blob: e303468ee57c6a9aed2aa5ab7449b497d46b7c2b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced, "Number of allocas broken up");
44STATISTIC(NumPromoted, "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals, "Number of allocas copied from constant global");
47
48namespace {
49 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50 static char ID; // Pass identification, replacement for typeid
51 SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52 if (T == -1)
53 SRThreshold = 128;
54 else
55 SRThreshold = T;
56 }
57
58 bool runOnFunction(Function &F);
59
60 bool performScalarRepl(Function &F);
61 bool performPromotion(Function &F);
62
63 // getAnalysisUsage - This pass does not require any passes, but we know it
64 // will not alter the CFG, so say so.
65 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.addRequired<DominatorTree>();
67 AU.addRequired<DominanceFrontier>();
68 AU.addRequired<TargetData>();
69 AU.setPreservesCFG();
70 }
71
72 private:
73 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74 /// information about the uses. All these fields are initialized to false
75 /// and set to true when something is learned.
76 struct AllocaInfo {
77 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78 bool isUnsafe : 1;
79
80 /// needsCanon - This is set to true if there is some use of the alloca
81 /// that requires canonicalization.
82 bool needsCanon : 1;
83
84 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85 bool isMemCpySrc : 1;
86
87 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88 bool isMemCpyDst : 1;
89
90 AllocaInfo()
91 : isUnsafe(false), needsCanon(false),
92 isMemCpySrc(false), isMemCpyDst(false) {}
93 };
94
95 unsigned SRThreshold;
96
97 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99 int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102 AllocaInfo &Info);
103 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104 AllocaInfo &Info);
105 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106 unsigned OpNo, AllocaInfo &Info);
107 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108 AllocaInfo &Info);
109
110 void DoScalarReplacement(AllocationInst *AI,
111 std::vector<AllocationInst*> &WorkList);
112 void CanonicalizeAllocaUsers(AllocationInst *AI);
113 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116 SmallVector<AllocaInst*, 32> &NewElts);
117
118 const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119 void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
122 };
123
124 char SROA::ID = 0;
125 RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
126}
127
128// Public interface to the ScalarReplAggregates pass
129FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
130 return new SROA(Threshold);
131}
132
133
134bool SROA::runOnFunction(Function &F) {
135 bool Changed = performPromotion(F);
136 while (1) {
137 bool LocalChange = performScalarRepl(F);
138 if (!LocalChange) break; // No need to repromote if no scalarrepl
139 Changed = true;
140 LocalChange = performPromotion(F);
141 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
142 }
143
144 return Changed;
145}
146
147
148bool SROA::performPromotion(Function &F) {
149 std::vector<AllocaInst*> Allocas;
150 DominatorTree &DT = getAnalysis<DominatorTree>();
151 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
152
153 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
154
155 bool Changed = false;
156
157 while (1) {
158 Allocas.clear();
159
160 // Find allocas that are safe to promote, by looking at all instructions in
161 // the entry node
162 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
163 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
164 if (isAllocaPromotable(AI))
165 Allocas.push_back(AI);
166
167 if (Allocas.empty()) break;
168
169 PromoteMemToReg(Allocas, DT, DF);
170 NumPromoted += Allocas.size();
171 Changed = true;
172 }
173
174 return Changed;
175}
176
177// performScalarRepl - This algorithm is a simple worklist driven algorithm,
178// which runs on all of the malloc/alloca instructions in the function, removing
179// them if they are only used by getelementptr instructions.
180//
181bool SROA::performScalarRepl(Function &F) {
182 std::vector<AllocationInst*> WorkList;
183
184 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
185 BasicBlock &BB = F.getEntryBlock();
186 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
187 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
188 WorkList.push_back(A);
189
190 const TargetData &TD = getAnalysis<TargetData>();
191
192 // Process the worklist
193 bool Changed = false;
194 while (!WorkList.empty()) {
195 AllocationInst *AI = WorkList.back();
196 WorkList.pop_back();
197
198 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
199 // with unused elements.
200 if (AI->use_empty()) {
201 AI->eraseFromParent();
202 continue;
203 }
204
205 // If we can turn this aggregate value (potentially with casts) into a
206 // simple scalar value that can be mem2reg'd into a register value.
207 bool IsNotTrivial = false;
208 if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
209 if (IsNotTrivial && ActualType != Type::VoidTy) {
210 ConvertToScalar(AI, ActualType);
211 Changed = true;
212 continue;
213 }
214
215 // Check to see if we can perform the core SROA transformation. We cannot
216 // transform the allocation instruction if it is an array allocation
217 // (allocations OF arrays are ok though), and an allocation of a scalar
218 // value cannot be decomposed at all.
219 if (!AI->isArrayAllocation() &&
220 (isa<StructType>(AI->getAllocatedType()) ||
221 isa<ArrayType>(AI->getAllocatedType())) &&
222 AI->getAllocatedType()->isSized() &&
223 TD.getTypeSize(AI->getAllocatedType()) < SRThreshold) {
224 // Check that all of the users of the allocation are capable of being
225 // transformed.
