();
713 const BasicBlock *DstBlock = Dst->getParent();
714 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
715 unsigned DstLevel = LI->getLoopDepth(DstBlock);
716 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
717 const Loop *DstLoop = LI->getLoopFor(DstBlock);
718 SrcLevels = SrcLevel;
719 MaxLevels = SrcLevel + DstLevel;
720 while (SrcLevel > DstLevel) {
721 SrcLoop = SrcLoop->getParentLoop();
722 SrcLevel--;
723 }
724 while (DstLevel > SrcLevel) {
725 DstLoop = DstLoop->getParentLoop();
726 DstLevel--;
727 }
728 while (SrcLoop != DstLoop) {
729 SrcLoop = SrcLoop->getParentLoop();
730 DstLoop = DstLoop->getParentLoop();
731 SrcLevel--;
732 }
733 CommonLevels = SrcLevel;
734 MaxLevels -= CommonLevels;
735}
736
737
738// Given one of the loops containing the source, return
739// its level index in our numbering scheme.
740unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
741 return SrcLoop->getLoopDepth();
742}
743
744
745// Given one of the loops containing the destination,
746// return its level index in our numbering scheme.
747unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
748 unsigned D = DstLoop->getLoopDepth();
749 if (D > CommonLevels)
750 return D - CommonLevels + SrcLevels;
751 else
752 return D;
753}
754
755
756// Returns true if Expression is loop invariant in LoopNest.
757bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
758 const Loop *LoopNest) const {
759 if (!LoopNest)
760 return true;
761 return SE->isLoopInvariant(Expression, LoopNest) &&
762 isLoopInvariant(Expression, LoopNest->getParentLoop());
763}
764
765
766
767// Finds the set of loops from the LoopNest that
768// have a level <= CommonLevels and are referred to by the SCEV Expression.
769void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
770 const Loop *LoopNest,
771 SmallBitVector &Loops) const {
772 while (LoopNest) {
773 unsigned Level = LoopNest->getLoopDepth();
774 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
775 Loops.set(Level);
776 LoopNest = LoopNest->getParentLoop();
777 }
778}
779
780
781// removeMatchingExtensions - Examines a subscript pair.
782// If the source and destination are identically sign (or zero)
783// extended, it strips off the extension in an effect to simplify
784// the actual analysis.
785void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
786 const SCEV *Src = Pair->Src;
787 const SCEV *Dst = Pair->Dst;
788 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
789 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
790 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
791 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
792 if (SrcCast->getType() == DstCast->getType()) {
793 Pair->Src = SrcCast->getOperand();
794 Pair->Dst = DstCast->getOperand();
795 }
796 }
797}
798
799
800// Examine the scev and return true iff it's linear.
801// Collect any loops mentioned in the set of "Loops".
802bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
803 const Loop *LoopNest,
804 SmallBitVector &Loops) {
805 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
806 if (!AddRec)
807 return isLoopInvariant(Src, LoopNest);
808 const SCEV *Start = AddRec->getStart();
809 const SCEV *Step = AddRec->getStepRecurrence(*SE);
810 if (!isLoopInvariant(Step, LoopNest))
811 return false;
812 Loops.set(mapSrcLoop(AddRec->getLoop()));
813 return checkSrcSubscript(Start, LoopNest, Loops);
814}
815
816
817
818// Examine the scev and return true iff it's linear.
819// Collect any loops mentioned in the set of "Loops".
820bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
821 const Loop *LoopNest,
822 SmallBitVector &Loops) {
823 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
824 if (!AddRec)
825 return isLoopInvariant(Dst, LoopNest);
826 const SCEV *Start = AddRec->getStart();
827 const SCEV *Step = AddRec->getStepRecurrence(*SE);
828 if (!isLoopInvariant(Step, LoopNest))
829 return false;
830 Loops.set(mapDstLoop(AddRec->getLoop()));
831 return checkDstSubscript(Start, LoopNest, Loops);
832}
833
834
835// Examines the subscript pair (the Src and Dst SCEVs)
836// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
837// Collects the associated loops in a set.
838DependenceAnalysis::Subscript::ClassificationKind
839DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
840 const SCEV *Dst, const Loop *DstLoopNest,
841 SmallBitVector &Loops) {
842 SmallBitVector SrcLoops(MaxLevels + 1);
843 SmallBitVector DstLoops(MaxLevels + 1);
844 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
845 return Subscript::NonLinear;
846 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
847 return Subscript::NonLinear;
848 Loops = SrcLoops;
849 Loops |= DstLoops;
850 unsigned N = Loops.count();
851 if (N == 0)
852 return Subscript::ZIV;
853 if (N == 1)
854 return Subscript::SIV;
855 if (N == 2 && (SrcLoops.count() == 0 ||
856 DstLoops.count() == 0 ||
857 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
858 return Subscript::RDIV;
859 return Subscript::MIV;
860}
861
862
863// A wrapper around SCEV::isKnownPredicate.
864// Looks for cases where we're interested in comparing for equality.
865// If both X and Y have been identically sign or zero extended,
866// it strips off the (confusing) extensions before invoking
867// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
868// will be similarly updated.
869//
870// If SCEV::isKnownPredicate can't prove the predicate,
871// we try simple subtraction, which seems to help in some cases
872// involving symbolics.
873bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
874 const SCEV *X,
875 const SCEV *Y) const {
876 if (Pred == CmpInst::ICMP_EQ ||
877 Pred == CmpInst::ICMP_NE) {
878 if ((isa<SCEVSignExtendExpr>(X) &&
879 isa<SCEVSignExtendExpr>(Y)) ||
880 (isa<SCEVZeroExtendExpr>(X) &&
881 isa<SCEVZeroExtendExpr>(Y))) {
882 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
883 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
884 const SCEV *Xop = CX->getOperand();
885 const SCEV *Yop = CY->getOperand();
886 if (Xop->getType() == Yop->getType()) {
887 X = Xop;
888 Y = Yop;
889 }
890 }
891 }
892 if (SE->isKnownPredicate(Pred, X, Y))
893 return true;
894 // If SE->isKnownPredicate can't prove the condition,
895 // we try the brute-force approach of subtracting
896 // and testing the difference.
897 // By testing with SE->isKnownPredicate first, we avoid
898 // the possibility of overflow when the arguments are constants.
899 const SCEV *Delta = SE->getMinusSCEV(X, Y);
900 switch (Pred) {
901 case CmpInst::ICMP_EQ:
902 return Delta->isZero();
903 case CmpInst::ICMP_NE:
904 return SE->isKnownNonZero(Delta);
905 case CmpInst::ICMP_SGE:
906 return SE->isKnownNonNegative(Delta);
907 case CmpInst::ICMP_SLE:
908 return SE->isKnownNonPositive(Delta);
909 case CmpInst::ICMP_SGT:
910 return SE->isKnownPositive(Delta);
911 case CmpInst::ICMP_SLT:
912 return SE->isKnownNegative(Delta);
913 default:
914 llvm_unreachable("unexpected predicate in isKnownPredicate");
915 }
916}
917
918
919// All subscripts are all the same type.
920// Loop bound may be smaller (e.g., a char).
921// Should zero extend loop bound, since it's always >= 0.
922// This routine collects upper bound and extends if needed.
923// Return null if no bound available.
924const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
925 Type *T) const {
926 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
927 const SCEV *UB = SE->getBackedgeTakenCount(L);
928 return SE->getNoopOrZeroExtend(UB, T);
929 }
930 return NULL;
931}
932
933
934// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
935// If the cast fails, returns NULL.
936const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
937 Type *T
938 ) const {
939 if (const SCEV *UB = collectUpperBound(L, T))
940 return dyn_cast<SCEVConstant>(UB);
941 return NULL;
942}
943
944
945// testZIV -
946// When we have a pair of subscripts of the form [c1] and [c2],
947// where c1 and c2 are both loop invariant, we attack it using
948// the ZIV test. Basically, we test by comparing the two values,
949// but there are actually three possible results:
950// 1) the values are equal, so there's a dependence
951// 2) the values are different, so there's no dependence
952// 3) the values might be equal, so we have to assume a dependence.
953//
954// Return true if dependence disproved.
955bool DependenceAnalysis::testZIV(const SCEV *Src,
956 const SCEV *Dst,
957 FullDependence &Result) const {
958 DEBUG(dbgs() << " src = " << *Src << "\n");
959 DEBUG(dbgs() << " dst = " << *Dst << "\n");
960 ++ZIVapplications;
961 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
962 DEBUG(dbgs() << " provably dependent\n");
963 return false; // provably dependent
964 }
965 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
966 DEBUG(dbgs() << " provably independent\n");
967 ++ZIVindependence;
968 return true; // provably independent
969 }
970 DEBUG(dbgs() << " possibly dependent\n");
971 Result.Consistent = false;
972 return false; // possibly dependent
973}
974
975
976// strongSIVtest -
977// From the paper, Practical Dependence Testing, Section 4.2.1
978//
979// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
980// where i is an induction variable, c1 and c2 are loop invariant,
981// and a is a constant, we can solve it exactly using the Strong SIV test.
982//
983// Can prove independence. Failing that, can compute distance (and direction).
984// In the presence of symbolic terms, we can sometimes make progress.
985//
986// If there's a dependence,
987//
988// c1 + a*i = c2 + a*i'
989//
990// The dependence distance is
991//
992// d = i' - i = (c1 - c2)/a
993//
994// A dependence only exists if d is an integer and abs(d) <= U, where U is the
995// loop's upper bound. If a dependence exists, the dependence direction is
996// defined as
997//
998// { < if d > 0
999// direction = { = if d = 0
1000// { > if d < 0
1001//
1002// Return true if dependence disproved.
1003bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1004 const SCEV *SrcConst,
1005 const SCEV *DstConst,
1006 const Loop *CurLoop,
1007 unsigned Level,
1008 FullDependence &Result,
1009 Constraint &NewConstraint) const {
1010 DEBUG(dbgs() << "\tStrong SIV test\n");
1011 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1012 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1013 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1014 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1015 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1016 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1017 ++StrongSIVapplications;
1018 assert(0 < Level && Level <= CommonLevels && "level out of range");
1019 Level--;
1020
1021 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1022 DEBUG(dbgs() << "\t Delta = " << *Delta);
1023 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1024
1025 // check that |Delta| < iteration count
1026 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1027 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1028 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1029 const SCEV *AbsDelta =
1030 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1031 const SCEV *AbsCoeff =
1032 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1033 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1034 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1035 // Distance greater than trip count - no dependence
1036 ++StrongSIVindependence;
1037 ++StrongSIVsuccesses;
1038 return true;
1039 }
1040 }
1041
1042 // Can we compute distance?
1043 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1044 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1045 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1046 APInt Distance = ConstDelta; // these need to be initialized
1047 APInt Remainder = ConstDelta;
1048 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1049 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1050 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1051 // Make sure Coeff divides Delta exactly
1052 if (Remainder != 0) {
1053 // Coeff doesn't divide Distance, no dependence
1054 ++StrongSIVindependence;
1055 ++StrongSIVsuccesses;
1056 return true;
1057 }
1058 Result.DV[Level].Distance = SE->getConstant(Distance);
1059 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1060 if (Distance.sgt(0))
1061 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1062 else if (Distance.slt(0))
1063 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1064 else
1065 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1066 ++StrongSIVsuccesses;
1067 }
1068 else if (Delta->isZero()) {
1069 // since 0/X == 0
1070 Result.DV[Level].Distance = Delta;
1071 NewConstraint.setDistance(Delta, CurLoop);
1072 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1073 ++StrongSIVsuccesses;
1074 }
1075 else {
1076 if (Coeff->isOne()) {
1077 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1078 Result.DV[Level].Distance = Delta; // since X/1 == X
1079 NewConstraint.setDistance(Delta, CurLoop);
1080 }
1081 else {
1082 Result.Consistent = false;
1083 NewConstraint.setLine(Coeff,
1084 SE->getNegativeSCEV(Coeff),
1085 SE->getNegativeSCEV(Delta), CurLoop);
1086 }
1087
1088 // maybe we can get a useful direction
1089 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1090 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1091 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1092 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1093 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1094 // The double negatives above are confusing.
1095 // It helps to read !SE->isKnownNonZero(Delta)
1096 // as "Delta might be Zero"
1097 unsigned NewDirection = Dependence::DVEntry::NONE;
1098 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1099 (DeltaMaybeNegative && CoeffMaybeNegative))
1100 NewDirection = Dependence::DVEntry::LT;
1101 if (DeltaMaybeZero)
1102 NewDirection |= Dependence::DVEntry::EQ;
1103 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1104 (DeltaMaybePositive && CoeffMaybeNegative))
1105 NewDirection |= Dependence::DVEntry::GT;
1106 if (NewDirection < Result.DV[Level].Direction)
1107 ++StrongSIVsuccesses;
1108 Result.DV[Level].Direction &= NewDirection;
1109 }
1110 return false;
1111}
1112
1113
1114// weakCrossingSIVtest -
1115// From the paper, Practical Dependence Testing, Section 4.2.2
1116//
1117// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1118// where i is an induction variable, c1 and c2 are loop invariant,
1119// and a is a constant, we can solve it exactly using the
1120// Weak-Crossing SIV test.
