blob: f0bc9360b16d687554fad86b1cde200c80a19402 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman3bf63762010-06-18 19:54:20 +0000508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
Dan Gohman72861302009-05-07 14:39:04 +0000510
Dan Gohman3bf63762010-06-18 19:54:20 +0000511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523 return false;
524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525 return true;
526
527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
609 llvm_unreachable("Unknown SCEV kind!");
610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
Dan Gohman3bf63762010-06-18 19:54:20 +0000636 // Do the rough sort by complexity.
637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644 const SCEV *S = Ops[i];
645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
654 if (i == e-2) return; // Done!
655 }
656 }
657 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
826 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000827
Dan Gohman20900ca2009-04-22 16:20:48 +0000828 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000830 return getTruncateExpr(ST->getOperand(), Ty);
831
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000834 return getTruncateOrSignExtend(SS->getOperand(), Ty);
835
836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
839
Dan Gohman6864db62009-06-18 16:24:47 +0000840 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
845 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000846 }
847
Dan Gohmanf53462d2010-07-15 20:02:11 +0000848 // As a special case, fold trunc(undef) to undef. We don't want to
849 // know too much about SCEVUnknowns, but this special case is handy
850 // and harmless.
851 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
852 if (isa<UndefValue>(U->getValue()))
853 return getSCEV(UndefValue::get(Ty));
854
Dan Gohman420ab912010-06-25 18:47:08 +0000855 // The cast wasn't folded; create an explicit cast node. We can reuse
856 // the existing insert position since if we get here, we won't have
857 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000858 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
859 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000860 UniqueSCEVs.InsertNode(S, IP);
861 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000862}
863
Dan Gohman0bba49c2009-07-07 17:06:11 +0000864const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000865 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000866 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000867 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000868 assert(isSCEVable(Ty) &&
869 "This is not a conversion to a SCEVable type!");
870 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000871
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000872 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000873 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
874 return getConstant(
875 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
876 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000877
Dan Gohman20900ca2009-04-22 16:20:48 +0000878 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000879 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000880 return getZeroExtendExpr(SZ->getOperand(), Ty);
881
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000882 // Before doing any expensive analysis, check to see if we've already
883 // computed a SCEV for this Op and Ty.
884 FoldingSetNodeID ID;
885 ID.AddInteger(scZeroExtend);
886 ID.AddPointer(Op);
887 ID.AddPointer(Ty);
888 void *IP = 0;
889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
890
Dan Gohman01ecca22009-04-27 20:16:15 +0000891 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000892 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000893 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000894 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000895 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000896 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000897 const SCEV *Start = AR->getStart();
898 const SCEV *Step = AR->getStepRecurrence(*this);
899 unsigned BitWidth = getTypeSizeInBits(AR->getType());
900 const Loop *L = AR->getLoop();
901
Dan Gohmaneb490a72009-07-25 01:22:26 +0000902 // If we have special knowledge that this addrec won't overflow,
903 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000904 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000905 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
906 getZeroExtendExpr(Step, Ty),
907 L);
908
Dan Gohman01ecca22009-04-27 20:16:15 +0000909 // Check whether the backedge-taken count is SCEVCouldNotCompute.
910 // Note that this serves two purposes: It filters out loops that are
911 // simply not analyzable, and it covers the case where this code is
912 // being called from within backedge-taken count analysis, such that
913 // attempting to ask for the backedge-taken count would likely result
914 // in infinite recursion. In the later case, the analysis code will
915 // cope with a conservative value, and it will take care to purge
916 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000917 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000918 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000919 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000920 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000921
922 // Check whether the backedge-taken count can be losslessly casted to
923 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000924 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000925 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000926 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000927 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
928 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000929 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000930 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000931 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000932 const SCEV *Add = getAddExpr(Start, ZMul);
933 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000934 getAddExpr(getZeroExtendExpr(Start, WideTy),
935 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
936 getZeroExtendExpr(Step, WideTy)));
937 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000938 // Return the expression with the addrec on the outside.
939 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
940 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000941 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000942
943 // Similar to above, only this time treat the step value as signed.
944 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000945 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000947 OperandExtendedAdd =
948 getAddExpr(getZeroExtendExpr(Start, WideTy),
949 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
950 getSignExtendExpr(Step, WideTy)));
951 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000952 // Return the expression with the addrec on the outside.
953 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000955 L);
956 }
957
958 // If the backedge is guarded by a comparison with the pre-inc value
959 // the addrec is safe. Also, if the entry is guarded by a comparison
960 // with the start value and the backedge is guarded by a comparison
961 // with the post-inc value, the addrec is safe.
962 if (isKnownPositive(Step)) {
963 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
964 getUnsignedRange(Step).getUnsignedMax());
965 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000966 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000967 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
968 AR->getPostIncExpr(*this), N)))
969 // Return the expression with the addrec on the outside.
970 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
971 getZeroExtendExpr(Step, Ty),
972 L);
973 } else if (isKnownNegative(Step)) {
974 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
975 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000976 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
977 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000978 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
979 AR->getPostIncExpr(*this), N)))
980 // Return the expression with the addrec on the outside.
981 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
982 getSignExtendExpr(Step, Ty),
983 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000984 }
985 }
986 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000987
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000988 // The cast wasn't folded; create an explicit cast node.
989 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000990 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000991 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
992 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000993 UniqueSCEVs.InsertNode(S, IP);
994 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000995}
996
Dan Gohman0bba49c2009-07-07 17:06:11 +0000997const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000998 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000999 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001000 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001001 assert(isSCEVable(Ty) &&
1002 "This is not a conversion to a SCEVable type!");
1003 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001004
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001005 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001006 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1007 return getConstant(
1008 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1009 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001010
Dan Gohman20900ca2009-04-22 16:20:48 +00001011 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001012 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001013 return getSignExtendExpr(SS->getOperand(), Ty);
1014
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001015 // Before doing any expensive analysis, check to see if we've already
1016 // computed a SCEV for this Op and Ty.
1017 FoldingSetNodeID ID;
1018 ID.AddInteger(scSignExtend);
1019 ID.AddPointer(Op);
1020 ID.AddPointer(Ty);
1021 void *IP = 0;
1022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1023
Dan Gohman01ecca22009-04-27 20:16:15 +00001024 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001025 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001026 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001027 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001028 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001029 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001030 const SCEV *Start = AR->getStart();
1031 const SCEV *Step = AR->getStepRecurrence(*this);
1032 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1033 const Loop *L = AR->getLoop();
1034
Dan Gohmaneb490a72009-07-25 01:22:26 +00001035 // If we have special knowledge that this addrec won't overflow,
1036 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001037 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001038 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1039 getSignExtendExpr(Step, Ty),
1040 L);
1041
Dan Gohman01ecca22009-04-27 20:16:15 +00001042 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1043 // Note that this serves two purposes: It filters out loops that are
1044 // simply not analyzable, and it covers the case where this code is
1045 // being called from within backedge-taken count analysis, such that
1046 // attempting to ask for the backedge-taken count would likely result
1047 // in infinite recursion. In the later case, the analysis code will
1048 // cope with a conservative value, and it will take care to purge
1049 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001050 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001051 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001052 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001053 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001054
1055 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001056 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001057 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001058 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001060 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1061 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001062 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001063 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001064 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001065 const SCEV *Add = getAddExpr(Start, SMul);
1066 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001067 getAddExpr(getSignExtendExpr(Start, WideTy),
1068 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1069 getSignExtendExpr(Step, WideTy)));
1070 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001071 // Return the expression with the addrec on the outside.
1072 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1073 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001074 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001075
1076 // Similar to above, only this time treat the step value as unsigned.
1077 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001078 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001079 Add = getAddExpr(Start, UMul);
1080 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001081 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1083 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001085 // Return the expression with the addrec on the outside.
1086 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1087 getZeroExtendExpr(Step, Ty),
1088 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001089 }
1090
1091 // If the backedge is guarded by a comparison with the pre-inc value
1092 // the addrec is safe. Also, if the entry is guarded by a comparison
1093 // with the start value and the backedge is guarded by a comparison
1094 // with the post-inc value, the addrec is safe.
1095 if (isKnownPositive(Step)) {
1096 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1097 getSignedRange(Step).getSignedMax());
1098 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001099 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001100 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1101 AR->getPostIncExpr(*this), N)))
1102 // Return the expression with the addrec on the outside.
1103 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1104 getSignExtendExpr(Step, Ty),
1105 L);
1106 } else if (isKnownNegative(Step)) {
1107 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1108 getSignedRange(Step).getSignedMin());
1109 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001110 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001111 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1112 AR->getPostIncExpr(*this), N)))
1113 // Return the expression with the addrec on the outside.
1114 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115 getSignExtendExpr(Step, Ty),
1116 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001117 }
1118 }
1119 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001120
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001121 // The cast wasn't folded; create an explicit cast node.
1122 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001124 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1125 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001126 UniqueSCEVs.InsertNode(S, IP);
1127 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001128}
1129
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001130/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1131/// unspecified bits out to the given type.
1132///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001133const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001134 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001135 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1136 "This is not an extending conversion!");
1137 assert(isSCEVable(Ty) &&
1138 "This is not a conversion to a SCEVable type!");
1139 Ty = getEffectiveSCEVType(Ty);
1140
1141 // Sign-extend negative constants.
1142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1143 if (SC->getValue()->getValue().isNegative())
1144 return getSignExtendExpr(Op, Ty);
1145
1146 // Peel off a truncate cast.
1147 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1150 return getAnyExtendExpr(NewOp, Ty);
1151 return getTruncateOrNoop(NewOp, Ty);
1152 }
1153
1154 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001155 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001156 if (!isa<SCEVZeroExtendExpr>(ZExt))
1157 return ZExt;
1158
1159 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001160 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001161 if (!isa<SCEVSignExtendExpr>(SExt))
1162 return SExt;
1163
Dan Gohmana10756e2010-01-21 02:09:26 +00001164 // Force the cast to be folded into the operands of an addrec.
1165 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1166 SmallVector<const SCEV *, 4> Ops;
1167 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1168 I != E; ++I)
1169 Ops.push_back(getAnyExtendExpr(*I, Ty));
1170 return getAddRecExpr(Ops, AR->getLoop());
1171 }
1172
Dan Gohmanf53462d2010-07-15 20:02:11 +00001173 // As a special case, fold anyext(undef) to undef. We don't want to
1174 // know too much about SCEVUnknowns, but this special case is handy
1175 // and harmless.
1176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1177 if (isa<UndefValue>(U->getValue()))
1178 return getSCEV(UndefValue::get(Ty));
1179
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001180 // If the expression is obviously signed, use the sext cast value.
1181 if (isa<SCEVSMaxExpr>(Op))
1182 return SExt;
1183
1184 // Absent any other information, use the zext cast value.
1185 return ZExt;
1186}
1187
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001188/// CollectAddOperandsWithScales - Process the given Ops list, which is
1189/// a list of operands to be added under the given scale, update the given
1190/// map. This is a helper function for getAddRecExpr. As an example of
1191/// what it does, given a sequence of operands that would form an add
1192/// expression like this:
1193///
1194/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1195///
1196/// where A and B are constants, update the map with these values:
1197///
1198/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1199///
1200/// and add 13 + A*B*29 to AccumulatedConstant.
1201/// This will allow getAddRecExpr to produce this:
1202///
1203/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1204///
1205/// This form often exposes folding opportunities that are hidden in
1206/// the original operand list.
1207///
1208/// Return true iff it appears that any interesting folding opportunities
1209/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1210/// the common case where no interesting opportunities are present, and
1211/// is also used as a check to avoid infinite recursion.
1212///
1213static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1215 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001216 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001217 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001218 const APInt &Scale,
1219 ScalarEvolution &SE) {
1220 bool Interesting = false;
1221
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001222 // Iterate over the add operands. They are sorted, with constants first.
1223 unsigned i = 0;
1224 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1225 ++i;
1226 // Pull a buried constant out to the outside.
1227 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1228 Interesting = true;
1229 AccumulatedConstant += Scale * C->getValue()->getValue();
1230 }
1231
1232 // Next comes everything else. We're especially interested in multiplies
1233 // here, but they're in the middle, so just visit the rest with one loop.
1234 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1236 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1237 APInt NewScale =
1238 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1239 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1240 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001241 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001242 Interesting |=
1243 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001244 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001245 NewScale, SE);
1246 } else {
1247 // A multiplication of a constant with some other value. Update
1248 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001249 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1250 const SCEV *Key = SE.getMulExpr(MulOps);
1251 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001252 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001253 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001254 NewOps.push_back(Pair.first->first);
1255 } else {
1256 Pair.first->second += NewScale;
1257 // The map already had an entry for this value, which may indicate
1258 // a folding opportunity.
1259 Interesting = true;
1260 }
1261 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001262 } else {
1263 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001264 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001265 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001266 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001267 NewOps.push_back(Pair.first->first);
1268 } else {
1269 Pair.first->second += Scale;
1270 // The map already had an entry for this value, which may indicate
1271 // a folding opportunity.
1272 Interesting = true;
1273 }
1274 }
1275 }
1276
1277 return Interesting;
1278}
1279
1280namespace {
1281 struct APIntCompare {
1282 bool operator()(const APInt &LHS, const APInt &RHS) const {
1283 return LHS.ult(RHS);
1284 }
1285 };
1286}
1287
Dan Gohman6c0866c2009-05-24 23:45:28 +00001288/// getAddExpr - Get a canonical add expression, or something simpler if
1289/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001290const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1291 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001292 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001293 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001294#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001295 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001296 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001297 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001298 "SCEVAddExpr operand types don't match!");
1299#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001300
Dan Gohmana10756e2010-01-21 02:09:26 +00001301 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1302 if (!HasNUW && HasNSW) {
1303 bool All = true;
1304 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1305 if (!isKnownNonNegative(Ops[i])) {
1306 All = false;
1307 break;
1308 }
1309 if (All) HasNUW = true;
1310 }
1311
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001313 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001314
1315 // If there are any constants, fold them together.
1316 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001317 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001318 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001319 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001320 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001321 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001322 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1323 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001324 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001325 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001326 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 }
1328
1329 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001330 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 Ops.erase(Ops.begin());
1332 --Idx;
1333 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001334
Dan Gohmanbca091d2010-04-12 23:08:18 +00001335 if (Ops.size() == 1) return Ops[0];
1336 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001337
Chris Lattner53e677a2004-04-02 20:23:17 +00001338 // Okay, check to see if the same value occurs in the operand list twice. If
1339 // so, merge them together into an multiply expression. Since we sorted the
1340 // list, these values are required to be adjacent.
1341 const Type *Ty = Ops[0]->getType();
1342 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1343 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1344 // Found a match, merge the two values into a multiply, and add any
1345 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001346 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001347 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001348 if (Ops.size() == 2)
1349 return Mul;
1350 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1351 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001352 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001353 }
1354
Dan Gohman728c7f32009-05-08 21:03:19 +00001355 // Check for truncates. If all the operands are truncated from the same
1356 // type, see if factoring out the truncate would permit the result to be
1357 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1358 // if the contents of the resulting outer trunc fold to something simple.
1359 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1360 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1361 const Type *DstType = Trunc->getType();
1362 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001363 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001364 bool Ok = true;
1365 // Check all the operands to see if they can be represented in the
1366 // source type of the truncate.
1367 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1368 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1369 if (T->getOperand()->getType() != SrcType) {
1370 Ok = false;
1371 break;
1372 }
1373 LargeOps.push_back(T->getOperand());
1374 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001375 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001376 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001377 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001378 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1379 if (const SCEVTruncateExpr *T =
1380 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1381 if (T->getOperand()->getType() != SrcType) {
1382 Ok = false;
1383 break;
1384 }
1385 LargeMulOps.push_back(T->getOperand());
1386 } else if (const SCEVConstant *C =
1387 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001388 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001389 } else {
1390 Ok = false;
1391 break;
1392 }
1393 }
1394 if (Ok)
1395 LargeOps.push_back(getMulExpr(LargeMulOps));
1396 } else {
1397 Ok = false;
1398 break;
1399 }
1400 }
1401 if (Ok) {
1402 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001403 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001404 // If it folds to something simple, use it. Otherwise, don't.
1405 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1406 return getTruncateExpr(Fold, DstType);
1407 }
1408 }
1409
1410 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001411 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1412 ++Idx;
1413
1414 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 if (Idx < Ops.size()) {
1416 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001417 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 // If we have an add, expand the add operands onto the end of the operands
1419 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001421 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001422 DeletedAdd = true;
1423 }
1424
1425 // If we deleted at least one add, we added operands to the end of the list,
1426 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001427 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001428 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001429 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 }
1431
1432 // Skip over the add expression until we get to a multiply.
1433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1434 ++Idx;
1435
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 // Check to see if there are any folding opportunities present with
1437 // operands multiplied by constant values.
1438 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1439 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001440 DenseMap<const SCEV *, APInt> M;
1441 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 APInt AccumulatedConstant(BitWidth, 0);
1443 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001444 Ops.data(), Ops.size(),
1445 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001446 // Some interesting folding opportunity is present, so its worthwhile to
1447 // re-generate the operands list. Group the operands by constant scale,
1448 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001449 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1450 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001451 E = NewOps.end(); I != E; ++I)
1452 MulOpLists[M.find(*I)->second].push_back(*I);
1453 // Re-generate the operands list.
