blob: 21c9a1f0179be3a4229041bd747519e9f157f9b1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000018#include "X86.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86RegisterInfo.h"
Bill Wendling0e3410c2007-12-30 03:18:58 +000020#include "llvm/ADT/IndexedMap.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022
23namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
26
27namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Bill Wendlingd06b4202008-11-26 22:37:40 +000044 COND_NC = 13,
45 COND_O = 14,
46 COND_P = 15,
47 COND_S = 16,
48 COND_C = 17,
Dan Gohman6a00fcb2008-10-21 03:29:32 +000049
50 // Artificial condition codes. These are used by AnalyzeBranch
51 // to indicate a block terminated with two conditional branches to
52 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53 // which can't be represented on x86 with a single condition. These
54 // are never used in MachineInstrs.
55 COND_NE_OR_P,
56 COND_NP_OR_E,
57
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 COND_INVALID
59 };
Christopher Lambb371e032008-03-13 05:47:01 +000060
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // Turn condition code into conditional branch opcode.
62 unsigned GetCondBranchFromCond(CondCode CC);
63
64 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65 /// e.g. turning COND_E to COND_NE.
66 CondCode GetOppositeBranchCondition(X86::CondCode CC);
67
68}
69
70/// X86II - This namespace holds all of the target specific flags that
71/// instruction info tracks.
72///
73namespace X86II {
74 enum {
75 //===------------------------------------------------------------------===//
76 // Instruction types. These are the standard/most common forms for X86
77 // instructions.
78 //
79
80 // PseudoFrm - This represents an instruction that is a pseudo instruction
81 // or one that has not been implemented yet. It is illegal to code generate
82 // it, but tolerated for intermediate implementation stages.
83 Pseudo = 0,
84
85 /// Raw - This form is for instructions that don't have any operands, so
86 /// they are just a fixed opcode value, like 'leave'.
87 RawFrm = 1,
88
89 /// AddRegFrm - This form is used for instructions like 'push r32' that have
90 /// their one register operand added to their opcode.
91 AddRegFrm = 2,
92
93 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
94 /// to specify a destination, which in this case is a register.
95 ///
96 MRMDestReg = 3,
97
98 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
99 /// to specify a destination, which in this case is memory.
100 ///
101 MRMDestMem = 4,
102
103 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
104 /// to specify a source, which in this case is a register.
105 ///
106 MRMSrcReg = 5,
107
108 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
109 /// to specify a source, which in this case is memory.
110 ///
111 MRMSrcMem = 6,
112
113 /// MRM[0-7][rm] - These forms are used to represent instructions that use
114 /// a Mod/RM byte, and use the middle field to hold extended opcode
115 /// information. In the intel manual these are represented as /0, /1, ...
116 ///
117
118 // First, instructions that operate on a register r/m operand...
119 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
120 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
121
122 // Next, instructions that operate on a memory r/m operand...
123 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
124 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
125
126 // MRMInitReg - This form is used for instructions whose source and
127 // destinations are the same register.
128 MRMInitReg = 32,
129
130 FormMask = 63,
131
132 //===------------------------------------------------------------------===//
133 // Actual flags...
134
135 // OpSize - Set if this instruction requires an operand size prefix (0x66),
136 // which most often indicates that the instruction operates on 16 bit data
137 // instead of 32 bit data.
138 OpSize = 1 << 6,
139
140 // AsSize - Set if this instruction requires an operand size prefix (0x67),
141 // which most often indicates that the instruction address 16 bit address
142 // instead of 32 bit address (or 32 bit address in 64 bit mode).
143 AdSize = 1 << 7,
144
145 //===------------------------------------------------------------------===//
146 // Op0Mask - There are several prefix bytes that are used to form two byte
147 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
148 // used to obtain the setting of this field. If no bits in this field is
149 // set, there is no prefix byte for obtaining a multibyte opcode.
150 //
151 Op0Shift = 8,
152 Op0Mask = 0xF << Op0Shift,
153
154 // TB - TwoByte - Set if this instruction has a two byte opcode, which
155 // starts with a 0x0F byte before the real opcode.
156 TB = 1 << Op0Shift,
157
158 // REP - The 0xF3 prefix byte indicating repetition of the following
159 // instruction.
160 REP = 2 << Op0Shift,
161
162 // D8-DF - These escape opcodes are used by the floating point unit. These
163 // values must remain sequential.
164 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
165 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
166 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
167 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
168
169 // XS, XD - These prefix codes are for single and double precision scalar
170 // floating point operations performed in the SSE registers.
171 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
172
173 // T8, TA - Prefix after the 0x0F prefix.
174 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
175
176 //===------------------------------------------------------------------===//
177 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
178 // They are used to specify GPRs and SSE registers, 64-bit operand size,
179 // etc. We only cares about REX.W and REX.R bits and only the former is
180 // statically determined.
181 //
182 REXShift = 12,
183 REX_W = 1 << REXShift,
184
185 //===------------------------------------------------------------------===//
186 // This three-bit field describes the size of an immediate operand. Zero is
187 // unused so that we can tell if we forgot to set a value.
