Chris Lattner | 80f43d3 | 2010-01-04 07:53:58 +0000 | [diff] [blame] | 1 | //===- InstCombineCasts.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visit functions for cast operations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
| 15 | #include "llvm/Target/TargetData.h" |
| 16 | #include "llvm/Support/PatternMatch.h" |
| 17 | using namespace llvm; |
| 18 | using namespace PatternMatch; |
| 19 | |
Chris Lattner | f3d1b5d | 2010-01-04 07:59:07 +0000 | [diff] [blame] | 20 | /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear |
| 21 | /// expression. If so, decompose it, returning some value X, such that Val is |
| 22 | /// X*Scale+Offset. |
| 23 | /// |
| 24 | static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, |
| 25 | int &Offset) { |
| 26 | assert(Val->getType() == Type::getInt32Ty(Val->getContext()) && |
| 27 | "Unexpected allocation size type!"); |
| 28 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| 29 | Offset = CI->getZExtValue(); |
| 30 | Scale = 0; |
| 31 | return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0); |
| 32 | } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { |
| 33 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 34 | if (I->getOpcode() == Instruction::Shl) { |
| 35 | // This is a value scaled by '1 << the shift amt'. |
| 36 | Scale = 1U << RHS->getZExtValue(); |
| 37 | Offset = 0; |
| 38 | return I->getOperand(0); |
| 39 | } else if (I->getOpcode() == Instruction::Mul) { |
| 40 | // This value is scaled by 'RHS'. |
| 41 | Scale = RHS->getZExtValue(); |
| 42 | Offset = 0; |
| 43 | return I->getOperand(0); |
| 44 | } else if (I->getOpcode() == Instruction::Add) { |
| 45 | // We have X+C. Check to see if we really have (X*C2)+C1, |
| 46 | // where C1 is divisible by C2. |
| 47 | unsigned SubScale; |
| 48 | Value *SubVal = |
| 49 | DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); |
| 50 | Offset += RHS->getZExtValue(); |
| 51 | Scale = SubScale; |
| 52 | return SubVal; |
| 53 | } |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | // Otherwise, we can't look past this. |
| 58 | Scale = 1; |
| 59 | Offset = 0; |
| 60 | return Val; |
| 61 | } |
| 62 | |
| 63 | /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, |
| 64 | /// try to eliminate the cast by moving the type information into the alloc. |
| 65 | Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, |
| 66 | AllocaInst &AI) { |
| 67 | // This requires TargetData to get the alloca alignment and size information. |
| 68 | if (!TD) return 0; |
| 69 | |
| 70 | const PointerType *PTy = cast<PointerType>(CI.getType()); |
| 71 | |
| 72 | BuilderTy AllocaBuilder(*Builder); |
| 73 | AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); |
| 74 | |
| 75 | // Get the type really allocated and the type casted to. |
| 76 | const Type *AllocElTy = AI.getAllocatedType(); |
| 77 | const Type *CastElTy = PTy->getElementType(); |
| 78 | if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; |
| 79 | |
| 80 | unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); |
| 81 | unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); |
| 82 | if (CastElTyAlign < AllocElTyAlign) return 0; |
| 83 | |
| 84 | // If the allocation has multiple uses, only promote it if we are strictly |
| 85 | // increasing the alignment of the resultant allocation. If we keep it the |
| 86 | // same, we open the door to infinite loops of various kinds. (A reference |
| 87 | // from a dbg.declare doesn't count as a use for this purpose.) |
| 88 | if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) && |
| 89 | CastElTyAlign == AllocElTyAlign) return 0; |
| 90 | |
| 91 | uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); |
| 92 | uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); |
| 93 | if (CastElTySize == 0 || AllocElTySize == 0) return 0; |
| 94 | |
| 95 | // See if we can satisfy the modulus by pulling a scale out of the array |
| 96 | // size argument. |
| 97 | unsigned ArraySizeScale; |
| 98 | int ArrayOffset; |
| 99 | Value *NumElements = // See if the array size is a decomposable linear expr. |
| 100 | DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); |
| 101 | |
| 102 | // If we can now satisfy the modulus, by using a non-1 scale, we really can |
| 103 | // do the xform. |
| 104 | if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || |
| 105 | (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; |
| 106 | |
| 107 | unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; |
| 108 | Value *Amt = 0; |
| 109 | if (Scale == 1) { |
| 110 | Amt = NumElements; |
| 111 | } else { |
| 112 | Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale); |
| 113 | // Insert before the alloca, not before the cast. |
| 114 | Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp"); |
| 115 | } |
| 116 | |
| 117 | if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { |
| 118 | Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()), |
| 119 | Offset, true); |
| 120 | Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp"); |
| 121 | } |
| 122 | |
| 123 | AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); |
| 124 | New->setAlignment(AI.getAlignment()); |
| 125 | New->takeName(&AI); |
| 126 | |
| 127 | // If the allocation has one real use plus a dbg.declare, just remove the |
| 128 | // declare. |
| 129 | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) { |
| 130 | EraseInstFromFunction(*(Instruction*)DI); |
| 131 | } |
| 132 | // If the allocation has multiple real uses, insert a cast and change all |
| 133 | // things that used it to use the new cast. This will also hack on CI, but it |
| 134 | // will die soon. |
| 135 | else if (!AI.hasOneUse()) { |
| 136 | // New is the allocation instruction, pointer typed. AI is the original |
| 137 | // allocation instruction, also pointer typed. Thus, cast to use is BitCast. |
| 138 | Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); |
| 139 | AI.replaceAllUsesWith(NewCast); |
| 140 | } |
| 141 | return ReplaceInstUsesWith(CI, New); |
| 142 | } |
| 143 | |
| 144 | |
Chris Lattner | 5f0290e | 2010-01-04 07:54:59 +0000 | [diff] [blame] | 145 | /// CanEvaluateInDifferentType - Return true if we can take the specified value |
| 146 | /// and return it as type Ty without inserting any new casts and without |
| 147 | /// changing the computed value. This is used by code that tries to decide |
| 148 | /// whether promoting or shrinking integer operations to wider or smaller types |
| 149 | /// will allow us to eliminate a truncate or extend. |
| 150 | /// |
| 151 | /// This is a truncation operation if Ty is smaller than V->getType(), or an |
| 152 | /// extension operation if Ty is larger. |
| 153 | /// |
| 154 | /// If CastOpc is a truncation, then Ty will be a type smaller than V. We |
| 155 | /// should return true if trunc(V) can be computed by computing V in the smaller |
| 156 | /// type. If V is an instruction, then trunc(inst(x,y)) can be computed as |
| 157 | /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be |