1121//
1122// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1123// the two lines, where i = i', yielding
1124//
1125// c1 + a*i = c2 - a*i
1126// 2a*i = c2 - c1
1127// i = (c2 - c1)/2a
1128//
1129// If i < 0, there is no dependence.
1130// If i > upperbound, there is no dependence.
1131// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1132// If i = upperbound, there's a dependence with distance = 0.
1133// If i is integral, there's a dependence (all directions).
1134// If the non-integer part = 1/2, there's a dependence (<> directions).
1135// Otherwise, there's no dependence.
1136//
1137// Can prove independence. Failing that,
1138// can sometimes refine the directions.
1139// Can determine iteration for splitting.
1140//
1141// Return true if dependence disproved.
1142bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1143 const SCEV *SrcConst,
1144 const SCEV *DstConst,
1145 const Loop *CurLoop,
1146 unsigned Level,
1147 FullDependence &Result,
1148 Constraint &NewConstraint,
1149 const SCEV *&SplitIter) const {
1150 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1151 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1152 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1153 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1154 ++WeakCrossingSIVapplications;
1155 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1156 Level--;
1157 Result.Consistent = false;
1158 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1159 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1160 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1161 if (Delta->isZero()) {
Sebastian Popb4164282012-10-12 02:04:32 +00001162 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1163 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Popad434992012-10-11 07:32:34 +00001164 ++WeakCrossingSIVsuccesses;
1165 if (!Result.DV[Level].Direction) {
1166 ++WeakCrossingSIVindependence;
1167 return true;
1168 }
1169 Result.DV[Level].Distance = Delta; // = 0
1170 return false;
1171 }
1172 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1173 if (!ConstCoeff)
1174 return false;
1175
1176 Result.DV[Level].Splitable = true;
1177 if (SE->isKnownNegative(ConstCoeff)) {
1178 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1179 assert(ConstCoeff &&
1180 "dynamic cast of negative of ConstCoeff should yield constant");
1181 Delta = SE->getNegativeSCEV(Delta);
1182 }
1183 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1184
1185 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1186 SplitIter =
1187 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1188 Delta),
1189 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1190 ConstCoeff));
1191 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1192
1193 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1194 if (!ConstDelta)
1195 return false;
1196
1197 // We're certain that ConstCoeff > 0; therefore,
1198 // if Delta < 0, then no dependence.
1199 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1200 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1201 if (SE->isKnownNegative(Delta)) {
1202 // No dependence, Delta < 0
1203 ++WeakCrossingSIVindependence;
1204 ++WeakCrossingSIVsuccesses;
1205 return true;
1206 }
1207
1208 // We're certain that Delta > 0 and ConstCoeff > 0.
1209 // Check Delta/(2*ConstCoeff) against upper loop bound
1210 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1211 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1212 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1213 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1214 ConstantTwo);
1215 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1216 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1217 // Delta too big, no dependence
1218 ++WeakCrossingSIVindependence;
1219 ++WeakCrossingSIVsuccesses;
1220 return true;
1221 }
1222 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1223 // i = i' = UB
Sebastian Popb4164282012-10-12 02:04:32 +00001224 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1225 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Popad434992012-10-11 07:32:34 +00001226 ++WeakCrossingSIVsuccesses;
1227 if (!Result.DV[Level].Direction) {
1228 ++WeakCrossingSIVindependence;
1229 return true;
1230 }
1231 Result.DV[Level].Splitable = false;
1232 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1233 return false;
1234 }
1235 }
1236
1237 // check that Coeff divides Delta
1238 APInt APDelta = ConstDelta->getValue()->getValue();
1239 APInt APCoeff = ConstCoeff->getValue()->getValue();
1240 APInt Distance = APDelta; // these need to be initialzed
1241 APInt Remainder = APDelta;
1242 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1243 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1244 if (Remainder != 0) {
1245 // Coeff doesn't divide Delta, no dependence
1246 ++WeakCrossingSIVindependence;
1247 ++WeakCrossingSIVsuccesses;
1248 return true;
1249 }
1250 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1251
1252 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1253 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1254 Remainder = Distance.srem(Two);
1255 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1256 if (Remainder != 0) {
1257 // Equal direction isn't possible
Sebastian Popb4164282012-10-12 02:04:32 +00001258 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Popad434992012-10-11 07:32:34 +00001259 ++WeakCrossingSIVsuccesses;
1260 }
1261 return false;
1262}
1263
1264
1265// Kirch's algorithm, from
1266//
1267// Optimizing Supercompilers for Supercomputers
1268// Michael Wolfe
1269// MIT Press, 1989
1270//
1271// Program 2.1, page 29.
1272// Computes the GCD of AM and BM.
1273// Also finds a solution to the equation ax - by = gdc(a, b).
1274// Returns true iff the gcd divides Delta.
1275static
1276bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1277 APInt &G, APInt &X, APInt &Y) {
1278 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1279 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1280 APInt G0 = AM.abs();
1281 APInt G1 = BM.abs();
1282 APInt Q = G0; // these need to be initialized
1283 APInt R = G0;
1284 APInt::sdivrem(G0, G1, Q, R);
1285 while (R != 0) {
1286 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1287 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1288 G0 = G1; G1 = R;
1289 APInt::sdivrem(G0, G1, Q, R);
1290 }
1291 G = G1;
1292 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1293 X = AM.slt(0) ? -A1 : A1;
1294 Y = BM.slt(0) ? B1 : -B1;
1295
1296 // make sure gcd divides Delta
1297 R = Delta.srem(G);
1298 if (R != 0)
1299 return true; // gcd doesn't divide Delta, no dependence
1300 Q = Delta.sdiv(G);
1301 X *= Q;
1302 Y *= Q;
1303 return false;
1304}
1305
1306
1307static
1308APInt floorOfQuotient(APInt A, APInt B) {
1309 APInt Q = A; // these need to be initialized
1310 APInt R = A;
1311 APInt::sdivrem(A, B, Q, R);
1312 if (R == 0)
1313 return Q;
1314 if ((A.sgt(0) && B.sgt(0)) ||
1315 (A.slt(0) && B.slt(0)))
1316 return Q;
1317 else
1318 return Q - 1;
1319}
1320
1321
1322static
1323APInt ceilingOfQuotient(APInt A, APInt B) {
1324 APInt Q = A; // these need to be initialized
1325 APInt R = A;
1326 APInt::sdivrem(A, B, Q, R);
1327 if (R == 0)
1328 return Q;
1329 if ((A.sgt(0) && B.sgt(0)) ||
1330 (A.slt(0) && B.slt(0)))
1331 return Q + 1;
1332 else
1333 return Q;
1334}
1335
1336
1337static
1338APInt maxAPInt(APInt A, APInt B) {
1339 return A.sgt(B) ? A : B;
1340}
1341
1342
1343static
1344APInt minAPInt(APInt A, APInt B) {
1345 return A.slt(B) ? A : B;
1346}
1347
1348
1349// exactSIVtest -
1350// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1351// where i is an induction variable, c1 and c2 are loop invariant, and a1
1352// and a2 are constant, we can solve it exactly using an algorithm developed
1353// by Banerjee and Wolfe. See Section 2.5.3 in
1354//
1355// Optimizing Supercompilers for Supercomputers
1356// Michael Wolfe
1357// MIT Press, 1989
1358//
1359// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1360// so use them if possible. They're also a bit better with symbolics and,
1361// in the case of the strong SIV test, can compute Distances.
1362//
1363// Return true if dependence disproved.
1364bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1365 const SCEV *DstCoeff,
1366 const SCEV *SrcConst,
1367 const SCEV *DstConst,
1368 const Loop *CurLoop,
1369 unsigned Level,
1370 FullDependence &Result,
1371 Constraint &NewConstraint) const {
1372 DEBUG(dbgs() << "\tExact SIV test\n");
1373 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1374 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1375 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1376 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1377 ++ExactSIVapplications;
1378 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1379 Level--;
1380 Result.Consistent = false;
1381 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1382 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1383 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1384 Delta, CurLoop);
1385 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1386 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1387 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1388 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1389 return false;
1390
1391 // find gcd
1392 APInt G, X, Y;
1393 APInt AM = ConstSrcCoeff->getValue()->getValue();
1394 APInt BM = ConstDstCoeff->getValue()->getValue();
1395 unsigned Bits = AM.getBitWidth();
1396 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1397 // gcd doesn't divide Delta, no dependence
1398 ++ExactSIVindependence;
1399 ++ExactSIVsuccesses;
1400 return true;
1401 }
1402
1403 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1404
1405 // since SCEV construction normalizes, LM = 0
1406 APInt UM(Bits, 1, true);
1407 bool UMvalid = false;
1408 // UM is perhaps unavailable, let's check
1409 if (const SCEVConstant *CUB =
1410 collectConstantUpperBound(CurLoop, Delta->getType())) {
1411 UM = CUB->getValue()->getValue();
1412 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1413 UMvalid = true;
1414 }
1415
1416 APInt TU(APInt::getSignedMaxValue(Bits));
1417 APInt TL(APInt::getSignedMinValue(Bits));
1418
1419 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1420 APInt TMUL = BM.sdiv(G);
1421 if (TMUL.sgt(0)) {
1422 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1423 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1424 if (UMvalid) {
1425 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1426 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1427 }
1428 }
1429 else {
1430 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1431 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1432 if (UMvalid) {
1433 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1434 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1435 }
1436 }
1437
1438 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1439 TMUL = AM.sdiv(G);
1440 if (TMUL.sgt(0)) {
1441 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1442 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1443 if (UMvalid) {
1444 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1445 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1446 }
1447 }
1448 else {
1449 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1450 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1451 if (UMvalid) {
1452 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1453 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1454 }
1455 }
1456 if (TL.sgt(TU)) {
1457 ++ExactSIVindependence;
1458 ++ExactSIVsuccesses;
1459 return true;
1460 }
1461
1462 // explore directions
1463 unsigned NewDirection = Dependence::DVEntry::NONE;
1464
1465 // less than
1466 APInt SaveTU(TU); // save these
1467 APInt SaveTL(TL);
1468 DEBUG(dbgs() << "\t exploring LT direction\n");
1469 TMUL = AM - BM;
1470 if (TMUL.sgt(0)) {
1471 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1472 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1473 }
1474 else {
1475 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1476 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1477 }
1478 if (TL.sle(TU)) {
1479 NewDirection |= Dependence::DVEntry::LT;
1480 ++ExactSIVsuccesses;
1481 }
1482
1483 // equal
1484 TU = SaveTU; // restore
1485 TL = SaveTL;
1486 DEBUG(dbgs() << "\t exploring EQ direction\n");
1487 if (TMUL.sgt(0)) {
1488 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1489 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1490 }
1491 else {
1492 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1493 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1494 }
1495 TMUL = BM - AM;
1496 if (TMUL.sgt(0)) {
1497 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1498 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1499 }
1500 else {
1501 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1502 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1503 }
1504 if (TL.sle(TU)) {
1505 NewDirection |= Dependence::DVEntry::EQ;
1506 ++ExactSIVsuccesses;
1507 }
1508
1509 // greater than
1510 TU = SaveTU; // restore
1511 TL = SaveTL;
1512 DEBUG(dbgs() << "\t exploring GT direction\n");
1513 if (TMUL.sgt(0)) {
1514 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1515 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1516 }
1517 else {
1518 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1519 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1520 }
1521 if (TL.sle(TU)) {
1522 NewDirection |= Dependence::DVEntry::GT;
1523 ++ExactSIVsuccesses;
1524 }
1525
1526 // finished
1527 Result.DV[Level].Direction &= NewDirection;
1528 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1529 ++ExactSIVindependence;
1530 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1531}
1532
1533
1534
1535// Return true if the divisor evenly divides the dividend.
1536static
1537bool isRemainderZero(const SCEVConstant *Dividend,
1538 const SCEVConstant *Divisor) {
1539 APInt ConstDividend = Dividend->getValue()->getValue();
1540 APInt ConstDivisor = Divisor->getValue()->getValue();
1541 return ConstDividend.srem(ConstDivisor) == 0;
1542}
1543
1544
1545// weakZeroSrcSIVtest -
1546// From the paper, Practical Dependence Testing, Section 4.2.2
1547//
1548// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1549// where i is an induction variable, c1 and c2 are loop invariant,
1550// and a is a constant, we can solve it exactly using the
1551// Weak-Zero SIV test.