226 switch (isSafeAllocaToScalarRepl(AI)) {
227 default: assert(0 && "Unexpected value!");
228 case 0: // Not safe to scalar replace.
229 break;
230 case 1: // Safe, but requires cleanup/canonicalizations first
231 CanonicalizeAllocaUsers(AI);
232 // FALL THROUGH.
233 case 3: // Safe to scalar replace.
234 DoScalarReplacement(AI, WorkList);
235 Changed = true;
236 continue;
237 }
238 }
239
240 // Check to see if this allocation is only modified by a memcpy/memmove from
241 // a constant global. If this is the case, we can change all users to use
242 // the constant global instead. This is commonly produced by the CFE by
243 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
244 // is only subsequently read.
245 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
246 DOUT << "Found alloca equal to global: " << *AI;
247 DOUT << " memcpy = " << *TheCopy;
248 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
249 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
250 TheCopy->eraseFromParent(); // Don't mutate the global.
251 AI->eraseFromParent();
252 ++NumGlobals;
253 Changed = true;
254 continue;
255 }
256
257 // Otherwise, couldn't process this.
258 }
259
260 return Changed;
261}
262
263/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
264/// predicate, do SROA now.
265void SROA::DoScalarReplacement(AllocationInst *AI,
266 std::vector<AllocationInst*> &WorkList) {
267 DOUT << "Found inst to SROA: " << *AI;
268 SmallVector<AllocaInst*, 32> ElementAllocas;
269 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
270 ElementAllocas.reserve(ST->getNumContainedTypes());
271 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
272 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
273 AI->getAlignment(),
274 AI->getName() + "." + utostr(i), AI);
275 ElementAllocas.push_back(NA);
276 WorkList.push_back(NA); // Add to worklist for recursive processing
277 }
278 } else {
279 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
280 ElementAllocas.reserve(AT->getNumElements());
281 const Type *ElTy = AT->getElementType();
282 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
283 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
284 AI->getName() + "." + utostr(i), AI);
285 ElementAllocas.push_back(NA);
286 WorkList.push_back(NA); // Add to worklist for recursive processing
287 }
288 }
289
290 // Now that we have created the alloca instructions that we want to use,
291 // expand the getelementptr instructions to use them.
292 //
293 while (!AI->use_empty()) {
294 Instruction *User = cast<Instruction>(AI->use_back());
295 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
296 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
297 BCInst->eraseFromParent();
298 continue;
299 }
300
301 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
302 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
303 unsigned Idx =
304 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
305
306 assert(Idx < ElementAllocas.size() && "Index out of range?");
307 AllocaInst *AllocaToUse = ElementAllocas[Idx];
308
309 Value *RepValue;
310 if (GEPI->getNumOperands() == 3) {
311 // Do not insert a new getelementptr instruction with zero indices, only
312 // to have it optimized out later.
313 RepValue = AllocaToUse;
314 } else {
315 // We are indexing deeply into the structure, so we still need a
316 // getelement ptr instruction to finish the indexing. This may be
317 // expanded itself once the worklist is rerun.
318 //
319 SmallVector<Value*, 8> NewArgs;
320 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
321 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
322 RepValue = new GetElementPtrInst(AllocaToUse, &NewArgs[0],
323 NewArgs.size(), "", GEPI);
324 RepValue->takeName(GEPI);
325 }
326
327 // If this GEP is to the start of the aggregate, check for memcpys.
328 if (Idx == 0) {
329 bool IsStartOfAggregateGEP = true;
330 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
331 if (!isa<ConstantInt>(GEPI->getOperand(i))) {
332 IsStartOfAggregateGEP = false;
333 break;
334 }
335 if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
336 IsStartOfAggregateGEP = false;
337 break;
338 }
339 }
340
341 if (IsStartOfAggregateGEP)
342 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
343 }
344
345
346 // Move all of the users over to the new GEP.
347 GEPI->replaceAllUsesWith(RepValue);
348 // Delete the old GEP
349 GEPI->eraseFromParent();
350 }
351
352 // Finally, delete the Alloca instruction
353 AI->eraseFromParent();
354 NumReplaced++;
355}
356
357
358/// isSafeElementUse - Check to see if this use is an allowed use for a
359/// getelementptr instruction of an array aggregate allocation. isFirstElt
360/// indicates whether Ptr is known to the start of the aggregate.
361///
362void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
363 AllocaInfo &Info) {
364 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
365 I != E; ++I) {
366 Instruction *User = cast<Instruction>(*I);
367 switch (User->getOpcode()) {
368 case Instruction::Load: break;
369 case Instruction::Store:
370 // Store is ok if storing INTO the pointer, not storing the pointer
371 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
372 break;
373 case Instruction::GetElementPtr: {
374 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
375 bool AreAllZeroIndices = isFirstElt;
376 if (GEP->getNumOperands() > 1) {
377 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
378 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
379 // Using pointer arithmetic to navigate the array.