188 ImmShift = 13,
189 ImmMask = 7 << ImmShift,
190 Imm8 = 1 << ImmShift,
191 Imm16 = 2 << ImmShift,
192 Imm32 = 3 << ImmShift,
193 Imm64 = 4 << ImmShift,
194
195 //===------------------------------------------------------------------===//
196 // FP Instruction Classification... Zero is non-fp instruction.
197
198 // FPTypeMask - Mask for all of the FP types...
199 FPTypeShift = 16,
200 FPTypeMask = 7 << FPTypeShift,
201
202 // NotFP - The default, set for instructions that do not use FP registers.
203 NotFP = 0 << FPTypeShift,
204
205 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
206 ZeroArgFP = 1 << FPTypeShift,
207
208 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
209 OneArgFP = 2 << FPTypeShift,
210
211 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
212 // result back to ST(0). For example, fcos, fsqrt, etc.
213 //
214 OneArgFPRW = 3 << FPTypeShift,
215
216 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
217 // explicit argument, storing the result to either ST(0) or the implicit
218 // argument. For example: fadd, fsub, fmul, etc...
219 TwoArgFP = 4 << FPTypeShift,
220
221 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
222 // explicit argument, but have no destination. Example: fucom, fucomi, ...
223 CompareFP = 5 << FPTypeShift,
224
225 // CondMovFP - "2 operand" floating point conditional move instructions.
226 CondMovFP = 6 << FPTypeShift,
227
228 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
229 SpecialFP = 7 << FPTypeShift,
230
Andrew Lenharth7a5a4b22008-03-01 13:37:02 +0000231 // Lock prefix
232 LOCKShift = 19,
233 LOCK = 1 << LOCKShift,
234
Anton Korobeynikov975e1472008-10-11 19:09:15 +0000235 // Segment override prefixes. Currently we just need ability to address
236 // stuff in gs and fs segments.
237 SegOvrShift = 20,
238 SegOvrMask = 3 << SegOvrShift,
239 FS = 1 << SegOvrShift,
240 GS = 2 << SegOvrShift,
241
242 // Bits 22 -> 23 are unused
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 OpcodeShift = 24,
244 OpcodeMask = 0xFF << OpcodeShift
245 };
246}
247
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000248inline static bool isScale(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000249 return MO.isImm() &&
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000250 (MO.getImm() == 1 || MO.getImm() == 2 ||
251 MO.getImm() == 4 || MO.getImm() == 8);
252}
253
254inline static bool isMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000255 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000256 return Op+4 <= MI->getNumOperands() &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000257 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
258 MI->getOperand(Op+2).isReg() &&
259 (MI->getOperand(Op+3).isImm() ||
260 MI->getOperand(Op+3).isGlobal() ||
261 MI->getOperand(Op+3).isCPI() ||
262 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000263}
264
Chris Lattnerd2fd6db2008-01-01 01:03:04 +0000265class X86InstrInfo : public TargetInstrInfoImpl {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 X86TargetMachine &TM;
267 const X86RegisterInfo RI;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000268
269 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
270 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
271 ///
272 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
273 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
274 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
275 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
276
277 /// MemOp2RegOpTable - Load / store unfolding opcode map.
278 ///
279 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
280
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281public:
Dan Gohman40bd38e2008-03-25 22:06:05 +0000282 explicit X86InstrInfo(X86TargetMachine &tm);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283
284 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
285 /// such, whenever a client has an instance of instruction info, it should
286 /// always be able to get register info as well (through this method).
287 ///
Dan Gohmanb41dfba2008-05-14 01:58:56 +0000288 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289
290 // Return true if the instruction is a register to register move and
291 // leave the source and dest operands in the passed parameters.
292 //
293 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
294 unsigned& destReg) const;
Dan Gohman90feee22008-11-18 19:49:32 +0000295 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
296 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000297
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000298 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000299 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
300 unsigned DestReg, const MachineInstr *Orig) const;
301
Dan Gohman90feee22008-11-18 19:49:32 +0000302 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling57e31d62007-12-17 23:07:56 +0000303
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304 /// convertToThreeAddress - This method must be implemented by targets that
305 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
306 /// may be able to convert a two-address instruction into a true
307 /// three-address instruction on demand. This allows the X86 target (for
308 /// example) to convert ADD and SHL instructions into LEA instructions if they
309 /// would require register copies due to two-addressness.
310 ///
311 /// This method returns a null pointer if the transformation cannot be
312 /// performed, otherwise it returns the new instruction.
313 ///
314 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
315 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000316 LiveVariables *LV) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317
318 /// commuteInstruction - We have a few instructions that must be hacked on to
319 /// commute them.
320 ///
Evan Cheng5de1aaf2008-06-16 07:33:11 +0000321 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322
323 // Branch analysis.