1552//
1553// Given
1554//
1555// c1 = c2 + a*i
1556//
1557// we get
1558//
1559// (c1 - c2)/a = i
1560//
1561// If i is not an integer, there's no dependence.
1562// If i < 0 or > UB, there's no dependence.
1563// If i = 0, the direction is <= and peeling the
1564// 1st iteration will break the dependence.
1565// If i = UB, the direction is >= and peeling the
1566// last iteration will break the dependence.
1567// Otherwise, the direction is *.
1568//
1569// Can prove independence. Failing that, we can sometimes refine
1570// the directions. Can sometimes show that first or last
1571// iteration carries all the dependences (so worth peeling).
1572//
1573// (see also weakZeroDstSIVtest)
1574//
1575// Return true if dependence disproved.
1576bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1577 const SCEV *SrcConst,
1578 const SCEV *DstConst,
1579 const Loop *CurLoop,
1580 unsigned Level,
1581 FullDependence &Result,
1582 Constraint &NewConstraint) const {
1583 // For the WeakSIV test, it's possible the loop isn't common to
1584 // the Src and Dst loops. If it isn't, then there's no need to
1585 // record a direction.
1586 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1587 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1588 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1589 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1590 ++WeakZeroSIVapplications;
1591 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1592 Level--;
1593 Result.Consistent = false;
1594 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1595 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1596 DstCoeff, Delta, CurLoop);
1597 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1598 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1599 if (Level < CommonLevels) {
1600 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1601 Result.DV[Level].PeelFirst = true;
1602 ++WeakZeroSIVsuccesses;
1603 }
1604 return false; // dependences caused by first iteration
1605 }
1606 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1607 if (!ConstCoeff)
1608 return false;
1609 const SCEV *AbsCoeff =
1610 SE->isKnownNegative(ConstCoeff) ?
1611 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1612 const SCEV *NewDelta =
1613 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1614
1615 // check that Delta/SrcCoeff < iteration count
1616 // really check NewDelta < count*AbsCoeff
1617 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1618 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1619 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1620 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1621 ++WeakZeroSIVindependence;
1622 ++WeakZeroSIVsuccesses;
1623 return true;
1624 }
1625 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1626 // dependences caused by last iteration
1627 if (Level < CommonLevels) {
1628 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1629 Result.DV[Level].PeelLast = true;
1630 ++WeakZeroSIVsuccesses;
1631 }
1632 return false;
1633 }
1634 }
1635
1636 // check that Delta/SrcCoeff >= 0
1637 // really check that NewDelta >= 0
1638 if (SE->isKnownNegative(NewDelta)) {
1639 // No dependence, newDelta < 0
1640 ++WeakZeroSIVindependence;
1641 ++WeakZeroSIVsuccesses;
1642 return true;
1643 }
1644
1645 // if SrcCoeff doesn't divide Delta, then no dependence
1646 if (isa<SCEVConstant>(Delta) &&
1647 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1648 ++WeakZeroSIVindependence;
1649 ++WeakZeroSIVsuccesses;
1650 return true;
1651 }
1652 return false;
1653}
1654
1655
1656// weakZeroDstSIVtest -
1657// From the paper, Practical Dependence Testing, Section 4.2.2
1658//
1659// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1660// where i is an induction variable, c1 and c2 are loop invariant,
1661// and a is a constant, we can solve it exactly using the
1662// Weak-Zero SIV test.
1663//
1664// Given
1665//
1666// c1 + a*i = c2
1667//
1668// we get
1669//
1670// i = (c2 - c1)/a
1671//
1672// If i is not an integer, there's no dependence.
1673// If i < 0 or > UB, there's no dependence.
1674// If i = 0, the direction is <= and peeling the
1675// 1st iteration will break the dependence.
1676// If i = UB, the direction is >= and peeling the
1677// last iteration will break the dependence.
1678// Otherwise, the direction is *.
1679//
1680// Can prove independence. Failing that, we can sometimes refine
1681// the directions. Can sometimes show that first or last
1682// iteration carries all the dependences (so worth peeling).
1683//
1684// (see also weakZeroSrcSIVtest)
1685//
1686// Return true if dependence disproved.
1687bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1688 const SCEV *SrcConst,
1689 const SCEV *DstConst,
1690 const Loop *CurLoop,
1691 unsigned Level,
1692 FullDependence &Result,
1693 Constraint &NewConstraint) const {
1694 // For the WeakSIV test, it's possible the loop isn't common to the
1695 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1696 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1697 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1698 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1699 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1700 ++WeakZeroSIVapplications;
1701 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1702 Level--;
1703 Result.Consistent = false;
1704 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1705 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1706 Delta, CurLoop);
1707 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1708 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1709 if (Level < CommonLevels) {
1710 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1711 Result.DV[Level].PeelFirst = true;
1712 ++WeakZeroSIVsuccesses;
1713 }
1714 return false; // dependences caused by first iteration
1715 }
1716 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1717 if (!ConstCoeff)
1718 return false;
1719 const SCEV *AbsCoeff =
1720 SE->isKnownNegative(ConstCoeff) ?
1721 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1722 const SCEV *NewDelta =
1723 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1724
1725 // check that Delta/SrcCoeff < iteration count
1726 // really check NewDelta < count*AbsCoeff
1727 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1728 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1729 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1730 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1731 ++WeakZeroSIVindependence;
1732 ++WeakZeroSIVsuccesses;
1733 return true;
1734 }
1735 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1736 // dependences caused by last iteration
1737 if (Level < CommonLevels) {
1738 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1739 Result.DV[Level].PeelLast = true;
1740 ++WeakZeroSIVsuccesses;
1741 }
1742 return false;
1743 }
1744 }
1745
1746 // check that Delta/SrcCoeff >= 0
1747 // really check that NewDelta >= 0
1748 if (SE->isKnownNegative(NewDelta)) {
1749 // No dependence, newDelta < 0
1750 ++WeakZeroSIVindependence;
1751 ++WeakZeroSIVsuccesses;
1752 return true;
1753 }
1754
1755 // if SrcCoeff doesn't divide Delta, then no dependence
1756 if (isa<SCEVConstant>(Delta) &&
1757 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1758 ++WeakZeroSIVindependence;
1759 ++WeakZeroSIVsuccesses;
1760 return true;
1761 }
1762 return false;
1763}
1764
1765
1766// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1767// Things of the form [c1 + a*i] and [c2 + b*j],
1768// where i and j are induction variable, c1 and c2 are loop invariant,
1769// and a and b are constants.
1770// Returns true if any possible dependence is disproved.
Benjamin Kramere803d052012-10-31 11:25:32 +00001771// Marks the result as inconsistent.
Sebastian Popad434992012-10-11 07:32:34 +00001772// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1773bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1774 const SCEV *DstCoeff,
1775 const SCEV *SrcConst,
1776 const SCEV *DstConst,
1777 const Loop *SrcLoop,
1778 const Loop *DstLoop,
1779 FullDependence &Result) const {
1780 DEBUG(dbgs() << "\tExact RDIV test\n");
1781 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1782 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1783 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1784 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1785 ++ExactRDIVapplications;
1786 Result.Consistent = false;
1787 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1788 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1789 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1790 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1791 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1792 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1793 return false;
1794
1795 // find gcd
1796 APInt G, X, Y;
1797 APInt AM = ConstSrcCoeff->getValue()->getValue();
1798 APInt BM = ConstDstCoeff->getValue()->getValue();
1799 unsigned Bits = AM.getBitWidth();
1800 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1801 // gcd doesn't divide Delta, no dependence
1802 ++ExactRDIVindependence;
1803 return true;
1804 }
1805
1806 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1807
1808 // since SCEV construction seems to normalize, LM = 0
1809 APInt SrcUM(Bits, 1, true);
1810 bool SrcUMvalid = false;
1811 // SrcUM is perhaps unavailable, let's check
1812 if (const SCEVConstant *UpperBound =
1813 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1814 SrcUM = UpperBound->getValue()->getValue();
1815 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1816 SrcUMvalid = true;
1817 }
1818
1819 APInt DstUM(Bits, 1, true);
1820 bool DstUMvalid = false;
1821 // UM is perhaps unavailable, let's check
1822 if (const SCEVConstant *UpperBound =
1823 collectConstantUpperBound(DstLoop, Delta->getType())) {
1824 DstUM = UpperBound->getValue()->getValue();
1825 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1826 DstUMvalid = true;
1827 }
1828
1829 APInt TU(APInt::getSignedMaxValue(Bits));
1830 APInt TL(APInt::getSignedMinValue(Bits));
1831
1832 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1833 APInt TMUL = BM.sdiv(G);
1834 if (TMUL.sgt(0)) {
1835 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1836 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1837 if (SrcUMvalid) {
1838 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1839 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1840 }
1841 }
1842 else {
1843 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1844 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1845 if (SrcUMvalid) {
1846 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1847 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1848 }
1849 }
1850
1851 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1852 TMUL = AM.sdiv(G);
1853 if (TMUL.sgt(0)) {
1854 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1855 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1856 if (DstUMvalid) {
1857 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1858 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1859 }
1860 }
1861 else {
1862 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1863 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1864 if (DstUMvalid) {
1865 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1866 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1867 }
1868 }
1869 if (TL.sgt(TU))
1870 ++ExactRDIVindependence;
1871 return TL.sgt(TU);
1872}
1873
1874
1875// symbolicRDIVtest -
1876// In Section 4.5 of the Practical Dependence Testing paper,the authors
1877// introduce a special case of Banerjee's Inequalities (also called the
1878// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1879// particularly cases with symbolics. Since it's only able to disprove
1880// dependence (not compute distances or directions), we'll use it as a
1881// fall back for the other tests.
1882//
1883// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1884// where i and j are induction variables and c1 and c2 are loop invariants,
1885// we can use the symbolic tests to disprove some dependences, serving as a
1886// backup for the RDIV test. Note that i and j can be the same variable,
1887// letting this test serve as a backup for the various SIV tests.
1888//
1889// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1890// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1891// loop bounds for the i and j loops, respectively. So, ...
1892//
1893// c1 + a1*i = c2 + a2*j
1894// a1*i - a2*j = c2 - c1
1895//
1896// To test for a dependence, we compute c2 - c1 and make sure it's in the
1897// range of the maximum and minimum possible values of a1*i - a2*j.
1898// Considering the signs of a1 and a2, we have 4 possible cases:
1899//
1900// 1) If a1 >= 0 and a2 >= 0, then
1901// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1902// -a2*N2 <= c2 - c1 <= a1*N1
1903//
1904// 2) If a1 >= 0 and a2 <= 0, then
1905// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1906// 0 <= c2 - c1 <= a1*N1 - a2*N2
1907//
1908// 3) If a1 <= 0 and a2 >= 0, then
1909// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1910// a1*N1 - a2*N2 <= c2 - c1 <= 0
1911//
1912// 4) If a1 <= 0 and a2 <= 0, then
1913// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1914// a1*N1 <= c2 - c1 <= -a2*N2
1915//
1916// return true if dependence disproved
1917bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1918 const SCEV *A2,
1919 const SCEV *C1,
1920 const SCEV *C2,
1921 const Loop *Loop1,
1922 const Loop *Loop2) const {
1923 ++SymbolicRDIVapplications;
1924 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1925 DEBUG(dbgs() << "\t A1 = " << *A1);
1926 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1927 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1928 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1929 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1930 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1931 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1932 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1933 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1934 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1935 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1936 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1937 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1938 if (SE->isKnownNonNegative(A1)) {
1939 if (SE->isKnownNonNegative(A2)) {
1940 // A1 >= 0 && A2 >= 0
1941 if (N1) {
1942 // make sure that c2 - c1 <= a1*N1
1943 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1944 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1945 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1946 ++SymbolicRDIVindependence;
1947 return true;
1948 }
1949 }
1950 if (N2) {
1951 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1952 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1953 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1954 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1955 ++SymbolicRDIVindependence;
1956 return true;
1957 }
1958 }
1959 }
1960 else if (SE->isKnownNonPositive(A2)) {
1961 // a1 >= 0 && a2 <= 0
1962 if (N1 && N2) {
1963 // make sure that c2 - c1 <= a1*N1 - a2*N2
1964 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1965 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1966 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1967 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1968 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1969 ++SymbolicRDIVindependence;
1970 return true;
1971 }
1972 }
1973 // make sure that 0 <= c2 - c1
1974 if (SE->isKnownNegative(C2_C1)) {
1975 ++SymbolicRDIVindependence;
1976 return true;
1977 }
1978 }
1979 }
1980 else if (SE->isKnownNonPositive(A1)) {
1981 if (SE->isKnownNonNegative(A2)) {
1982 // a1 <= 0 && a2 >= 0
1983 if (N1 && N2) {
1984 // make sure that a1*N1 - a2*N2 <= c2 - c1
1985 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1986 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1987 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1988 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1989 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1990 ++SymbolicRDIVindependence;
1991 return true;
1992 }
1993 }
1994 // make sure that c2 - c1 <= 0
1995 if (SE->isKnownPositive(C2_C1)) {
1996 ++SymbolicRDIVindependence;
1997 return true;
1998 }
1999 }
2000 else if (SE->isKnownNonPositive(A2)) {
2001 // a1 <= 0 && a2 <= 0
2002 if (N1) {
2003 // make sure that a1*N1 <= c2 - c1
2004 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2005 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2006 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2007 ++SymbolicRDIVindependence;
2008 return true;
2009 }
2010 }
2011 if (N2) {
2012 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2013 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2014 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2015 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2016 ++SymbolicRDIVindependence;
2017 return true;
2018 }
2019 }
2020 }
2021 }
2022 return false;
2023}
2024
2025
2026// testSIV -
2027// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2028// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2029// a2 are constant, we attack it with an SIV test. While they can all be
2030// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2031// they apply; they're cheaper and sometimes more precise.