1454 Ops.clear();
1455 if (AccumulatedConstant != 0)
1456 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001457 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1458 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001459 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001460 Ops.push_back(getMulExpr(getConstant(I->first),
1461 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001462 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001463 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001464 if (Ops.size() == 1)
1465 return Ops[0];
1466 return getAddExpr(Ops);
1467 }
1468 }
1469
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 // If we are adding something to a multiply expression, make sure the
1471 // something is not already an operand of the multiply. If so, merge it into
1472 // the multiply.
1473 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001474 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001475 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001476 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001478 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001479 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001480 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 if (Mul->getNumOperands() != 2) {
1482 // If the multiply has more than two operands, we must get the
1483 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001484 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001485 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001486 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001488 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001489 const SCEV *AddOne = getAddExpr(InnerMul, One);
1490 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 if (Ops.size() == 2) return OuterMul;
1492 if (AddOp < Idx) {
1493 Ops.erase(Ops.begin()+AddOp);
1494 Ops.erase(Ops.begin()+Idx-1);
1495 } else {
1496 Ops.erase(Ops.begin()+Idx);
1497 Ops.erase(Ops.begin()+AddOp-1);
1498 }
1499 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001500 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001502
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 // Check this multiply against other multiplies being added together.
1504 for (unsigned OtherMulIdx = Idx+1;
1505 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1506 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001507 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 // If MulOp occurs in OtherMul, we can fold the two multiplies
1509 // together.
1510 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1511 OMulOp != e; ++OMulOp)
1512 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1513 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001516 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1517 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001519 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001521 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001522 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001523 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1524 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001526 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001527 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001528 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1529 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 if (Ops.size() == 2) return OuterMul;
1531 Ops.erase(Ops.begin()+Idx);
1532 Ops.erase(Ops.begin()+OtherMulIdx-1);
1533 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001534 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 }
1536 }
1537 }
1538 }
1539
1540 // If there are any add recurrences in the operands list, see if any other
1541 // added values are loop invariant. If so, we can fold them into the
1542 // recurrence.
1543 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1544 ++Idx;
1545
1546 // Scan over all recurrences, trying to fold loop invariants into them.
1547 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1548 // Scan all of the other operands to this add and add them to the vector if
1549 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001550 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001551 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001552 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001553 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001554 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 LIOps.push_back(Ops[i]);
1556 Ops.erase(Ops.begin()+i);
1557 --i; --e;
1558 }
1559
1560 // If we found some loop invariants, fold them into the recurrence.
1561 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001562 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 LIOps.push_back(AddRec->getStart());
1564
Dan Gohman0bba49c2009-07-07 17:06:11 +00001565 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001566 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001567 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568
Dan Gohmanb9f96512010-06-30 07:16:37 +00001569 // Build the new addrec. Propagate the NUW and NSW flags if both the
1570 // outer add and the inner addrec are guaranteed to have no overflow.
1571 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1572 HasNUW && AddRec->hasNoUnsignedWrap(),
1573 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001574
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // If all of the other operands were loop invariant, we are done.
1576 if (Ops.size() == 1) return NewRec;
1577
1578 // Otherwise, add the folded AddRec by the non-liv parts.
1579 for (unsigned i = 0;; ++i)
1580 if (Ops[i] == AddRec) {
1581 Ops[i] = NewRec;
1582 break;
1583 }
Dan Gohman246b2562007-10-22 18:31:58 +00001584 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 }
1586
1587 // Okay, if there weren't any loop invariants to be folded, check to see if
1588 // there are multiple AddRec's with the same loop induction variable being
1589 // added together. If so, we can fold them.
1590 for (unsigned OtherIdx = Idx+1;
1591 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1592 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001593 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001594 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001596 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1597 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1599 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001600 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 OtherAddRec->op_end());
1602 break;
1603 }
Dan Gohman246b2562007-10-22 18:31:58 +00001604 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001606 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001607
1608 if (Ops.size() == 2) return NewAddRec;
1609
1610 Ops.erase(Ops.begin()+Idx);
1611 Ops.erase(Ops.begin()+OtherIdx-1);
1612 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001613 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
1615 }
1616
1617 // Otherwise couldn't fold anything into this recurrence. Move onto the
1618 // next one.
1619 }
1620
1621 // Okay, it looks like we really DO need an add expr. Check to see if we
1622 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001623 FoldingSetNodeID ID;
1624 ID.AddInteger(scAddExpr);
1625 ID.AddInteger(Ops.size());
1626 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1627 ID.AddPointer(Ops[i]);
1628 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 SCEVAddExpr *S =
1630 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1631 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001632 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1633 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001634 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1635 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001636 UniqueSCEVs.InsertNode(S, IP);
1637 }
Dan Gohman3645b012009-10-09 00:10:36 +00001638 if (HasNUW) S->setHasNoUnsignedWrap(true);
1639 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001640 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001641}
1642
Dan Gohman6c0866c2009-05-24 23:45:28 +00001643/// getMulExpr - Get a canonical multiply expression, or something simpler if
1644/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001645const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1646 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001648 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001649#ifndef NDEBUG
1650 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1651 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1652 getEffectiveSCEVType(Ops[0]->getType()) &&
1653 "SCEVMulExpr operand types don't match!");
1654#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001655
Dan Gohmana10756e2010-01-21 02:09:26 +00001656 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1657 if (!HasNUW && HasNSW) {
1658 bool All = true;
1659 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1660 if (!isKnownNonNegative(Ops[i])) {
1661 All = false;
1662 break;
1663 }
1664 if (All) HasNUW = true;
1665 }
1666
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001668 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001669
1670 // If there are any constants, fold them together.
1671 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001672 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001673
1674 // C1*(C2+V) -> C1*C2 + C1*V
1675 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 if (Add->getNumOperands() == 2 &&
1678 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001679 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1680 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001681
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001683 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001685 ConstantInt *Fold = ConstantInt::get(getContext(),
1686 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001687 RHSC->getValue()->getValue());
1688 Ops[0] = getConstant(Fold);
1689 Ops.erase(Ops.begin()+1); // Erase the folded element
1690 if (Ops.size() == 1) return Ops[0];
1691 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 }
1693
1694 // If we are left with a constant one being multiplied, strip it off.
1695 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1696 Ops.erase(Ops.begin());
1697 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001698 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 // If we have a multiply of zero, it will always be zero.
1700 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001701 } else if (Ops[0]->isAllOnesValue()) {
1702 // If we have a mul by -1 of an add, try distributing the -1 among the
1703 // add operands.
1704 if (Ops.size() == 2)
1705 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1706 SmallVector<const SCEV *, 4> NewOps;
1707 bool AnyFolded = false;
1708 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1709 I != E; ++I) {
1710 const SCEV *Mul = getMulExpr(Ops[0], *I);
1711 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1712 NewOps.push_back(Mul);
1713 }
1714 if (AnyFolded)
1715 return getAddExpr(NewOps);
1716 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001718
1719 if (Ops.size() == 1)
1720 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 }
1722
1723 // Skip over the add expression until we get to a multiply.
1724 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1725 ++Idx;
1726
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 // If there are mul operands inline them all into this expression.
1728 if (Idx < Ops.size()) {
1729 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001730 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 // If we have an mul, expand the mul operands onto the end of the operands
1732 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001734 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 DeletedMul = true;
1736 }
1737
1738 // If we deleted at least one mul, we added operands to the end of the list,
1739 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001740 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001742 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 }
1744
1745 // If there are any add recurrences in the operands list, see if any other
1746 // added values are loop invariant. If so, we can fold them into the
1747 // recurrence.
1748 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1749 ++Idx;
1750
1751 // Scan over all recurrences, trying to fold loop invariants into them.
1752 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1753 // Scan all of the other operands to this mul and add them to the vector if
1754 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001755 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001756 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1758 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1759 LIOps.push_back(Ops[i]);
1760 Ops.erase(Ops.begin()+i);
1761 --i; --e;
1762 }
1763
1764 // If we found some loop invariants, fold them into the recurrence.
1765 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001766 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001767 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001768 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001769 const SCEV *Scale = getMulExpr(LIOps);
1770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1771 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001772
Dan Gohmanb9f96512010-06-30 07:16:37 +00001773 // Build the new addrec. Propagate the NUW and NSW flags if both the
1774 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001775 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1776 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001777 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001778
1779 // If all of the other operands were loop invariant, we are done.
1780 if (Ops.size() == 1) return NewRec;
1781
1782 // Otherwise, multiply the folded AddRec by the non-liv parts.
1783 for (unsigned i = 0;; ++i)
1784 if (Ops[i] == AddRec) {
1785 Ops[i] = NewRec;
1786 break;
1787 }
Dan Gohman246b2562007-10-22 18:31:58 +00001788 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 }
1790
1791 // Okay, if there weren't any loop invariants to be folded, check to see if
1792 // there are multiple AddRec's with the same loop induction variable being
1793 // multiplied together. If so, we can fold them.
1794 for (unsigned OtherIdx = Idx+1;
1795 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1796 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001797 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001798 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1799 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001800 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001801 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001802 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001803 const SCEV *B = F->getStepRecurrence(*this);
1804 const SCEV *D = G->getStepRecurrence(*this);
1805 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001806 getMulExpr(G, B),
1807 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001808 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001809 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001810 if (Ops.size() == 2) return NewAddRec;
1811
1812 Ops.erase(Ops.begin()+Idx);
1813 Ops.erase(Ops.begin()+OtherIdx-1);
1814 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001815 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 }
1817 }
1818
1819 // Otherwise couldn't fold anything into this recurrence. Move onto the
1820 // next one.
1821 }
1822
1823 // Okay, it looks like we really DO need an mul expr. Check to see if we
1824 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001825 FoldingSetNodeID ID;
1826 ID.AddInteger(scMulExpr);
1827 ID.AddInteger(Ops.size());
1828 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1829 ID.AddPointer(Ops[i]);
1830 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 SCEVMulExpr *S =
1832 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1833 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001834 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1835 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001836 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1837 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001838 UniqueSCEVs.InsertNode(S, IP);
1839 }
Dan Gohman3645b012009-10-09 00:10:36 +00001840 if (HasNUW) S->setHasNoUnsignedWrap(true);
1841 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001842 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001843}
1844
Andreas Bolka8a11c982009-08-07 22:55:26 +00001845/// getUDivExpr - Get a canonical unsigned division expression, or something
1846/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001847const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1848 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001849 assert(getEffectiveSCEVType(LHS->getType()) ==
1850 getEffectiveSCEVType(RHS->getType()) &&
1851 "SCEVUDivExpr operand types don't match!");
1852
Dan Gohman622ed672009-05-04 22:02:23 +00001853 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001854 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001855 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001856 // If the denominator is zero, the result of the udiv is undefined. Don't
1857 // try to analyze it, because the resolution chosen here may differ from
1858 // the resolution chosen in other parts of the compiler.
1859 if (!RHSC->getValue()->isZero()) {
1860 // Determine if the division can be folded into the operands of
1861 // its operands.
1862 // TODO: Generalize this to non-constants by using known-bits information.
1863 const Type *Ty = LHS->getType();
1864 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1865 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1866 // For non-power-of-two values, effectively round the value up to the
1867 // nearest power of two.
1868 if (!RHSC->getValue()->getValue().isPowerOf2())
1869 ++MaxShiftAmt;
1870 const IntegerType *ExtTy =
1871 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1872 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1874 if (const SCEVConstant *Step =
1875 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1876 if (!Step->getValue()->getValue()
1877 .urem(RHSC->getValue()->getValue()) &&
1878 getZeroExtendExpr(AR, ExtTy) ==
1879 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1880 getZeroExtendExpr(Step, ExtTy),
1881 AR->getLoop())) {
1882 SmallVector<const SCEV *, 4> Operands;
1883 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1884 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1885 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001886 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001887 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1888 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1889 SmallVector<const SCEV *, 4> Operands;
1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1891 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1892 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1893 // Find an operand that's safely divisible.
1894 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1895 const SCEV *Op = M->getOperand(i);
1896 const SCEV *Div = getUDivExpr(Op, RHSC);
1897 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1898 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1899 M->op_end());
1900 Operands[i] = Div;
1901 return getMulExpr(Operands);
1902 }
1903 }
Dan Gohman185cf032009-05-08 20:18:49 +00001904 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001905 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1906 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1907 SmallVector<const SCEV *, 4> Operands;
1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1909 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1910 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1911 Operands.clear();
1912 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1913 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1914 if (isa<SCEVUDivExpr>(Op) ||
1915 getMulExpr(Op, RHS) != A->getOperand(i))
1916 break;
1917 Operands.push_back(Op);
1918 }
1919 if (Operands.size() == A->getNumOperands())
1920 return getAddExpr(Operands);
1921 }
1922 }
Dan Gohman185cf032009-05-08 20:18:49 +00001923
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001924 // Fold if both operands are constant.
1925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1926 Constant *LHSCV = LHSC->getValue();
1927 Constant *RHSCV = RHSC->getValue();
1928 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1929 RHSCV)));
1930 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001931 }
1932 }
1933
Dan Gohman1c343752009-06-27 21:21:31 +00001934 FoldingSetNodeID ID;
1935 ID.AddInteger(scUDivExpr);
1936 ID.AddPointer(LHS);
1937 ID.AddPointer(RHS);
1938 void *IP = 0;
1939 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001940 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1941 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001942 UniqueSCEVs.InsertNode(S, IP);
1943 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001944}
1945
1946
Dan Gohman6c0866c2009-05-24 23:45:28 +00001947/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1948/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001949const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001950 const SCEV *Step, const Loop *L,
1951 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001952 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001953 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001954 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001956 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001957 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
1959
1960 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001961 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001962}
1963
Dan Gohman6c0866c2009-05-24 23:45:28 +00001964/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1965/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001966const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001967ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001968 const Loop *L,
1969 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001971#ifndef NDEBUG
1972 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1973 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1974 getEffectiveSCEVType(Operands[0]->getType()) &&
1975 "SCEVAddRecExpr operand types don't match!");
1976#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001977
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001978 if (Operands.back()->isZero()) {
1979 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001980 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001981 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001982
Dan Gohmanbc028532010-02-19 18:49:22 +00001983 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1984 // use that information to infer NUW and NSW flags. However, computing a
1985 // BE count requires calling getAddRecExpr, so we may not yet have a
1986 // meaningful BE count at this point (and if we don't, we'd be stuck
1987 // with a SCEVCouldNotCompute as the cached BE count).
1988
Dan Gohmana10756e2010-01-21 02:09:26 +00001989 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1990 if (!HasNUW && HasNSW) {
1991 bool All = true;
1992 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1993 if (!isKnownNonNegative(Operands[i])) {
1994 All = false;
1995 break;
1996 }
1997 if (All) HasNUW = true;
1998 }
1999
Dan Gohmand9cc7492008-08-08 18:33:12 +00002000 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002001 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002002 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00002003 if (L->contains(NestedLoop->getHeader()) ?
2004 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2005 (!NestedLoop->contains(L->getHeader()) &&
2006 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002007 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002008 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002009 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002010 // AddRecs require their operands be loop-invariant with respect to their
2011 // loops. Don't perform this transformation if it would break this
2012 // requirement.
2013 bool AllInvariant = true;
2014 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2015 if (!Operands[i]->isLoopInvariant(L)) {
2016 AllInvariant = false;
2017 break;
2018 }
2019 if (AllInvariant) {
2020 NestedOperands[0] = getAddRecExpr(Operands, L);
2021 AllInvariant = true;
2022 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2023 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2024 AllInvariant = false;
2025 break;
2026 }
2027 if (AllInvariant)
2028 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002029 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002030 }
2031 // Reset Operands to its original state.
2032 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002033 }
2034 }
2035
Dan Gohman67847532010-01-19 22:27:22 +00002036 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2037 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002038 FoldingSetNodeID ID;
2039 ID.AddInteger(scAddRecExpr);
2040 ID.AddInteger(Operands.size());
2041 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2042 ID.AddPointer(Operands[i]);
2043 ID.AddPointer(L);
2044 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002045 SCEVAddRecExpr *S =
2046 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2047 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002048 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2049 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002050 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2051 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002052 UniqueSCEVs.InsertNode(S, IP);
2053 }
Dan Gohman3645b012009-10-09 00:10:36 +00002054 if (HasNUW) S->setHasNoUnsignedWrap(true);
2055 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002056 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002057}
2058
Dan Gohman9311ef62009-06-24 14:49:00 +00002059const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2060 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002061 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002062 Ops.push_back(LHS);
2063 Ops.push_back(RHS);
2064 return getSMaxExpr(Ops);
2065}
2066
Dan Gohman0bba49c2009-07-07 17:06:11 +00002067const SCEV *
2068ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002069 assert(!Ops.empty() && "Cannot get empty smax!");
2070 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002071#ifndef NDEBUG
2072 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2073 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2074 getEffectiveSCEVType(Ops[0]->getType()) &&
2075 "SCEVSMaxExpr operand types don't match!");
2076#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002077
2078 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002079 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002080
2081 // If there are any constants, fold them together.