| 158 | /// efficiently truncated. |
| 159 | /// |
| 160 | /// If CastOpc is a sext or zext, we are asking if the low bits of the value can |
| 161 | /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get |
| 162 | /// the final result. |
| 163 | bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty, |
| 164 | unsigned CastOpc, |
| 165 | int &NumCastsRemoved){ |
| 166 | // We can always evaluate constants in another type. |
| 167 | if (isa<Constant>(V)) |
| 168 | return true; |
| 169 | |
| 170 | Instruction *I = dyn_cast<Instruction>(V); |
| 171 | if (!I) return false; |
| 172 | |
| 173 | const Type *OrigTy = V->getType(); |
| 174 | |
| 175 | // If this is an extension or truncate, we can often eliminate it. |
| 176 | if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) { |
| 177 | // If this is a cast from the destination type, we can trivially eliminate |
| 178 | // it, and this will remove a cast overall. |
| 179 | if (I->getOperand(0)->getType() == Ty) { |
| 180 | // If the first operand is itself a cast, and is eliminable, do not count |
| 181 | // this as an eliminable cast. We would prefer to eliminate those two |
| 182 | // casts first. |
| 183 | if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse()) |
| 184 | ++NumCastsRemoved; |
| 185 | return true; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | // We can't extend or shrink something that has multiple uses: doing so would |
| 190 | // require duplicating the instruction in general, which isn't profitable. |
| 191 | if (!I->hasOneUse()) return false; |
| 192 | |
| 193 | unsigned Opc = I->getOpcode(); |
| 194 | switch (Opc) { |
| 195 | case Instruction::Add: |
| 196 | case Instruction::Sub: |
| 197 | case Instruction::Mul: |
| 198 | case Instruction::And: |
| 199 | case Instruction::Or: |
| 200 | case Instruction::Xor: |
| 201 | // These operators can all arbitrarily be extended or truncated. |
| 202 | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, |
| 203 | NumCastsRemoved) && |
| 204 | CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, |
| 205 | NumCastsRemoved); |
| 206 | |
| 207 | case Instruction::UDiv: |
| 208 | case Instruction::URem: { |
| 209 | // UDiv and URem can be truncated if all the truncated bits are zero. |
| 210 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 211 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 212 | if (BitWidth < OrigBitWidth) { |
| 213 | APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); |
| 214 | if (MaskedValueIsZero(I->getOperand(0), Mask) && |
| 215 | MaskedValueIsZero(I->getOperand(1), Mask)) { |
| 216 | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, |
| 217 | NumCastsRemoved) && |
| 218 | CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, |
| 219 | NumCastsRemoved); |
| 220 | } |
| 221 | } |
| 222 | break; |
| 223 | } |
| 224 | case Instruction::Shl: |
| 225 | // If we are truncating the result of this SHL, and if it's a shift of a |
| 226 | // constant amount, we can always perform a SHL in a smaller type. |
| 227 | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 228 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 229 | if (BitWidth < OrigTy->getScalarSizeInBits() && |
| 230 | CI->getLimitedValue(BitWidth) < BitWidth) |
| 231 | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, |
| 232 | NumCastsRemoved); |
| 233 | } |
| 234 | break; |
| 235 | case Instruction::LShr: |
| 236 | // If this is a truncate of a logical shr, we can truncate it to a smaller |
| 237 | // lshr iff we know that the bits we would otherwise be shifting in are |
| 238 | // already zeros. |
| 239 | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 240 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 241 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 242 | if (BitWidth < OrigBitWidth && |
| 243 | MaskedValueIsZero(I->getOperand(0), |
| 244 | APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && |
| 245 | CI->getLimitedValue(BitWidth) < BitWidth) { |
| 246 | return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, |
| 247 | NumCastsRemoved); |
| 248 | } |
| 249 | } |
| 250 | break; |
| 251 | case Instruction::ZExt: |
| 252 | case Instruction::SExt: |
| 253 | case Instruction::Trunc: |
| 254 | // If this is the same kind of case as our original (e.g. zext+zext), we |
| 255 | // can safely replace it. Note that replacing it does not reduce the number |
| 256 | // of casts in the input. |
| 257 | if (Opc == CastOpc) |
| 258 | return true; |
| 259 | |
| 260 | // sext (zext ty1), ty2 -> zext ty2 |
| 261 | if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt) |
| 262 | return true; |
| 263 | break; |
| 264 | case Instruction::Select: { |
| 265 | SelectInst *SI = cast<SelectInst>(I); |
| 266 | return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc, |
| 267 | NumCastsRemoved) && |
| 268 | CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc, |
| 269 | NumCastsRemoved); |
| 270 | } |
| 271 | case Instruction::PHI: { |
| 272 | // We can change a phi if we can change all operands. |
| 273 | PHINode *PN = cast<PHINode>(I); |
| 274 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 275 | if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc, |
| 276 | NumCastsRemoved)) |
| 277 | return false; |
| 278 | return true; |
| 279 | } |
| 280 | default: |
| 281 | // TODO: Can handle more cases here. |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | return false; |
| 286 | } |
| 287 | |
| 288 | /// EvaluateInDifferentType - Given an expression that |
| 289 | /// CanEvaluateInDifferentType returns true for, actually insert the code to |
| 290 | /// evaluate the expression. |
| 291 | Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, |
| 292 | bool isSigned) { |
| 293 | if (Constant *C = dyn_cast<Constant>(V)) |
| 294 | return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); |
| 295 | |
| 296 | // Otherwise, it must be an instruction. |
| 297 | Instruction *I = cast<Instruction>(V); |
| 298 | Instruction *Res = 0; |
| 299 | unsigned Opc = I->getOpcode(); |
| 300 | switch (Opc) { |
| 301 | case Instruction::Add: |
| 302 | case Instruction::Sub: |
| 303 | case Instruction::Mul: |
| 304 | case Instruction::And: |
| 305 | case Instruction::Or: |
| 306 | case Instruction::Xor: |
| 307 | case Instruction::AShr: |
| 308 | case Instruction::LShr: |
| 309 | case Instruction::Shl: |
| 310 | case Instruction::UDiv: |
| 311 | case Instruction::URem: { |
| 312 | Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); |
| 313 | Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| 314 | Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| 315 | break; |
| 316 | } |
| 317 | case Instruction::Trunc: |
| 318 | case Instruction::ZExt: |
| 319 | case Instruction::SExt: |
| 320 | // If the source type of the cast is the type we're trying for then we can |
| 321 | // just return the source. There's no need to insert it because it is not |
| 322 | // new. |