2032//
2033// Return true if dependence disproved.
2034bool DependenceAnalysis::testSIV(const SCEV *Src,
2035 const SCEV *Dst,
2036 unsigned &Level,
2037 FullDependence &Result,
2038 Constraint &NewConstraint,
2039 const SCEV *&SplitIter) const {
2040 DEBUG(dbgs() << " src = " << *Src << "\n");
2041 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2042 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2043 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2044 if (SrcAddRec && DstAddRec) {
2045 const SCEV *SrcConst = SrcAddRec->getStart();
2046 const SCEV *DstConst = DstAddRec->getStart();
2047 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2048 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2049 const Loop *CurLoop = SrcAddRec->getLoop();
2050 assert(CurLoop == DstAddRec->getLoop() &&
2051 "both loops in SIV should be same");
2052 Level = mapSrcLoop(CurLoop);
2053 bool disproven;
2054 if (SrcCoeff == DstCoeff)
2055 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2056 Level, Result, NewConstraint);
2057 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2058 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2059 Level, Result, NewConstraint, SplitIter);
2060 else
2061 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2062 Level, Result, NewConstraint);
2063 return disproven ||
2064 gcdMIVtest(Src, Dst, Result) ||
2065 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2066 }
2067 if (SrcAddRec) {
2068 const SCEV *SrcConst = SrcAddRec->getStart();
2069 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2070 const SCEV *DstConst = Dst;
2071 const Loop *CurLoop = SrcAddRec->getLoop();
2072 Level = mapSrcLoop(CurLoop);
2073 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2074 Level, Result, NewConstraint) ||
2075 gcdMIVtest(Src, Dst, Result);
2076 }
2077 if (DstAddRec) {
2078 const SCEV *DstConst = DstAddRec->getStart();
2079 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2080 const SCEV *SrcConst = Src;
2081 const Loop *CurLoop = DstAddRec->getLoop();
2082 Level = mapDstLoop(CurLoop);
2083 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2084 CurLoop, Level, Result, NewConstraint) ||
2085 gcdMIVtest(Src, Dst, Result);
2086 }
2087 llvm_unreachable("SIV test expected at least one AddRec");
2088 return false;
2089}
2090
2091
2092// testRDIV -
2093// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2094// where i and j are induction variables, c1 and c2 are loop invariant,
2095// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2096// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2097// It doesn't make sense to talk about distance or direction in this case,
2098// so there's no point in making special versions of the Strong SIV test or
2099// the Weak-crossing SIV test.
2100//
2101// With minor algebra, this test can also be used for things like
2102// [c1 + a1*i + a2*j][c2].
2103//
2104// Return true if dependence disproved.
2105bool DependenceAnalysis::testRDIV(const SCEV *Src,
2106 const SCEV *Dst,
2107 FullDependence &Result) const {
2108 // we have 3 possible situations here:
2109 // 1) [a*i + b] and [c*j + d]
2110 // 2) [a*i + c*j + b] and [d]
2111 // 3) [b] and [a*i + c*j + d]
2112 // We need to find what we've got and get organized
2113
2114 const SCEV *SrcConst, *DstConst;
2115 const SCEV *SrcCoeff, *DstCoeff;
2116 const Loop *SrcLoop, *DstLoop;
2117
2118 DEBUG(dbgs() << " src = " << *Src << "\n");
2119 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2120 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2121 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2122 if (SrcAddRec && DstAddRec) {
2123 SrcConst = SrcAddRec->getStart();
2124 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2125 SrcLoop = SrcAddRec->getLoop();
2126 DstConst = DstAddRec->getStart();
2127 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2128 DstLoop = DstAddRec->getLoop();
2129 }
2130 else if (SrcAddRec) {
2131 if (const SCEVAddRecExpr *tmpAddRec =
2132 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2133 SrcConst = tmpAddRec->getStart();
2134 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2135 SrcLoop = tmpAddRec->getLoop();
2136 DstConst = Dst;
2137 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2138 DstLoop = SrcAddRec->getLoop();
2139 }
2140 else
2141 llvm_unreachable("RDIV reached by surprising SCEVs");
2142 }
2143 else if (DstAddRec) {
2144 if (const SCEVAddRecExpr *tmpAddRec =
2145 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2146 DstConst = tmpAddRec->getStart();
2147 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2148 DstLoop = tmpAddRec->getLoop();
2149 SrcConst = Src;
2150 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2151 SrcLoop = DstAddRec->getLoop();
2152 }
2153 else
2154 llvm_unreachable("RDIV reached by surprising SCEVs");
2155 }
2156 else
2157 llvm_unreachable("RDIV expected at least one AddRec");
2158 return exactRDIVtest(SrcCoeff, DstCoeff,
2159 SrcConst, DstConst,
2160 SrcLoop, DstLoop,
2161 Result) ||
2162 gcdMIVtest(Src, Dst, Result) ||
2163 symbolicRDIVtest(SrcCoeff, DstCoeff,
2164 SrcConst, DstConst,
2165 SrcLoop, DstLoop);
2166}
2167
2168
2169// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2170// Return true if dependence disproved.
2171// Can sometimes refine direction vectors.
2172bool DependenceAnalysis::testMIV(const SCEV *Src,
2173 const SCEV *Dst,
2174 const SmallBitVector &Loops,
2175 FullDependence &Result) const {
2176 DEBUG(dbgs() << " src = " << *Src << "\n");
2177 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2178 Result.Consistent = false;
2179 return gcdMIVtest(Src, Dst, Result) ||
2180 banerjeeMIVtest(Src, Dst, Loops, Result);
2181}
2182
2183
2184// Given a product, e.g., 10*X*Y, returns the first constant operand,
2185// in this case 10. If there is no constant part, returns NULL.
2186static
2187const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2188 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2189 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2190 return Constant;
2191 }
2192 return NULL;
2193}
2194
2195
2196//===----------------------------------------------------------------------===//
2197// gcdMIVtest -
2198// Tests an MIV subscript pair for dependence.
2199// Returns true if any possible dependence is disproved.
Benjamin Kramere803d052012-10-31 11:25:32 +00002200// Marks the result as inconsistent.
Sebastian Popad434992012-10-11 07:32:34 +00002201// Can sometimes disprove the equal direction for 1 or more loops,
2202// as discussed in Michael Wolfe's book,
2203// High Performance Compilers for Parallel Computing, page 235.
2204//
2205// We spend some effort (code!) to handle cases like
2206// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2207// but M and N are just loop-invariant variables.
2208// This should help us handle linearized subscripts;
2209// also makes this test a useful backup to the various SIV tests.
2210//
2211// It occurs to me that the presence of loop-invariant variables
2212// changes the nature of the test from "greatest common divisor"
Preston Briggsa18d3772012-11-29 04:30:52 +00002213// to "a common divisor".
Sebastian Popad434992012-10-11 07:32:34 +00002214bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2215 const SCEV *Dst,
2216 FullDependence &Result) const {
2217 DEBUG(dbgs() << "starting gcd\n");
2218 ++GCDapplications;
Preston Briggs72a2c062012-11-21 23:50:04 +00002219 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
Sebastian Popad434992012-10-11 07:32:34 +00002220 APInt RunningGCD = APInt::getNullValue(BitWidth);
2221
2222 // Examine Src coefficients.
2223 // Compute running GCD and record source constant.
2224 // Because we're looking for the constant at the end of the chain,
2225 // we can't quit the loop just because the GCD == 1.
2226 const SCEV *Coefficients = Src;
2227 while (const SCEVAddRecExpr *AddRec =
2228 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2229 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2230 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2231 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2232 // If the coefficient is the product of a constant and other stuff,
2233 // we can use the constant in the GCD computation.
2234 Constant = getConstantPart(Product);
2235 if (!Constant)
2236 return false;
2237 APInt ConstCoeff = Constant->getValue()->getValue();
2238 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2239 Coefficients = AddRec->getStart();
2240 }
2241 const SCEV *SrcConst = Coefficients;
2242
2243 // Examine Dst coefficients.
2244 // Compute running GCD and record destination constant.
2245 // Because we're looking for the constant at the end of the chain,
2246 // we can't quit the loop just because the GCD == 1.
2247 Coefficients = Dst;
2248 while (const SCEVAddRecExpr *AddRec =
2249 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2250 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2251 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2252 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2253 // If the coefficient is the product of a constant and other stuff,
2254 // we can use the constant in the GCD computation.
2255 Constant = getConstantPart(Product);
2256 if (!Constant)
2257 return false;
2258 APInt ConstCoeff = Constant->getValue()->getValue();
2259 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2260 Coefficients = AddRec->getStart();
2261 }
2262 const SCEV *DstConst = Coefficients;
2263
2264 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2265 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2266 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2267 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2268 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2269 // If Delta is a sum of products, we may be able to make further progress.
2270 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2271 const SCEV *Operand = Sum->getOperand(Op);
2272 if (isa<SCEVConstant>(Operand)) {
2273 assert(!Constant && "Surprised to find multiple constants");
2274 Constant = cast<SCEVConstant>(Operand);
2275 }
Benjamin Kramer061938b2012-10-31 09:20:38 +00002276 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
Sebastian Popad434992012-10-11 07:32:34 +00002277 // Search for constant operand to participate in GCD;
2278 // If none found; return false.
Benjamin Kramer061938b2012-10-31 09:20:38 +00002279 const SCEVConstant *ConstOp = getConstantPart(Product);
2280 if (!ConstOp)
2281 return false;
Sebastian Popad434992012-10-11 07:32:34 +00002282 APInt ConstOpValue = ConstOp->getValue()->getValue();
2283 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2284 ConstOpValue.abs());
2285 }
2286 else
2287 return false;
2288 }
2289 }
2290 if (!Constant)
2291 return false;
2292 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2293 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2294 if (ConstDelta == 0)
2295 return false;
2296 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2297 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2298 APInt Remainder = ConstDelta.srem(RunningGCD);
2299 if (Remainder != 0) {
2300 ++GCDindependence;
2301 return true;
2302 }
2303
2304 // Try to disprove equal directions.
2305 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2306 // the code above can't disprove the dependence because the GCD = 1.
2307 // So we consider what happen if i = i' and what happens if j = j'.
2308 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2309 // which is infeasible, so we can disallow the = direction for the i level.
2310 // Setting j = j' doesn't help matters, so we end up with a direction vector
2311 // of [<>, *]
2312 //
2313 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2314 // we need to remember that the constant part is 5 and the RunningGCD should
2315 // be initialized to ExtraGCD = 30.
2316 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2317
2318 bool Improved = false;
2319 Coefficients = Src;
2320 while (const SCEVAddRecExpr *AddRec =
2321 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2322 Coefficients = AddRec->getStart();
2323 const Loop *CurLoop = AddRec->getLoop();
2324 RunningGCD = ExtraGCD;
2325 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2326 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2327 const SCEV *Inner = Src;
2328 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2329 AddRec = cast<SCEVAddRecExpr>(Inner);
2330 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2331 if (CurLoop == AddRec->getLoop())
2332 ; // SrcCoeff == Coeff
2333 else {
2334 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2335 // If the coefficient is the product of a constant and other stuff,
2336 // we can use the constant in the GCD computation.