380 return MarkUnsafe(Info);
381
382 if (AreAllZeroIndices) {
383 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
384 if (!isa<ConstantInt>(GEP->getOperand(i)) ||
385 !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
386 AreAllZeroIndices = false;
387 break;
388 }
389 }
390 }
391 }
392 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
393 if (Info.isUnsafe) return;
394 break;
395 }
396 case Instruction::BitCast:
397 if (isFirstElt) {
398 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
399 if (Info.isUnsafe) return;
400 break;
401 }
402 DOUT << " Transformation preventing inst: " << *User;
403 return MarkUnsafe(Info);
404 case Instruction::Call:
405 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
406 if (isFirstElt) {
407 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
408 if (Info.isUnsafe) return;
409 break;
410 }
411 }
412 DOUT << " Transformation preventing inst: " << *User;
413 return MarkUnsafe(Info);
414 default:
415 DOUT << " Transformation preventing inst: " << *User;
416 return MarkUnsafe(Info);
417 }
418 }
419 return; // All users look ok :)
420}
421
422/// AllUsersAreLoads - Return true if all users of this value are loads.
423static bool AllUsersAreLoads(Value *Ptr) {
424 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
425 I != E; ++I)
426 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
427 return false;
428 return true;
429}
430
431/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
432/// aggregate allocation.
433///
434void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
435 AllocaInfo &Info) {
436 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
437 return isSafeUseOfBitCastedAllocation(C, AI, Info);
438
439 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
440 if (GEPI == 0)
441 return MarkUnsafe(Info);
442
443 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
444
445 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
446 if (I == E ||
447 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
448 return MarkUnsafe(Info);
449 }
450
451 ++I;
452 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
453
454 bool IsAllZeroIndices = true;
455
456 // If this is a use of an array allocation, do a bit more checking for sanity.
457 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
458 uint64_t NumElements = AT->getNumElements();
459
460 if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
461 IsAllZeroIndices &= Idx->isZero();
462
463 // Check to make sure that index falls within the array. If not,
464 // something funny is going on, so we won't do the optimization.
465 //
466 if (Idx->getZExtValue() >= NumElements)
467 return MarkUnsafe(Info);
468
469 // We cannot scalar repl this level of the array unless any array
470 // sub-indices are in-range constants. In particular, consider:
471 // A[0][i]. We cannot know that the user isn't doing invalid things like
472 // allowing i to index an out-of-range subscript that accesses A[1].
473 //
474 // Scalar replacing *just* the outer index of the array is probably not
475 // going to be a win anyway, so just give up.
476 for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
477 uint64_t NumElements;
478 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
479 NumElements = SubArrayTy->getNumElements();
480 else
481 NumElements = cast<VectorType>(*I)->getNumElements();
482
483 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
484 if (!IdxVal) return MarkUnsafe(Info);
485 if (IdxVal->getZExtValue() >= NumElements)
486 return MarkUnsafe(Info);
487 IsAllZeroIndices &= IdxVal->isZero();
488 }
489
490 } else {
491 IsAllZeroIndices = 0;
492
493 // If this is an array index and the index is not constant, we cannot
494 // promote... that is unless the array has exactly one or two elements in
495 // it, in which case we CAN promote it, but we have to canonicalize this
496 // out if this is the only problem.
497 if ((NumElements == 1 || NumElements == 2) &&
498 AllUsersAreLoads(GEPI)) {
499 Info.needsCanon = true;
500 return; // Canonicalization required!
501 }
502 return MarkUnsafe(Info);
503 }
504 }
505
506 // If there are any non-simple uses of this getelementptr, make sure to reject
507 // them.
508 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
509}
510
511/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
512/// intrinsic can be promoted by SROA. At this point, we know that the operand
513/// of the memintrinsic is a pointer to the beginning of the allocation.
514void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
515 unsigned OpNo, AllocaInfo &Info) {
516 // If not constant length, give up.
517 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
518 if (!Length) return MarkUnsafe(Info);
519
520 // If not the whole aggregate, give up.
521 const TargetData &TD = getAnalysis<TargetData>();
522 if (Length->getZExtValue() != TD.getTypeSize(AI->getType()->getElementType()))
523 return MarkUnsafe(Info);
524
525 // We only know about memcpy/memset/memmove.
526 if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
527 return MarkUnsafe(Info);
528
529 // Otherwise, we can transform it. Determine whether this is a memcpy/set
530 // into or out of the aggregate.
531 if (OpNo == 1)
532 Info.isMemCpyDst = true;
533 else {
534 assert(OpNo == 2);
535 Info.isMemCpySrc = true;
536 }
537}
538
539/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
540/// are
541void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
542 AllocaInfo &Info) {
543 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
544 UI != E; ++UI) {
545 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
546 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
547 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
548 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
549 } else {
550 return MarkUnsafe(Info);
551 }
552 if (Info.isUnsafe) return;
553 }
554}
555
556/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
557/// to its first element. Transform users of the cast to use the new values
558/// instead.