| 323 | if (I->getOperand(0)->getType() == Ty) |
| 324 | return I->getOperand(0); |
| 325 | |
| 326 | // Otherwise, must be the same type of cast, so just reinsert a new one. |
| 327 | Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty); |
| 328 | break; |
| 329 | case Instruction::Select: { |
| 330 | Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| 331 | Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); |
| 332 | Res = SelectInst::Create(I->getOperand(0), True, False); |
| 333 | break; |
| 334 | } |
| 335 | case Instruction::PHI: { |
| 336 | PHINode *OPN = cast<PHINode>(I); |
| 337 | PHINode *NPN = PHINode::Create(Ty); |
| 338 | for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { |
| 339 | Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); |
| 340 | NPN->addIncoming(V, OPN->getIncomingBlock(i)); |
| 341 | } |
| 342 | Res = NPN; |
| 343 | break; |
| 344 | } |
| 345 | default: |
| 346 | // TODO: Can handle more cases here. |
| 347 | llvm_unreachable("Unreachable!"); |
| 348 | break; |
| 349 | } |
| 350 | |
| 351 | Res->takeName(I); |
| 352 | return InsertNewInstBefore(Res, *I); |
| 353 | } |
Chris Lattner | 80f43d3 | 2010-01-04 07:53:58 +0000 | [diff] [blame] | 354 | |
| 355 | |
| 356 | /// This function is a wrapper around CastInst::isEliminableCastPair. It |
| 357 | /// simply extracts arguments and returns what that function returns. |
| 358 | static Instruction::CastOps |
| 359 | isEliminableCastPair( |
| 360 | const CastInst *CI, ///< The first cast instruction |
| 361 | unsigned opcode, ///< The opcode of the second cast instruction |
| 362 | const Type *DstTy, ///< The target type for the second cast instruction |
| 363 | TargetData *TD ///< The target data for pointer size |
| 364 | ) { |
| 365 | |
| 366 | const Type *SrcTy = CI->getOperand(0)->getType(); // A from above |
| 367 | const Type *MidTy = CI->getType(); // B from above |
| 368 | |
| 369 | // Get the opcodes of the two Cast instructions |
| 370 | Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); |
| 371 | Instruction::CastOps secondOp = Instruction::CastOps(opcode); |
| 372 | |
| 373 | unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, |
| 374 | DstTy, |
| 375 | TD ? TD->getIntPtrType(CI->getContext()) : 0); |
| 376 | |
| 377 | // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| 378 | // type that differs from the pointer size. |
| 379 | if ((Res == Instruction::IntToPtr && |
| 380 | (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || |
| 381 | (Res == Instruction::PtrToInt && |
| 382 | (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) |
| 383 | Res = 0; |
| 384 | |
| 385 | return Instruction::CastOps(Res); |
| 386 | } |
| 387 | |
| 388 | /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results |
| 389 | /// in any code being generated. It does not require codegen if V is simple |
| 390 | /// enough or if the cast can be folded into other casts. |
| 391 | bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V, |
| 392 | const Type *Ty) { |
| 393 | if (V->getType() == Ty || isa<Constant>(V)) return false; |
| 394 | |
| 395 | // If this is another cast that can be eliminated, it isn't codegen either. |
| 396 | if (const CastInst *CI = dyn_cast<CastInst>(V)) |
| 397 | if (isEliminableCastPair(CI, opcode, Ty, TD)) |
| 398 | return false; |
| 399 | return true; |
| 400 | } |
| 401 | |
| 402 | |
| 403 | /// @brief Implement the transforms common to all CastInst visitors. |
| 404 | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { |
| 405 | Value *Src = CI.getOperand(0); |
| 406 | |
| 407 | // Many cases of "cast of a cast" are eliminable. If it's eliminable we just |
| 408 | // eliminate it now. |
| 409 | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast |
| 410 | if (Instruction::CastOps opc = |
| 411 | isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { |
| 412 | // The first cast (CSrc) is eliminable so we need to fix up or replace |
| 413 | // the second cast (CI). CSrc will then have a good chance of being dead. |
| 414 | return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | // If we are casting a select then fold the cast into the select |
| 419 | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) |
| 420 | if (Instruction *NV = FoldOpIntoSelect(CI, SI)) |
| 421 | return NV; |
| 422 | |
| 423 | // If we are casting a PHI then fold the cast into the PHI |
| 424 | if (isa<PHINode>(Src)) { |
| 425 | // We don't do this if this would create a PHI node with an illegal type if |
| 426 | // it is currently legal. |
| 427 | if (!isa<IntegerType>(Src->getType()) || |
| 428 | !isa<IntegerType>(CI.getType()) || |
| 429 | ShouldChangeType(CI.getType(), Src->getType())) |
| 430 | if (Instruction *NV = FoldOpIntoPhi(CI)) |
| 431 | return NV; |
| 432 | } |
| 433 | |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) |
| 438 | Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { |
| 439 | Value *Src = CI.getOperand(0); |
| 440 | |
| 441 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { |
| 442 | // If casting the result of a getelementptr instruction with no offset, turn |
| 443 | // this into a cast of the original pointer! |
| 444 | if (GEP->hasAllZeroIndices()) { |
| 445 | // Changing the cast operand is usually not a good idea but it is safe |
| 446 | // here because the pointer operand is being replaced with another |
| 447 | // pointer operand so the opcode doesn't need to change. |
| 448 | Worklist.Add(GEP); |
| 449 | CI.setOperand(0, GEP->getOperand(0)); |
| 450 | return &CI; |
| 451 | } |
| 452 | |
| 453 | // If the GEP has a single use, and the base pointer is a bitcast, and the |
| 454 | // GEP computes a constant offset, see if we can convert these three |
| 455 | // instructions into fewer. This typically happens with unions and other |
| 456 | // non-type-safe code. |
| 457 | if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) { |
| 458 | if (GEP->hasAllConstantIndices()) { |
| 459 | // We are guaranteed to get a constant from EmitGEPOffset. |
| 460 | ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP)); |
| 461 | int64_t Offset = OffsetV->getSExtValue(); |
| 462 | |
| 463 | // Get the base pointer input of the bitcast, and the type it points to. |
| 464 | Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); |
| 465 | const Type *GEPIdxTy = |
| 466 | cast<PointerType>(OrigBase->getType())->getElementType(); |
| 467 | SmallVector<Value*, 8> NewIndices; |
| 468 | if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { |
| 469 | // If we were able to index down into an element, create the GEP |
| 470 | // and bitcast the result. This eliminates one bitcast, potentially |
| 471 | // two. |
| 472 | Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? |
| 473 | Builder->CreateInBoundsGEP(OrigBase, |
| 474 | NewIndices.begin(), NewIndices.end()) : |
| 475 | Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end()); |
| 476 | NGEP->takeName(GEP); |
| 477 | |
| 478 | if (isa<BitCastInst>(CI)) |
| 479 | return new BitCastInst(NGEP, CI.getType()); |