2337 Constant = getConstantPart(Product);
2338 else
2339 Constant = cast<SCEVConstant>(Coeff);
2340 APInt ConstCoeff = Constant->getValue()->getValue();
2341 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2342 }
2343 Inner = AddRec->getStart();
2344 }
2345 Inner = Dst;
2346 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2347 AddRec = cast<SCEVAddRecExpr>(Inner);
2348 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349 if (CurLoop == AddRec->getLoop())
2350 DstCoeff = Coeff;
2351 else {
2352 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2353 // If the coefficient is the product of a constant and other stuff,
2354 // we can use the constant in the GCD computation.
2355 Constant = getConstantPart(Product);
2356 else
2357 Constant = cast<SCEVConstant>(Coeff);
2358 APInt ConstCoeff = Constant->getValue()->getValue();
2359 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2360 }
2361 Inner = AddRec->getStart();
2362 }
2363 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2364 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2365 // If the coefficient is the product of a constant and other stuff,
2366 // we can use the constant in the GCD computation.
2367 Constant = getConstantPart(Product);
2368 else if (isa<SCEVConstant>(Delta))
2369 Constant = cast<SCEVConstant>(Delta);
2370 else {
2371 // The difference of the two coefficients might not be a product
2372 // or constant, in which case we give up on this direction.
2373 continue;
2374 }
2375 APInt ConstCoeff = Constant->getValue()->getValue();
2376 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2377 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2378 if (RunningGCD != 0) {
2379 Remainder = ConstDelta.srem(RunningGCD);
2380 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2381 if (Remainder != 0) {
2382 unsigned Level = mapSrcLoop(CurLoop);
Sebastian Popb4164282012-10-12 02:04:32 +00002383 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Popad434992012-10-11 07:32:34 +00002384 Improved = true;
2385 }
2386 }
2387 }
2388 if (Improved)
2389 ++GCDsuccesses;
2390 DEBUG(dbgs() << "all done\n");
2391 return false;
2392}
2393
2394
2395//===----------------------------------------------------------------------===//
2396// banerjeeMIVtest -
2397// Use Banerjee's Inequalities to test an MIV subscript pair.
2398// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2399// Generally follows the discussion in Section 2.5.2 of
2400//
2401// Optimizing Supercompilers for Supercomputers
2402// Michael Wolfe
2403//
2404// The inequalities given on page 25 are simplified in that loops are
2405// normalized so that the lower bound is always 0 and the stride is always 1.
2406// For example, Wolfe gives
2407//
2408// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2409//
2410// where A_k is the coefficient of the kth index in the source subscript,
2411// B_k is the coefficient of the kth index in the destination subscript,
2412// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2413// index, and N_k is the stride of the kth index. Since all loops are normalized
2414// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2415// equation to
2416//
2417// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2418// = (A^-_k - B_k)^- (U_k - 1) - B_k
2419//
2420// Similar simplifications are possible for the other equations.
2421//
2422// When we can't determine the number of iterations for a loop,
2423// we use NULL as an indicator for the worst case, infinity.
2424// When computing the upper bound, NULL denotes +inf;
2425// for the lower bound, NULL denotes -inf.
2426//
2427// Return true if dependence disproved.
2428bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2429 const SCEV *Dst,
2430 const SmallBitVector &Loops,
2431 FullDependence &Result) const {
2432 DEBUG(dbgs() << "starting Banerjee\n");
2433 ++BanerjeeApplications;
2434 DEBUG(dbgs() << " Src = " << *Src << '\n');
2435 const SCEV *A0;
2436 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2437 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2438 const SCEV *B0;
2439 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2440 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2441 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2442 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2443
2444 // Compute bounds for all the * directions.
2445 DEBUG(dbgs() << "\tBounds[*]\n");
2446 for (unsigned K = 1; K <= MaxLevels; ++K) {
2447 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2448 Bound[K].Direction = Dependence::DVEntry::ALL;
2449 Bound[K].DirSet = Dependence::DVEntry::NONE;
2450 findBoundsALL(A, B, Bound, K);
2451#ifndef NDEBUG
2452 DEBUG(dbgs() << "\t " << K << '\t');
2453 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2454 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2455 else
2456 DEBUG(dbgs() << "-inf\t");
2457 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2458 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2459 else
2460 DEBUG(dbgs() << "+inf\n");
2461#endif
2462 }
2463
2464 // Test the *, *, *, ... case.
2465 bool Disproved = false;
2466 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2467 // Explore the direction vector hierarchy.
2468 unsigned DepthExpanded = 0;
2469 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2470 Loops, DepthExpanded, Delta);
2471 if (NewDeps > 0) {
2472 bool Improved = false;
2473 for (unsigned K = 1; K <= CommonLevels; ++K) {
2474 if (Loops[K]) {
2475 unsigned Old = Result.DV[K - 1].Direction;
2476 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2477 Improved |= Old != Result.DV[K - 1].Direction;
2478 if (!Result.DV[K - 1].Direction) {
2479 Improved = false;
2480 Disproved = true;
2481 break;
2482 }
2483 }
2484 }
2485 if (Improved)
2486 ++BanerjeeSuccesses;
2487 }
2488 else {
2489 ++BanerjeeIndependence;
2490 Disproved = true;
2491 }
2492 }
2493 else {
2494 ++BanerjeeIndependence;
2495 Disproved = true;
2496 }
2497 delete [] Bound;
2498 delete [] A;
2499 delete [] B;
2500 return Disproved;
2501}
2502
2503
2504// Hierarchically expands the direction vector
2505// search space, combining the directions of discovered dependences
2506// in the DirSet field of Bound. Returns the number of distinct
2507// dependences discovered. If the dependence is disproved,
2508// it will return 0.
2509unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2510 CoefficientInfo *A,
2511 CoefficientInfo *B,
2512 BoundInfo *Bound,
2513 const SmallBitVector &Loops,
2514 unsigned &DepthExpanded,
2515 const SCEV *Delta) const {
2516 if (Level > CommonLevels) {
2517 // record result
2518 DEBUG(dbgs() << "\t[");
2519 for (unsigned K = 1; K <= CommonLevels; ++K) {
2520 if (Loops[K]) {
2521 Bound[K].DirSet |= Bound[K].Direction;
2522#ifndef NDEBUG
2523 switch (Bound[K].Direction) {
2524 case Dependence::DVEntry::LT:
2525 DEBUG(dbgs() << " <");
2526 break;
2527 case Dependence::DVEntry::EQ:
2528 DEBUG(dbgs() << " =");
2529 break;
2530 case Dependence::DVEntry::GT:
2531 DEBUG(dbgs() << " >");
2532 break;
2533 case Dependence::DVEntry::ALL:
2534 DEBUG(dbgs() << " *");
2535 break;
2536 default:
2537 llvm_unreachable("unexpected Bound[K].Direction");
2538 }
2539#endif
2540 }
2541 }
2542 DEBUG(dbgs() << " ]\n");
2543 return 1;
2544 }
2545 if (Loops[Level]) {
2546 if (Level > DepthExpanded) {
2547 DepthExpanded = Level;
2548 // compute bounds for <, =, > at current level
2549 findBoundsLT(A, B, Bound, Level);
2550 findBoundsGT(A, B, Bound, Level);
2551 findBoundsEQ(A, B, Bound, Level);
2552#ifndef NDEBUG
2553 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2554 DEBUG(dbgs() << "\t <\t");
2555 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2556 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2557 else
2558 DEBUG(dbgs() << "-inf\t");
2559 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2560 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2561 else
2562 DEBUG(dbgs() << "+inf\n");
2563 DEBUG(dbgs() << "\t =\t");
2564 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2565 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2566 else
2567 DEBUG(dbgs() << "-inf\t");
2568 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2569 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2570 else
2571 DEBUG(dbgs() << "+inf\n");
2572 DEBUG(dbgs() << "\t >\t");
2573 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2574 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2575 else
2576 DEBUG(dbgs() << "-inf\t");
2577 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2578 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2579 else
2580 DEBUG(dbgs() << "+inf\n");
2581#endif
2582 }
2583
2584 unsigned NewDeps = 0;
2585
2586 // test bounds for <, *, *, ...
2587 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2588 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2589 Loops, DepthExpanded, Delta);
2590
2591 // Test bounds for =, *, *, ...
2592 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2593 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2594 Loops, DepthExpanded, Delta);
2595
2596 // test bounds for >, *, *, ...
2597 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2598 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599 Loops, DepthExpanded, Delta);
2600
2601 Bound[Level].Direction = Dependence::DVEntry::ALL;
2602 return NewDeps;
2603 }
2604 else
2605 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2606}
2607
2608
2609// Returns true iff the current bounds are plausible.
2610bool DependenceAnalysis::testBounds(unsigned char DirKind,
2611 unsigned Level,
2612 BoundInfo *Bound,
2613 const SCEV *Delta) const {
2614 Bound[Level].Direction = DirKind;
2615 if (const SCEV *LowerBound = getLowerBound(Bound))
2616 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2617 return false;
2618 if (const SCEV *UpperBound = getUpperBound(Bound))
2619 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2620 return false;
2621 return true;
2622}
2623
2624
2625// Computes the upper and lower bounds for level K
2626// using the * direction. Records them in Bound.
2627// Wolfe gives the equations
2628//
2629// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2630// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2631//
2632// Since we normalize loops, we can simplify these equations to
2633//
2634// LB^*_k = (A^-_k - B^+_k)U_k
2635// UB^*_k = (A^+_k - B^-_k)U_k
2636//
2637// We must be careful to handle the case where the upper bound is unknown.
2638// Note that the lower bound is always <= 0
2639// and the upper bound is always >= 0.
2640void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2641 CoefficientInfo *B,
2642 BoundInfo *Bound,
2643 unsigned K) const {
2644 Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
2645 Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
2646 if (Bound[K].Iterations) {
2647 Bound[K].Lower[Dependence::DVEntry::ALL] =
2648 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2649 Bound[K].Iterations);
2650 Bound[K].Upper[Dependence::DVEntry::ALL] =
2651 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2652 Bound[K].Iterations);
2653 }
2654 else {
2655 // If the difference is 0, we won't need to know the number of iterations.
2656 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2657 Bound[K].Lower[Dependence::DVEntry::ALL] =
2658 SE->getConstant(A[K].Coeff->getType(), 0);
2659 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2660 Bound[K].Upper[Dependence::DVEntry::ALL] =
2661 SE->getConstant(A[K].Coeff->getType(), 0);
2662 }
2663}
2664
2665
2666// Computes the upper and lower bounds for level K
2667// using the = direction. Records them in Bound.
2668// Wolfe gives the equations
2669//
2670// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2671// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2672//
2673// Since we normalize loops, we can simplify these equations to
2674//
2675// LB^=_k = (A_k - B_k)^- U_k
2676// UB^=_k = (A_k - B_k)^+ U_k
2677//
2678// We must be careful to handle the case where the upper bound is unknown.
2679// Note that the lower bound is always <= 0
2680// and the upper bound is always >= 0.
2681void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2682 CoefficientInfo *B,
2683 BoundInfo *Bound,
2684 unsigned K) const {
2685 Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
2686 Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
2687 if (Bound[K].Iterations) {
2688 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2689 const SCEV *NegativePart = getNegativePart(Delta);
2690 Bound[K].Lower[Dependence::DVEntry::EQ] =
2691 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2692 const SCEV *PositivePart = getPositivePart(Delta);
2693 Bound[K].Upper[Dependence::DVEntry::EQ] =
2694 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2695 }
2696 else {
2697 // If the positive/negative part of the difference is 0,
2698 // we won't need to know the number of iterations.
2699 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2700 const SCEV *NegativePart = getNegativePart(Delta);
2701 if (NegativePart->isZero())
2702 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2703 const SCEV *PositivePart = getPositivePart(Delta);
2704 if (PositivePart->isZero())
2705 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2706 }
2707}
2708
2709
2710// Computes the upper and lower bounds for level K
2711// using the < direction. Records them in Bound.
2712// Wolfe gives the equations
2713//
2714// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2715// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2716//
2717// Since we normalize loops, we can simplify these equations to
2718//
2719// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2720// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2721//
2722// We must be careful to handle the case where the upper bound is unknown.
2723void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2724 CoefficientInfo *B,
2725 BoundInfo *Bound,
2726 unsigned K) const {
2727 Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
2728 Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
2729 if (Bound[K].Iterations) {
2730 const SCEV *Iter_1 =
2731 SE->getMinusSCEV(Bound[K].Iterations,
2732 SE->getConstant(Bound[K].Iterations->getType(), 1));
2733 const SCEV *NegPart =
2734 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2735 Bound[K].Lower[Dependence::DVEntry::LT] =
2736 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2737 const SCEV *PosPart =
2738 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2739 Bound[K].Upper[Dependence::DVEntry::LT] =
2740 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2741 }
2742 else {
2743 // If the positive/negative part of the difference is 0,
2744 // we won't need to know the number of iterations.