2082 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002083 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002084 ++Idx;
2085 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002086 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002087 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002088 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002089 APIntOps::smax(LHSC->getValue()->getValue(),
2090 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002091 Ops[0] = getConstant(Fold);
2092 Ops.erase(Ops.begin()+1); // Erase the folded element
2093 if (Ops.size() == 1) return Ops[0];
2094 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002095 }
2096
Dan Gohmane5aceed2009-06-24 14:46:22 +00002097 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002098 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2099 Ops.erase(Ops.begin());
2100 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002101 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2102 // If we have an smax with a constant maximum-int, it will always be
2103 // maximum-int.
2104 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002106
Dan Gohman3ab13122010-04-13 16:49:23 +00002107 if (Ops.size() == 1) return Ops[0];
2108 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002109
2110 // Find the first SMax
2111 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2112 ++Idx;
2113
2114 // Check to see if one of the operands is an SMax. If so, expand its operands
2115 // onto our operand list, and recurse to simplify.
2116 if (Idx < Ops.size()) {
2117 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002118 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002119 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002120 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002121 DeletedSMax = true;
2122 }
2123
2124 if (DeletedSMax)
2125 return getSMaxExpr(Ops);
2126 }
2127
2128 // Okay, check to see if the same value occurs in the operand list twice. If
2129 // so, delete one. Since we sorted the list, these values are required to
2130 // be adjacent.
2131 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002132 // X smax Y smax Y --> X smax Y
2133 // X smax Y --> X, if X is always greater than Y
2134 if (Ops[i] == Ops[i+1] ||
2135 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2136 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2137 --i; --e;
2138 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002139 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2140 --i; --e;
2141 }
2142
2143 if (Ops.size() == 1) return Ops[0];
2144
2145 assert(!Ops.empty() && "Reduced smax down to nothing!");
2146
Nick Lewycky3e630762008-02-20 06:48:22 +00002147 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002148 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002149 FoldingSetNodeID ID;
2150 ID.AddInteger(scSMaxExpr);
2151 ID.AddInteger(Ops.size());
2152 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2153 ID.AddPointer(Ops[i]);
2154 void *IP = 0;
2155 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002156 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2157 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002158 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2159 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002160 UniqueSCEVs.InsertNode(S, IP);
2161 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002162}
2163
Dan Gohman9311ef62009-06-24 14:49:00 +00002164const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2165 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002166 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002167 Ops.push_back(LHS);
2168 Ops.push_back(RHS);
2169 return getUMaxExpr(Ops);
2170}
2171
Dan Gohman0bba49c2009-07-07 17:06:11 +00002172const SCEV *
2173ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002174 assert(!Ops.empty() && "Cannot get empty umax!");
2175 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002176#ifndef NDEBUG
2177 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2178 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2179 getEffectiveSCEVType(Ops[0]->getType()) &&
2180 "SCEVUMaxExpr operand types don't match!");
2181#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002182
2183 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002184 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002185
2186 // If there are any constants, fold them together.
2187 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002188 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002189 ++Idx;
2190 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002191 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002192 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002193 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002194 APIntOps::umax(LHSC->getValue()->getValue(),
2195 RHSC->getValue()->getValue()));
2196 Ops[0] = getConstant(Fold);
2197 Ops.erase(Ops.begin()+1); // Erase the folded element
2198 if (Ops.size() == 1) return Ops[0];
2199 LHSC = cast<SCEVConstant>(Ops[0]);
2200 }
2201
Dan Gohmane5aceed2009-06-24 14:46:22 +00002202 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002203 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2204 Ops.erase(Ops.begin());
2205 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002206 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2207 // If we have an umax with a constant maximum-int, it will always be
2208 // maximum-int.
2209 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002210 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002211
Dan Gohman3ab13122010-04-13 16:49:23 +00002212 if (Ops.size() == 1) return Ops[0];
2213 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002214
2215 // Find the first UMax
2216 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2217 ++Idx;
2218
2219 // Check to see if one of the operands is a UMax. If so, expand its operands
2220 // onto our operand list, and recurse to simplify.
2221 if (Idx < Ops.size()) {
2222 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002223 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002224 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002225 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002226 DeletedUMax = true;
2227 }
2228
2229 if (DeletedUMax)
2230 return getUMaxExpr(Ops);
2231 }
2232
2233 // Okay, check to see if the same value occurs in the operand list twice. If
2234 // so, delete one. Since we sorted the list, these values are required to
2235 // be adjacent.
2236 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002237 // X umax Y umax Y --> X umax Y
2238 // X umax Y --> X, if X is always greater than Y
2239 if (Ops[i] == Ops[i+1] ||
2240 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2241 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2242 --i; --e;
2243 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002244 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2245 --i; --e;
2246 }
2247
2248 if (Ops.size() == 1) return Ops[0];
2249
2250 assert(!Ops.empty() && "Reduced umax down to nothing!");
2251
2252 // Okay, it looks like we really DO need a umax expr. Check to see if we
2253 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002254 FoldingSetNodeID ID;
2255 ID.AddInteger(scUMaxExpr);
2256 ID.AddInteger(Ops.size());
2257 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2258 ID.AddPointer(Ops[i]);
2259 void *IP = 0;
2260 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002261 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2262 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002263 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2264 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002265 UniqueSCEVs.InsertNode(S, IP);
2266 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002267}
2268
Dan Gohman9311ef62009-06-24 14:49:00 +00002269const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2270 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002271 // ~smax(~x, ~y) == smin(x, y).
2272 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2273}
2274
Dan Gohman9311ef62009-06-24 14:49:00 +00002275const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2276 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002277 // ~umax(~x, ~y) == umin(x, y)
2278 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2279}
2280
Dan Gohman4f8eea82010-02-01 18:27:38 +00002281const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002282 // If we have TargetData, we can bypass creating a target-independent
2283 // constant expression and then folding it back into a ConstantInt.
2284 // This is just a compile-time optimization.
2285 if (TD)
2286 return getConstant(TD->getIntPtrType(getContext()),
2287 TD->getTypeAllocSize(AllocTy));
2288
Dan Gohman4f8eea82010-02-01 18:27:38 +00002289 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2290 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002291 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2292 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002293 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2294 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2295}
2296
2297const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2298 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002300 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2301 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002302 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2303 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2304}
2305
2306const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2307 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002308 // If we have TargetData, we can bypass creating a target-independent
2309 // constant expression and then folding it back into a ConstantInt.
2310 // This is just a compile-time optimization.
2311 if (TD)
2312 return getConstant(TD->getIntPtrType(getContext()),
2313 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2314
Dan Gohman0f5efe52010-01-28 02:15:55 +00002315 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002317 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2318 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002319 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002320 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002321}
2322
Dan Gohman4f8eea82010-02-01 18:27:38 +00002323const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2324 Constant *FieldNo) {
2325 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002327 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2328 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002329 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002330 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002331}
2332
Dan Gohman0bba49c2009-07-07 17:06:11 +00002333const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002334 // Don't attempt to do anything other than create a SCEVUnknown object
2335 // here. createSCEV only calls getUnknown after checking for all other
2336 // interesting possibilities, and any other code that calls getUnknown
2337 // is doing so in order to hide a value from SCEV canonicalization.
2338
Dan Gohman1c343752009-06-27 21:21:31 +00002339 FoldingSetNodeID ID;
2340 ID.AddInteger(scUnknown);
2341 ID.AddPointer(V);
2342 void *IP = 0;
2343 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +00002344 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002345 UniqueSCEVs.InsertNode(S, IP);
2346 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002347}
2348
Chris Lattner53e677a2004-04-02 20:23:17 +00002349//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002350// Basic SCEV Analysis and PHI Idiom Recognition Code
2351//
2352
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002353/// isSCEVable - Test if values of the given type are analyzable within
2354/// the SCEV framework. This primarily includes integer types, and it
2355/// can optionally include pointer types if the ScalarEvolution class
2356/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002357bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002358 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002359 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002360}
2361
2362/// getTypeSizeInBits - Return the size in bits of the specified type,
2363/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002364uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002365 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2366
2367 // If we have a TargetData, use it!
2368 if (TD)
2369 return TD->getTypeSizeInBits(Ty);
2370
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002371 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002372 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002373 return Ty->getPrimitiveSizeInBits();
2374
2375 // The only other support type is pointer. Without TargetData, conservatively
2376 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002377 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002378 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002379}
2380
2381/// getEffectiveSCEVType - Return a type with the same bitwidth as
2382/// the given type and which represents how SCEV will treat the given
2383/// type, for which isSCEVable must return true. For pointer types,
2384/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002385const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002386 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2387
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002388 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002389 return Ty;
2390
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002391 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002392 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002393 if (TD) return TD->getIntPtrType(getContext());
2394
2395 // Without TargetData, conservatively assume pointers are 64-bit.
2396 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002397}
Chris Lattner53e677a2004-04-02 20:23:17 +00002398
Dan Gohman0bba49c2009-07-07 17:06:11 +00002399const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002400 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002401}
2402
Chris Lattner53e677a2004-04-02 20:23:17 +00002403/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2404/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002405const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002406 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002407
Dan Gohman0bba49c2009-07-07 17:06:11 +00002408 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002409 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002410 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002411 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002412 return S;
2413}
2414
Dan Gohman2d1be872009-04-16 03:18:22 +00002415/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2416///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002417const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002418 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002419 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002420 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002421
2422 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002423 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002424 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002425 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002426}
2427
2428/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002429const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002430 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002431 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002432 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002433
2434 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002435 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002436 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002437 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002438 return getMinusSCEV(AllOnes, V);
2439}
2440
2441/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2442///
Dan Gohman9311ef62009-06-24 14:49:00 +00002443const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2444 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002445 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002446 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002447}
2448
2449/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2450/// input value to the specified type. If the type must be extended, it is zero
2451/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002452const SCEV *
2453ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002454 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002455 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002456 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2457 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002458 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002459 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002460 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002461 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002462 return getTruncateExpr(V, Ty);
2463 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002464}
2465
2466/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2467/// input value to the specified type. If the type must be extended, it is sign
2468/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002469const SCEV *
2470ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002471 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002472 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2474 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002475 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002476 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002477 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002478 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002479 return getTruncateExpr(V, Ty);
2480 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002481}
2482
Dan Gohman467c4302009-05-13 03:46:30 +00002483/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2484/// input value to the specified type. If the type must be extended, it is zero
2485/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002486const SCEV *
2487ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002488 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2490 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002491 "Cannot noop or zero extend with non-integer arguments!");
2492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2493 "getNoopOrZeroExtend cannot truncate!");
2494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2495 return V; // No conversion
2496 return getZeroExtendExpr(V, Ty);
2497}
2498
2499/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2500/// input value to the specified type. If the type must be extended, it is sign
2501/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002502const SCEV *
2503ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002504 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002505 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2506 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002507 "Cannot noop or sign extend with non-integer arguments!");
2508 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2509 "getNoopOrSignExtend cannot truncate!");
2510 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2511 return V; // No conversion
2512 return getSignExtendExpr(V, Ty);
2513}
2514
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002515/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2516/// the input value to the specified type. If the type must be extended,
2517/// it is extended with unspecified bits. The conversion must not be
2518/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002519const SCEV *
2520ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002521 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002522 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2523 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002524 "Cannot noop or any extend with non-integer arguments!");
2525 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2526 "getNoopOrAnyExtend cannot truncate!");
2527 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2528 return V; // No conversion
2529 return getAnyExtendExpr(V, Ty);
2530}
2531
Dan Gohman467c4302009-05-13 03:46:30 +00002532/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2533/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002534const SCEV *
2535ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002536 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2538 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002539 "Cannot truncate or noop with non-integer arguments!");
2540 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2541 "getTruncateOrNoop cannot extend!");
2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2543 return V; // No conversion
2544 return getTruncateExpr(V, Ty);
2545}
2546
Dan Gohmana334aa72009-06-22 00:31:57 +00002547/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2548/// the types using zero-extension, and then perform a umax operation
2549/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002550const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2551 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002552 const SCEV *PromotedLHS = LHS;
2553 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002554
2555 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2556 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2557 else
2558 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2559
2560 return getUMaxExpr(PromotedLHS, PromotedRHS);
2561}
2562
Dan Gohmanc9759e82009-06-22 15:03:27 +00002563/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2564/// the types using zero-extension, and then perform a umin operation
2565/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002566const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2567 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002568 const SCEV *PromotedLHS = LHS;
2569 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002570
2571 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2572 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2573 else
2574 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2575
2576 return getUMinExpr(PromotedLHS, PromotedRHS);
2577}
2578
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002579/// PushDefUseChildren - Push users of the given Instruction
2580/// onto the given Worklist.
2581static void
2582PushDefUseChildren(Instruction *I,
2583 SmallVectorImpl<Instruction *> &Worklist) {
2584 // Push the def-use children onto the Worklist stack.
2585 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2586 UI != UE; ++UI)
2587 Worklist.push_back(cast<Instruction>(UI));
2588}
2589
2590/// ForgetSymbolicValue - This looks up computed SCEV values for all
2591/// instructions that depend on the given instruction and removes them from
2592/// the Scalars map if they reference SymName. This is used during PHI
2593/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002594void
Dan Gohman85669632010-02-25 06:57:05 +00002595ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002596 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002597 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002598
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002599 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002600 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002601 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002602 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002603 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002604
Dan Gohman5d984912009-12-18 01:14:11 +00002605 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002606 Scalars.find(static_cast<Value *>(I));
2607 if (It != Scalars.end()) {
2608 // Short-circuit the def-use traversal if the symbolic name
2609 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002610 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002611 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002612
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002613 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002614 // structure, it's a PHI that's in the progress of being computed
2615 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2616 // additional loop trip count information isn't going to change anything.
2617 // In the second case, createNodeForPHI will perform the necessary
2618 // updates on its own when it gets to that point. In the third, we do
2619 // want to forget the SCEVUnknown.
2620 if (!isa<PHINode>(I) ||
2621 !isa<SCEVUnknown>(It->second) ||
2622 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002623 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002624 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002625 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002626 }
2627
2628 PushDefUseChildren(I, Worklist);
2629 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002630}
Chris Lattner53e677a2004-04-02 20:23:17 +00002631
2632/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2633/// a loop header, making it a potential recurrence, or it doesn't.
2634///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002635const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002636 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2637 if (L->getHeader() == PN->getParent()) {
2638 // The loop may have multiple entrances or multiple exits; we can analyze
2639 // this phi as an addrec if it has a unique entry value and a unique
2640 // backedge value.
2641 Value *BEValueV = 0, *StartValueV = 0;
2642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2643 Value *V = PN->getIncomingValue(i);
2644 if (L->contains(PN->getIncomingBlock(i))) {
2645 if (!BEValueV) {
2646 BEValueV = V;
2647 } else if (BEValueV != V) {
2648 BEValueV = 0;
2649 break;
2650 }
2651 } else if (!StartValueV) {
2652 StartValueV = V;
2653 } else if (StartValueV != V) {
2654 StartValueV = 0;
2655 break;
2656 }
2657 }
2658 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002659 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002660 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002661 assert(Scalars.find(PN) == Scalars.end() &&
2662 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002663 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002664
2665 // Using this symbolic name for the PHI, analyze the value coming around
2666 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002667 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002668
2669 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2670 // has a special value for the first iteration of the loop.
2671
2672 // If the value coming around the backedge is an add with the symbolic
2673 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002674 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002675 // If there is a single occurrence of the symbolic value, replace it
2676 // with a recurrence.
2677 unsigned FoundIndex = Add->getNumOperands();
2678 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2679 if (Add->getOperand(i) == SymbolicName)
2680 if (FoundIndex == e) {
2681 FoundIndex = i;
2682 break;
2683 }
2684
2685 if (FoundIndex != Add->getNumOperands()) {
2686 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002687 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002688 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2689 if (i != FoundIndex)
2690 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002691 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002692
2693 // This is not a valid addrec if the step amount is varying each
2694 // loop iteration, but is not itself an addrec in this loop.
2695 if (Accum->isLoopInvariant(L) ||
2696 (isa<SCEVAddRecExpr>(Accum) &&
2697 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002698 bool HasNUW = false;
2699 bool HasNSW = false;
2700
2701 // If the increment doesn't overflow, then neither the addrec nor
2702 // the post-increment will overflow.
2703 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2704 if (OBO->hasNoUnsignedWrap())
2705 HasNUW = true;
2706 if (OBO->hasNoSignedWrap())
2707 HasNSW = true;
2708 }
2709
Dan Gohman27dead42010-04-12 07:49:36 +00002710 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002711 const SCEV *PHISCEV =
2712 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002713
Dan Gohmana10756e2010-01-21 02:09:26 +00002714 // Since the no-wrap flags are on the increment, they apply to the
2715 // post-incremented value as well.
2716 if (Accum->isLoopInvariant(L))
2717 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2718 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002719
2720 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002721 // to be symbolic. We now need to go back and purge all of the
2722 // entries for the scalars that use the symbolic expression.