| 480 | assert(isa<PtrToIntInst>(CI)); |
| 481 | return new PtrToIntInst(NGEP, CI.getType()); |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | return commonCastTransforms(CI); |
| 488 | } |
| 489 | |
| 490 | /// commonIntCastTransforms - This function implements the common transforms |
| 491 | /// for trunc, zext, and sext. |
| 492 | Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { |
| 493 | if (Instruction *Result = commonCastTransforms(CI)) |
| 494 | return Result; |
| 495 | |
| 496 | Value *Src = CI.getOperand(0); |
| 497 | const Type *SrcTy = Src->getType(); |
| 498 | const Type *DestTy = CI.getType(); |
| 499 | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); |
| 500 | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| 501 | |
| 502 | // See if we can simplify any instructions used by the LHS whose sole |
| 503 | // purpose is to compute bits we don't care about. |
| 504 | if (SimplifyDemandedInstructionBits(CI)) |
| 505 | return &CI; |
| 506 | |
| 507 | // If the source isn't an instruction or has more than one use then we |
| 508 | // can't do anything more. |
| 509 | Instruction *SrcI = dyn_cast<Instruction>(Src); |
| 510 | if (!SrcI || !Src->hasOneUse()) |
| 511 | return 0; |
| 512 | |
| 513 | // Attempt to propagate the cast into the instruction for int->int casts. |
| 514 | int NumCastsRemoved = 0; |
| 515 | // Only do this if the dest type is a simple type, don't convert the |
| 516 | // expression tree to something weird like i93 unless the source is also |
| 517 | // strange. |
| 518 | if ((isa<VectorType>(DestTy) || |
| 519 | ShouldChangeType(SrcI->getType(), DestTy)) && |
| 520 | CanEvaluateInDifferentType(SrcI, DestTy, |
| 521 | CI.getOpcode(), NumCastsRemoved)) { |
| 522 | // If this cast is a truncate, evaluting in a different type always |
| 523 | // eliminates the cast, so it is always a win. If this is a zero-extension, |
| 524 | // we need to do an AND to maintain the clear top-part of the computation, |
| 525 | // so we require that the input have eliminated at least one cast. If this |
| 526 | // is a sign extension, we insert two new casts (to do the extension) so we |
| 527 | // require that two casts have been eliminated. |
| 528 | bool DoXForm = false; |
| 529 | bool JustReplace = false; |
| 530 | switch (CI.getOpcode()) { |
| 531 | default: |
| 532 | // All the others use floating point so we shouldn't actually |
| 533 | // get here because of the check above. |
| 534 | llvm_unreachable("Unknown cast type"); |
| 535 | case Instruction::Trunc: |
| 536 | DoXForm = true; |
| 537 | break; |
| 538 | case Instruction::ZExt: { |
| 539 | DoXForm = NumCastsRemoved >= 1; |
| 540 | |
| 541 | if (!DoXForm && 0) { |
| 542 | // If it's unnecessary to issue an AND to clear the high bits, it's |
| 543 | // always profitable to do this xform. |
| 544 | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false); |
| 545 | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); |
| 546 | if (MaskedValueIsZero(TryRes, Mask)) |
| 547 | return ReplaceInstUsesWith(CI, TryRes); |
| 548 | |
| 549 | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) |
| 550 | if (TryI->use_empty()) |
| 551 | EraseInstFromFunction(*TryI); |
| 552 | } |
| 553 | break; |
| 554 | } |
| 555 | case Instruction::SExt: { |
| 556 | DoXForm = NumCastsRemoved >= 2; |
| 557 | if (!DoXForm && !isa<TruncInst>(SrcI) && 0) { |
| 558 | // If we do not have to emit the truncate + sext pair, then it's always |
| 559 | // profitable to do this xform. |
| 560 | // |
| 561 | // It's not safe to eliminate the trunc + sext pair if one of the |
| 562 | // eliminated cast is a truncate. e.g. |
| 563 | // t2 = trunc i32 t1 to i16 |
| 564 | // t3 = sext i16 t2 to i32 |
| 565 | // != |
| 566 | // i32 t1 |
| 567 | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true); |
| 568 | unsigned NumSignBits = ComputeNumSignBits(TryRes); |
| 569 | if (NumSignBits > (DestBitSize - SrcBitSize)) |
| 570 | return ReplaceInstUsesWith(CI, TryRes); |
| 571 | |
| 572 | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) |
| 573 | if (TryI->use_empty()) |
| 574 | EraseInstFromFunction(*TryI); |
| 575 | } |
| 576 | break; |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | if (DoXForm) { |
| 581 | DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type" |
| 582 | " to avoid cast: " << CI); |
| 583 | Value *Res = EvaluateInDifferentType(SrcI, DestTy, |
| 584 | CI.getOpcode() == Instruction::SExt); |
| 585 | if (JustReplace) |
| 586 | // Just replace this cast with the result. |
| 587 | return ReplaceInstUsesWith(CI, Res); |
| 588 | |
| 589 | assert(Res->getType() == DestTy); |
| 590 | switch (CI.getOpcode()) { |
| 591 | default: llvm_unreachable("Unknown cast type!"); |
| 592 | case Instruction::Trunc: |
| 593 | // Just replace this cast with the result. |
| 594 | return ReplaceInstUsesWith(CI, Res); |
| 595 | case Instruction::ZExt: { |
| 596 | assert(SrcBitSize < DestBitSize && "Not a zext?"); |
| 597 | |
| 598 | // If the high bits are already zero, just replace this cast with the |
| 599 | // result. |
| 600 | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); |
| 601 | if (MaskedValueIsZero(Res, Mask)) |
| 602 | return ReplaceInstUsesWith(CI, Res); |
| 603 | |
| 604 | // We need to emit an AND to clear the high bits. |
| 605 | Constant *C = ConstantInt::get(CI.getContext(), |
| 606 | APInt::getLowBitsSet(DestBitSize, SrcBitSize)); |
| 607 | return BinaryOperator::CreateAnd(Res, C); |
| 608 | } |
| 609 | case Instruction::SExt: { |
| 610 | // If the high bits are already filled with sign bit, just replace this |
| 611 | // cast with the result. |
| 612 | unsigned NumSignBits = ComputeNumSignBits(Res); |
| 613 | if (NumSignBits > (DestBitSize - SrcBitSize)) |
| 614 | return ReplaceInstUsesWith(CI, Res); |
| 615 | |
| 616 | // We need to emit a cast to truncate, then a cast to sext. |
| 617 | return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy); |
| 618 | } |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; |
| 624 | Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; |
| 625 | |
| 626 | switch (SrcI->getOpcode()) { |
| 627 | case Instruction::Add: |
| 628 | case Instruction::Mul: |
| 629 | case Instruction::And: |
| 630 | case Instruction::Or: |
| 631 | case Instruction::Xor: |
| 632 | // If we are discarding information, rewrite. |
| 633 | if (DestBitSize < SrcBitSize && DestBitSize != 1) { |
| 634 | // Don't insert two casts unless at least one can be eliminated. |
| 635 | if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy) || |
| 636 | !ValueRequiresCast(CI.getOpcode(), Op0, DestTy)) { |
| 637 | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); |
| 638 | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); |
| 639 | return BinaryOperator::Create( |
| 640 | cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 |
| 645 | if (isa<ZExtInst>(CI) && SrcBitSize == 1 && |
| 646 | SrcI->getOpcode() == Instruction::Xor && |
