Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame^] | 1 | //===- InlineSimple.cpp - Code to perform simple function inlining --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements bottom-up inlining of functions into callees. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "inline" |
| 15 | #include "llvm/CallingConv.h" |
| 16 | #include "llvm/Instructions.h" |
| 17 | #include "llvm/IntrinsicInst.h" |
| 18 | #include "llvm/Module.h" |
| 19 | #include "llvm/Type.h" |
| 20 | #include "llvm/Analysis/CallGraph.h" |
| 21 | #include "llvm/Support/CallSite.h" |
| 22 | #include "llvm/Support/Compiler.h" |
| 23 | #include "llvm/Transforms/IPO.h" |
| 24 | #include "llvm/Transforms/IPO/InlinerPass.h" |
| 25 | #include <set> |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | namespace { |
| 30 | struct VISIBILITY_HIDDEN ArgInfo { |
| 31 | unsigned ConstantWeight; |
| 32 | unsigned AllocaWeight; |
| 33 | |
| 34 | ArgInfo(unsigned CWeight, unsigned AWeight) |
| 35 | : ConstantWeight(CWeight), AllocaWeight(AWeight) {} |
| 36 | }; |
| 37 | |
| 38 | // FunctionInfo - For each function, calculate the size of it in blocks and |
| 39 | // instructions. |
| 40 | struct VISIBILITY_HIDDEN FunctionInfo { |
| 41 | // NumInsts, NumBlocks - Keep track of how large each function is, which is |
| 42 | // used to estimate the code size cost of inlining it. |
| 43 | unsigned NumInsts, NumBlocks; |
| 44 | |
| 45 | // ArgumentWeights - Each formal argument of the function is inspected to |
| 46 | // see if it is used in any contexts where making it a constant or alloca |
| 47 | // would reduce the code size. If so, we add some value to the argument |
| 48 | // entry here. |
| 49 | std::vector<ArgInfo> ArgumentWeights; |
| 50 | |
| 51 | FunctionInfo() : NumInsts(0), NumBlocks(0) {} |
| 52 | |
| 53 | /// analyzeFunction - Fill in the current structure with information gleaned |
| 54 | /// from the specified function. |
| 55 | void analyzeFunction(Function *F); |
| 56 | }; |
| 57 | |
| 58 | class VISIBILITY_HIDDEN SimpleInliner : public Inliner { |
| 59 | std::map<const Function*, FunctionInfo> CachedFunctionInfo; |
| 60 | std::set<const Function*> NeverInline; // Functions that are never inlined |
| 61 | public: |
| 62 | SimpleInliner() : Inliner(&ID) {} |
| 63 | static char ID; // Pass identification, replacement for typeid |
| 64 | int getInlineCost(CallSite CS); |
| 65 | virtual bool doInitialization(CallGraph &CG); |
| 66 | }; |
| 67 | char SimpleInliner::ID = 0; |
| 68 | RegisterPass<SimpleInliner> X("inline", "Function Integration/Inlining"); |
| 69 | } |
| 70 | |
| 71 | Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); } |
| 72 | |
| 73 | // CountCodeReductionForConstant - Figure out an approximation for how many |
| 74 | // instructions will be constant folded if the specified value is constant. |
| 75 | // |
| 76 | static unsigned CountCodeReductionForConstant(Value *V) { |
| 77 | unsigned Reduction = 0; |
| 78 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) |
| 79 | if (isa<BranchInst>(*UI)) |
| 80 | Reduction += 40; // Eliminating a conditional branch is a big win |
| 81 | else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI)) |
| 82 | // Eliminating a switch is a big win, proportional to the number of edges |
| 83 | // deleted. |
| 84 | Reduction += (SI->getNumSuccessors()-1) * 40; |
| 85 | else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { |
| 86 | // Turning an indirect call into a direct call is a BIG win |
| 87 | Reduction += CI->getCalledValue() == V ? 500 : 0; |
| 88 | } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { |
| 89 | // Turning an indirect call into a direct call is a BIG win |
| 90 | Reduction += II->getCalledValue() == V ? 500 : 0; |
| 91 | } else { |
| 92 | // Figure out if this instruction will be removed due to simple constant |
| 93 | // propagation. |
| 94 | Instruction &Inst = cast<Instruction>(**UI); |
| 95 | bool AllOperandsConstant = true; |
| 96 | for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) |
| 97 | if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { |
| 98 | AllOperandsConstant = false; |
| 99 | break; |
| 100 | } |
| 101 | |
| 102 | if (AllOperandsConstant) { |
| 103 | // We will get to remove this instruction... |
| 104 | Reduction += 7; |
| 105 | |
| 106 | // And any other instructions that use it which become constants |
| 107 | // themselves. |
| 108 | Reduction += CountCodeReductionForConstant(&Inst); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | return Reduction; |