2745 const SCEV *NegPart =
2746 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2747 if (NegPart->isZero())
2748 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2749 const SCEV *PosPart =
2750 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2751 if (PosPart->isZero())
2752 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2753 }
2754}
2755
2756
2757// Computes the upper and lower bounds for level K
2758// using the > direction. Records them in Bound.
2759// Wolfe gives the equations
2760//
2761// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2762// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2763//
2764// Since we normalize loops, we can simplify these equations to
2765//
2766// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2767// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2768//
2769// We must be careful to handle the case where the upper bound is unknown.
2770void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2771 CoefficientInfo *B,
2772 BoundInfo *Bound,
2773 unsigned K) const {
2774 Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
2775 Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
2776 if (Bound[K].Iterations) {
2777 const SCEV *Iter_1 =
2778 SE->getMinusSCEV(Bound[K].Iterations,
2779 SE->getConstant(Bound[K].Iterations->getType(), 1));
2780 const SCEV *NegPart =
2781 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2782 Bound[K].Lower[Dependence::DVEntry::GT] =
2783 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2784 const SCEV *PosPart =
2785 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2786 Bound[K].Upper[Dependence::DVEntry::GT] =
2787 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2788 }
2789 else {
2790 // If the positive/negative part of the difference is 0,
2791 // we won't need to know the number of iterations.
2792 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2793 if (NegPart->isZero())
2794 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2795 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2796 if (PosPart->isZero())
2797 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2798 }
2799}
2800
2801
2802// X^+ = max(X, 0)
2803const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2804 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2805}
2806
2807
2808// X^- = min(X, 0)
2809const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2810 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2811}
2812
2813
2814// Walks through the subscript,
2815// collecting each coefficient, the associated loop bounds,
2816// and recording its positive and negative parts for later use.
2817DependenceAnalysis::CoefficientInfo *
2818DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2819 bool SrcFlag,
2820 const SCEV *&Constant) const {
2821 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2822 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2823 for (unsigned K = 1; K <= MaxLevels; ++K) {
2824 CI[K].Coeff = Zero;
2825 CI[K].PosPart = Zero;
2826 CI[K].NegPart = Zero;
2827 CI[K].Iterations = NULL;
2828 }
2829 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2830 const Loop *L = AddRec->getLoop();
2831 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2832 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2833 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2834 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2835 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2836 Subscript = AddRec->getStart();
2837 }
2838 Constant = Subscript;
2839#ifndef NDEBUG
2840 DEBUG(dbgs() << "\tCoefficient Info\n");
2841 for (unsigned K = 1; K <= MaxLevels; ++K) {
2842 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2843 DEBUG(dbgs() << "\tPos Part = ");
2844 DEBUG(dbgs() << *CI[K].PosPart);
2845 DEBUG(dbgs() << "\tNeg Part = ");
2846 DEBUG(dbgs() << *CI[K].NegPart);
2847 DEBUG(dbgs() << "\tUpper Bound = ");
2848 if (CI[K].Iterations)
2849 DEBUG(dbgs() << *CI[K].Iterations);
2850 else
2851 DEBUG(dbgs() << "+inf");
2852 DEBUG(dbgs() << '\n');
2853 }
2854 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2855#endif
2856 return CI;
2857}
2858
2859
2860// Looks through all the bounds info and
2861// computes the lower bound given the current direction settings
2862// at each level. If the lower bound for any level is -inf,
2863// the result is -inf.
2864const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2865 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2866 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2867 if (Bound[K].Lower[Bound[K].Direction])
2868 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2869 else
2870 Sum = NULL;
2871 }
2872 return Sum;
2873}
2874
2875
2876// Looks through all the bounds info and
2877// computes the upper bound given the current direction settings
2878// at each level. If the upper bound at any level is +inf,
2879// the result is +inf.
2880const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2881 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2882 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2883 if (Bound[K].Upper[Bound[K].Direction])
2884 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2885 else
2886 Sum = NULL;
2887 }
2888 return Sum;
2889}
2890
2891
2892//===----------------------------------------------------------------------===//
2893// Constraint manipulation for Delta test.
2894
2895// Given a linear SCEV,
2896// return the coefficient (the step)
2897// corresponding to the specified loop.
2898// If there isn't one, return 0.
2899// For example, given a*i + b*j + c*k, zeroing the coefficient
2900// corresponding to the j loop would yield b.
2901const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2902 const Loop *TargetLoop) const {
2903 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2904 if (!AddRec)
2905 return SE->getConstant(Expr->getType(), 0);
2906 if (AddRec->getLoop() == TargetLoop)
2907 return AddRec->getStepRecurrence(*SE);
2908 return findCoefficient(AddRec->getStart(), TargetLoop);
2909}
2910
2911
2912// Given a linear SCEV,
2913// return the SCEV given by zeroing out the coefficient
2914// corresponding to the specified loop.
2915// For example, given a*i + b*j + c*k, zeroing the coefficient
2916// corresponding to the j loop would yield a*i + c*k.
2917const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2918 const Loop *TargetLoop) const {
2919 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2920 if (!AddRec)
2921 return Expr; // ignore
2922 if (AddRec->getLoop() == TargetLoop)
2923 return AddRec->getStart();
2924 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2925 AddRec->getStepRecurrence(*SE),
2926 AddRec->getLoop(),
2927 AddRec->getNoWrapFlags());
2928}
2929
2930
2931// Given a linear SCEV Expr,
2932// return the SCEV given by adding some Value to the
2933// coefficient corresponding to the specified TargetLoop.
2934// For example, given a*i + b*j + c*k, adding 1 to the coefficient
2935// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2936const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2937 const Loop *TargetLoop,
2938 const SCEV *Value) const {
2939 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2940 if (!AddRec) // create a new addRec
2941 return SE->getAddRecExpr(Expr,
2942 Value,
2943 TargetLoop,
2944 SCEV::FlagAnyWrap); // Worst case, with no info.
2945 if (AddRec->getLoop() == TargetLoop) {
2946 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2947 if (Sum->isZero())
2948 return AddRec->getStart();
2949 return SE->getAddRecExpr(AddRec->getStart(),
2950 Sum,
2951 AddRec->getLoop(),
2952 AddRec->getNoWrapFlags());
2953 }
2954 return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2955 TargetLoop, Value),
2956 AddRec->getStepRecurrence(*SE),
2957 AddRec->getLoop(),
2958 AddRec->getNoWrapFlags());
2959}
2960
2961
2962// Review the constraints, looking for opportunities
2963// to simplify a subscript pair (Src and Dst).
2964// Return true if some simplification occurs.
2965// If the simplification isn't exact (that is, if it is conservative
2966// in terms of dependence), set consistent to false.
2967// Corresponds to Figure 5 from the paper
2968//
2969// Practical Dependence Testing
2970// Goff, Kennedy, Tseng
2971// PLDI 1991
2972bool DependenceAnalysis::propagate(const SCEV *&Src,
2973 const SCEV *&Dst,
2974 SmallBitVector &Loops,
2975 SmallVector<Constraint, 4> &Constraints,
2976 bool &Consistent) {
2977 bool Result = false;
2978 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2979 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2980 DEBUG(Constraints[LI].dump(dbgs()));
2981 if (Constraints[LI].isDistance())
2982 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2983 else if (Constraints[LI].isLine())
2984 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2985 else if (Constraints[LI].isPoint())
2986 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2987 }
2988 return Result;
2989}
2990
2991
2992// Attempt to propagate a distance
2993// constraint into a subscript pair (Src and Dst).
2994// Return true if some simplification occurs.
2995// If the simplification isn't exact (that is, if it is conservative
2996// in terms of dependence), set consistent to false.
2997bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
2998 const SCEV *&Dst,
2999 Constraint &CurConstraint,
3000 bool &Consistent) {
3001 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3002 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3003 const SCEV *A_K = findCoefficient(Src, CurLoop);
3004 if (A_K->isZero())
3005 return false;
3006 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3007 Src = SE->getMinusSCEV(Src, DA_K);
3008 Src = zeroCoefficient(Src, CurLoop);
3009 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3010 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3011 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3012 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3013 if (!findCoefficient(Dst, CurLoop)->isZero())
3014 Consistent = false;
3015 return true;
3016}
3017
3018
3019// Attempt to propagate a line
3020// constraint into a subscript pair (Src and Dst).
3021// Return true if some simplification occurs.
3022// If the simplification isn't exact (that is, if it is conservative
3023// in terms of dependence), set consistent to false.
3024bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3025 const SCEV *&Dst,
3026 Constraint &CurConstraint,
3027 bool &Consistent) {
3028 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3029 const SCEV *A = CurConstraint.getA();
3030 const SCEV *B = CurConstraint.getB();
3031 const SCEV *C = CurConstraint.getC();
3032 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3033 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3034 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3035 if (A->isZero()) {
3036 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3037 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3038 if (!Bconst || !Cconst) return false;
3039 APInt Beta = Bconst->getValue()->getValue();
3040 APInt Charlie = Cconst->getValue()->getValue();
3041 APInt CdivB = Charlie.sdiv(Beta);
3042 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3043 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3044 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3045 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3046 Dst = zeroCoefficient(Dst, CurLoop);
3047 if (!findCoefficient(Src, CurLoop)->isZero())
3048 Consistent = false;
3049 }
3050 else if (B->isZero()) {
3051 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3052 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3053 if (!Aconst || !Cconst) return false;
3054 APInt Alpha = Aconst->getValue()->getValue();
3055 APInt Charlie = Cconst->getValue()->getValue();
3056 APInt CdivA = Charlie.sdiv(Alpha);
3057 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3058 const SCEV *A_K = findCoefficient(Src, CurLoop);
3059 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3060 Src = zeroCoefficient(Src, CurLoop);
3061 if (!findCoefficient(Dst, CurLoop)->isZero())
3062 Consistent = false;
3063 }
3064 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3065 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3066 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3067 if (!Aconst || !Cconst) return false;
3068 APInt Alpha = Aconst->getValue()->getValue();
3069 APInt Charlie = Cconst->getValue()->getValue();
3070 APInt CdivA = Charlie.sdiv(Alpha);
3071 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3072 const SCEV *A_K = findCoefficient(Src, CurLoop);
3073 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3074 Src = zeroCoefficient(Src, CurLoop);
3075 Dst = addToCoefficient(Dst, CurLoop, A_K);
3076 if (!findCoefficient(Dst, CurLoop)->isZero())
3077 Consistent = false;
3078 }
3079 else {
3080 // paper is incorrect here, or perhaps just misleading
3081 const SCEV *A_K = findCoefficient(Src, CurLoop);
3082 Src = SE->getMulExpr(Src, A);
3083 Dst = SE->getMulExpr(Dst, A);
3084 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3085 Src = zeroCoefficient(Src, CurLoop);
3086 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3087 if (!findCoefficient(Dst, CurLoop)->isZero())
3088 Consistent = false;
3089 }
3090 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3091 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3092 return true;
3093}
3094
3095
3096// Attempt to propagate a point
3097// constraint into a subscript pair (Src and Dst).
3098// Return true if some simplification occurs.
3099bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3100 const SCEV *&Dst,
3101 Constraint &CurConstraint) {
3102 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3103 const SCEV *A_K = findCoefficient(Src, CurLoop);
3104 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3105 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3106 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3107 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3108 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3109 Src = zeroCoefficient(Src, CurLoop);
3110 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3111 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3112 Dst = zeroCoefficient(Dst, CurLoop);
3113 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3114 return true;
3115}
3116
3117
3118// Update direction vector entry based on the current constraint.
3119void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3120 const Constraint &CurConstraint
3121 ) const {
3122 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3123 DEBUG(CurConstraint.dump(dbgs()));
3124 if (CurConstraint.isAny())
3125 ; // use defaults
3126 else if (CurConstraint.isDistance()) {
3127 // this one is consistent, the others aren't
3128 Level.Scalar = false;
3129 Level.Distance = CurConstraint.getD();
3130 unsigned NewDirection = Dependence::DVEntry::NONE;
3131 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3132 NewDirection = Dependence::DVEntry::EQ;
3133 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3134 NewDirection |= Dependence::DVEntry::LT;
3135 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3136 NewDirection |= Dependence::DVEntry::GT;
3137 Level.Direction &= NewDirection;
3138 }
3139 else if (CurConstraint.isLine()) {
3140 Level.Scalar = false;
3141 Level.Distance = NULL;
3142 // direction should be accurate
3143 }
3144 else if (CurConstraint.isPoint()) {
3145 Level.Scalar = false;
3146 Level.Distance = NULL;
3147 unsigned NewDirection = Dependence::DVEntry::NONE;
3148 if (!isKnownPredicate(CmpInst::ICMP_NE,
3149 CurConstraint.getY(),
3150 CurConstraint.getX()))
3151 // if X may be = Y
3152 NewDirection |= Dependence::DVEntry::EQ;
3153 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3154 CurConstraint.getY(),
3155 CurConstraint.getX()))
3156 // if Y may be > X
3157 NewDirection |= Dependence::DVEntry::LT;
3158 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3159 CurConstraint.getY(),
3160 CurConstraint.getX()))
3161 // if Y may be < X
3162 NewDirection |= Dependence::DVEntry::GT;
3163 Level.Direction &= NewDirection;
3164 }
3165 else
3166 llvm_unreachable("constraint has unexpected kind");
3167}
3168
3169
3170//===----------------------------------------------------------------------===//
3171
3172#ifndef NDEBUG
3173// For debugging purposes, dump a small bit vector to dbgs().