| 647 | Op1 == ConstantInt::getTrue(CI.getContext()) && |
| 648 | (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) { |
| 649 | Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName()); |
| 650 | return BinaryOperator::CreateXor(New, |
| 651 | ConstantInt::get(CI.getType(), 1)); |
| 652 | } |
| 653 | break; |
| 654 | |
| 655 | case Instruction::Shl: { |
| 656 | // Canonicalize trunc inside shl, if we can. |
| 657 | ConstantInt *CI = dyn_cast<ConstantInt>(Op1); |
| 658 | if (CI && DestBitSize < SrcBitSize && |
| 659 | CI->getLimitedValue(DestBitSize) < DestBitSize) { |
| 660 | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); |
| 661 | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); |
| 662 | return BinaryOperator::CreateShl(Op0c, Op1c); |
| 663 | } |
| 664 | break; |
| 665 | } |
| 666 | } |
| 667 | return 0; |
| 668 | } |
| 669 | |
| 670 | |
| 671 | Instruction *InstCombiner::visitTrunc(TruncInst &CI) { |
| 672 | if (Instruction *Result = commonIntCastTransforms(CI)) |
| 673 | return Result; |
| 674 | |
| 675 | Value *Src = CI.getOperand(0); |
| 676 | const Type *Ty = CI.getType(); |
| 677 | uint32_t DestBitWidth = Ty->getScalarSizeInBits(); |
| 678 | uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits(); |
| 679 | |
| 680 | // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0) |
| 681 | if (DestBitWidth == 1) { |
| 682 | Constant *One = ConstantInt::get(Src->getType(), 1); |
| 683 | Src = Builder->CreateAnd(Src, One, "tmp"); |
| 684 | Value *Zero = Constant::getNullValue(Src->getType()); |
| 685 | return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); |
| 686 | } |
| 687 | |
| 688 | // Optimize trunc(lshr(), c) to pull the shift through the truncate. |
| 689 | ConstantInt *ShAmtV = 0; |
| 690 | Value *ShiftOp = 0; |
| 691 | if (Src->hasOneUse() && |
| 692 | match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) { |
| 693 | uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); |
| 694 | |
| 695 | // Get a mask for the bits shifting in. |
| 696 | APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); |
| 697 | if (MaskedValueIsZero(ShiftOp, Mask)) { |
| 698 | if (ShAmt >= DestBitWidth) // All zeros. |
| 699 | return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); |
| 700 | |
| 701 | // Okay, we can shrink this. Truncate the input, then return a new |
| 702 | // shift. |
| 703 | Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName()); |
| 704 | Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty); |
| 705 | return BinaryOperator::CreateLShr(V1, V2); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations |
| 713 | /// in order to eliminate the icmp. |
| 714 | Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, |
| 715 | bool DoXform) { |
| 716 | // If we are just checking for a icmp eq of a single bit and zext'ing it |
| 717 | // to an integer, then shift the bit to the appropriate place and then |
| 718 | // cast to integer to avoid the comparison. |
| 719 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| 720 | const APInt &Op1CV = Op1C->getValue(); |
| 721 | |
| 722 | // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| 723 | // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. |
| 724 | if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || |
| 725 | (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { |
| 726 | if (!DoXform) return ICI; |
| 727 | |
| 728 | Value *In = ICI->getOperand(0); |
| 729 | Value *Sh = ConstantInt::get(In->getType(), |
| 730 | In->getType()->getScalarSizeInBits()-1); |
| 731 | In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); |
| 732 | if (In->getType() != CI.getType()) |
| 733 | In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp"); |
| 734 | |
| 735 | if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { |
| 736 | Constant *One = ConstantInt::get(In->getType(), 1); |
| 737 | In = Builder->CreateXor(In, One, In->getName()+".not"); |
| 738 | } |
| 739 | |
| 740 | return ReplaceInstUsesWith(CI, In); |
| 741 | } |
| 742 | |
| 743 | |
| 744 | |
| 745 | // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| 746 | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 747 | // zext (X == 1) to i32 --> X iff X has only the low bit set. |
| 748 | // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 749 | // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| 750 | // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 751 | // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. |
| 752 | // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 753 | if ((Op1CV == 0 || Op1CV.isPowerOf2()) && |
| 754 | // This only works for EQ and NE |
| 755 | ICI->isEquality()) { |
| 756 | // If Op1C some other power of two, convert: |
| 757 | uint32_t BitWidth = Op1C->getType()->getBitWidth(); |
| 758 | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| 759 | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); |
| 760 | ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); |
| 761 | |
| 762 | APInt KnownZeroMask(~KnownZero); |
| 763 | if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? |
| 764 | if (!DoXform) return ICI; |
| 765 | |
| 766 | bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; |
| 767 | if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { |
| 768 | // (X&4) == 2 --> false |
| 769 | // (X&4) != 2 --> true |
| 770 | Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), |
| 771 | isNE); |
| 772 | Res = ConstantExpr::getZExt(Res, CI.getType()); |
| 773 | return ReplaceInstUsesWith(CI, Res); |
| 774 | } |
| 775 | |
| 776 | uint32_t ShiftAmt = KnownZeroMask.logBase2(); |
| 777 | Value *In = ICI->getOperand(0); |
| 778 | if (ShiftAmt) { |
| 779 | // Perform a logical shr by shiftamt. |
| 780 | // Insert the shift to put the result in the low bit. |
| 781 | In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), |
| 782 | In->getName()+".lobit"); |
| 783 | } |
| 784 | |
| 785 | if ((Op1CV != 0) == isNE) { // Toggle the low bit. |
| 786 | Constant *One = ConstantInt::get(In->getType(), 1); |
| 787 | In = Builder->CreateXor(In, One, "tmp"); |
| 788 | } |
| 789 | |
| 790 | if (CI.getType() == In->getType()) |
| 791 | return ReplaceInstUsesWith(CI, In); |
| 792 | else |
| 793 | return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | // icmp ne A, B is equal to xor A, B when A and B only really have one bit. |
| 799 | // It is also profitable to transform icmp eq into not(xor(A, B)) because that |
| 800 | // may lead to additional simplifications. |
| 801 | if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { |
| 802 | if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { |
| 803 | uint32_t BitWidth = ITy->getBitWidth(); |
| 804 | Value *LHS = ICI->getOperand(0); |
| 805 | Value *RHS = ICI->getOperand(1); |
| 806 | |
| 807 | APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); |
| 808 | APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); |
| 809 | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); |