559void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
560 SmallVector<AllocaInst*, 32> &NewElts) {
561 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
562 const TargetData &TD = getAnalysis<TargetData>();
563
564 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
565 while (UI != UE) {
566 if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
567 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
568 ++UI;
569 BCU->eraseFromParent();
570 continue;
571 }
572
573 // Otherwise, must be memcpy/memmove/memset of the entire aggregate. Split
574 // into one per element.
575 MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
576
577 // If it's not a mem intrinsic, it must be some other user of a gep of the
578 // first pointer. Just leave these alone.
579 if (!MI) {
580 ++UI;
581 continue;
582 }
583
584 // If this is a memcpy/memmove, construct the other pointer as the
585 // appropriate type.
586 Value *OtherPtr = 0;
587 if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
588 if (BCInst == MCI->getRawDest())
589 OtherPtr = MCI->getRawSource();
590 else {
591 assert(BCInst == MCI->getRawSource());
592 OtherPtr = MCI->getRawDest();
593 }
594 } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
595 if (BCInst == MMI->getRawDest())
596 OtherPtr = MMI->getRawSource();
597 else {
598 assert(BCInst == MMI->getRawSource());
599 OtherPtr = MMI->getRawDest();
600 }
601 }
602
603 // If there is an other pointer, we want to convert it to the same pointer
604 // type as AI has, so we can GEP through it.
605 if (OtherPtr) {
606 // It is likely that OtherPtr is a bitcast, if so, remove it.
607 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
608 OtherPtr = BC->getOperand(0);
609 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
610 if (BCE->getOpcode() == Instruction::BitCast)
611 OtherPtr = BCE->getOperand(0);
612
613 // If the pointer is not the right type, insert a bitcast to the right
614 // type.
615 if (OtherPtr->getType() != AI->getType())
616 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
617 MI);
618 }
619
620 // Process each element of the aggregate.
621 Value *TheFn = MI->getOperand(0);
622 const Type *BytePtrTy = MI->getRawDest()->getType();
623 bool SROADest = MI->getRawDest() == BCInst;
624
625 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
626 // If this is a memcpy/memmove, emit a GEP of the other element address.
627 Value *OtherElt = 0;
628 if (OtherPtr) {
629 OtherElt = new GetElementPtrInst(OtherPtr, Zero,
630 ConstantInt::get(Type::Int32Ty, i),
631 OtherPtr->getNameStr()+"."+utostr(i),
632 MI);
633 }
634
635 Value *EltPtr = NewElts[i];
636 const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
637
638 // If we got down to a scalar, insert a load or store as appropriate.
639 if (EltTy->isFirstClassType()) {
640 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
641 Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
642 MI);
643 new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
644 continue;
645 } else {
646 assert(isa<MemSetInst>(MI));
647
648 // If the stored element is zero (common case), just store a null
649 // constant.
650 Constant *StoreVal;
651 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
652 if (CI->isZero()) {
653 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
654 } else {
655 // If EltTy is a vector type, get the element type.
656 const Type *ValTy = EltTy;
657 if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
658 ValTy = VTy->getElementType();
659
660 // Construct an integer with the right value.
661 unsigned EltSize = TD.getTypeSize(ValTy);
662 APInt OneVal(EltSize*8, CI->getZExtValue());
663 APInt TotalVal(OneVal);
664 // Set each byte.
665 for (unsigned i = 0; i != EltSize-1; ++i) {
666 TotalVal = TotalVal.shl(8);
667 TotalVal |= OneVal;
668 }
669
670 // Convert the integer value to the appropriate type.
671 StoreVal = ConstantInt::get(TotalVal);
672 if (isa<PointerType>(ValTy))
673 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
674 else if (ValTy->isFloatingPoint())
675 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
676 assert(StoreVal->getType() == ValTy && "Type mismatch!");
677
678 // If the requested value was a vector constant, create it.
679 if (EltTy != ValTy) {
680 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
681 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
682 StoreVal = ConstantVector::get(&Elts[0], NumElts);
683 }
684 }
685 new StoreInst(StoreVal, EltPtr, MI);
686 continue;
687 }
688 // Otherwise, if we're storing a byte variable, use a memset call for
689 // this element.
690 }
691 }
692
693 // Cast the element pointer to BytePtrTy.
694 if (EltPtr->getType() != BytePtrTy)
695 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
696
697 // Cast the other pointer (if we have one) to BytePtrTy.
698 if (OtherElt && OtherElt->getType() != BytePtrTy)
699 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
700 MI);
701
702 unsigned EltSize = TD.getTypeSize(EltTy);
703
704 // Finally, insert the meminst for this element.
705 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
706 Value *Ops[] = {
707 SROADest ? EltPtr : OtherElt, // Dest ptr
708 SROADest ? OtherElt : EltPtr, // Src ptr
709 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
710 Zero // Align
711 };
712 new CallInst(TheFn, Ops, 4, "", MI);
713 } else {
714 assert(isa<MemSetInst>(MI));
715 Value *Ops[] = {
716 EltPtr, MI->getOperand(2), // Dest, Value,
717 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
718 Zero // Align
719 };
720 new CallInst(TheFn, Ops, 4, "", MI);
721 }
722 }
723
724 // Finally, MI is now dead, as we've modified its actions to occur on all of
725 // the elements of the aggregate.