| 113 | } |
| 114 | |
| 115 | // CountCodeReductionForAlloca - Figure out an approximation of how much smaller |
| 116 | // the function will be if it is inlined into a context where an argument |
| 117 | // becomes an alloca. |
| 118 | // |
| 119 | static unsigned CountCodeReductionForAlloca(Value *V) { |
| 120 | if (!isa<PointerType>(V->getType())) return 0; // Not a pointer |
| 121 | unsigned Reduction = 0; |
| 122 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
| 123 | Instruction *I = cast<Instruction>(*UI); |
| 124 | if (isa<LoadInst>(I) || isa<StoreInst>(I)) |
| 125 | Reduction += 10; |
| 126 | else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| 127 | // If the GEP has variable indices, we won't be able to do much with it. |
| 128 | for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end(); |
| 129 | I != E; ++I) |
| 130 | if (!isa<Constant>(*I)) return 0; |
| 131 | Reduction += CountCodeReductionForAlloca(GEP)+15; |
| 132 | } else { |
| 133 | // If there is some other strange instruction, we're not going to be able |
| 134 | // to do much if we inline this. |
| 135 | return 0; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | return Reduction; |
| 140 | } |
| 141 | |
| 142 | /// analyzeFunction - Fill in the current structure with information gleaned |
| 143 | /// from the specified function. |
| 144 | void FunctionInfo::analyzeFunction(Function *F) { |
| 145 | unsigned NumInsts = 0, NumBlocks = 0; |
| 146 | |
| 147 | // Look at the size of the callee. Each basic block counts as 20 units, and |
| 148 | // each instruction counts as 10. |
| 149 | for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { |
| 150 | for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); |
| 151 | II != E; ++II) { |
| 152 | if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count. |
| 153 | |
| 154 | // Noop casts, including ptr <-> int, don't count. |
| 155 | if (const CastInst *CI = dyn_cast<CastInst>(II)) { |
| 156 | if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || |
| 157 | isa<PtrToIntInst>(CI)) |
| 158 | continue; |
| 159 | } else if (const GetElementPtrInst *GEPI = |
| 160 | dyn_cast<GetElementPtrInst>(II)) { |
| 161 | // If a GEP has all constant indices, it will probably be folded with |
| 162 | // a load/store. |
| 163 | bool AllConstant = true; |
| 164 | for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i) |
| 165 | if (!isa<ConstantInt>(GEPI->getOperand(i))) { |
| 166 | AllConstant = false; |
| 167 | break; |
| 168 | } |
| 169 | if (AllConstant) continue; |
| 170 | } |
| 171 | |
| 172 | ++NumInsts; |
| 173 | } |
| 174 | |
| 175 | ++NumBlocks; |
| 176 | } |
| 177 | |
| 178 | this->NumBlocks = NumBlocks; |
| 179 | this->NumInsts = NumInsts; |
| 180 | |
| 181 | // Check out all of the arguments to the function, figuring out how much |
| 182 | // code can be eliminated if one of the arguments is a constant. |
| 183 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| 184 | ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I), |
| 185 | CountCodeReductionForAlloca(I))); |
| 186 | } |
| 187 | |
| 188 | |
| 189 | // getInlineCost - The heuristic used to determine if we should inline the |
| 190 | // function call or not. |
| 191 | // |
| 192 | int SimpleInliner::getInlineCost(CallSite CS) { |
| 193 | Instruction *TheCall = CS.getInstruction(); |
| 194 | Function *Callee = CS.getCalledFunction(); |
| 195 | const Function *Caller = TheCall->getParent()->getParent(); |
| 196 | |
| 197 | // Don't inline a directly recursive call. |
| 198 | if (Caller == Callee || |
| 199 | // Don't inline functions which can be redefined at link-time to mean |
| 200 | // something else. link-once linkage is ok though. |
| 201 | Callee->hasWeakLinkage() || |
| 202 | |
| 203 | // Don't inline functions marked noinline. |
| 204 | NeverInline.count(Callee)) |
| 205 | return 2000000000; |
| 206 | |
| 207 | // InlineCost - This value measures how good of an inline candidate this call |
| 208 | // site is to inline. A lower inline cost make is more likely for the call to |
| 209 | // be inlined. This value may go negative. |
| 210 | // |
| 211 | int InlineCost = 0; |
| 212 | |
| 213 | // If there is only one call of the function, and it has internal linkage, |
| 214 | // make it almost guaranteed to be inlined. |
| 215 | // |
| 216 | if (Callee->hasInternalLinkage() && Callee->hasOneUse()) |
| 217 | InlineCost -= 30000; |
| 218 | |