| 810 | ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); |
| 811 | ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); |
| 812 | |
| 813 | if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { |
| 814 | APInt KnownBits = KnownZeroLHS | KnownOneLHS; |
| 815 | APInt UnknownBit = ~KnownBits; |
| 816 | if (UnknownBit.countPopulation() == 1) { |
| 817 | if (!DoXform) return ICI; |
| 818 | |
| 819 | Value *Result = Builder->CreateXor(LHS, RHS); |
| 820 | |
| 821 | // Mask off any bits that are set and won't be shifted away. |
| 822 | if (KnownOneLHS.uge(UnknownBit)) |
| 823 | Result = Builder->CreateAnd(Result, |
| 824 | ConstantInt::get(ITy, UnknownBit)); |
| 825 | |
| 826 | // Shift the bit we're testing down to the lsb. |
| 827 | Result = Builder->CreateLShr( |
| 828 | Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); |
| 829 | |
| 830 | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| 831 | Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); |
| 832 | Result->takeName(ICI); |
| 833 | return ReplaceInstUsesWith(CI, Result); |
| 834 | } |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | Instruction *InstCombiner::visitZExt(ZExtInst &CI) { |
| 843 | // If one of the common conversion will work, do it. |
| 844 | if (Instruction *Result = commonIntCastTransforms(CI)) |
| 845 | return Result; |
| 846 | |
| 847 | Value *Src = CI.getOperand(0); |
| 848 | |
| 849 | // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| 850 | // types and if the sizes are just right we can convert this into a logical |
| 851 | // 'and' which will be much cheaper than the pair of casts. |
| 852 | if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast |
| 853 | // Get the sizes of the types involved. We know that the intermediate type |
| 854 | // will be smaller than A or C, but don't know the relation between A and C. |
| 855 | Value *A = CSrc->getOperand(0); |
| 856 | unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| 857 | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| 858 | unsigned DstSize = CI.getType()->getScalarSizeInBits(); |
| 859 | // If we're actually extending zero bits, then if |
| 860 | // SrcSize < DstSize: zext(a & mask) |
| 861 | // SrcSize == DstSize: a & mask |
| 862 | // SrcSize > DstSize: trunc(a) & mask |
| 863 | if (SrcSize < DstSize) { |
| 864 | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| 865 | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); |
| 866 | Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); |
| 867 | return new ZExtInst(And, CI.getType()); |
| 868 | } |
| 869 | |
| 870 | if (SrcSize == DstSize) { |
| 871 | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| 872 | return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), |
| 873 | AndValue)); |
| 874 | } |
| 875 | if (SrcSize > DstSize) { |
| 876 | Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp"); |
| 877 | APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); |
| 878 | return BinaryOperator::CreateAnd(Trunc, |
| 879 | ConstantInt::get(Trunc->getType(), |
| 880 | AndValue)); |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) |
| 885 | return transformZExtICmp(ICI, CI); |
| 886 | |
| 887 | BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); |
| 888 | if (SrcI && SrcI->getOpcode() == Instruction::Or) { |
| 889 | // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one |
| 890 | // of the (zext icmp) will be transformed. |
| 891 | ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); |
| 892 | ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); |
| 893 | if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && |
| 894 | (transformZExtICmp(LHS, CI, false) || |
| 895 | transformZExtICmp(RHS, CI, false))) { |
| 896 | Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); |
| 897 | Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); |
| 898 | return BinaryOperator::Create(Instruction::Or, LCast, RCast); |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | // zext(trunc(t) & C) -> (t & zext(C)). |
| 903 | if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) |
| 904 | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) |
| 905 | if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { |
| 906 | Value *TI0 = TI->getOperand(0); |
| 907 | if (TI0->getType() == CI.getType()) |
| 908 | return |
| 909 | BinaryOperator::CreateAnd(TI0, |
| 910 | ConstantExpr::getZExt(C, CI.getType())); |
| 911 | } |
| 912 | |
| 913 | // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). |
| 914 | if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) |
| 915 | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) |
| 916 | if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) |
| 917 | if (And->getOpcode() == Instruction::And && And->hasOneUse() && |
| 918 | And->getOperand(1) == C) |
| 919 | if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { |
| 920 | Value *TI0 = TI->getOperand(0); |
| 921 | if (TI0->getType() == CI.getType()) { |
| 922 | Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); |
| 923 | Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp"); |
| 924 | return BinaryOperator::CreateXor(NewAnd, ZC); |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | return 0; |
| 929 | } |
| 930 | |
| 931 | Instruction *InstCombiner::visitSExt(SExtInst &CI) { |
| 932 | if (Instruction *I = commonIntCastTransforms(CI)) |
| 933 | return I; |
| 934 | |
| 935 | Value *Src = CI.getOperand(0); |
| 936 | |
| 937 | // Canonicalize sign-extend from i1 to a select. |
| 938 | if (Src->getType() == Type::getInt1Ty(CI.getContext())) |
| 939 | return SelectInst::Create(Src, |
| 940 | Constant::getAllOnesValue(CI.getType()), |
| 941 | Constant::getNullValue(CI.getType())); |
| 942 | |
| 943 | // See if the value being truncated is already sign extended. If so, just |
| 944 | // eliminate the trunc/sext pair. |
| 945 | if (Operator::getOpcode(Src) == Instruction::Trunc) { |
| 946 | Value *Op = cast<User>(Src)->getOperand(0); |
| 947 | unsigned OpBits = Op->getType()->getScalarSizeInBits(); |
| 948 | unsigned MidBits = Src->getType()->getScalarSizeInBits(); |
| 949 | unsigned DestBits = CI.getType()->getScalarSizeInBits(); |
| 950 | unsigned NumSignBits = ComputeNumSignBits(Op); |
| 951 | |
| 952 | if (OpBits == DestBits) { |
| 953 | // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| 954 | // bits, it is already ready. |
| 955 | if (NumSignBits > DestBits-MidBits) |
| 956 | return ReplaceInstUsesWith(CI, Op); |
| 957 | } else if (OpBits < DestBits) { |
| 958 | // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| 959 | // bits, just sext from i32. |
| 960 | if (NumSignBits > OpBits-MidBits) |
| 961 | return new SExtInst(Op, CI.getType(), "tmp"); |
| 962 | } else { |
| 963 | // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| 964 | // bits, just truncate to i32. |
| 965 | if (NumSignBits > OpBits-MidBits) |
| 966 | return new TruncInst(Op, CI.getType(), "tmp"); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | // If the input is a shl/ashr pair of a same constant, then this is a sign |