2723 ForgetSymbolicName(PN, SymbolicName);
2724 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002725 return PHISCEV;
2726 }
2727 }
Dan Gohman622ed672009-05-04 22:02:23 +00002728 } else if (const SCEVAddRecExpr *AddRec =
2729 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002730 // Otherwise, this could be a loop like this:
2731 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2732 // In this case, j = {1,+,1} and BEValue is j.
2733 // Because the other in-value of i (0) fits the evolution of BEValue
2734 // i really is an addrec evolution.
2735 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002736 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002737
2738 // If StartVal = j.start - j.stride, we can use StartVal as the
2739 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002740 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002741 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002742 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002743 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002744
2745 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002746 // to be symbolic. We now need to go back and purge all of the
2747 // entries for the scalars that use the symbolic expression.
2748 ForgetSymbolicName(PN, SymbolicName);
2749 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002750 return PHISCEV;
2751 }
2752 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002753 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002754 }
Dan Gohman27dead42010-04-12 07:49:36 +00002755 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002756
Dan Gohman85669632010-02-25 06:57:05 +00002757 // If the PHI has a single incoming value, follow that value, unless the
2758 // PHI's incoming blocks are in a different loop, in which case doing so
2759 // risks breaking LCSSA form. Instcombine would normally zap these, but
2760 // it doesn't have DominatorTree information, so it may miss cases.
2761 if (Value *V = PN->hasConstantValue(DT)) {
2762 bool AllSameLoop = true;
2763 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2764 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2765 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2766 AllSameLoop = false;
2767 break;
2768 }
2769 if (AllSameLoop)
2770 return getSCEV(V);
2771 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002772
Chris Lattner53e677a2004-04-02 20:23:17 +00002773 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002774 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002775}
2776
Dan Gohman26466c02009-05-08 20:26:55 +00002777/// createNodeForGEP - Expand GEP instructions into add and multiply
2778/// operations. This allows them to be analyzed by regular SCEV code.
2779///
Dan Gohmand281ed22009-12-18 02:09:29 +00002780const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002781
Dan Gohmanb9f96512010-06-30 07:16:37 +00002782 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2783 // Add expression, because the Instruction may be guarded by control flow
2784 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002785 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002786
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002787 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002788 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002789 // Don't attempt to analyze GEPs over unsized objects.
2790 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2791 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002792 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002793 gep_type_iterator GTI = gep_type_begin(GEP);
2794 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2795 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002796 I != E; ++I) {
2797 Value *Index = *I;
2798 // Compute the (potentially symbolic) offset in bytes for this index.
2799 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2800 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002801 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002802 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2803
Dan Gohmanb9f96512010-06-30 07:16:37 +00002804 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002805 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002806 } else {
2807 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002808 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2809 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002810 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002811 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2812
Dan Gohmanb9f96512010-06-30 07:16:37 +00002813 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002814 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002815
2816 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002817 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002818 }
2819 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002820
2821 // Get the SCEV for the GEP base.
2822 const SCEV *BaseS = getSCEV(Base);
2823
Dan Gohmanb9f96512010-06-30 07:16:37 +00002824 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002825 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002826}
2827
Nick Lewycky83bb0052007-11-22 07:59:40 +00002828/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2829/// guaranteed to end in (at every loop iteration). It is, at the same time,
2830/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2831/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002832uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002833ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002834 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002835 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002836
Dan Gohman622ed672009-05-04 22:02:23 +00002837 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002838 return std::min(GetMinTrailingZeros(T->getOperand()),
2839 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840
Dan Gohman622ed672009-05-04 22:02:23 +00002841 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002842 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2843 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2844 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002845 }
2846
Dan Gohman622ed672009-05-04 22:02:23 +00002847 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002848 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2849 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2850 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002851 }
2852
Dan Gohman622ed672009-05-04 22:02:23 +00002853 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002854 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002855 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002856 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002857 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002858 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002859 }
2860
Dan Gohman622ed672009-05-04 22:02:23 +00002861 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002862 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002863 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2864 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002865 for (unsigned i = 1, e = M->getNumOperands();
2866 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002867 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002868 BitWidth);
2869 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002870 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002871
Dan Gohman622ed672009-05-04 22:02:23 +00002872 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002873 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002874 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002875 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002876 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002877 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002878 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879
Dan Gohman622ed672009-05-04 22:02:23 +00002880 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002881 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002882 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002883 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002884 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002885 return MinOpRes;
2886 }
2887
Dan Gohman622ed672009-05-04 22:02:23 +00002888 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002889 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002891 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002892 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002893 return MinOpRes;
2894 }
2895
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2897 // For a SCEVUnknown, ask ValueTracking.
2898 unsigned BitWidth = getTypeSizeInBits(U->getType());
2899 APInt Mask = APInt::getAllOnesValue(BitWidth);
2900 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2901 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2902 return Zeros.countTrailingOnes();
2903 }
2904
2905 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002906 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002907}
Chris Lattner53e677a2004-04-02 20:23:17 +00002908
Dan Gohman85b05a22009-07-13 21:35:55 +00002909/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2910///
2911ConstantRange
2912ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002913
2914 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002915 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002916
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002917 unsigned BitWidth = getTypeSizeInBits(S->getType());
2918 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2919
2920 // If the value has known zeros, the maximum unsigned value will have those
2921 // known zeros as well.
2922 uint32_t TZ = GetMinTrailingZeros(S);
2923 if (TZ != 0)
2924 ConservativeResult =
2925 ConstantRange(APInt::getMinValue(BitWidth),
2926 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2927
Dan Gohman85b05a22009-07-13 21:35:55 +00002928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2929 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2930 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2931 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002932 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002933 }
2934
2935 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2936 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2937 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2938 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002939 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002940 }
2941
2942 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2943 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2944 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2945 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002946 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002947 }
2948
2949 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2950 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2951 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2952 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002953 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002954 }
2955
2956 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2957 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2958 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002959 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002960 }
2961
2962 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2963 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002964 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002965 }
2966
2967 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2968 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002969 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002970 }
2971
2972 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2973 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002974 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002975 }
2976
Dan Gohman85b05a22009-07-13 21:35:55 +00002977 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002978 // If there's no unsigned wrap, the value will never be less than its
2979 // initial value.
2980 if (AddRec->hasNoUnsignedWrap())
2981 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002982 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002983 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00002984 ConservativeResult.intersectWith(
2985 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002986
2987 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002988 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002989 const Type *Ty = AddRec->getType();
2990 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002991 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2992 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002993 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2994
2995 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002996 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002997
2998 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002999 ConstantRange StepRange = getSignedRange(Step);
3000 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3001 ConstantRange EndRange =
3002 StartRange.add(MaxBECountRange.multiply(StepRange));
3003
3004 // Check for overflow. This must be done with ConstantRange arithmetic
3005 // because we could be called from within the ScalarEvolution overflow
3006 // checking code.
3007 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3008 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3009 ConstantRange ExtMaxBECountRange =
3010 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3011 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3012 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3013 ExtEndRange)
3014 return ConservativeResult;
3015
Dan Gohman85b05a22009-07-13 21:35:55 +00003016 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3017 EndRange.getUnsignedMin());
3018 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3019 EndRange.getUnsignedMax());
3020 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003021 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003022 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 }
3024 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003025
3026 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003027 }
3028
3029 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3030 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003031 APInt Mask = APInt::getAllOnesValue(BitWidth);
3032 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3033 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003034 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003035 return ConservativeResult;
3036 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003037 }
3038
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003039 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003040}
3041
Dan Gohman85b05a22009-07-13 21:35:55 +00003042/// getSignedRange - Determine the signed range for a particular SCEV.
3043///
3044ConstantRange
3045ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003046
Dan Gohman85b05a22009-07-13 21:35:55 +00003047 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3048 return ConstantRange(C->getValue()->getValue());
3049
Dan Gohman52fddd32010-01-26 04:40:18 +00003050 unsigned BitWidth = getTypeSizeInBits(S->getType());
3051 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3052
3053 // If the value has known zeros, the maximum signed value will have those
3054 // known zeros as well.
3055 uint32_t TZ = GetMinTrailingZeros(S);
3056 if (TZ != 0)
3057 ConservativeResult =
3058 ConstantRange(APInt::getSignedMinValue(BitWidth),
3059 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3062 ConstantRange X = getSignedRange(Add->getOperand(0));
3063 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3064 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003065 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003066 }
3067
Dan Gohman85b05a22009-07-13 21:35:55 +00003068 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3069 ConstantRange X = getSignedRange(Mul->getOperand(0));
3070 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3071 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003072 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003073 }
3074
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3076 ConstantRange X = getSignedRange(SMax->getOperand(0));
3077 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3078 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003079 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 }
Dan Gohman62849c02009-06-24 01:05:09 +00003081
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3083 ConstantRange X = getSignedRange(UMax->getOperand(0));
3084 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3085 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003086 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003087 }
Dan Gohman62849c02009-06-24 01:05:09 +00003088
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3090 ConstantRange X = getSignedRange(UDiv->getLHS());
3091 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003092 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003093 }
Dan Gohman62849c02009-06-24 01:05:09 +00003094
Dan Gohman85b05a22009-07-13 21:35:55 +00003095 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3096 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003097 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003098 }
3099
3100 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3101 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003102 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003103 }
3104
3105 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3106 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003107 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003108 }
3109
Dan Gohman85b05a22009-07-13 21:35:55 +00003110 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003111 // If there's no signed wrap, and all the operands have the same sign or
3112 // zero, the value won't ever change sign.
3113 if (AddRec->hasNoSignedWrap()) {
3114 bool AllNonNeg = true;
3115 bool AllNonPos = true;
3116 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3117 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3118 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3119 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003120 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003121 ConservativeResult = ConservativeResult.intersectWith(
3122 ConstantRange(APInt(BitWidth, 0),
3123 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003124 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003125 ConservativeResult = ConservativeResult.intersectWith(
3126 ConstantRange(APInt::getSignedMinValue(BitWidth),
3127 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003128 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003129
3130 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003131 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003132 const Type *Ty = AddRec->getType();
3133 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003134 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3135 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003136 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3137
3138 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003139 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003140
3141 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003142 ConstantRange StepRange = getSignedRange(Step);
3143 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3144 ConstantRange EndRange =
3145 StartRange.add(MaxBECountRange.multiply(StepRange));
3146
3147 // Check for overflow. This must be done with ConstantRange arithmetic
3148 // because we could be called from within the ScalarEvolution overflow
3149 // checking code.
3150 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3151 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3152 ConstantRange ExtMaxBECountRange =
3153 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3154 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3155 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3156 ExtEndRange)
3157 return ConservativeResult;
3158
Dan Gohman85b05a22009-07-13 21:35:55 +00003159 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3160 EndRange.getSignedMin());
3161 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3162 EndRange.getSignedMax());
3163 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003164 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003165 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003166 }
Dan Gohman62849c02009-06-24 01:05:09 +00003167 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003168
3169 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003170 }
3171
Dan Gohman2c364ad2009-06-19 23:29:04 +00003172 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3173 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003174 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003175 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3177 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003178 return ConservativeResult;
3179 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003180 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003181 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003182 }
3183
Dan Gohman52fddd32010-01-26 04:40:18 +00003184 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003185}
3186
Chris Lattner53e677a2004-04-02 20:23:17 +00003187/// createSCEV - We know that there is no SCEV for the specified value.
3188/// Analyze the expression.
3189///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003190const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003191 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003192 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003193
Dan Gohman6c459a22008-06-22 19:56:46 +00003194 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003195 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003196 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003197
3198 // Don't attempt to analyze instructions in blocks that aren't
3199 // reachable. Such instructions don't matter, and they aren't required
3200 // to obey basic rules for definitions dominating uses which this
3201 // analysis depends on.
3202 if (!DT->isReachableFromEntry(I->getParent()))
3203 return getUnknown(V);
3204 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003205 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003206 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3207 return getConstant(CI);
3208 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003209 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003210 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3211 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003212 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003213 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003214
Dan Gohmanca178902009-07-17 20:47:02 +00003215 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003216 switch (Opcode) {
Dan Gohman70eff632010-06-30 17:27:11 +00003217 case Instruction::Add:
3218 return getAddExpr(getSCEV(U->getOperand(0)),
3219 getSCEV(U->getOperand(1)));
3220 case Instruction::Mul:
3221 return getMulExpr(getSCEV(U->getOperand(0)),
3222 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003223 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003224 return getUDivExpr(getSCEV(U->getOperand(0)),
3225 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003226 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003227 return getMinusSCEV(getSCEV(U->getOperand(0)),
3228 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003229 case Instruction::And:
3230 // For an expression like x&255 that merely masks off the high bits,
3231 // use zext(trunc(x)) as the SCEV expression.
3232 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003233 if (CI->isNullValue())
3234 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003235 if (CI->isAllOnesValue())
3236 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003237 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003238
3239 // Instcombine's ShrinkDemandedConstant may strip bits out of
3240 // constants, obscuring what would otherwise be a low-bits mask.
3241 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3242 // knew about to reconstruct a low-bits mask value.
3243 unsigned LZ = A.countLeadingZeros();
3244 unsigned BitWidth = A.getBitWidth();
3245 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3246 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3247 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3248
3249 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3250
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003251 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003252 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003253 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003254 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003255 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003256 }
3257 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003258
Dan Gohman6c459a22008-06-22 19:56:46 +00003259 case Instruction::Or:
3260 // If the RHS of the Or is a constant, we may have something like:
3261 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3262 // optimizations will transparently handle this case.
3263 //
3264 // In order for this transformation to be safe, the LHS must be of the
3265 // form X*(2^n) and the Or constant must be less than 2^n.
3266 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003267 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003268 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003269 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003270 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3271 // Build a plain add SCEV.
3272 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3273 // If the LHS of the add was an addrec and it has no-wrap flags,
3274 // transfer the no-wrap flags, since an or won't introduce a wrap.
3275 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3276 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3277 if (OldAR->hasNoUnsignedWrap())
3278 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3279 if (OldAR->hasNoSignedWrap())
3280 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3281 }
3282 return S;
3283 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003284 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003285 break;
3286 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003287 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003288 // If the RHS of the xor is a signbit, then this is just an add.
3289 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003290 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003291 return getAddExpr(getSCEV(U->getOperand(0)),
3292 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003293
3294 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003295 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003296 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003297
3298 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3299 // This is a variant of the check for xor with -1, and it handles
3300 // the case where instcombine has trimmed non-demanded bits out
3301 // of an xor with -1.
3302 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3303 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3304 if (BO->getOpcode() == Instruction::And &&
3305 LCI->getValue() == CI->getValue())
3306 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003307 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003308 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003309 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003310 const Type *Z0Ty = Z0->getType();
3311 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3312
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003313 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003314 // mask off the high bits. Complement the operand and
3315 // re-apply the zext.
3316 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3317 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3318
3319 // If C is a single bit, it may be in the sign-bit position
3320 // before the zero-extend. In this case, represent the xor
3321 // using an add, which is equivalent, and re-apply the zext.
3322 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3323 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3324 Trunc.isSignBit())
3325 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3326 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003327 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003328 }
3329 break;
3330
3331 case Instruction::Shl:
3332 // Turn shift left of a constant amount into a multiply.
3333 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003334 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003335
3336 // If the shift count is not less than the bitwidth, the result of
3337 // the shift is undefined. Don't try to analyze it, because the
3338 // resolution chosen here may differ from the resolution chosen in
3339 // other parts of the compiler.
3340 if (SA->getValue().uge(BitWidth))
3341 break;
3342
Owen Andersoneed707b2009-07-24 23:12:02 +00003343 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003344 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003345 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003346 }
3347 break;
3348
Nick Lewycky01eaf802008-07-07 06:15:49 +00003349 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003350 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003351 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003352 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003353
3354 // If the shift count is not less than the bitwidth, the result of
3355 // the shift is undefined. Don't try to analyze it, because the
3356 // resolution chosen here may differ from the resolution chosen in
3357 // other parts of the compiler.
3358 if (SA->getValue().uge(BitWidth))
3359 break;
3360
Owen Andersoneed707b2009-07-24 23:12:02 +00003361 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003362 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003363 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003364 }
3365 break;
3366
Dan Gohman4ee29af2009-04-21 02:26:00 +00003367 case Instruction::AShr:
3368 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3369 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003370 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003371 if (L->getOpcode() == Instruction::Shl &&
3372 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003373 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3374
3375 // If the shift count is not less than the bitwidth, the result of
3376 // the shift is undefined. Don't try to analyze it, because the
3377 // resolution chosen here may differ from the resolution chosen in
3378 // other parts of the compiler.