726 ++UI;
727 MI->eraseFromParent();
728 }
729}
730
731/// HasStructPadding - Return true if the specified type has any structure
732/// padding, false otherwise.
733static bool HasStructPadding(const Type *Ty, const TargetData &TD) {
734 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
735 const StructLayout *SL = TD.getStructLayout(STy);
736 unsigned PrevFieldBitOffset = 0;
737 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
738 unsigned FieldBitOffset = SL->getElementOffset(i)*8;
739
740 // Padding in sub-elements?
741 if (HasStructPadding(STy->getElementType(i), TD))
742 return true;
743
744 // Check to see if there is any padding between this element and the
745 // previous one.
746 if (i) {
747 unsigned PrevFieldEnd =
748 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
749 if (PrevFieldEnd < FieldBitOffset)
750 return true;
751 }
752
753 PrevFieldBitOffset = FieldBitOffset;
754 }
755
756 // Check for tail padding.
757 if (unsigned EltCount = STy->getNumElements()) {
758 unsigned PrevFieldEnd = PrevFieldBitOffset +
759 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
760 if (PrevFieldEnd < SL->getSizeInBytes()*8)
761 return true;
762 }
763
764 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
765 return HasStructPadding(ATy->getElementType(), TD);
766 }
767 return false;
768}
769
770/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
771/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
772/// or 1 if safe after canonicalization has been performed.
773///
774int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
775 // Loop over the use list of the alloca. We can only transform it if all of
776 // the users are safe to transform.
777 AllocaInfo Info;
778
779 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
780 I != E; ++I) {
781 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
782 if (Info.isUnsafe) {
783 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
784 return 0;
785 }
786 }
787
788 // Okay, we know all the users are promotable. If the aggregate is a memcpy
789 // source and destination, we have to be careful. In particular, the memcpy
790 // could be moving around elements that live in structure padding of the LLVM
791 // types, but may actually be used. In these cases, we refuse to promote the
792 // struct.
793 if (Info.isMemCpySrc && Info.isMemCpyDst &&
794 HasStructPadding(AI->getType()->getElementType(),
795 getAnalysis<TargetData>()))
796 return 0;
797
798 // If we require cleanup, return 1, otherwise return 3.
799 return Info.needsCanon ? 1 : 3;
800}
801
802/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
803/// allocation, but only if cleaned up, perform the cleanups required.
804void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
805 // At this point, we know that the end result will be SROA'd and promoted, so
806 // we can insert ugly code if required so long as sroa+mem2reg will clean it
807 // up.
808 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
809 UI != E; ) {
810 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
811 if (!GEPI) continue;
812 gep_type_iterator I = gep_type_begin(GEPI);
813 ++I;
814
815 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
816 uint64_t NumElements = AT->getNumElements();
817
818 if (!isa<ConstantInt>(I.getOperand())) {
819 if (NumElements == 1) {
820 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
821 } else {
822 assert(NumElements == 2 && "Unhandled case!");
823 // All users of the GEP must be loads. At each use of the GEP, insert
824 // two loads of the appropriate indexed GEP and select between them.
825 Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
826 Constant::getNullValue(I.getOperand()->getType()),
827 "isone", GEPI);
828 // Insert the new GEP instructions, which are properly indexed.
829 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
830 Indices[1] = Constant::getNullValue(Type::Int32Ty);
831 Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
832 &Indices[0], Indices.size(),
833 GEPI->getName()+".0", GEPI);
834 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
835 Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
836 &Indices[0], Indices.size(),
837 GEPI->getName()+".1", GEPI);
838 // Replace all loads of the variable index GEP with loads from both
839 // indexes and a select.
840 while (!GEPI->use_empty()) {
841 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
842 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
843 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
844 Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
845 LI->replaceAllUsesWith(R);
846 LI->eraseFromParent();
847 }
848 GEPI->eraseFromParent();
849 }
850 }
851 }
852 }
853}
854
855/// MergeInType - Add the 'In' type to the accumulated type so far. If the
856/// types are incompatible, return true, otherwise update Accum and return
857/// false.
858///
859/// There are three cases we handle here:
860/// 1) An effectively-integer union, where the pieces are stored into as
861/// smaller integers (common with byte swap and other idioms).
862/// 2) A union of vector types of the same size and potentially its elements.
863/// Here we turn element accesses into insert/extract element operations.
864/// 3) A union of scalar types, such as int/float or int/pointer. Here we
865/// merge together into integers, allowing the xform to work with #1 as
866/// well.
867static bool MergeInType(const Type *In, const Type *&Accum,
868 const TargetData &TD) {
869 // If this is our first type, just use it.
870 const VectorType *PTy;
871 if (Accum == Type::VoidTy || In == Accum) {
872 Accum = In;
873 } else if (In == Type::VoidTy) {
874 // Noop.
875 } else if (In->isInteger() && Accum->isInteger()) { // integer union.