| 971 | // extension from a smaller value. If we could trust arbitrary bitwidth |
| 972 | // integers, we could turn this into a truncate to the smaller bit and then |
| 973 | // use a sext for the whole extension. Since we don't, look deeper and check |
| 974 | // for a truncate. If the source and dest are the same type, eliminate the |
| 975 | // trunc and extend and just do shifts. For example, turn: |
| 976 | // %a = trunc i32 %i to i8 |
| 977 | // %b = shl i8 %a, 6 |
| 978 | // %c = ashr i8 %b, 6 |
| 979 | // %d = sext i8 %c to i32 |
| 980 | // into: |
| 981 | // %a = shl i32 %i, 30 |
| 982 | // %d = ashr i32 %a, 30 |
| 983 | Value *A = 0; |
| 984 | ConstantInt *BA = 0, *CA = 0; |
| 985 | if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)), |
| 986 | m_ConstantInt(CA))) && |
| 987 | BA == CA && isa<TruncInst>(A)) { |
| 988 | Value *I = cast<TruncInst>(A)->getOperand(0); |
| 989 | if (I->getType() == CI.getType()) { |
| 990 | unsigned MidSize = Src->getType()->getScalarSizeInBits(); |
| 991 | unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); |
| 992 | unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; |
| 993 | Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); |
| 994 | I = Builder->CreateShl(I, ShAmtV, CI.getName()); |
| 995 | return BinaryOperator::CreateAShr(I, ShAmtV); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | return 0; |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | /// FitsInFPType - Return a Constant* for the specified FP constant if it fits |
| 1004 | /// in the specified FP type without changing its value. |
| 1005 | static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { |
| 1006 | bool losesInfo; |
| 1007 | APFloat F = CFP->getValueAPF(); |
| 1008 | (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); |
| 1009 | if (!losesInfo) |
| 1010 | return ConstantFP::get(CFP->getContext(), F); |
| 1011 | return 0; |
| 1012 | } |
| 1013 | |
| 1014 | /// LookThroughFPExtensions - If this is an fp extension instruction, look |
| 1015 | /// through it until we get the source value. |
| 1016 | static Value *LookThroughFPExtensions(Value *V) { |
| 1017 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1018 | if (I->getOpcode() == Instruction::FPExt) |
| 1019 | return LookThroughFPExtensions(I->getOperand(0)); |
| 1020 | |
| 1021 | // If this value is a constant, return the constant in the smallest FP type |
| 1022 | // that can accurately represent it. This allows us to turn |
| 1023 | // (float)((double)X+2.0) into x+2.0f. |
| 1024 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { |
| 1025 | if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) |
| 1026 | return V; // No constant folding of this. |
| 1027 | // See if the value can be truncated to float and then reextended. |
| 1028 | if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) |
| 1029 | return V; |
Benjamin Kramer | f012705 | 2010-01-05 13:12:22 +0000 | [diff] [blame^] | 1030 | if (CFP->getType()->isDoubleTy()) |
Chris Lattner | 80f43d3 | 2010-01-04 07:53:58 +0000 | [diff] [blame] | 1031 | return V; // Won't shrink. |
| 1032 | if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) |
| 1033 | return V; |
| 1034 | // Don't try to shrink to various long double types. |
| 1035 | } |
| 1036 | |
| 1037 | return V; |
| 1038 | } |
| 1039 | |
| 1040 | Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { |
| 1041 | if (Instruction *I = commonCastTransforms(CI)) |
| 1042 | return I; |
| 1043 | |
| 1044 | // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are |
| 1045 | // smaller than the destination type, we can eliminate the truncate by doing |
| 1046 | // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well |
| 1047 | // as many builtins (sqrt, etc). |
| 1048 | BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); |
| 1049 | if (OpI && OpI->hasOneUse()) { |
| 1050 | switch (OpI->getOpcode()) { |
| 1051 | default: break; |
| 1052 | case Instruction::FAdd: |
| 1053 | case Instruction::FSub: |
| 1054 | case Instruction::FMul: |
| 1055 | case Instruction::FDiv: |
| 1056 | case Instruction::FRem: |
| 1057 | const Type *SrcTy = OpI->getType(); |
| 1058 | Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); |
| 1059 | Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); |
| 1060 | if (LHSTrunc->getType() != SrcTy && |
| 1061 | RHSTrunc->getType() != SrcTy) { |
| 1062 | unsigned DstSize = CI.getType()->getScalarSizeInBits(); |
| 1063 | // If the source types were both smaller than the destination type of |
| 1064 | // the cast, do this xform. |
| 1065 | if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && |
| 1066 | RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { |
| 1067 | LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); |
| 1068 | RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); |
| 1069 | return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); |
| 1070 | } |
| 1071 | } |
| 1072 | break; |
| 1073 | } |
| 1074 | } |
| 1075 | return 0; |
| 1076 | } |
| 1077 | |
| 1078 | Instruction *InstCombiner::visitFPExt(CastInst &CI) { |
| 1079 | return commonCastTransforms(CI); |
| 1080 | } |
| 1081 | |
| 1082 | Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { |
| 1083 | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| 1084 | if (OpI == 0) |
| 1085 | return commonCastTransforms(FI); |
| 1086 | |
| 1087 | // fptoui(uitofp(X)) --> X |
| 1088 | // fptoui(sitofp(X)) --> X |
| 1089 | // This is safe if the intermediate type has enough bits in its mantissa to |
| 1090 | // accurately represent all values of X. For example, do not do this with |
| 1091 | // i64->float->i64. This is also safe for sitofp case, because any negative |
| 1092 | // 'X' value would cause an undefined result for the fptoui. |
| 1093 | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && |
| 1094 | OpI->getOperand(0)->getType() == FI.getType() && |
| 1095 | (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ |
| 1096 | OpI->getType()->getFPMantissaWidth()) |
| 1097 | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); |
| 1098 | |
| 1099 | return commonCastTransforms(FI); |
| 1100 | } |
| 1101 | |
| 1102 | Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { |
| 1103 | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| 1104 | if (OpI == 0) |
| 1105 | return commonCastTransforms(FI); |
| 1106 | |
| 1107 | // fptosi(sitofp(X)) --> X |
| 1108 | // fptosi(uitofp(X)) --> X |
| 1109 | // This is safe if the intermediate type has enough bits in its mantissa to |
| 1110 | // accurately represent all values of X. For example, do not do this with |
| 1111 | // i64->float->i64. This is also safe for sitofp case, because any negative |
| 1112 | // 'X' value would cause an undefined result for the fptoui. |
| 1113 | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && |
| 1114 | OpI->getOperand(0)->getType() == FI.getType() && |
| 1115 | (int)FI.getType()->getScalarSizeInBits() <= |