3379 if (CI->getValue().uge(BitWidth))
3380 break;
3381
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003382 uint64_t Amt = BitWidth - CI->getZExtValue();
3383 if (Amt == BitWidth)
3384 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003385 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003386 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003387 IntegerType::get(getContext(),
3388 Amt)),
3389 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003390 }
3391 break;
3392
Dan Gohman6c459a22008-06-22 19:56:46 +00003393 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003394 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003395
3396 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003397 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003398
3399 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003400 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003401
3402 case Instruction::BitCast:
3403 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003404 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003405 return getSCEV(U->getOperand(0));
3406 break;
3407
Dan Gohman4f8eea82010-02-01 18:27:38 +00003408 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3409 // lead to pointer expressions which cannot safely be expanded to GEPs,
3410 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3411 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003412
Dan Gohman26466c02009-05-08 20:26:55 +00003413 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003414 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003415
Dan Gohman6c459a22008-06-22 19:56:46 +00003416 case Instruction::PHI:
3417 return createNodeForPHI(cast<PHINode>(U));
3418
3419 case Instruction::Select:
3420 // This could be a smax or umax that was lowered earlier.
3421 // Try to recover it.
3422 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3423 Value *LHS = ICI->getOperand(0);
3424 Value *RHS = ICI->getOperand(1);
3425 switch (ICI->getPredicate()) {
3426 case ICmpInst::ICMP_SLT:
3427 case ICmpInst::ICMP_SLE:
3428 std::swap(LHS, RHS);
3429 // fall through
3430 case ICmpInst::ICMP_SGT:
3431 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003432 // a >s b ? a+x : b+x -> smax(a, b)+x
3433 // a >s b ? b+x : a+x -> smin(a, b)+x
3434 if (LHS->getType() == U->getType()) {
3435 const SCEV *LS = getSCEV(LHS);
3436 const SCEV *RS = getSCEV(RHS);
3437 const SCEV *LA = getSCEV(U->getOperand(1));
3438 const SCEV *RA = getSCEV(U->getOperand(2));
3439 const SCEV *LDiff = getMinusSCEV(LA, LS);
3440 const SCEV *RDiff = getMinusSCEV(RA, RS);
3441 if (LDiff == RDiff)
3442 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3443 LDiff = getMinusSCEV(LA, RS);
3444 RDiff = getMinusSCEV(RA, LS);
3445 if (LDiff == RDiff)
3446 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3447 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003448 break;
3449 case ICmpInst::ICMP_ULT:
3450 case ICmpInst::ICMP_ULE:
3451 std::swap(LHS, RHS);
3452 // fall through
3453 case ICmpInst::ICMP_UGT:
3454 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003455 // a >u b ? a+x : b+x -> umax(a, b)+x
3456 // a >u b ? b+x : a+x -> umin(a, b)+x
3457 if (LHS->getType() == U->getType()) {
3458 const SCEV *LS = getSCEV(LHS);
3459 const SCEV *RS = getSCEV(RHS);
3460 const SCEV *LA = getSCEV(U->getOperand(1));
3461 const SCEV *RA = getSCEV(U->getOperand(2));
3462 const SCEV *LDiff = getMinusSCEV(LA, LS);
3463 const SCEV *RDiff = getMinusSCEV(RA, RS);
3464 if (LDiff == RDiff)
3465 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3466 LDiff = getMinusSCEV(LA, RS);
3467 RDiff = getMinusSCEV(RA, LS);
3468 if (LDiff == RDiff)
3469 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3470 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003471 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003472 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003473 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3474 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003475 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003476 cast<ConstantInt>(RHS)->isZero()) {
3477 const SCEV *One = getConstant(LHS->getType(), 1);
3478 const SCEV *LS = getSCEV(LHS);
3479 const SCEV *LA = getSCEV(U->getOperand(1));
3480 const SCEV *RA = getSCEV(U->getOperand(2));
3481 const SCEV *LDiff = getMinusSCEV(LA, LS);
3482 const SCEV *RDiff = getMinusSCEV(RA, One);
3483 if (LDiff == RDiff)
3484 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3485 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003486 break;
3487 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003488 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3489 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003490 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003491 cast<ConstantInt>(RHS)->isZero()) {
3492 const SCEV *One = getConstant(LHS->getType(), 1);
3493 const SCEV *LS = getSCEV(LHS);
3494 const SCEV *LA = getSCEV(U->getOperand(1));
3495 const SCEV *RA = getSCEV(U->getOperand(2));
3496 const SCEV *LDiff = getMinusSCEV(LA, One);
3497 const SCEV *RDiff = getMinusSCEV(RA, LS);
3498 if (LDiff == RDiff)
3499 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3500 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003501 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003502 default:
3503 break;
3504 }
3505 }
3506
3507 default: // We cannot analyze this expression.
3508 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003509 }
3510
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003511 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003512}
3513
3514
3515
3516//===----------------------------------------------------------------------===//
3517// Iteration Count Computation Code
3518//
3519
Dan Gohman46bdfb02009-02-24 18:55:53 +00003520/// getBackedgeTakenCount - If the specified loop has a predictable
3521/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3522/// object. The backedge-taken count is the number of times the loop header
3523/// will be branched to from within the loop. This is one less than the
3524/// trip count of the loop, since it doesn't count the first iteration,
3525/// when the header is branched to from outside the loop.
3526///
3527/// Note that it is not valid to call this method on a loop without a
3528/// loop-invariant backedge-taken count (see
3529/// hasLoopInvariantBackedgeTakenCount).
3530///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003531const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003532 return getBackedgeTakenInfo(L).Exact;
3533}
3534
3535/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3536/// return the least SCEV value that is known never to be less than the
3537/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003538const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003539 return getBackedgeTakenInfo(L).Max;
3540}
3541
Dan Gohman59ae6b92009-07-08 19:23:34 +00003542/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3543/// onto the given Worklist.
3544static void
3545PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3546 BasicBlock *Header = L->getHeader();
3547
3548 // Push all Loop-header PHIs onto the Worklist stack.
3549 for (BasicBlock::iterator I = Header->begin();
3550 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3551 Worklist.push_back(PN);
3552}
3553
Dan Gohmana1af7572009-04-30 20:47:05 +00003554const ScalarEvolution::BackedgeTakenInfo &
3555ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003556 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003557 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003558 // update the value. The temporary CouldNotCompute value tells SCEV
3559 // code elsewhere that it shouldn't attempt to request a new
3560 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003561 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003562 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3563 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003564 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3565 if (BECount.Exact != getCouldNotCompute()) {
3566 assert(BECount.Exact->isLoopInvariant(L) &&
3567 BECount.Max->isLoopInvariant(L) &&
3568 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003569 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003570
Dan Gohman01ecca22009-04-27 20:16:15 +00003571 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003572 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003573 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003574 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003575 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003576 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003577 if (isa<PHINode>(L->getHeader()->begin()))
3578 // Only count loops that have phi nodes as not being computable.
3579 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003580 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003581
3582 // Now that we know more about the trip count for this loop, forget any
3583 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003584 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003585 // information. This is similar to the code in forgetLoop, except that
3586 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003587 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003588 SmallVector<Instruction *, 16> Worklist;
3589 PushLoopPHIs(L, Worklist);
3590
3591 SmallPtrSet<Instruction *, 8> Visited;
3592 while (!Worklist.empty()) {
3593 Instruction *I = Worklist.pop_back_val();
3594 if (!Visited.insert(I)) continue;
3595
Dan Gohman5d984912009-12-18 01:14:11 +00003596 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003597 Scalars.find(static_cast<Value *>(I));
3598 if (It != Scalars.end()) {
3599 // SCEVUnknown for a PHI either means that it has an unrecognized
3600 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003601 // by createNodeForPHI. In the former case, additional loop trip
3602 // count information isn't going to change anything. In the later
3603 // case, createNodeForPHI will perform the necessary updates on its
3604 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003605 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3606 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003607 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003608 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003609 if (PHINode *PN = dyn_cast<PHINode>(I))
3610 ConstantEvolutionLoopExitValue.erase(PN);
3611 }
3612
3613 PushDefUseChildren(I, Worklist);
3614 }
3615 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003616 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003617 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003618}
3619
Dan Gohman4c7279a2009-10-31 15:04:55 +00003620/// forgetLoop - This method should be called by the client when it has
3621/// changed a loop in a way that may effect ScalarEvolution's ability to
3622/// compute a trip count, or if the loop is deleted.
3623void ScalarEvolution::forgetLoop(const Loop *L) {
3624 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003625 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003626
Dan Gohman4c7279a2009-10-31 15:04:55 +00003627 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003628 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003629 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003630
Dan Gohman59ae6b92009-07-08 19:23:34 +00003631 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003632 while (!Worklist.empty()) {
3633 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003634 if (!Visited.insert(I)) continue;
3635
Dan Gohman5d984912009-12-18 01:14:11 +00003636 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003637 Scalars.find(static_cast<Value *>(I));
3638 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003639 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003640 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003641 if (PHINode *PN = dyn_cast<PHINode>(I))
3642 ConstantEvolutionLoopExitValue.erase(PN);
3643 }
3644
3645 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003646 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003647}
3648
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003649/// forgetValue - This method should be called by the client when it has
3650/// changed a value in a way that may effect its value, or which may
3651/// disconnect it from a def-use chain linking it to a loop.
3652void ScalarEvolution::forgetValue(Value *V) {
3653 Instruction *I = dyn_cast<Instruction>(V);
3654 if (!I) return;
3655
3656 // Drop information about expressions based on loop-header PHIs.
3657 SmallVector<Instruction *, 16> Worklist;
3658 Worklist.push_back(I);
3659
3660 SmallPtrSet<Instruction *, 8> Visited;
3661 while (!Worklist.empty()) {
3662 I = Worklist.pop_back_val();
3663 if (!Visited.insert(I)) continue;
3664
3665 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3666 Scalars.find(static_cast<Value *>(I));
3667 if (It != Scalars.end()) {
3668 ValuesAtScopes.erase(It->second);
3669 Scalars.erase(It);
3670 if (PHINode *PN = dyn_cast<PHINode>(I))
3671 ConstantEvolutionLoopExitValue.erase(PN);
3672 }
3673
Dan Gohman06028bc2010-06-30 20:21:12 +00003674 // If there's a SCEVUnknown tying this value into the SCEV
3675 // space, remove it from the folding set map. The SCEVUnknown
3676 // object and any other SCEV objects which reference it
3677 // (transitively) remain allocated, effectively leaked until
3678 // the underlying BumpPtrAllocator is freed.
3679 //
3680 // This permits SCEV pointers to be used as keys in maps
3681 // such as the ValuesAtScopes map.
3682 FoldingSetNodeID ID;
3683 ID.AddInteger(scUnknown);
3684 ID.AddPointer(I);
3685 void *IP;
3686 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3687 UniqueSCEVs.RemoveNode(S);
3688
3689 // This isn't necessary, but we might as well remove the
3690 // value from the ValuesAtScopes map too.
3691 ValuesAtScopes.erase(S);
3692 }
3693
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003694 PushDefUseChildren(I, Worklist);
3695 }
3696}
3697
Dan Gohman46bdfb02009-02-24 18:55:53 +00003698/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3699/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003700ScalarEvolution::BackedgeTakenInfo
3701ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003702 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003703 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003704
Dan Gohmana334aa72009-06-22 00:31:57 +00003705 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003706 const SCEV *BECount = getCouldNotCompute();
3707 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003708 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003709 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3710 BackedgeTakenInfo NewBTI =
3711 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003712
Dan Gohman1c343752009-06-27 21:21:31 +00003713 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003714 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003715 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003716 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003717 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003718 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003719 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003720 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003721 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003722 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003723 }
Dan Gohman1c343752009-06-27 21:21:31 +00003724 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003725 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003726 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003727 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003728 }
3729
3730 return BackedgeTakenInfo(BECount, MaxBECount);
3731}
3732
3733/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3734/// of the specified loop will execute if it exits via the specified block.
3735ScalarEvolution::BackedgeTakenInfo
3736ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3737 BasicBlock *ExitingBlock) {
3738
3739 // Okay, we've chosen an exiting block. See what condition causes us to
3740 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003741 //
3742 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003743 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003744 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003745 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003746
Chris Lattner8b0e3602007-01-07 02:24:26 +00003747 // At this point, we know we have a conditional branch that determines whether
3748 // the loop is exited. However, we don't know if the branch is executed each
3749 // time through the loop. If not, then the execution count of the branch will
3750 // not be equal to the trip count of the loop.
3751 //
3752 // Currently we check for this by checking to see if the Exit branch goes to
3753 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003754 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 // loop header. This is common for un-rotated loops.
3756 //
3757 // If both of those tests fail, walk up the unique predecessor chain to the
3758 // header, stopping if there is an edge that doesn't exit the loop. If the
3759 // header is reached, the execution count of the branch will be equal to the
3760 // trip count of the loop.
3761 //
3762 // More extensive analysis could be done to handle more cases here.
3763 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003764 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003765 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003766 ExitBr->getParent() != L->getHeader()) {
3767 // The simple checks failed, try climbing the unique predecessor chain
3768 // up to the header.
3769 bool Ok = false;
3770 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3771 BasicBlock *Pred = BB->getUniquePredecessor();
3772 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003773 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003774 TerminatorInst *PredTerm = Pred->getTerminator();
3775 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3776 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3777 if (PredSucc == BB)
3778 continue;
3779 // If the predecessor has a successor that isn't BB and isn't
3780 // outside the loop, assume the worst.
3781 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003782 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003783 }
3784 if (Pred == L->getHeader()) {
3785 Ok = true;
3786 break;
3787 }
3788 BB = Pred;
3789 }
3790 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003791 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003792 }
3793
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003794 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003795 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3796 ExitBr->getSuccessor(0),
3797 ExitBr->getSuccessor(1));
3798}
3799
3800/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3801/// backedge of the specified loop will execute if its exit condition
3802/// were a conditional branch of ExitCond, TBB, and FBB.
3803ScalarEvolution::BackedgeTakenInfo
3804ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3805 Value *ExitCond,
3806 BasicBlock *TBB,
3807 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003808 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003809 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3810 if (BO->getOpcode() == Instruction::And) {
3811 // Recurse on the operands of the and.
3812 BackedgeTakenInfo BTI0 =
3813 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3814 BackedgeTakenInfo BTI1 =
3815 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003816 const SCEV *BECount = getCouldNotCompute();
3817 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003818 if (L->contains(TBB)) {
3819 // Both conditions must be true for the loop to continue executing.
3820 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003821 if (BTI0.Exact == getCouldNotCompute() ||
3822 BTI1.Exact == getCouldNotCompute())
3823 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003824 else
3825 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003826 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003828 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003830 else
3831 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 } else {
3833 // Both conditions must be true for the loop to exit.
3834 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003835 if (BTI0.Exact != getCouldNotCompute() &&
3836 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003838 if (BTI0.Max != getCouldNotCompute() &&
3839 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003840 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3841 }
3842
3843 return BackedgeTakenInfo(BECount, MaxBECount);
3844 }
3845 if (BO->getOpcode() == Instruction::Or) {
3846 // Recurse on the operands of the or.
3847 BackedgeTakenInfo BTI0 =
3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3849 BackedgeTakenInfo BTI1 =
3850 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003851 const SCEV *BECount = getCouldNotCompute();
3852 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003853 if (L->contains(FBB)) {
3854 // Both conditions must be false for the loop to continue executing.
3855 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003856 if (BTI0.Exact == getCouldNotCompute() ||
3857 BTI1.Exact == getCouldNotCompute())
3858 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003859 else
3860 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003861 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003862 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003863 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003865 else
3866 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003867 } else {
3868 // Both conditions must be false for the loop to exit.
3869 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003870 if (BTI0.Exact != getCouldNotCompute() &&
3871 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003872 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003873 if (BTI0.Max != getCouldNotCompute() &&
3874 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003875 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3876 }
3877
3878 return BackedgeTakenInfo(BECount, MaxBECount);
3879 }
3880 }
3881
3882 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003883 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003884 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3885 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003886
Dan Gohman00cb5b72010-02-19 18:12:07 +00003887 // Check for a constant condition. These are normally stripped out by
3888 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3889 // preserve the CFG and is temporarily leaving constant conditions
3890 // in place.
3891 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3892 if (L->contains(FBB) == !CI->getZExtValue())
3893 // The backedge is always taken.
3894 return getCouldNotCompute();
3895 else
3896 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003897 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003898 }
3899
Eli Friedman361e54d2009-05-09 12:32:42 +00003900 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003901 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3902}
3903
3904/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3905/// backedge of the specified loop will execute if its exit condition
3906/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3907ScalarEvolution::BackedgeTakenInfo
3908ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3909 ICmpInst *ExitCond,
3910 BasicBlock *TBB,
3911 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003912
Reid Spencere4d87aa2006-12-23 06:05:41 +00003913 // If the condition was exit on true, convert the condition to exit on false
3914 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003916 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003917 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003918 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003919
3920 // Handle common loops like: for (X = "string"; *X; ++X)
3921 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3922 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003923 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003924 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003925 if (ItCnt.hasAnyInfo())
3926 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003927 }
3928
Dan Gohman0bba49c2009-07-07 17:06:11 +00003929 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3930 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003931
3932 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003933 LHS = getSCEVAtScope(LHS, L);
3934 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003935
Dan Gohman64a845e2009-06-24 04:48:43 +00003936 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003937 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003938 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3939 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003940 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003941 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003942 }
3943
Dan Gohman03557dc2010-05-03 16:35:17 +00003944 // Simplify the operands before analyzing them.