876 // Otherwise pick whichever type is larger.
877 if (cast<IntegerType>(In)->getBitWidth() >
878 cast<IntegerType>(Accum)->getBitWidth())
879 Accum = In;
880 } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
881 // Pointer unions just stay as one of the pointers.
882 } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
883 if ((PTy = dyn_cast<VectorType>(Accum)) &&
884 PTy->getElementType() == In) {
885 // Accum is a vector, and we are accessing an element: ok.
886 } else if ((PTy = dyn_cast<VectorType>(In)) &&
887 PTy->getElementType() == Accum) {
888 // In is a vector, and accum is an element: ok, remember In.
889 Accum = In;
890 } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
891 PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
892 // Two vectors of the same size: keep Accum.
893 } else {
894 // Cannot insert an short into a <4 x int> or handle
895 // <2 x int> -> <4 x int>
896 return true;
897 }
898 } else {
899 // Pointer/FP/Integer unions merge together as integers.
900 switch (Accum->getTypeID()) {
901 case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
902 case Type::FloatTyID: Accum = Type::Int32Ty; break;
903 case Type::DoubleTyID: Accum = Type::Int64Ty; break;
904 default:
905 assert(Accum->isInteger() && "Unknown FP type!");
906 break;
907 }
908
909 switch (In->getTypeID()) {
910 case Type::PointerTyID: In = TD.getIntPtrType(); break;
911 case Type::FloatTyID: In = Type::Int32Ty; break;
912 case Type::DoubleTyID: In = Type::Int64Ty; break;
913 default:
914 assert(In->isInteger() && "Unknown FP type!");
915 break;
916 }
917 return MergeInType(In, Accum, TD);
918 }
919 return false;
920}
921
922/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
923/// as big as the specified type. If there is no suitable type, this returns
924/// null.
925const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
926 if (NumBits > 64) return 0;
927 if (NumBits > 32) return Type::Int64Ty;
928 if (NumBits > 16) return Type::Int32Ty;
929 if (NumBits > 8) return Type::Int16Ty;
930 return Type::Int8Ty;
931}
932
933/// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
934/// single scalar integer type, return that type. Further, if the use is not
935/// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
936/// there are no uses of this pointer, return Type::VoidTy to differentiate from
937/// failure.
938///
939const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
940 const Type *UsedType = Type::VoidTy; // No uses, no forced type.
941 const TargetData &TD = getAnalysis<TargetData>();
942 const PointerType *PTy = cast<PointerType>(V->getType());
943
944 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
945 Instruction *User = cast<Instruction>(*UI);
946
947 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
948 if (MergeInType(LI->getType(), UsedType, TD))
949 return 0;
950
951 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
952 // Storing the pointer, not into the value?
953 if (SI->getOperand(0) == V) return 0;
954
955 // NOTE: We could handle storing of FP imms into integers here!
956
957 if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
958 return 0;
959 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
960 IsNotTrivial = true;
961 const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
962 if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
963 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
964 // Check to see if this is stepping over an element: GEP Ptr, int C
965 if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
966 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
967 unsigned ElSize = TD.getTypeSize(PTy->getElementType());
968 unsigned BitOffset = Idx*ElSize*8;
969 if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
970
971 IsNotTrivial = true;
972 const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
973 if (SubElt == 0) return 0;
974 if (SubElt != Type::VoidTy && SubElt->isInteger()) {
975 const Type *NewTy =
976 getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
977 if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
978 continue;
979 }
980 } else if (GEP->getNumOperands() == 3 &&
981 isa<ConstantInt>(GEP->getOperand(1)) &&
982 isa<ConstantInt>(GEP->getOperand(2)) &&
983 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
984 // We are stepping into an element, e.g. a structure or an array:
985 // GEP Ptr, int 0, uint C
986 const Type *AggTy = PTy->getElementType();
987 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
988
989 if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
990 if (Idx >= ATy->getNumElements()) return 0; // Out of range.
991 } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
992 // Getting an element of the vector.
993 if (Idx >= VectorTy->getNumElements()) return 0; // Out of range.
994
995 // Merge in the vector type.
996 if (MergeInType(VectorTy, UsedType, TD)) return 0;
997
998 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
999 if (SubTy == 0) return 0;
1000
1001 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1002 return 0;
1003
1004 // We'll need to change this to an insert/extract element operation.
1005 IsNotTrivial = true;
1006 continue; // Everything looks ok
1007
1008 } else if (isa<StructType>(AggTy)) {
1009 // Structs are always ok.
1010 } else {
1011 return 0;
1012 }
1013 const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
1014 if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1015 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1016 if (SubTy == 0) return 0;
1017 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1018 return 0;
1019 continue; // Everything looks ok
1020 }
1021 return 0;
1022 } else {
1023 // Cannot handle this!
1024 return 0;
1025 }
1026 }
1027
1028 return UsedType;
1029}
1030
1031/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1032/// predicate and is non-trivial. Convert it to something that can be trivially
1033/// promoted into a register by mem2reg.