3174static void dumpSmallBitVector(SmallBitVector &BV) {
3175 dbgs() << "{";
3176 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3177 dbgs() << VI;
3178 if (BV.find_next(VI) >= 0)
3179 dbgs() << ' ';
3180 }
3181 dbgs() << "}\n";
3182}
3183#endif
3184
3185
3186// depends -
3187// Returns NULL if there is no dependence.
3188// Otherwise, return a Dependence with as many details as possible.
3189// Corresponds to Section 3.1 in the paper
3190//
3191// Practical Dependence Testing
3192// Goff, Kennedy, Tseng
3193// PLDI 1991
3194//
Preston Briggs72a2c062012-11-21 23:50:04 +00003195// Care is required to keep the routine below, getSplitIteration(),
3196// up to date with respect to this routine.
Sebastian Pop7372a7d2012-11-20 22:28:04 +00003197Dependence *DependenceAnalysis::depends(Instruction *Src,
3198 Instruction *Dst,
Sebastian Popad434992012-10-11 07:32:34 +00003199 bool PossiblyLoopIndependent) {
Preston Briggs6ee74f52012-11-27 06:41:46 +00003200 if (Src == Dst)
3201 PossiblyLoopIndependent = false;
3202
Sebastian Popad434992012-10-11 07:32:34 +00003203 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3204 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3205 // if both instructions don't reference memory, there's no dependence
3206 return NULL;
3207
Preston Briggs72a2c062012-11-21 23:50:04 +00003208 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
Sebastian Popad434992012-10-11 07:32:34 +00003209 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
Preston Briggs72a2c062012-11-21 23:50:04 +00003210 DEBUG(dbgs() << "can only handle simple loads and stores\n");
Sebastian Popad434992012-10-11 07:32:34 +00003211 return new Dependence(Src, Dst);
Preston Briggs72a2c062012-11-21 23:50:04 +00003212 }
Sebastian Popad434992012-10-11 07:32:34 +00003213
Sebastian Pop7372a7d2012-11-20 22:28:04 +00003214 Value *SrcPtr = getPointerOperand(Src);
3215 Value *DstPtr = getPointerOperand(Dst);
Sebastian Popad434992012-10-11 07:32:34 +00003216
3217 switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3218 case AliasAnalysis::MayAlias:
3219 case AliasAnalysis::PartialAlias:
3220 // cannot analyse objects if we don't understand their aliasing.
Preston Briggs72a2c062012-11-21 23:50:04 +00003221 DEBUG(dbgs() << "can't analyze may or partial alias\n");
Sebastian Popad434992012-10-11 07:32:34 +00003222 return new Dependence(Src, Dst);
3223 case AliasAnalysis::NoAlias:
3224 // If the objects noalias, they are distinct, accesses are independent.
Preston Briggs72a2c062012-11-21 23:50:04 +00003225 DEBUG(dbgs() << "no alias\n");
Sebastian Popad434992012-10-11 07:32:34 +00003226 return NULL;
3227 case AliasAnalysis::MustAlias:
3228 break; // The underlying objects alias; test accesses for dependence.
3229 }
3230
Sebastian Popad434992012-10-11 07:32:34 +00003231 // establish loop nesting levels
3232 establishNestingLevels(Src, Dst);
3233 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3234 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3235
3236 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3237 ++TotalArrayPairs;
3238
Preston Briggs72a2c062012-11-21 23:50:04 +00003239 // See if there are GEPs we can use.
3240 bool UsefulGEP = false;
3241 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3242 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3243 if (SrcGEP && DstGEP &&
3244 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3245 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3246 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3247 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3248 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3249
3250 UsefulGEP =
3251 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3252 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
Sebastian Popad434992012-10-11 07:32:34 +00003253 }
Preston Briggs72a2c062012-11-21 23:50:04 +00003254 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3255 SmallVector<Subscript, 4> Pair(Pairs);
3256 if (UsefulGEP) {
3257 DEBUG(dbgs() << " using GEPs\n");
3258 unsigned P = 0;
3259 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3260 SrcEnd = SrcGEP->idx_end(),
3261 DstIdx = DstGEP->idx_begin();
3262 SrcIdx != SrcEnd;
3263 ++SrcIdx, ++DstIdx, ++P) {
3264 Pair[P].Src = SE->getSCEV(*SrcIdx);
3265 Pair[P].Dst = SE->getSCEV(*DstIdx);
3266 }
3267 }
3268 else {
3269 DEBUG(dbgs() << " ignoring GEPs\n");
3270 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3271 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3272 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3273 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3274 Pair[0].Src = SrcSCEV;
3275 Pair[0].Dst = DstSCEV;
3276 }
3277
3278 for (unsigned P = 0; P < Pairs; ++P) {
3279 Pair[P].Loops.resize(MaxLevels + 1);
3280 Pair[P].GroupLoops.resize(MaxLevels + 1);
3281 Pair[P].Group.resize(Pairs);
3282 removeMatchingExtensions(&Pair[P]);
3283 Pair[P].Classification =
3284 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3285 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3286 Pair[P].Loops);
3287 Pair[P].GroupLoops = Pair[P].Loops;
3288 Pair[P].Group.set(P);
3289 DEBUG(dbgs() << " subscript " << P << "\n");
3290 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3291 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3292 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
Sebastian Popad434992012-10-11 07:32:34 +00003293 DEBUG(dbgs() << "\tloops = ");
Preston Briggs72a2c062012-11-21 23:50:04 +00003294 DEBUG(dumpSmallBitVector(Pair[P].Loops));
Sebastian Popad434992012-10-11 07:32:34 +00003295 }
3296
3297 SmallBitVector Separable(Pairs);
3298 SmallBitVector Coupled(Pairs);
3299
3300 // Partition subscripts into separable and minimally-coupled groups
3301 // Algorithm in paper is algorithmically better;
3302 // this may be faster in practice. Check someday.
3303 //
3304 // Here's an example of how it works. Consider this code:
3305 //
3306 // for (i = ...) {
3307 // for (j = ...) {
3308 // for (k = ...) {
3309 // for (l = ...) {
3310 // for (m = ...) {
3311 // A[i][j][k][m] = ...;
3312 // ... = A[0][j][l][i + j];
3313 // }
3314 // }
3315 // }
3316 // }
3317 // }
3318 //
3319 // There are 4 subscripts here:
3320 // 0 [i] and [0]
3321 // 1 [j] and [j]
3322 // 2 [k] and [l]
3323 // 3 [m] and [i + j]
3324 //
3325 // We've already classified each subscript pair as ZIV, SIV, etc.,
3326 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3327 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3328 // and set Pair[P].Group = {P}.
3329 //
3330 // Src Dst Classification Loops GroupLoops Group
3331 // 0 [i] [0] SIV {1} {1} {0}
3332 // 1 [j] [j] SIV {2} {2} {1}
3333 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3334 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3335 //
3336 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3337 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3338 //
3339 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3340 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3341 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3342 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3343 // to either Separable or Coupled).
3344 //
3345 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3346 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3347 // so Pair[3].Group = {0, 1, 3} and Done = false.
3348 //
3349 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3350 // Since Done remains true, we add 2 to the set of Separable pairs.
3351 //
3352 // Finally, we consider 3. There's nothing to compare it with,
3353 // so Done remains true and we add it to the Coupled set.
3354 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3355 //
3356 // In the end, we've got 1 separable subscript and 1 coupled group.
3357 for (unsigned SI = 0; SI < Pairs; ++SI) {
3358 if (Pair[SI].Classification == Subscript::NonLinear) {
3359 // ignore these, but collect loops for later
3360 ++NonlinearSubscriptPairs;
3361 collectCommonLoops(Pair[SI].Src,
3362 LI->getLoopFor(Src->getParent()),
3363 Pair[SI].Loops);
3364 collectCommonLoops(Pair[SI].Dst,
3365 LI->getLoopFor(Dst->getParent()),
3366 Pair[SI].Loops);
3367 Result.Consistent = false;
3368 }
3369 else if (Pair[SI].Classification == Subscript::ZIV) {
3370 // always separable
3371 Separable.set(SI);
3372 }
3373 else {
3374 // SIV, RDIV, or MIV, so check for coupled group
3375 bool Done = true;
3376 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3377 SmallBitVector Intersection = Pair[SI].GroupLoops;
3378 Intersection &= Pair[SJ].GroupLoops;
3379 if (Intersection.any()) {
3380 // accumulate set of all the loops in group
3381 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3382 // accumulate set of all subscripts in group
3383 Pair[SJ].Group |= Pair[SI].Group;
3384 Done = false;
3385 }
3386 }
3387 if (Done) {
3388 if (Pair[SI].Group.count() == 1) {
3389 Separable.set(SI);
3390 ++SeparableSubscriptPairs;
3391 }
3392 else {
3393 Coupled.set(SI);
3394 ++CoupledSubscriptPairs;
3395 }
3396 }
3397 }
3398 }
3399
3400 DEBUG(dbgs() << " Separable = ");
3401 DEBUG(dumpSmallBitVector(Separable));
3402 DEBUG(dbgs() << " Coupled = ");
3403 DEBUG(dumpSmallBitVector(Coupled));
3404
3405 Constraint NewConstraint;
3406 NewConstraint.setAny(SE);
3407
3408 // test separable subscripts
3409 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3410 DEBUG(dbgs() << "testing subscript " << SI);
3411 switch (Pair[SI].Classification) {
3412 case Subscript::ZIV:
3413 DEBUG(dbgs() << ", ZIV\n");
3414 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3415 return NULL;
3416 break;
3417 case Subscript::SIV: {
3418 DEBUG(dbgs() << ", SIV\n");
3419 unsigned Level;
3420 const SCEV *SplitIter = NULL;
3421 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3422 Result, NewConstraint, SplitIter))
3423 return NULL;
3424 break;
3425 }
3426 case Subscript::RDIV:
3427 DEBUG(dbgs() << ", RDIV\n");
3428 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3429 return NULL;
3430 break;
3431 case Subscript::MIV:
3432 DEBUG(dbgs() << ", MIV\n");
3433 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3434 return NULL;
3435 break;
3436 default:
3437 llvm_unreachable("subscript has unexpected classification");
3438 }
3439 }
3440
3441 if (Coupled.count()) {
3442 // test coupled subscript groups
3443 DEBUG(dbgs() << "starting on coupled subscripts\n");
3444 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3445 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3446 for (unsigned II = 0; II <= MaxLevels; ++II)
3447 Constraints[II].setAny(SE);
3448 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3449 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3450 SmallBitVector Group(Pair[SI].Group);
3451 SmallBitVector Sivs(Pairs);
3452 SmallBitVector Mivs(Pairs);
3453 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3454 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3455 DEBUG(dbgs() << SJ << " ");
3456 if (Pair[SJ].Classification == Subscript::SIV)
3457 Sivs.set(SJ);
3458 else
3459 Mivs.set(SJ);
3460 }
3461 DEBUG(dbgs() << "}\n");
3462 while (Sivs.any()) {
3463 bool Changed = false;
3464 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3465 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3466 // SJ is an SIV subscript that's part of the current coupled group
3467 unsigned Level;
3468 const SCEV *SplitIter = NULL;
3469 DEBUG(dbgs() << "SIV\n");
3470 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3471 Result, NewConstraint, SplitIter))
3472 return NULL;
3473 ConstrainedLevels.set(Level);
3474 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3475 if (Constraints[Level].isEmpty()) {
3476 ++DeltaIndependence;
3477 return NULL;
3478 }
3479 Changed = true;
3480 }
3481 Sivs.reset(SJ);
3482 }
3483 if (Changed) {
3484 // propagate, possibly creating new SIVs and ZIVs
3485 DEBUG(dbgs() << " propagating\n");
3486 DEBUG(dbgs() << "\tMivs = ");
3487 DEBUG(dumpSmallBitVector(Mivs));
3488 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3489 // SJ is an MIV subscript that's part of the current coupled group
3490 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3491 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3492 Constraints, Result.Consistent)) {
3493 DEBUG(dbgs() << "\t Changed\n");
3494 ++DeltaPropagations;
3495 Pair[SJ].Classification =
3496 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3497 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3498 Pair[SJ].Loops);
3499 switch (Pair[SJ].Classification) {
3500 case Subscript::ZIV:
3501 DEBUG(dbgs() << "ZIV\n");
3502 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3503 return NULL;
3504 Mivs.reset(SJ);
3505 break;
3506 case Subscript::SIV:
3507 Sivs.set(SJ);
3508 Mivs.reset(SJ);
3509 break;
3510 case Subscript::RDIV:
3511 case Subscript::MIV:
3512 break;
3513 default:
3514 llvm_unreachable("bad subscript classification");
3515 }
3516 }
3517 }
3518 }
3519 }
3520
3521 // test & propagate remaining RDIVs
3522 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3523 if (Pair[SJ].Classification == Subscript::RDIV) {
3524 DEBUG(dbgs() << "RDIV test\n");
3525 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3526 return NULL;
3527 // I don't yet understand how to propagate RDIV results
3528 Mivs.reset(SJ);
3529 }
3530 }
3531
3532 // test remaining MIVs
3533 // This code is temporary.