3945 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3946
Chris Lattner53e677a2004-04-02 20:23:17 +00003947 // If we have a comparison of a chrec against a constant, try to use value
3948 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003949 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3950 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003951 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003952 // Form the constant range.
3953 ConstantRange CompRange(
3954 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003955
Dan Gohman0bba49c2009-07-07 17:06:11 +00003956 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003957 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003958 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003959
Chris Lattner53e677a2004-04-02 20:23:17 +00003960 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003961 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003962 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003963 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3964 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003965 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003966 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003967 case ICmpInst::ICMP_EQ: { // while (X == Y)
3968 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003969 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3970 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003971 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003972 }
3973 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003974 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3975 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003976 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003977 }
3978 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003979 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3980 getNotSCEV(RHS), L, true);
3981 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003982 break;
3983 }
3984 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003985 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3986 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003987 break;
3988 }
3989 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003990 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3991 getNotSCEV(RHS), L, false);
3992 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003993 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003994 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003995 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003996#if 0
David Greene25e0e872009-12-23 22:18:14 +00003997 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003998 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003999 dbgs() << "[unsigned] ";
4000 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004001 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004002 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004003#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004004 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004005 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004006 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004007 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004008}
4009
Chris Lattner673e02b2004-10-12 01:49:27 +00004010static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004011EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4012 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004013 const SCEV *InVal = SE.getConstant(C);
4014 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004015 assert(isa<SCEVConstant>(Val) &&
4016 "Evaluation of SCEV at constant didn't fold correctly?");
4017 return cast<SCEVConstant>(Val)->getValue();
4018}
4019
4020/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4021/// and a GEP expression (missing the pointer index) indexing into it, return
4022/// the addressed element of the initializer or null if the index expression is
4023/// invalid.
4024static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004025GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004026 const std::vector<ConstantInt*> &Indices) {
4027 Constant *Init = GV->getInitializer();
4028 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004029 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004030 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4031 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4032 Init = cast<Constant>(CS->getOperand(Idx));
4033 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4034 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4035 Init = cast<Constant>(CA->getOperand(Idx));
4036 } else if (isa<ConstantAggregateZero>(Init)) {
4037 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4038 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004039 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004040 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4041 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004042 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004043 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004044 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004045 }
4046 return 0;
4047 } else {
4048 return 0; // Unknown initializer type
4049 }
4050 }
4051 return Init;
4052}
4053
Dan Gohman46bdfb02009-02-24 18:55:53 +00004054/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4055/// 'icmp op load X, cst', try to see if we can compute the backedge
4056/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004057ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004058ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4059 LoadInst *LI,
4060 Constant *RHS,
4061 const Loop *L,
4062 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004063 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004064
4065 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004066 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004067 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004068 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004069
4070 // Make sure that it is really a constant global we are gepping, with an
4071 // initializer, and make sure the first IDX is really 0.
4072 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004073 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004074 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4075 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004076 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004077
4078 // Okay, we allow one non-constant index into the GEP instruction.
4079 Value *VarIdx = 0;
4080 std::vector<ConstantInt*> Indexes;
4081 unsigned VarIdxNum = 0;
4082 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4083 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4084 Indexes.push_back(CI);
4085 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004086 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004087 VarIdx = GEP->getOperand(i);
4088 VarIdxNum = i-2;
4089 Indexes.push_back(0);
4090 }
4091
4092 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4093 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004094 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004095 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004096
4097 // We can only recognize very limited forms of loop index expressions, in
4098 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004099 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004100 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4101 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4102 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004103 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004104
4105 unsigned MaxSteps = MaxBruteForceIterations;
4106 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004107 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004108 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004109 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004110
4111 // Form the GEP offset.
4112 Indexes[VarIdxNum] = Val;
4113
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004114 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004115 if (Result == 0) break; // Cannot compute!
4116
4117 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004118 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004119 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004120 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004121#if 0
David Greene25e0e872009-12-23 22:18:14 +00004122 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004123 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4124 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004125#endif
4126 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004127 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004128 }
4129 }
Dan Gohman1c343752009-06-27 21:21:31 +00004130 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004131}
4132
4133
Chris Lattner3221ad02004-04-17 22:58:41 +00004134/// CanConstantFold - Return true if we can constant fold an instruction of the
4135/// specified type, assuming that all operands were constants.
4136static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004137 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004138 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4139 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004140
Chris Lattner3221ad02004-04-17 22:58:41 +00004141 if (const CallInst *CI = dyn_cast<CallInst>(I))
4142 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004143 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004144 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004145}
4146
Chris Lattner3221ad02004-04-17 22:58:41 +00004147/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4148/// in the loop that V is derived from. We allow arbitrary operations along the
4149/// way, but the operands of an operation must either be constants or a value
4150/// derived from a constant PHI. If this expression does not fit with these
4151/// constraints, return null.
4152static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4153 // If this is not an instruction, or if this is an instruction outside of the
4154 // loop, it can't be derived from a loop PHI.
4155 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004156 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004157
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004158 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004159 if (L->getHeader() == I->getParent())
4160 return PN;
4161 else
4162 // We don't currently keep track of the control flow needed to evaluate
4163 // PHIs, so we cannot handle PHIs inside of loops.
4164 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004165 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004166
4167 // If we won't be able to constant fold this expression even if the operands
4168 // are constants, return early.
4169 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004170
Chris Lattner3221ad02004-04-17 22:58:41 +00004171 // Otherwise, we can evaluate this instruction if all of its operands are
4172 // constant or derived from a PHI node themselves.
4173 PHINode *PHI = 0;
4174 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004175 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004176 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4177 if (P == 0) return 0; // Not evolving from PHI
4178 if (PHI == 0)
4179 PHI = P;
4180 else if (PHI != P)
4181 return 0; // Evolving from multiple different PHIs.
4182 }
4183
4184 // This is a expression evolving from a constant PHI!
4185 return PHI;
4186}
4187
4188/// EvaluateExpression - Given an expression that passes the
4189/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4190/// in the loop has the value PHIVal. If we can't fold this expression for some
4191/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004192static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4193 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004194 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004195 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004196 Instruction *I = cast<Instruction>(V);
4197
Dan Gohman9d4588f2010-06-22 13:15:46 +00004198 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004199
4200 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004201 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004202 if (Operands[i] == 0) return 0;
4203 }
4204
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004205 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004206 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004207 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004208 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004209 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004210}
4211
4212/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4213/// in the header of its containing loop, we know the loop executes a
4214/// constant number of times, and the PHI node is just a recurrence
4215/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004216Constant *
4217ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004218 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004219 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004220 std::map<PHINode*, Constant*>::iterator I =
4221 ConstantEvolutionLoopExitValue.find(PN);
4222 if (I != ConstantEvolutionLoopExitValue.end())
4223 return I->second;
4224
Dan Gohmane0567812010-04-08 23:03:40 +00004225 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004226 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4227
4228 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4229
4230 // Since the loop is canonicalized, the PHI node must have two entries. One
4231 // entry must be a constant (coming in from outside of the loop), and the
4232 // second must be derived from the same PHI.
4233 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4234 Constant *StartCST =
4235 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4236 if (StartCST == 0)
4237 return RetVal = 0; // Must be a constant.
4238
4239 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004240 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4241 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004242 return RetVal = 0; // Not derived from same PHI.
4243
4244 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004245 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004246 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004247
Dan Gohman46bdfb02009-02-24 18:55:53 +00004248 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004249 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004250 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4251 if (IterationNum == NumIterations)
4252 return RetVal = PHIVal; // Got exit value!
4253
4254 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004255 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004256 if (NextPHI == PHIVal)
4257 return RetVal = NextPHI; // Stopped evolving!
4258 if (NextPHI == 0)
4259 return 0; // Couldn't evaluate!
4260 PHIVal = NextPHI;
4261 }
4262}
4263
Dan Gohman07ad19b2009-07-27 16:09:48 +00004264/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004265/// constant number of times (the condition evolves only from constants),
4266/// try to evaluate a few iterations of the loop until we get the exit
4267/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004268/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004269const SCEV *
4270ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4271 Value *Cond,
4272 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004273 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004274 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004275
Dan Gohmanb92654d2010-06-19 14:17:24 +00004276 // If the loop is canonicalized, the PHI will have exactly two entries.
4277 // That's the only form we support here.
4278 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4279
4280 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004281 // second must be derived from the same PHI.
4282 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4283 Constant *StartCST =
4284 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004285 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004286
4287 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004288 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4289 !isa<Constant>(BEValue))
4290 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004291
4292 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4293 // the loop symbolically to determine when the condition gets a value of
4294 // "ExitWhen".
4295 unsigned IterationNum = 0;
4296 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4297 for (Constant *PHIVal = StartCST;
4298 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004299 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004300 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004301
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004302 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004303 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004304
Reid Spencere8019bb2007-03-01 07:25:48 +00004305 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004306 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004307 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004308 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004309
Chris Lattner3221ad02004-04-17 22:58:41 +00004310 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004311 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004313 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004314 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004315 }
4316
4317 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004318 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004319}
4320
Dan Gohmane7125f42009-09-03 15:00:26 +00004321/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004322/// at the specified scope in the program. The L value specifies a loop
4323/// nest to evaluate the expression at, where null is the top-level or a
4324/// specified loop is immediately inside of the loop.
4325///
4326/// This method can be used to compute the exit value for a variable defined
4327/// in a loop by querying what the value will hold in the parent loop.
4328///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004329/// In the case that a relevant loop exit value cannot be computed, the
4330/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004331const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004332 // Check to see if we've folded this expression at this loop before.
4333 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4334 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4335 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4336 if (!Pair.second)
4337 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004338
Dan Gohman42214892009-08-31 21:15:23 +00004339 // Otherwise compute it.
4340 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004341 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004342 return C;
4343}
4344
4345const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004346 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004347
Nick Lewycky3e630762008-02-20 06:48:22 +00004348 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004349 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004350 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004351 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004352 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004353 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4354 if (PHINode *PN = dyn_cast<PHINode>(I))
4355 if (PN->getParent() == LI->getHeader()) {
4356 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004357 // to see if the loop that contains it has a known backedge-taken
4358 // count. If so, we may be able to force computation of the exit
4359 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004360 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004361 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004362 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004363 // Okay, we know how many times the containing loop executes. If
4364 // this is a constant evolving PHI node, get the final value at
4365 // the specified iteration number.
4366 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004367 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004368 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004369 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004370 }
4371 }
4372
Reid Spencer09906f32006-12-04 21:33:23 +00004373 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004374 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004375 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004376 // result. This is particularly useful for computing loop exit values.
4377 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004378 SmallVector<Constant *, 4> Operands;
4379 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4381 Value *Op = I->getOperand(i);
4382 if (Constant *C = dyn_cast<Constant>(Op)) {
4383 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004384 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004385 }
Dan Gohman11046452010-06-29 23:43:06 +00004386
4387 // If any of the operands is non-constant and if they are
4388 // non-integer and non-pointer, don't even try to analyze them
4389 // with scev techniques.
4390 if (!isSCEVable(Op->getType()))
4391 return V;
4392
4393 const SCEV *OrigV = getSCEV(Op);
4394 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4395 MadeImprovement |= OrigV != OpV;
4396
4397 Constant *C = 0;
4398 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4399 C = SC->getValue();
4400 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4401 C = dyn_cast<Constant>(SU->getValue());
4402 if (!C) return V;
4403 if (C->getType() != Op->getType())
4404 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4405 Op->getType(),
4406 false),
4407 C, Op->getType());
4408 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004409 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004410
Dan Gohman11046452010-06-29 23:43:06 +00004411 // Check to see if getSCEVAtScope actually made an improvement.
4412 if (MadeImprovement) {
4413 Constant *C = 0;
4414 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4415 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4416 Operands[0], Operands[1], TD);
4417 else
4418 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4419 &Operands[0], Operands.size(), TD);
4420 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004421 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004422 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004423 }
4424 }
4425
4426 // This is some other type of SCEVUnknown, just return it.
4427 return V;
4428 }
4429
Dan Gohman622ed672009-05-04 22:02:23 +00004430 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004431 // Avoid performing the look-up in the common case where the specified
4432 // expression has no loop-variant portions.
4433 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004434 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004435 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004436 // Okay, at least one of these operands is loop variant but might be
4437 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004438 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4439 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004440 NewOps.push_back(OpAtScope);
4441
4442 for (++i; i != e; ++i) {
4443 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004444 NewOps.push_back(OpAtScope);
4445 }
4446 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004447 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004448 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004449 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004450 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004451 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004452 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004453 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004454 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004455 }
4456 }
4457 // If we got here, all operands are loop invariant.
4458 return Comm;
4459 }
4460
Dan Gohman622ed672009-05-04 22:02:23 +00004461 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004462 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4463 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004464 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4465 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004466 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004467 }
4468
4469 // If this is a loop recurrence for a loop that does not contain L, then we
4470 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004471 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004472 // First, attempt to evaluate each operand.
4473 // Avoid performing the look-up in the common case where the specified
4474 // expression has no loop-variant portions.
4475 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4476 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4477 if (OpAtScope == AddRec->getOperand(i))
4478 continue;
4479
4480 // Okay, at least one of these operands is loop variant but might be
4481 // foldable. Build a new instance of the folded commutative expression.
4482 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4483 AddRec->op_begin()+i);
4484 NewOps.push_back(OpAtScope);
4485 for (++i; i != e; ++i)
4486 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4487
4488 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4489 break;
4490 }
4491
4492 // If the scope is outside the addrec's loop, evaluate it by using the
4493 // loop exit value of the addrec.
4494 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004495 // To evaluate this recurrence, we need to know how many times the AddRec
4496 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004497 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004498 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004499
Eli Friedmanb42a6262008-08-04 23:49:06 +00004500 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004501 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 }
Dan Gohman11046452010-06-29 23:43:06 +00004503
Dan Gohmand594e6f2009-05-24 23:25:42 +00004504 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004505 }
4506
Dan Gohman622ed672009-05-04 22:02:23 +00004507 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004508 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004509 if (Op == Cast->getOperand())
4510 return Cast; // must be loop invariant
4511 return getZeroExtendExpr(Op, Cast->getType());
4512 }
4513
Dan Gohman622ed672009-05-04 22:02:23 +00004514 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004515 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004516 if (Op == Cast->getOperand())
4517 return Cast; // must be loop invariant
4518 return getSignExtendExpr(Op, Cast->getType());
4519 }
4520
Dan Gohman622ed672009-05-04 22:02:23 +00004521 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004522 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004523 if (Op == Cast->getOperand())
4524 return Cast; // must be loop invariant
4525 return getTruncateExpr(Op, Cast->getType());
4526 }
4527
Torok Edwinc23197a2009-07-14 16:55:14 +00004528 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004529 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004530}
4531
Dan Gohman66a7e852009-05-08 20:38:54 +00004532/// getSCEVAtScope - This is a convenience function which does
4533/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004534const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004535 return getSCEVAtScope(getSCEV(V), L);
4536}
4537
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004538/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4539/// following equation:
4540///
4541/// A * X = B (mod N)
4542///
4543/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4544/// A and B isn't important.
4545///
4546/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004547static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004548 ScalarEvolution &SE) {
4549 uint32_t BW = A.getBitWidth();
4550 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4551 assert(A != 0 && "A must be non-zero.");
4552
4553 // 1. D = gcd(A, N)
4554 //
4555 // The gcd of A and N may have only one prime factor: 2. The number of
4556 // trailing zeros in A is its multiplicity
4557 uint32_t Mult2 = A.countTrailingZeros();
4558 // D = 2^Mult2
4559
4560 // 2. Check if B is divisible by D.
4561 //
4562 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4563 // is not less than multiplicity of this prime factor for D.
4564 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004565 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004566
4567 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4568 // modulo (N / D).
4569 //
4570 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4571 // bit width during computations.
4572 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4573 APInt Mod(BW + 1, 0);
4574 Mod.set(BW - Mult2); // Mod = N / D
4575 APInt I = AD.multiplicativeInverse(Mod);
4576
4577 // 4. Compute the minimum unsigned root of the equation:
4578 // I * (B / D) mod (N / D)
4579 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4580
4581 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4582 // bits.
4583 return SE.getConstant(Result.trunc(BW));
4584}
Chris Lattner53e677a2004-04-02 20:23:17 +00004585
4586/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4587/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4588/// might be the same) or two SCEVCouldNotCompute objects.
4589///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004590static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004591SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004592 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004593 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4594 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4595 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004596
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004598 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004599 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004600 return std::make_pair(CNC, CNC);
4601 }
4602
Reid Spencere8019bb2007-03-01 07:25:48 +00004603 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004604 const APInt &L = LC->getValue()->getValue();
4605 const APInt &M = MC->getValue()->getValue();
4606 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004607 APInt Two(BitWidth, 2);
4608 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004609
Dan Gohman64a845e2009-06-24 04:48:43 +00004610 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004611 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004612 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004613 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4614 // The B coefficient is M-N/2
4615 APInt B(M);
4616 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004617
Reid Spencere8019bb2007-03-01 07:25:48 +00004618 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004619 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004620
Reid Spencere8019bb2007-03-01 07:25:48 +00004621 // Compute the B^2-4ac term.