1034void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1035 DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = "
1036 << *ActualTy << "\n";
1037 ++NumConverted;
1038
1039 BasicBlock *EntryBlock = AI->getParent();
1040 assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1041 "Not in the entry block!");
1042 EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
1043
1044 // Create and insert the alloca.
1045 AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1046 EntryBlock->begin());
1047 ConvertUsesToScalar(AI, NewAI, 0);
1048 delete AI;
1049}
1050
1051
1052/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1053/// directly. This happens when we are converting an "integer union" to a
1054/// single integer scalar, or when we are converting a "vector union" to a
1055/// vector with insert/extractelement instructions.
1056///
1057/// Offset is an offset from the original alloca, in bits that need to be
1058/// shifted to the right. By the end of this, there should be no uses of Ptr.
1059void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1060 const TargetData &TD = getAnalysis<TargetData>();
1061 while (!Ptr->use_empty()) {
1062 Instruction *User = cast<Instruction>(Ptr->use_back());
1063
1064 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1065 // The load is a bit extract from NewAI shifted right by Offset bits.
1066 Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1067 if (NV->getType() == LI->getType()) {
1068 // We win, no conversion needed.
1069 } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
1070 // If the result alloca is a vector type, this is either an element
1071 // access or a bitcast to another vector type.
1072 if (isa<VectorType>(LI->getType())) {
1073 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1074 } else {
1075 // Must be an element access.
1076 unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
1077 NV = new ExtractElementInst(
1078 NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
1079 }
1080 } else if (isa<PointerType>(NV->getType())) {
1081 assert(isa<PointerType>(LI->getType()));
1082 // Must be ptr->ptr cast. Anything else would result in NV being
1083 // an integer.
1084 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1085 } else {
1086 const IntegerType *NTy = cast<IntegerType>(NV->getType());
1087 unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1088
1089 // If this is a big-endian system and the load is narrower than the
1090 // full alloca type, we need to do a shift to get the right bits.
1091 int ShAmt = 0;
1092 if (TD.isBigEndian()) {
1093 ShAmt = NTy->getBitWidth()-LIBitWidth-Offset;
1094 } else {
1095 ShAmt = Offset;
1096 }
1097
1098 // Note: we support negative bitwidths (with shl) which are not defined.
1099 // We do this to support (f.e.) loads off the end of a structure where
1100 // only some bits are used.
1101 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1102 NV = BinaryOperator::createLShr(NV,
1103 ConstantInt::get(NV->getType(),ShAmt),
1104 LI->getName(), LI);
1105 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1106 NV = BinaryOperator::createShl(NV,
1107 ConstantInt::get(NV->getType(),-ShAmt),
1108 LI->getName(), LI);
1109
1110 // Finally, unconditionally truncate the integer to the right width.
1111 if (LIBitWidth < NTy->getBitWidth())
1112 NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1113 LI->getName(), LI);
1114
1115 // If the result is an integer, this is a trunc or bitcast.
1116 if (isa<IntegerType>(LI->getType())) {
1117 assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
1118 } else if (LI->getType()->isFloatingPoint()) {
1119 // Just do a bitcast, we know the sizes match up.
1120 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1121 } else {
1122 // Otherwise must be a pointer.
1123 NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1124 }
1125 }
1126 LI->replaceAllUsesWith(NV);
1127 LI->eraseFromParent();
1128 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1129 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1130
1131 // Convert the stored type to the actual type, shift it left to insert
1132 // then 'or' into place.
1133 Value *SV = SI->getOperand(0);
1134 const Type *AllocaType = NewAI->getType()->getElementType();
1135 if (SV->getType() == AllocaType) {
1136 // All is well.
1137 } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1138 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1139
1140 // If the result alloca is a vector type, this is either an element
1141 // access or a bitcast to another vector type.
1142 if (isa<VectorType>(SV->getType())) {
1143 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1144 } else {
1145 // Must be an element insertion.
1146 unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
1147 SV = new InsertElementInst(Old, SV,
1148 ConstantInt::get(Type::Int32Ty, Elt),
1149 "tmp", SI);
1150 }
1151 } else if (isa<PointerType>(AllocaType)) {
1152 // If the alloca type is a pointer, then all the elements must be
1153 // pointers.
1154 if (SV->getType() != AllocaType)
1155 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1156 } else {
1157 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1158
1159 // If SV is a float, convert it to the appropriate integer type.
1160 // If it is a pointer, do the same, and also handle ptr->ptr casts
1161 // here.
1162 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1163 unsigned DestWidth = AllocaType->getPrimitiveSizeInBits();
1164 if (SV->getType()->isFloatingPoint())
1165 SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1166 SV->getName(), SI);
1167 else if (isa<PointerType>(SV->getType()))
1168 SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1169
1170 // Always zero extend the value if needed.
1171 if (SV->getType() != AllocaType)
1172 SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1173
1174 // If this is a big-endian system and the store is narrower than the
1175 // full alloca type, we need to do a shift to get the right bits.