324 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
325 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000327 SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
329 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
330 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000331 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson9fa72d92008-08-26 18:03:31 +0000332 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Anderson8f2c8932007-12-31 06:32:00 +0000333 MachineBasicBlock::iterator MI,
334 unsigned DestReg, unsigned SrcReg,
335 const TargetRegisterClass *DestRC,
336 const TargetRegisterClass *SrcRC) const;
Owen Anderson81875432008-01-01 21:11:32 +0000337 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
338 MachineBasicBlock::iterator MI,
339 unsigned SrcReg, bool isKill, int FrameIndex,
340 const TargetRegisterClass *RC) const;
341
342 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
343 SmallVectorImpl<MachineOperand> &Addr,
344 const TargetRegisterClass *RC,
345 SmallVectorImpl<MachineInstr*> &NewMIs) const;
346
347 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
348 MachineBasicBlock::iterator MI,
349 unsigned DestReg, int FrameIndex,
350 const TargetRegisterClass *RC) const;
351
352 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
353 SmallVectorImpl<MachineOperand> &Addr,
354 const TargetRegisterClass *RC,
355 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Anderson6690c7f2008-01-04 23:57:37 +0000356
357 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
358 MachineBasicBlock::iterator MI,
359 const std::vector<CalleeSavedInfo> &CSI) const;
360
361 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
362 MachineBasicBlock::iterator MI,
363 const std::vector<CalleeSavedInfo> &CSI) const;
364
Owen Anderson9a184ef2008-01-07 01:35:02 +0000365 /// foldMemoryOperand - If this target supports it, fold a load or store of
366 /// the specified stack slot into the specified machine instruction for the
367 /// specified operand(s). If this is possible, the target should perform the
368 /// folding and return true, otherwise it should return false. If it folds
369 /// the instruction, it is likely that the MachineInstruction the iterator
370 /// references has been changed.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000371 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
372 MachineInstr* MI,
373 const SmallVectorImpl<unsigned> &Ops,
374 int FrameIndex) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000375
376 /// foldMemoryOperand - Same as the previous version except it allows folding
377 /// of any load and store from / to any address, not just from a specific
378 /// stack slot.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000379 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
380 MachineInstr* MI,
381 const SmallVectorImpl<unsigned> &Ops,
382 MachineInstr* LoadMI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000383
384 /// canFoldMemoryOperand - Returns true if the specified load / store is
385 /// folding is possible.
Dan Gohman46b948e2008-10-16 01:49:15 +0000386 virtual bool canFoldMemoryOperand(const MachineInstr*,
387 const SmallVectorImpl<unsigned> &) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000388
389 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
390 /// a store or a load and a store into two or more instruction. If this is
391 /// possible, returns true as well as the new instructions by reference.
392 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
393 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
394 SmallVectorImpl<MachineInstr*> &NewMIs) const;
395
396 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
397 SmallVectorImpl<SDNode*> &NewNodes) const;
398
399 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
400 /// instruction after load / store are unfolded from an instruction of the
401 /// specified opcode. It returns zero if the specified unfolding is not
402 /// possible.
403 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
404 bool UnfoldLoad, bool UnfoldStore) const;
405
Dan Gohman46b948e2008-10-16 01:49:15 +0000406 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Andersond131b5b2008-08-14 22:49:33 +0000407 virtual
408 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409
Evan Cheng0e4a5a92008-10-27 07:14:50 +0000410 /// IgnoreRegisterClassBarriers - Returns true if pre-register allocation
411 /// live interval splitting pass should ignore barriers of the specified
412 /// register class.
413 bool IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const;
414
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 const TargetRegisterClass *getPointerRegClass() const;
416
417 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sands466eadd2007-08-29 19:01:20 +0000418 // specified machine instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419 //
Chris Lattner5b930372008-01-07 07:27:27 +0000420 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000421 return TID->TSFlags >> X86II::OpcodeShift;
422 }
Chris Lattner99aa3372008-01-07 02:48:55 +0000423 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sands466eadd2007-08-29 19:01:20 +0000424 return getBaseOpcodeFor(&get(Opcode));
425 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000426
427 static bool isX86_64NonExtLowByteReg(unsigned reg) {
428 return (reg == X86::SPL || reg == X86::BPL ||
429 reg == X86::SIL || reg == X86::DIL);
430 }
431
432 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000433 static bool isX86_64ExtendedReg(const MachineOperand &MO);
434 static unsigned determineREX(const MachineInstr &MI);
435
436 /// GetInstSize - Returns the size of the specified MachineInstr.
437 ///
438 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000439
Dan Gohman882ab732008-09-30 00:58:23 +0000440 /// getGlobalBaseReg - Return a virtual register initialized with the
441 /// the global base register value. Output instructions required to
442 /// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +0000443 ///
Dan Gohman882ab732008-09-30 00:58:23 +0000444 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohmanb60482f2008-09-23 18:22:58 +0000445
Owen Anderson9a184ef2008-01-07 01:35:02 +0000446private:
Dan Gohmanedc83d62008-12-03 18:43:12 +0000447 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
448 MachineInstr* MI,
449 unsigned OpNum,
450 const SmallVector<MachineOperand,4> &MOs) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451};
452
453} // End llvm namespace
454
455#endif