4622 APInt SqrtTerm(B);
4623 SqrtTerm *= B;
4624 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004625
Reid Spencere8019bb2007-03-01 07:25:48 +00004626 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4627 // integer value or else APInt::sqrt() will assert.
4628 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004629
Dan Gohman64a845e2009-06-24 04:48:43 +00004630 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004631 // The divisions must be performed as signed divisions.
4632 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004633 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004634 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004635 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004636 return std::make_pair(CNC, CNC);
4637 }
4638
Owen Andersone922c022009-07-22 00:24:57 +00004639 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004640
4641 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004642 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004643 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004644 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004645
Dan Gohman64a845e2009-06-24 04:48:43 +00004646 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004647 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004648 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004649}
4650
4651/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004652/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004653ScalarEvolution::BackedgeTakenInfo
4654ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004655 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004656 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004657 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004658 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004659 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004660 }
4661
Dan Gohman35738ac2009-05-04 22:30:44 +00004662 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004663 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004664 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004665
4666 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004667 // If this is an affine expression, the execution count of this branch is
4668 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004669 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004670 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004671 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004672 // equivalent to:
4673 //
4674 // Step*N = -Start (mod 2^BW)
4675 //
4676 // where BW is the common bit width of Start and Step.
4677
Chris Lattner53e677a2004-04-02 20:23:17 +00004678 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004679 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4680 L->getParentLoop());
4681 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4682 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004683
Dan Gohman622ed672009-05-04 22:02:23 +00004684 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004685 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004686
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004687 // First, handle unitary steps.
4688 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004689 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004690 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4691 return Start; // N = Start (as unsigned)
4692
4693 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004694 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004695 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004696 -StartC->getValue()->getValue(),
4697 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004698 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004699 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004700 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4701 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004702 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004703 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004704 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4705 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004706 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004707#if 0
David Greene25e0e872009-12-23 22:18:14 +00004708 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004709 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004710#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004711 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004712 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004713 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004714 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004715 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004716 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004717
Chris Lattner53e677a2004-04-02 20:23:17 +00004718 // We can only use this value if the chrec ends up with an exact zero
4719 // value at this index. When solving for "X*X != 5", for example, we
4720 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004721 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004722 if (Val->isZero())
4723 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004724 }
4725 }
4726 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004727
Dan Gohman1c343752009-06-27 21:21:31 +00004728 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004729}
4730
4731/// HowFarToNonZero - Return the number of times a backedge checking the
4732/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004733/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004734ScalarEvolution::BackedgeTakenInfo
4735ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004736 // Loops that look like: while (X == 0) are very strange indeed. We don't
4737 // handle them yet except for the trivial case. This could be expanded in the
4738 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004739
Chris Lattner53e677a2004-04-02 20:23:17 +00004740 // If the value is a constant, check to see if it is known to be non-zero
4741 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004742 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004743 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004744 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004745 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004746 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004747
Chris Lattner53e677a2004-04-02 20:23:17 +00004748 // We could implement others, but I really doubt anyone writes loops like
4749 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004750 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004751}
4752
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004753/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4754/// (which may not be an immediate predecessor) which has exactly one
4755/// successor from which BB is reachable, or null if no such block is
4756/// found.
4757///
Dan Gohman005752b2010-04-15 16:19:08 +00004758std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004759ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004760 // If the block has a unique predecessor, then there is no path from the
4761 // predecessor to the block that does not go through the direct edge
4762 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004763 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004764 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004765
4766 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004767 // If the header has a unique predecessor outside the loop, it must be
4768 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004769 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004770 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004771
Dan Gohman005752b2010-04-15 16:19:08 +00004772 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004773}
4774
Dan Gohman763bad12009-06-20 00:35:32 +00004775/// HasSameValue - SCEV structural equivalence is usually sufficient for
4776/// testing whether two expressions are equal, however for the purposes of
4777/// looking for a condition guarding a loop, it can be useful to be a little
4778/// more general, since a front-end may have replicated the controlling
4779/// expression.
4780///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004781static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004782 // Quick check to see if they are the same SCEV.
4783 if (A == B) return true;
4784
4785 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4786 // two different instructions with the same value. Check for this case.
4787 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4788 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4789 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4790 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004791 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004792 return true;
4793
4794 // Otherwise assume they may have a different value.
4795 return false;
4796}
4797
Dan Gohmane9796502010-04-24 01:28:42 +00004798/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4799/// predicate Pred. Return true iff any changes were made.
4800///
4801bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4802 const SCEV *&LHS, const SCEV *&RHS) {
4803 bool Changed = false;
4804
4805 // Canonicalize a constant to the right side.
4806 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4807 // Check for both operands constant.
4808 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4809 if (ConstantExpr::getICmp(Pred,
4810 LHSC->getValue(),
4811 RHSC->getValue())->isNullValue())
4812 goto trivially_false;
4813 else
4814 goto trivially_true;
4815 }
4816 // Otherwise swap the operands to put the constant on the right.
4817 std::swap(LHS, RHS);
4818 Pred = ICmpInst::getSwappedPredicate(Pred);
4819 Changed = true;
4820 }
4821
4822 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004823 // addrec's loop, put the addrec on the left. Also make a dominance check,
4824 // as both operands could be addrecs loop-invariant in each other's loop.
4825 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4826 const Loop *L = AR->getLoop();
4827 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004828 std::swap(LHS, RHS);
4829 Pred = ICmpInst::getSwappedPredicate(Pred);
4830 Changed = true;
4831 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004832 }
Dan Gohmane9796502010-04-24 01:28:42 +00004833
4834 // If there's a constant operand, canonicalize comparisons with boundary
4835 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4836 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4837 const APInt &RA = RC->getValue()->getValue();
4838 switch (Pred) {
4839 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4840 case ICmpInst::ICMP_EQ:
4841 case ICmpInst::ICMP_NE:
4842 break;
4843 case ICmpInst::ICMP_UGE:
4844 if ((RA - 1).isMinValue()) {
4845 Pred = ICmpInst::ICMP_NE;
4846 RHS = getConstant(RA - 1);
4847 Changed = true;
4848 break;
4849 }
4850 if (RA.isMaxValue()) {
4851 Pred = ICmpInst::ICMP_EQ;
4852 Changed = true;
4853 break;
4854 }
4855 if (RA.isMinValue()) goto trivially_true;
4856
4857 Pred = ICmpInst::ICMP_UGT;
4858 RHS = getConstant(RA - 1);
4859 Changed = true;
4860 break;
4861 case ICmpInst::ICMP_ULE:
4862 if ((RA + 1).isMaxValue()) {
4863 Pred = ICmpInst::ICMP_NE;
4864 RHS = getConstant(RA + 1);
4865 Changed = true;
4866 break;
4867 }
4868 if (RA.isMinValue()) {
4869 Pred = ICmpInst::ICMP_EQ;
4870 Changed = true;
4871 break;
4872 }
4873 if (RA.isMaxValue()) goto trivially_true;
4874
4875 Pred = ICmpInst::ICMP_ULT;
4876 RHS = getConstant(RA + 1);
4877 Changed = true;
4878 break;
4879 case ICmpInst::ICMP_SGE:
4880 if ((RA - 1).isMinSignedValue()) {
4881 Pred = ICmpInst::ICMP_NE;
4882 RHS = getConstant(RA - 1);
4883 Changed = true;
4884 break;
4885 }
4886 if (RA.isMaxSignedValue()) {
4887 Pred = ICmpInst::ICMP_EQ;
4888 Changed = true;
4889 break;
4890 }
4891 if (RA.isMinSignedValue()) goto trivially_true;
4892
4893 Pred = ICmpInst::ICMP_SGT;
4894 RHS = getConstant(RA - 1);
4895 Changed = true;
4896 break;
4897 case ICmpInst::ICMP_SLE:
4898 if ((RA + 1).isMaxSignedValue()) {
4899 Pred = ICmpInst::ICMP_NE;
4900 RHS = getConstant(RA + 1);
4901 Changed = true;
4902 break;
4903 }
4904 if (RA.isMinSignedValue()) {
4905 Pred = ICmpInst::ICMP_EQ;
4906 Changed = true;
4907 break;
4908 }
4909 if (RA.isMaxSignedValue()) goto trivially_true;
4910
4911 Pred = ICmpInst::ICMP_SLT;
4912 RHS = getConstant(RA + 1);
4913 Changed = true;
4914 break;
4915 case ICmpInst::ICMP_UGT:
4916 if (RA.isMinValue()) {
4917 Pred = ICmpInst::ICMP_NE;
4918 Changed = true;
4919 break;
4920 }
4921 if ((RA + 1).isMaxValue()) {
4922 Pred = ICmpInst::ICMP_EQ;
4923 RHS = getConstant(RA + 1);
4924 Changed = true;
4925 break;
4926 }
4927 if (RA.isMaxValue()) goto trivially_false;
4928 break;
4929 case ICmpInst::ICMP_ULT:
4930 if (RA.isMaxValue()) {
4931 Pred = ICmpInst::ICMP_NE;
4932 Changed = true;
4933 break;
4934 }
4935 if ((RA - 1).isMinValue()) {
4936 Pred = ICmpInst::ICMP_EQ;
4937 RHS = getConstant(RA - 1);
4938 Changed = true;
4939 break;
4940 }
4941 if (RA.isMinValue()) goto trivially_false;
4942 break;
4943 case ICmpInst::ICMP_SGT:
4944 if (RA.isMinSignedValue()) {
4945 Pred = ICmpInst::ICMP_NE;
4946 Changed = true;
4947 break;
4948 }
4949 if ((RA + 1).isMaxSignedValue()) {
4950 Pred = ICmpInst::ICMP_EQ;
4951 RHS = getConstant(RA + 1);
4952 Changed = true;
4953 break;
4954 }
4955 if (RA.isMaxSignedValue()) goto trivially_false;
4956 break;
4957 case ICmpInst::ICMP_SLT:
4958 if (RA.isMaxSignedValue()) {
4959 Pred = ICmpInst::ICMP_NE;
4960 Changed = true;
4961 break;
4962 }
4963 if ((RA - 1).isMinSignedValue()) {
4964 Pred = ICmpInst::ICMP_EQ;
4965 RHS = getConstant(RA - 1);
4966 Changed = true;
4967 break;
4968 }
4969 if (RA.isMinSignedValue()) goto trivially_false;
4970 break;
4971 }
4972 }
4973
4974 // Check for obvious equality.
4975 if (HasSameValue(LHS, RHS)) {
4976 if (ICmpInst::isTrueWhenEqual(Pred))
4977 goto trivially_true;
4978 if (ICmpInst::isFalseWhenEqual(Pred))
4979 goto trivially_false;
4980 }
4981
Dan Gohman03557dc2010-05-03 16:35:17 +00004982 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4983 // adding or subtracting 1 from one of the operands.
4984 switch (Pred) {
4985 case ICmpInst::ICMP_SLE:
4986 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4987 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4988 /*HasNUW=*/false, /*HasNSW=*/true);
4989 Pred = ICmpInst::ICMP_SLT;
4990 Changed = true;
4991 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004992 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004993 /*HasNUW=*/false, /*HasNSW=*/true);
4994 Pred = ICmpInst::ICMP_SLT;
4995 Changed = true;
4996 }
4997 break;
4998 case ICmpInst::ICMP_SGE:
4999 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005000 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005001 /*HasNUW=*/false, /*HasNSW=*/true);
5002 Pred = ICmpInst::ICMP_SGT;
5003 Changed = true;
5004 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5005 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5006 /*HasNUW=*/false, /*HasNSW=*/true);
5007 Pred = ICmpInst::ICMP_SGT;
5008 Changed = true;
5009 }
5010 break;
5011 case ICmpInst::ICMP_ULE:
5012 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005013 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005014 /*HasNUW=*/true, /*HasNSW=*/false);
5015 Pred = ICmpInst::ICMP_ULT;
5016 Changed = true;
5017 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005018 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005019 /*HasNUW=*/true, /*HasNSW=*/false);
5020 Pred = ICmpInst::ICMP_ULT;
5021 Changed = true;
5022 }
5023 break;
5024 case ICmpInst::ICMP_UGE:
5025 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005026 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005027 /*HasNUW=*/true, /*HasNSW=*/false);
5028 Pred = ICmpInst::ICMP_UGT;
5029 Changed = true;
5030 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005031 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005032 /*HasNUW=*/true, /*HasNSW=*/false);
5033 Pred = ICmpInst::ICMP_UGT;
5034 Changed = true;
5035 }
5036 break;
5037 default:
5038 break;
5039 }
5040
Dan Gohmane9796502010-04-24 01:28:42 +00005041 // TODO: More simplifications are possible here.
5042
5043 return Changed;
5044
5045trivially_true:
5046 // Return 0 == 0.
5047 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5048 Pred = ICmpInst::ICMP_EQ;
5049 return true;
5050
5051trivially_false:
5052 // Return 0 != 0.
5053 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5054 Pred = ICmpInst::ICMP_NE;
5055 return true;
5056}
5057
Dan Gohman85b05a22009-07-13 21:35:55 +00005058bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5059 return getSignedRange(S).getSignedMax().isNegative();
5060}
5061
5062bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5063 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5064}
5065
5066bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5067 return !getSignedRange(S).getSignedMin().isNegative();
5068}
5069
5070bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5071 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5072}
5073
5074bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5075 return isKnownNegative(S) || isKnownPositive(S);
5076}
5077
5078bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5079 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005080 // Canonicalize the inputs first.
5081 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5082
Dan Gohman53c66ea2010-04-11 22:16:48 +00005083 // If LHS or RHS is an addrec, check to see if the condition is true in
5084 // every iteration of the loop.
5085 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5086 if (isLoopEntryGuardedByCond(
5087 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5088 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005089 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005090 return true;
5091 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5092 if (isLoopEntryGuardedByCond(
5093 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5094 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005095 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005096 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005097
Dan Gohman53c66ea2010-04-11 22:16:48 +00005098 // Otherwise see what can be done with known constant ranges.
5099 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5100}
5101
5102bool
5103ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5104 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005105 if (HasSameValue(LHS, RHS))
5106 return ICmpInst::isTrueWhenEqual(Pred);
5107
Dan Gohman53c66ea2010-04-11 22:16:48 +00005108 // This code is split out from isKnownPredicate because it is called from
5109 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005110 switch (Pred) {
5111 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005112 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005113 break;
5114 case ICmpInst::ICMP_SGT:
5115 Pred = ICmpInst::ICMP_SLT;
5116 std::swap(LHS, RHS);
5117 case ICmpInst::ICMP_SLT: {
5118 ConstantRange LHSRange = getSignedRange(LHS);
5119 ConstantRange RHSRange = getSignedRange(RHS);
5120 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5121 return true;
5122 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5123 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005124 break;
5125 }
5126 case ICmpInst::ICMP_SGE:
5127 Pred = ICmpInst::ICMP_SLE;
5128 std::swap(LHS, RHS);
5129 case ICmpInst::ICMP_SLE: {
5130 ConstantRange LHSRange = getSignedRange(LHS);
5131 ConstantRange RHSRange = getSignedRange(RHS);
5132 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5133 return true;
5134 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5135 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005136 break;
5137 }
5138 case ICmpInst::ICMP_UGT:
5139 Pred = ICmpInst::ICMP_ULT;
5140 std::swap(LHS, RHS);
5141 case ICmpInst::ICMP_ULT: {
5142 ConstantRange LHSRange = getUnsignedRange(LHS);
5143 ConstantRange RHSRange = getUnsignedRange(RHS);
5144 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5145 return true;
5146 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5147 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005148 break;
5149 }
5150 case ICmpInst::ICMP_UGE:
5151 Pred = ICmpInst::ICMP_ULE;
5152 std::swap(LHS, RHS);
5153 case ICmpInst::ICMP_ULE: {
5154 ConstantRange LHSRange = getUnsignedRange(LHS);
5155 ConstantRange RHSRange = getUnsignedRange(RHS);
5156 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5157 return true;
5158 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5159 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005160 break;
5161 }
5162 case ICmpInst::ICMP_NE: {
5163 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5164 return true;
5165 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5166 return true;
5167
5168 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5169 if (isKnownNonZero(Diff))
5170 return true;
5171 break;
5172 }
5173 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005174 // The check at the top of the function catches the case where
5175 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005176 break;
5177 }
5178 return false;
5179}
5180
5181/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5182/// protected by a conditional between LHS and RHS. This is used to
5183/// to eliminate casts.
5184bool
5185ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5186 ICmpInst::Predicate Pred,
5187 const SCEV *LHS, const SCEV *RHS) {
5188 // Interpret a null as meaning no loop, where there is obviously no guard
5189 // (interprocedural conditions notwithstanding).
5190 if (!L) return true;
5191
5192 BasicBlock *Latch = L->getLoopLatch();
5193 if (!Latch)
5194 return false;
5195
5196 BranchInst *LoopContinuePredicate =
5197 dyn_cast<BranchInst>(Latch->getTerminator());
5198 if (!LoopContinuePredicate ||
5199 LoopContinuePredicate->isUnconditional())
5200 return false;
5201
Dan Gohman0f4b2852009-07-21 23:03:19 +00005202 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5203 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005204}
5205
Dan Gohman3948d0b2010-04-11 19:27:13 +00005206/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005207/// by a conditional between LHS and RHS. This is used to help avoid max
5208/// expressions in loop trip counts, and to eliminate casts.