1176 int ShAmt = 0;
1177 if (TD.isBigEndian()) {
1178 ShAmt = DestWidth-SrcWidth-Offset;
1179 } else {
1180 ShAmt = Offset;
1181 }
1182
1183 // Note: we support negative bitwidths (with shr) which are not defined.
1184 // We do this to support (f.e.) stores off the end of a structure where
1185 // only some bits in the structure are set.
1186 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1187 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1188 SV = BinaryOperator::createShl(SV,
1189 ConstantInt::get(SV->getType(), ShAmt),
1190 SV->getName(), SI);
1191 Mask <<= ShAmt;
1192 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1193 SV = BinaryOperator::createLShr(SV,
1194 ConstantInt::get(SV->getType(),-ShAmt),
1195 SV->getName(), SI);
1196 Mask = Mask.lshr(ShAmt);
1197 }
1198
1199 // Mask out the bits we are about to insert from the old value, and or
1200 // in the new bits.
1201 if (SrcWidth != DestWidth) {
1202 assert(DestWidth > SrcWidth);
1203 Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
1204 Old->getName()+".mask", SI);
1205 SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
1206 }
1207 }
1208 new StoreInst(SV, NewAI, SI);
1209 SI->eraseFromParent();
1210
1211 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1212 ConvertUsesToScalar(CI, NewAI, Offset);
1213 CI->eraseFromParent();
1214 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1215 const PointerType *AggPtrTy =
1216 cast<PointerType>(GEP->getOperand(0)->getType());
1217 const TargetData &TD = getAnalysis<TargetData>();
1218 unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
1219
1220 // Check to see if this is stepping over an element: GEP Ptr, int C
1221 unsigned NewOffset = Offset;
1222 if (GEP->getNumOperands() == 2) {
1223 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1224 unsigned BitOffset = Idx*AggSizeInBits;
1225
1226 NewOffset += BitOffset;
1227 } else if (GEP->getNumOperands() == 3) {
1228 // We know that operand #2 is zero.
1229 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1230 const Type *AggTy = AggPtrTy->getElementType();
1231 if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1232 unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
1233
1234 NewOffset += ElSizeBits*Idx;
1235 } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1236 unsigned EltBitOffset =
1237 TD.getStructLayout(STy)->getElementOffset(Idx)*8;
1238
1239 NewOffset += EltBitOffset;
1240 } else {
1241 assert(0 && "Unsupported operation!");
1242 abort();
1243 }
1244 } else {
1245 assert(0 && "Unsupported operation!");
1246 abort();
1247 }
1248 ConvertUsesToScalar(GEP, NewAI, NewOffset);
1249 GEP->eraseFromParent();
1250 } else {
1251 assert(0 && "Unsupported operation!");
1252 abort();
1253 }
1254 }
1255}
1256
1257
1258/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1259/// some part of a constant global variable. This intentionally only accepts
1260/// constant expressions because we don't can't rewrite arbitrary instructions.
1261static bool PointsToConstantGlobal(Value *V) {
1262 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1263 return GV->isConstant();
1264 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1265 if (CE->getOpcode() == Instruction::BitCast ||
1266 CE->getOpcode() == Instruction::GetElementPtr)
1267 return PointsToConstantGlobal(CE->getOperand(0));
1268 return false;
1269}
1270
1271/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1272/// pointer to an alloca. Ignore any reads of the pointer, return false if we
1273/// see any stores or other unknown uses. If we see pointer arithmetic, keep
1274/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1275/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1276/// the alloca, and if the source pointer is a pointer to a constant global, we
1277/// can optimize this.
1278static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1279 bool isOffset) {
1280 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1281 if (isa<LoadInst>(*UI)) {
1282 // Ignore loads, they are always ok.
1283 continue;
1284 }
1285 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1286 // If uses of the bitcast are ok, we are ok.
1287 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1288 return false;
1289 continue;
1290 }
1291 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1292 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1293 // doesn't, it does.
1294 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1295 isOffset || !GEP->hasAllZeroIndices()))
1296 return false;
1297 continue;
1298 }
1299
1300 // If this is isn't our memcpy/memmove, reject it as something we can't
1301 // handle.
1302 if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1303 return false;
1304
1305 // If we already have seen a copy, reject the second one.
1306 if (TheCopy) return false;
1307
1308 // If the pointer has been offset from the start of the alloca, we can't
1309 // safely handle this.
1310 if (isOffset) return false;
1311
1312 // If the memintrinsic isn't using the alloca as the dest, reject it.
1313 if (UI.getOperandNo() != 1) return false;
1314
1315 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1316
1317 // If the source of the memcpy/move is not a constant global, reject it.
1318 if (!PointsToConstantGlobal(MI->getOperand(2)))
1319 return false;
1320
1321 // Otherwise, the transform is safe. Remember the copy instruction.
1322 TheCopy = MI;
1323 }
1324 return true;
1325}
1326
1327/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1328/// modified by a copy from a constant global. If we can prove this, we can
1329/// replace any uses of the alloca with uses of the global directly.
1330Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1331 Instruction *TheCopy = 0;
1332 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1333 return TheCopy;
1334 return 0;
1335}