3534 // Better to somehow test all remaining subscripts simultaneously.
3535 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3536 if (Pair[SJ].Classification == Subscript::MIV) {
3537 DEBUG(dbgs() << "MIV test\n");
3538 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3539 return NULL;
3540 }
3541 else
3542 llvm_unreachable("expected only MIV subscripts at this point");
3543 }
3544
3545 // update Result.DV from constraint vector
3546 DEBUG(dbgs() << " updating\n");
3547 for (int SJ = ConstrainedLevels.find_first();
3548 SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3549 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3550 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3551 return NULL;
3552 }
3553 }
3554 }
3555
Preston Briggsa18d3772012-11-29 04:30:52 +00003556 // Make sure the Scalar flags are set correctly.
Sebastian Popad434992012-10-11 07:32:34 +00003557 SmallBitVector CompleteLoops(MaxLevels + 1);
3558 for (unsigned SI = 0; SI < Pairs; ++SI)
3559 CompleteLoops |= Pair[SI].Loops;
3560 for (unsigned II = 1; II <= CommonLevels; ++II)
3561 if (CompleteLoops[II])
3562 Result.DV[II - 1].Scalar = false;
3563
Sebastian Popad434992012-10-11 07:32:34 +00003564 if (PossiblyLoopIndependent) {
Preston Briggs3c1cc382012-11-27 19:12:26 +00003565 // Make sure the LoopIndependent flag is set correctly.
3566 // All directions must include equal, otherwise no
3567 // loop-independent dependence is possible.
Sebastian Popad434992012-10-11 07:32:34 +00003568 for (unsigned II = 1; II <= CommonLevels; ++II) {
3569 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3570 Result.LoopIndependent = false;
3571 break;
3572 }
3573 }
3574 }
Preston Briggs3c1cc382012-11-27 19:12:26 +00003575 else {
3576 // On the other hand, if all directions are equal and there's no
3577 // loop-independent dependence possible, then no dependence exists.
3578 bool AllEqual = true;
3579 for (unsigned II = 1; II <= CommonLevels; ++II) {
3580 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
Preston Briggsa18d3772012-11-29 04:30:52 +00003581 AllEqual = false;
3582 break;
Preston Briggs3c1cc382012-11-27 19:12:26 +00003583 }
3584 }
3585 if (AllEqual)
3586 return NULL;
3587 }
Sebastian Popad434992012-10-11 07:32:34 +00003588
3589 FullDependence *Final = new FullDependence(Result);
3590 Result.DV = NULL;
3591 return Final;
3592}
3593
3594
3595
3596//===----------------------------------------------------------------------===//
3597// getSplitIteration -
3598// Rather than spend rarely-used space recording the splitting iteration
3599// during the Weak-Crossing SIV test, we re-compute it on demand.
3600// The re-computation is basically a repeat of the entire dependence test,
3601// though simplified since we know that the dependence exists.
3602// It's tedious, since we must go through all propagations, etc.
3603//
Preston Briggs72a2c062012-11-21 23:50:04 +00003604// Care is required to keep this code up to date with respect to the routine
3605// above, depends().
Sebastian Popad434992012-10-11 07:32:34 +00003606//
3607// Generally, the dependence analyzer will be used to build
3608// a dependence graph for a function (basically a map from instructions
3609// to dependences). Looking for cycles in the graph shows us loops
3610// that cannot be trivially vectorized/parallelized.
3611//
3612// We can try to improve the situation by examining all the dependences
3613// that make up the cycle, looking for ones we can break.
3614// Sometimes, peeling the first or last iteration of a loop will break
3615// dependences, and we've got flags for those possibilities.
3616// Sometimes, splitting a loop at some other iteration will do the trick,
3617// and we've got a flag for that case. Rather than waste the space to
3618// record the exact iteration (since we rarely know), we provide
3619// a method that calculates the iteration. It's a drag that it must work
3620// from scratch, but wonderful in that it's possible.
3621//
3622// Here's an example:
3623//
3624// for (i = 0; i < 10; i++)
3625// A[i] = ...
3626// ... = A[11 - i]
3627//
3628// There's a loop-carried flow dependence from the store to the load,
3629// found by the weak-crossing SIV test. The dependence will have a flag,
3630// indicating that the dependence can be broken by splitting the loop.
3631// Calling getSplitIteration will return 5.
3632// Splitting the loop breaks the dependence, like so:
3633//
3634// for (i = 0; i <= 5; i++)
3635// A[i] = ...
3636// ... = A[11 - i]
3637// for (i = 6; i < 10; i++)
3638// A[i] = ...
3639// ... = A[11 - i]
3640//
3641// breaks the dependence and allows us to vectorize/parallelize
3642// both loops.
3643const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
3644 unsigned SplitLevel) {
3645 assert(Dep && "expected a pointer to a Dependence");
3646 assert(Dep->isSplitable(SplitLevel) &&
3647 "Dep should be splitable at SplitLevel");
Sebastian Pop7372a7d2012-11-20 22:28:04 +00003648 Instruction *Src = Dep->getSrc();
3649 Instruction *Dst = Dep->getDst();
Sebastian Popad434992012-10-11 07:32:34 +00003650 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3651 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3652 assert(isLoadOrStore(Src));
3653 assert(isLoadOrStore(Dst));
Preston Briggs72a2c062012-11-21 23:50:04 +00003654 Value *SrcPtr = getPointerOperand(Src);
3655 Value *DstPtr = getPointerOperand(Dst);
Sebastian Popad434992012-10-11 07:32:34 +00003656 assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3657 AliasAnalysis::MustAlias);
Sebastian Popad434992012-10-11 07:32:34 +00003658
3659 // establish loop nesting levels
3660 establishNestingLevels(Src, Dst);
3661
3662 FullDependence Result(Src, Dst, false, CommonLevels);
3663
Preston Briggs72a2c062012-11-21 23:50:04 +00003664 // See if there are GEPs we can use.
3665 bool UsefulGEP = false;
3666 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3667 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3668 if (SrcGEP && DstGEP &&
3669 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3670 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3671 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3672 UsefulGEP =
3673 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3674 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
Sebastian Popad434992012-10-11 07:32:34 +00003675 }
Preston Briggs72a2c062012-11-21 23:50:04 +00003676 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3677 SmallVector<Subscript, 4> Pair(Pairs);
3678 if (UsefulGEP) {
3679 unsigned P = 0;
3680 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3681 SrcEnd = SrcGEP->idx_end(),
3682 DstIdx = DstGEP->idx_begin();
3683 SrcIdx != SrcEnd;
3684 ++SrcIdx, ++DstIdx, ++P) {
3685 Pair[P].Src = SE->getSCEV(*SrcIdx);
3686 Pair[P].Dst = SE->getSCEV(*DstIdx);
3687 }
3688 }
3689 else {
3690 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3691 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3692 Pair[0].Src = SrcSCEV;
3693 Pair[0].Dst = DstSCEV;
3694 }
3695
3696 for (unsigned P = 0; P < Pairs; ++P) {
3697 Pair[P].Loops.resize(MaxLevels + 1);
3698 Pair[P].GroupLoops.resize(MaxLevels + 1);
3699 Pair[P].Group.resize(Pairs);
3700 removeMatchingExtensions(&Pair[P]);
3701 Pair[P].Classification =
3702 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3703 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3704 Pair[P].Loops);
3705 Pair[P].GroupLoops = Pair[P].Loops;
3706 Pair[P].Group.set(P);
Sebastian Popad434992012-10-11 07:32:34 +00003707 }
3708
3709 SmallBitVector Separable(Pairs);
3710 SmallBitVector Coupled(Pairs);
3711
3712 // partition subscripts into separable and minimally-coupled groups
3713 for (unsigned SI = 0; SI < Pairs; ++SI) {
3714 if (Pair[SI].Classification == Subscript::NonLinear) {
3715 // ignore these, but collect loops for later
3716 collectCommonLoops(Pair[SI].Src,
3717 LI->getLoopFor(Src->getParent()),
3718 Pair[SI].Loops);
3719 collectCommonLoops(Pair[SI].Dst,
3720 LI->getLoopFor(Dst->getParent()),
3721 Pair[SI].Loops);
3722 Result.Consistent = false;
3723 }
3724 else if (Pair[SI].Classification == Subscript::ZIV)
3725 Separable.set(SI);
3726 else {
3727 // SIV, RDIV, or MIV, so check for coupled group
3728 bool Done = true;
3729 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3730 SmallBitVector Intersection = Pair[SI].GroupLoops;
3731 Intersection &= Pair[SJ].GroupLoops;
3732 if (Intersection.any()) {
3733 // accumulate set of all the loops in group
3734 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3735 // accumulate set of all subscripts in group
3736 Pair[SJ].Group |= Pair[SI].Group;
3737 Done = false;
3738 }
3739 }
3740 if (Done) {
3741 if (Pair[SI].Group.count() == 1)
3742 Separable.set(SI);
3743 else
3744 Coupled.set(SI);
3745 }
3746 }
3747 }
3748
3749 Constraint NewConstraint;
3750 NewConstraint.setAny(SE);
3751
3752 // test separable subscripts
3753 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3754 switch (Pair[SI].Classification) {
3755 case Subscript::SIV: {
3756 unsigned Level;
3757 const SCEV *SplitIter = NULL;
3758 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3759 Result, NewConstraint, SplitIter);
3760 if (Level == SplitLevel) {
3761 assert(SplitIter != NULL);
3762 return SplitIter;
3763 }
3764 break;
3765 }
3766 case Subscript::ZIV:
3767 case Subscript::RDIV:
3768 case Subscript::MIV:
3769 break;
3770 default:
3771 llvm_unreachable("subscript has unexpected classification");
3772 }
3773 }
3774
3775 if (Coupled.count()) {
3776 // test coupled subscript groups
3777 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3778 for (unsigned II = 0; II <= MaxLevels; ++II)
3779 Constraints[II].setAny(SE);
3780 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3781 SmallBitVector Group(Pair[SI].Group);
3782 SmallBitVector Sivs(Pairs);
3783 SmallBitVector Mivs(Pairs);
3784 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3785 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3786 if (Pair[SJ].Classification == Subscript::SIV)
3787 Sivs.set(SJ);
3788 else
3789 Mivs.set(SJ);
3790 }
3791 while (Sivs.any()) {
3792 bool Changed = false;
3793 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3794 // SJ is an SIV subscript that's part of the current coupled group
3795 unsigned Level;
3796 const SCEV *SplitIter = NULL;
3797 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3798 Result, NewConstraint, SplitIter);
3799 if (Level == SplitLevel && SplitIter)
3800 return SplitIter;
3801 ConstrainedLevels.set(Level);
3802 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3803 Changed = true;
3804 Sivs.reset(SJ);
3805 }
3806 if (Changed) {
3807 // propagate, possibly creating new SIVs and ZIVs
3808 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3809 // SJ is an MIV subscript that's part of the current coupled group
3810 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3811 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3812 Pair[SJ].Classification =
3813 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3814 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3815 Pair[SJ].Loops);
3816 switch (Pair[SJ].Classification) {
3817 case Subscript::ZIV:
3818 Mivs.reset(SJ);
3819 break;
3820 case Subscript::SIV:
3821 Sivs.set(SJ);
3822 Mivs.reset(SJ);
3823 break;
3824 case Subscript::RDIV:
3825 case Subscript::MIV:
3826 break;
3827 default:
3828 llvm_unreachable("bad subscript classification");
3829 }
3830 }
3831 }
3832 }
3833 }
3834 }
3835 }
3836 llvm_unreachable("somehow reached end of routine");
3837 return NULL;
3838}