5209bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005210ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5211 ICmpInst::Predicate Pred,
5212 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005213 // Interpret a null as meaning no loop, where there is obviously no guard
5214 // (interprocedural conditions notwithstanding).
5215 if (!L) return false;
5216
Dan Gohman859b4822009-05-18 15:36:09 +00005217 // Starting at the loop predecessor, climb up the predecessor chain, as long
5218 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005219 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005220 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005221 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005222 Pair.first;
5223 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005224
5225 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005226 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005227 if (!LoopEntryPredicate ||
5228 LoopEntryPredicate->isUnconditional())
5229 continue;
5230
Dan Gohman0f4b2852009-07-21 23:03:19 +00005231 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005232 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005233 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005234 }
5235
Dan Gohman38372182008-08-12 20:17:31 +00005236 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005237}
5238
Dan Gohman0f4b2852009-07-21 23:03:19 +00005239/// isImpliedCond - Test whether the condition described by Pred, LHS,
5240/// and RHS is true whenever the given Cond value evaluates to true.
5241bool ScalarEvolution::isImpliedCond(Value *CondValue,
5242 ICmpInst::Predicate Pred,
5243 const SCEV *LHS, const SCEV *RHS,
5244 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005245 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005246 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5247 if (BO->getOpcode() == Instruction::And) {
5248 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005249 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5250 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005251 } else if (BO->getOpcode() == Instruction::Or) {
5252 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005253 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5254 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005255 }
5256 }
5257
5258 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5259 if (!ICI) return false;
5260
Dan Gohman85b05a22009-07-13 21:35:55 +00005261 // Bail if the ICmp's operands' types are wider than the needed type
5262 // before attempting to call getSCEV on them. This avoids infinite
5263 // recursion, since the analysis of widening casts can require loop
5264 // exit condition information for overflow checking, which would
5265 // lead back here.
5266 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005267 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005268 return false;
5269
Dan Gohman0f4b2852009-07-21 23:03:19 +00005270 // Now that we found a conditional branch that dominates the loop, check to
5271 // see if it is the comparison we are looking for.
5272 ICmpInst::Predicate FoundPred;
5273 if (Inverse)
5274 FoundPred = ICI->getInversePredicate();
5275 else
5276 FoundPred = ICI->getPredicate();
5277
5278 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5279 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005280
5281 // Balance the types. The case where FoundLHS' type is wider than
5282 // LHS' type is checked for above.
5283 if (getTypeSizeInBits(LHS->getType()) >
5284 getTypeSizeInBits(FoundLHS->getType())) {
5285 if (CmpInst::isSigned(Pred)) {
5286 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5287 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5288 } else {
5289 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5290 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5291 }
5292 }
5293
Dan Gohman0f4b2852009-07-21 23:03:19 +00005294 // Canonicalize the query to match the way instcombine will have
5295 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005296 if (SimplifyICmpOperands(Pred, LHS, RHS))
5297 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005298 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005299 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5300 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005301 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005302
5303 // Check to see if we can make the LHS or RHS match.
5304 if (LHS == FoundRHS || RHS == FoundLHS) {
5305 if (isa<SCEVConstant>(RHS)) {
5306 std::swap(FoundLHS, FoundRHS);
5307 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5308 } else {
5309 std::swap(LHS, RHS);
5310 Pred = ICmpInst::getSwappedPredicate(Pred);
5311 }
5312 }
5313
5314 // Check whether the found predicate is the same as the desired predicate.
5315 if (FoundPred == Pred)
5316 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5317
5318 // Check whether swapping the found predicate makes it the same as the
5319 // desired predicate.
5320 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5321 if (isa<SCEVConstant>(RHS))
5322 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5323 else
5324 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5325 RHS, LHS, FoundLHS, FoundRHS);
5326 }
5327
5328 // Check whether the actual condition is beyond sufficient.
5329 if (FoundPred == ICmpInst::ICMP_EQ)
5330 if (ICmpInst::isTrueWhenEqual(Pred))
5331 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5332 return true;
5333 if (Pred == ICmpInst::ICMP_NE)
5334 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5335 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5336 return true;
5337
5338 // Otherwise assume the worst.
5339 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005340}
5341
Dan Gohman0f4b2852009-07-21 23:03:19 +00005342/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005343/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005344/// and FoundRHS is true.
5345bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5346 const SCEV *LHS, const SCEV *RHS,
5347 const SCEV *FoundLHS,
5348 const SCEV *FoundRHS) {
5349 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5350 FoundLHS, FoundRHS) ||
5351 // ~x < ~y --> x > y
5352 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5353 getNotSCEV(FoundRHS),
5354 getNotSCEV(FoundLHS));
5355}
5356
5357/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005358/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005359/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005360bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005361ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5362 const SCEV *LHS, const SCEV *RHS,
5363 const SCEV *FoundLHS,
5364 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005365 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005366 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5367 case ICmpInst::ICMP_EQ:
5368 case ICmpInst::ICMP_NE:
5369 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5370 return true;
5371 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005372 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005373 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005374 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5375 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005376 return true;
5377 break;
5378 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005379 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005380 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5381 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005382 return true;
5383 break;
5384 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005385 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005386 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5387 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005388 return true;
5389 break;
5390 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005391 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005392 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5393 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005394 return true;
5395 break;
5396 }
5397
5398 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005399}
5400
Dan Gohman51f53b72009-06-21 23:46:38 +00005401/// getBECount - Subtract the end and start values and divide by the step,
5402/// rounding up, to get the number of times the backedge is executed. Return
5403/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005404const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005405 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005406 const SCEV *Step,
5407 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005408 assert(!isKnownNegative(Step) &&
5409 "This code doesn't handle negative strides yet!");
5410
Dan Gohman51f53b72009-06-21 23:46:38 +00005411 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005412 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005413 const SCEV *Diff = getMinusSCEV(End, Start);
5414 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005415
5416 // Add an adjustment to the difference between End and Start so that
5417 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005418 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005419
Dan Gohman1f96e672009-09-17 18:05:20 +00005420 if (!NoWrap) {
5421 // Check Add for unsigned overflow.
5422 // TODO: More sophisticated things could be done here.
5423 const Type *WideTy = IntegerType::get(getContext(),
5424 getTypeSizeInBits(Ty) + 1);
5425 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5426 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5427 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5428 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5429 return getCouldNotCompute();
5430 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005431
5432 return getUDivExpr(Add, Step);
5433}
5434
Chris Lattnerdb25de42005-08-15 23:33:51 +00005435/// HowManyLessThans - Return the number of times a backedge containing the
5436/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005437/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005438ScalarEvolution::BackedgeTakenInfo
5439ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5440 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005441 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005442 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005443
Dan Gohman35738ac2009-05-04 22:30:44 +00005444 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005445 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005446 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005447
Dan Gohman1f96e672009-09-17 18:05:20 +00005448 // Check to see if we have a flag which makes analysis easy.
5449 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5450 AddRec->hasNoUnsignedWrap();
5451
Chris Lattnerdb25de42005-08-15 23:33:51 +00005452 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005453 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005454 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005455
Dan Gohman52fddd32010-01-26 04:40:18 +00005456 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005457 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005458 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005459 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005460 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005461 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005462 // value and past the maximum value for its type in a single step.
5463 // Note that it's not sufficient to check NoWrap here, because even
5464 // though the value after a wrap is undefined, it's not undefined
5465 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005466 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005467 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005468 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005469 if (isSigned) {
5470 APInt Max = APInt::getSignedMaxValue(BitWidth);
5471 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5472 .slt(getSignedRange(RHS).getSignedMax()))
5473 return getCouldNotCompute();
5474 } else {
5475 APInt Max = APInt::getMaxValue(BitWidth);
5476 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5477 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5478 return getCouldNotCompute();
5479 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005480 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005481 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005482 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005483
Dan Gohmana1af7572009-04-30 20:47:05 +00005484 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5485 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5486 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005487 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005488
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005489 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005490 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005491
Dan Gohmana1af7572009-04-30 20:47:05 +00005492 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005493 const SCEV *MinStart = getConstant(isSigned ?
5494 getSignedRange(Start).getSignedMin() :
5495 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005496
Dan Gohmana1af7572009-04-30 20:47:05 +00005497 // If we know that the condition is true in order to enter the loop,
5498 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005499 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5500 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005501 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005502 if (!isLoopEntryGuardedByCond(L,
5503 isSigned ? ICmpInst::ICMP_SLT :
5504 ICmpInst::ICMP_ULT,
5505 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005506 End = isSigned ? getSMaxExpr(RHS, Start)
5507 : getUMaxExpr(RHS, Start);
5508
5509 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005510 const SCEV *MaxEnd = getConstant(isSigned ?
5511 getSignedRange(End).getSignedMax() :
5512 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005513
Dan Gohman52fddd32010-01-26 04:40:18 +00005514 // If MaxEnd is within a step of the maximum integer value in its type,
5515 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005516 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005517 // compute the correct value.
5518 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005519 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005520 MaxEnd = isSigned ?
5521 getSMinExpr(MaxEnd,
5522 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5523 StepMinusOne)) :
5524 getUMinExpr(MaxEnd,
5525 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5526 StepMinusOne));
5527
Dan Gohmana1af7572009-04-30 20:47:05 +00005528 // Finally, we subtract these two values and divide, rounding up, to get
5529 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005530 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005531
5532 // The maximum backedge count is similar, except using the minimum start
5533 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005534 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005535
5536 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005537 }
5538
Dan Gohman1c343752009-06-27 21:21:31 +00005539 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005540}
5541
Chris Lattner53e677a2004-04-02 20:23:17 +00005542/// getNumIterationsInRange - Return the number of iterations of this loop that
5543/// produce values in the specified constant range. Another way of looking at
5544/// this is that it returns the first iteration number where the value is not in
5545/// the condition, thus computing the exit count. If the iteration count can't
5546/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005547const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005548 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005549 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005550 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005551
5552 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005554 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005555 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005556 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005557 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005558 if (const SCEVAddRecExpr *ShiftedAddRec =
5559 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005560 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005561 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005562 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005563 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005564 }
5565
5566 // The only time we can solve this is when we have all constant indices.
5567 // Otherwise, we cannot determine the overflow conditions.
5568 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5569 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005570 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005571
5572
5573 // Okay at this point we know that all elements of the chrec are constants and
5574 // that the start element is zero.
5575
5576 // First check to see if the range contains zero. If not, the first
5577 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005578 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005579 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005580 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005581
Chris Lattner53e677a2004-04-02 20:23:17 +00005582 if (isAffine()) {
5583 // If this is an affine expression then we have this situation:
5584 // Solve {0,+,A} in Range === Ax in Range
5585
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005586 // We know that zero is in the range. If A is positive then we know that
5587 // the upper value of the range must be the first possible exit value.
5588 // If A is negative then the lower of the range is the last possible loop
5589 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005590 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005591 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5592 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005593
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005594 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005595 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005596 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005597
5598 // Evaluate at the exit value. If we really did fall out of the valid
5599 // range, then we computed our trip count, otherwise wrap around or other
5600 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005601 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005602 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005603 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005604
5605 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005606 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005607 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005608 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005609 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005610 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005611 } else if (isQuadratic()) {
5612 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5613 // quadratic equation to solve it. To do this, we must frame our problem in
5614 // terms of figuring out when zero is crossed, instead of when
5615 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005616 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005617 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005618 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005619
5620 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005621 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005622 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005623 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5624 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005625 if (R1) {
5626 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005627 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005628 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005629 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005630 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005631 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005632
Chris Lattner53e677a2004-04-02 20:23:17 +00005633 // Make sure the root is not off by one. The returned iteration should
5634 // not be in the range, but the previous one should be. When solving
5635 // for "X*X < 5", for example, we should not return a root of 2.
5636 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005637 R1->getValue(),
5638 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005639 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005640 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005641 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005642 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005643
Dan Gohman246b2562007-10-22 18:31:58 +00005644 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005645 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005646 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005647 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005648 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005649
Chris Lattner53e677a2004-04-02 20:23:17 +00005650 // If R1 was not in the range, then it is a good return value. Make
5651 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005652 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005653 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005654 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005655 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005656 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005657 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005658 }
5659 }
5660 }
5661
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005662 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005663}
5664
5665
5666
5667//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005668// SCEVCallbackVH Class Implementation
5669//===----------------------------------------------------------------------===//
5670
Dan Gohman1959b752009-05-19 19:22:47 +00005671void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005672 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005673 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5674 SE->ConstantEvolutionLoopExitValue.erase(PN);
5675 SE->Scalars.erase(getValPtr());
5676 // this now dangles!
5677}
5678
Dan Gohman1959b752009-05-19 19:22:47 +00005679void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005680 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005681
5682 // Forget all the expressions associated with users of the old value,
5683 // so that future queries will recompute the expressions using the new
5684 // value.
5685 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005686 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005687 Value *Old = getValPtr();
5688 bool DeleteOld = false;
5689 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5690 UI != UE; ++UI)
5691 Worklist.push_back(*UI);
5692 while (!Worklist.empty()) {
5693 User *U = Worklist.pop_back_val();
5694 // Deleting the Old value will cause this to dangle. Postpone
5695 // that until everything else is done.
5696 if (U == Old) {
5697 DeleteOld = true;
5698 continue;
5699 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005700 if (!Visited.insert(U))
5701 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005702 if (PHINode *PN = dyn_cast<PHINode>(U))
5703 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005704 SE->Scalars.erase(U);
5705 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5706 UI != UE; ++UI)
5707 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005708 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005709 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005710 if (DeleteOld) {
5711 if (PHINode *PN = dyn_cast<PHINode>(Old))
5712 SE->ConstantEvolutionLoopExitValue.erase(PN);
5713 SE->Scalars.erase(Old);
5714 // this now dangles!
5715 }
5716 // this may dangle!
5717}
5718
Dan Gohman1959b752009-05-19 19:22:47 +00005719ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005720 : CallbackVH(V), SE(se) {}
5721
5722//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005723// ScalarEvolution Class Implementation
5724//===----------------------------------------------------------------------===//
5725
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005726ScalarEvolution::ScalarEvolution()
Dan Gohman3bf63762010-06-18 19:54:20 +00005727 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005728}
5729
Chris Lattner53e677a2004-04-02 20:23:17 +00005730bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005731 this->F = &F;
5732 LI = &getAnalysis<LoopInfo>();
5733 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005734 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005735 return false;
5736}
5737
5738void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005739 Scalars.clear();
5740 BackedgeTakenCounts.clear();
5741 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005742 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005743 UniqueSCEVs.clear();
5744 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005745}
5746
5747void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5748 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005749 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005750 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005751}
5752
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005753bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005754 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005755}
5756
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005757static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005758 const Loop *L) {
5759 // Print all inner loops first
5760 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5761 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005762
Dan Gohman30733292010-01-09 18:17:45 +00005763 OS << "Loop ";
5764 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5765 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005766
Dan Gohman5d984912009-12-18 01:14:11 +00005767 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005768 L->getExitBlocks(ExitBlocks);
5769 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005770 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005771
Dan Gohman46bdfb02009-02-24 18:55:53 +00005772 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5773 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005774 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005775 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005776 }
5777
Dan Gohman30733292010-01-09 18:17:45 +00005778 OS << "\n"
5779 "Loop ";
5780 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5781 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005782
5783 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5784 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5785 } else {
5786 OS << "Unpredictable max backedge-taken count. ";
5787 }
5788
5789 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005790}
5791
Dan Gohman5d984912009-12-18 01:14:11 +00005792void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005793 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005794 // out SCEV values of all instructions that are interesting. Doing
5795 // this potentially causes it to create new SCEV objects though,
5796 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005797 // observable from outside the class though, so casting away the
5798 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005799 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005800
Dan Gohman30733292010-01-09 18:17:45 +00005801 OS << "Classifying expressions for: ";
5802 WriteAsOperand(OS, F, /*PrintType=*/false);
5803 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005804 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005805 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005806 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005807 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005808 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005809 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005810
Dan Gohman0c689c52009-06-19 17:49:54 +00005811 const Loop *L = LI->getLoopFor((*I).getParent());
5812
Dan Gohman0bba49c2009-07-07 17:06:11 +00005813 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005814 if (AtUse != SV) {
5815 OS << " --> ";
5816 AtUse->print(OS);
5817 }
5818
5819 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005820 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005821 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005822 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005823 OS << "<<Unknown>>";
5824 } else {
5825 OS << *ExitValue;
5826 }
5827 }
5828
Chris Lattner53e677a2004-04-02 20:23:17 +00005829 OS << "\n";
5830 }
5831
Dan Gohman30733292010-01-09 18:17:45 +00005832 OS << "Determining loop execution counts for: ";
5833 WriteAsOperand(OS, F, /*PrintType=*/false);
5834 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005835 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5836 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005837}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005838