| 219 | // If this function uses the coldcc calling convention, prefer not to inline |
| 220 | // it. |
| 221 | if (Callee->getCallingConv() == CallingConv::Cold) |
| 222 | InlineCost += 2000; |
| 223 | |
| 224 | // If the instruction after the call, or if the normal destination of the |
| 225 | // invoke is an unreachable instruction, the function is noreturn. As such, |
| 226 | // there is little point in inlining this. |
| 227 | if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { |
| 228 | if (isa<UnreachableInst>(II->getNormalDest()->begin())) |
| 229 | InlineCost += 10000; |
| 230 | } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) |
| 231 | InlineCost += 10000; |
| 232 | |
| 233 | // Get information about the callee... |
| 234 | FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; |
| 235 | |
| 236 | // If we haven't calculated this information yet, do so now. |
| 237 | if (CalleeFI.NumBlocks == 0) |
| 238 | CalleeFI.analyzeFunction(Callee); |
| 239 | |
| 240 | // Add to the inline quality for properties that make the call valuable to |
| 241 | // inline. This includes factors that indicate that the result of inlining |
| 242 | // the function will be optimizable. Currently this just looks at arguments |
| 243 | // passed into the function. |
| 244 | // |
| 245 | unsigned ArgNo = 0; |
| 246 | for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); |
| 247 | I != E; ++I, ++ArgNo) { |
| 248 | // Each argument passed in has a cost at both the caller and the callee |
| 249 | // sides. This favors functions that take many arguments over functions |
| 250 | // that take few arguments. |
| 251 | InlineCost -= 20; |
| 252 | |
| 253 | // If this is a function being passed in, it is very likely that we will be |
| 254 | // able to turn an indirect function call into a direct function call. |
| 255 | if (isa<Function>(I)) |
| 256 | InlineCost -= 100; |
| 257 | |
| 258 | // If an alloca is passed in, inlining this function is likely to allow |
| 259 | // significant future optimization possibilities (like scalar promotion, and |
| 260 | // scalarization), so encourage the inlining of the function. |
| 261 | // |
| 262 | else if (isa<AllocaInst>(I)) { |
| 263 | if (ArgNo < CalleeFI.ArgumentWeights.size()) |
| 264 | InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight; |
| 265 | |
| 266 | // If this is a constant being passed into the function, use the argument |
| 267 | // weights calculated for the callee to determine how much will be folded |
| 268 | // away with this information. |
| 269 | } else if (isa<Constant>(I)) { |
| 270 | if (ArgNo < CalleeFI.ArgumentWeights.size()) |
| 271 | InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // Now that we have considered all of the factors that make the call site more |
| 276 | // likely to be inlined, look at factors that make us not want to inline it. |
| 277 | |
| 278 | // Don't inline into something too big, which would make it bigger. Here, we |
| 279 | // count each basic block as a single unit. |
| 280 | // |
| 281 | InlineCost += Caller->size()/20; |
| 282 | |
| 283 | |
| 284 | // Look at the size of the callee. Each basic block counts as 20 units, and |
| 285 | // each instruction counts as 5. |
| 286 | InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20; |
| 287 | return InlineCost; |
| 288 | } |
| 289 | |
| 290 | // doInitialization - Initializes the vector of functions that have been |
| 291 | // annotated with the noinline attribute. |
| 292 | bool SimpleInliner::doInitialization(CallGraph &CG) { |
| 293 | |
| 294 | Module &M = CG.getModule(); |
| 295 | |
| 296 | // Get llvm.noinline |
| 297 | GlobalVariable *GV = M.getNamedGlobal("llvm.noinline"); |
| 298 | |
| 299 | if (GV == 0) |
| 300 | return false; |
| 301 | |
| 302 | const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| 303 | |
| 304 | if (InitList == 0) |
| 305 | return false; |
| 306 | |
| 307 | // Iterate over each element and add to the NeverInline set |
| 308 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| 309 | |
| 310 | // Get Source |
| 311 | const Constant *Elt = InitList->getOperand(i); |
| 312 | |
| 313 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Elt)) |
| 314 | if (CE->getOpcode() == Instruction::BitCast) |
| 315 | Elt = CE->getOperand(0); |
| 316 | |
| 317 | // Insert into set of functions to never inline |
| 318 | if (const Function *F = dyn_cast<Function>(Elt)) |
| 319 | NeverInline.insert(F); |
| 320 | } |
| 321 | |
| 322 | return false; |
| 323 | } |