| 1116 | OpI->getType()->getFPMantissaWidth()) |
| 1117 | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); |
| 1118 | |
| 1119 | return commonCastTransforms(FI); |
| 1120 | } |
| 1121 | |
| 1122 | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { |
| 1123 | return commonCastTransforms(CI); |
| 1124 | } |
| 1125 | |
| 1126 | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { |
| 1127 | return commonCastTransforms(CI); |
| 1128 | } |
| 1129 | |
| 1130 | Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { |
| 1131 | // If the destination integer type is smaller than the intptr_t type for |
| 1132 | // this target, do a ptrtoint to intptr_t then do a trunc. This allows the |
| 1133 | // trunc to be exposed to other transforms. Don't do this for extending |
| 1134 | // ptrtoint's, because we don't know if the target sign or zero extends its |
| 1135 | // pointers. |
| 1136 | if (TD && |
| 1137 | CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { |
| 1138 | Value *P = Builder->CreatePtrToInt(CI.getOperand(0), |
| 1139 | TD->getIntPtrType(CI.getContext()), |
| 1140 | "tmp"); |
| 1141 | return new TruncInst(P, CI.getType()); |
| 1142 | } |
| 1143 | |
| 1144 | return commonPointerCastTransforms(CI); |
| 1145 | } |
| 1146 | |
| 1147 | |
| 1148 | Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { |
| 1149 | // If the source integer type is larger than the intptr_t type for |
| 1150 | // this target, do a trunc to the intptr_t type, then inttoptr of it. This |
| 1151 | // allows the trunc to be exposed to other transforms. Don't do this for |
| 1152 | // extending inttoptr's, because we don't know if the target sign or zero |
| 1153 | // extends to pointers. |
| 1154 | if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() > |
| 1155 | TD->getPointerSizeInBits()) { |
| 1156 | Value *P = Builder->CreateTrunc(CI.getOperand(0), |
| 1157 | TD->getIntPtrType(CI.getContext()), "tmp"); |
| 1158 | return new IntToPtrInst(P, CI.getType()); |
| 1159 | } |
| 1160 | |
| 1161 | if (Instruction *I = commonCastTransforms(CI)) |
| 1162 | return I; |
| 1163 | |
| 1164 | return 0; |
| 1165 | } |
| 1166 | |
| 1167 | Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { |
| 1168 | // If the operands are integer typed then apply the integer transforms, |
| 1169 | // otherwise just apply the common ones. |
| 1170 | Value *Src = CI.getOperand(0); |
| 1171 | const Type *SrcTy = Src->getType(); |
| 1172 | const Type *DestTy = CI.getType(); |
| 1173 | |
| 1174 | if (isa<PointerType>(SrcTy)) { |
| 1175 | if (Instruction *I = commonPointerCastTransforms(CI)) |
| 1176 | return I; |
| 1177 | } else { |
| 1178 | if (Instruction *Result = commonCastTransforms(CI)) |
| 1179 | return Result; |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | // Get rid of casts from one type to the same type. These are useless and can |
| 1184 | // be replaced by the operand. |
| 1185 | if (DestTy == Src->getType()) |
| 1186 | return ReplaceInstUsesWith(CI, Src); |
| 1187 | |
| 1188 | if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { |
| 1189 | const PointerType *SrcPTy = cast<PointerType>(SrcTy); |
| 1190 | const Type *DstElTy = DstPTy->getElementType(); |
| 1191 | const Type *SrcElTy = SrcPTy->getElementType(); |
| 1192 | |
| 1193 | // If the address spaces don't match, don't eliminate the bitcast, which is |
| 1194 | // required for changing types. |
| 1195 | if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) |
| 1196 | return 0; |
| 1197 | |
| 1198 | // If we are casting a alloca to a pointer to a type of the same |
| 1199 | // size, rewrite the allocation instruction to allocate the "right" type. |
| 1200 | // There is no need to modify malloc calls because it is their bitcast that |
| 1201 | // needs to be cleaned up. |
| 1202 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) |
| 1203 | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) |
| 1204 | return V; |
| 1205 | |
| 1206 | // If the source and destination are pointers, and this cast is equivalent |
| 1207 | // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. |
| 1208 | // This can enhance SROA and other transforms that want type-safe pointers. |
| 1209 | Constant *ZeroUInt = |
| 1210 | Constant::getNullValue(Type::getInt32Ty(CI.getContext())); |
| 1211 | unsigned NumZeros = 0; |
| 1212 | while (SrcElTy != DstElTy && |
| 1213 | isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) && |
| 1214 | SrcElTy->getNumContainedTypes() /* not "{}" */) { |
| 1215 | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); |
| 1216 | ++NumZeros; |
| 1217 | } |
| 1218 | |
| 1219 | // If we found a path from the src to dest, create the getelementptr now. |
| 1220 | if (SrcElTy == DstElTy) { |
| 1221 | SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); |
| 1222 | return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"", |
| 1223 | ((Instruction*) NULL)); |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { |
| 1228 | if (DestVTy->getNumElements() == 1) { |
| 1229 | if (!isa<VectorType>(SrcTy)) { |
| 1230 | Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); |
| 1231 | return InsertElementInst::Create(UndefValue::get(DestTy), Elem, |
| 1232 | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| 1233 | } |
| 1234 | // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { |
| 1239 | if (SrcVTy->getNumElements() == 1) { |
| 1240 | if (!isa<VectorType>(DestTy)) { |
| 1241 | Value *Elem = |
| 1242 | Builder->CreateExtractElement(Src, |
| 1243 | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| 1244 | return CastInst::Create(Instruction::BitCast, Elem, DestTy); |
| 1245 | } |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { |
| 1250 | if (SVI->hasOneUse()) { |
| 1251 | // Okay, we have (bitconvert (shuffle ..)). Check to see if this is |
| 1252 | // a bitconvert to a vector with the same # elts. |
| 1253 | if (isa<VectorType>(DestTy) && |
| 1254 | cast<VectorType>(DestTy)->getNumElements() == |
| 1255 | SVI->getType()->getNumElements() && |
| 1256 | SVI->getType()->getNumElements() == |
| 1257 | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { |
| 1258 | CastInst *Tmp; |
| 1259 | // If either of the operands is a cast from CI.getType(), then |
| 1260 | // evaluating the shuffle in the casted destination's type will allow |
| 1261 | // us to eliminate at least one cast. |
| 1262 | if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && |
| 1263 | Tmp->getOperand(0)->getType() == DestTy) || |
| 1264 | ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && |
| 1265 | Tmp->getOperand(0)->getType() == DestTy)) { |
| 1266 | Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); |
| 1267 | Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); |
| 1268 | // Return a new shuffle vector. Use the same element ID's, as we |
| 1269 | // know the vector types match #elts. |
| 1270 | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); |
| 1271 | } |
| 1272 | } |
| 1273 | } |
| 1274 | } |
| 1275 | return 0; |
| 1276 | } |