blob: ee9586a0b7fe7ada6155ee03df71c3a0327492c2 [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000019#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000020#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000021#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000022#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000023#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000029#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000030#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000031#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032using namespace llvm;
33
Chris Lattnerbd3401f2008-04-20 22:39:42 +000034STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000036STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000037
Chris Lattner177480b2008-04-20 21:13:06 +000038static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
42
Chris Lattner8383a7b2008-04-20 20:35:01 +000043namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000044 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000060 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000061 TargetData *TD;
Mike Stumpfe095f32009-05-04 18:40:41 +000062#ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000067 public:
68 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000069 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000070
71 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000072 void FindLoopHeaders(Function &F);
73
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000074 bool ProcessBlock(BasicBlock *BB);
Chris Lattnerbdbf1a12009-10-11 04:33:43 +000075 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000076 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77 BasicBlock *PredBB);
Nick Lewycky9683f182009-06-19 04:56:29 +000078 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
Chris Lattner78567252009-11-06 18:15:14 +000079
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
82
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
Chris Lattner421fa9e2008-12-03 07:48:08 +000088 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +000089 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +000090
Chris Lattnerd38c14e2008-04-22 06:36:15 +000091 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattnera5ddb592008-04-22 21:40:39 +000092 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
Chris Lattner69e067f2008-11-27 05:07:53 +000093
94 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +000095 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000096}
97
Dan Gohman844731a2008-05-13 00:00:25 +000098char JumpThreading::ID = 0;
99static RegisterPass<JumpThreading>
100X("jump-threading", "Jump Threading");
101
Chris Lattner8383a7b2008-04-20 20:35:01 +0000102// Public interface to the Jump Threading pass
103FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
104
105/// runOnFunction - Top level algorithm.
106///
107bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000108 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000109 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000110
Mike Stumpfe095f32009-05-04 18:40:41 +0000111 FindLoopHeaders(F);
112
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000113 bool AnotherIteration = true, EverChanged = false;
114 while (AnotherIteration) {
115 AnotherIteration = false;
116 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000117 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
118 BasicBlock *BB = I;
119 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000120 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000121
122 ++I;
123
124 // If the block is trivially dead, zap it. This eliminates the successor
125 // edges which simplifies the CFG.
126 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000127 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000129 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000130 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000131 DeleteDeadBlock(BB);
132 Changed = true;
133 }
134 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000135 AnotherIteration = Changed;
136 EverChanged |= Changed;
137 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000138
139 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000140 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000141}
Chris Lattner177480b2008-04-20 21:13:06 +0000142
Chris Lattner78c552e2009-10-11 07:24:57 +0000143/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
144/// thread across it.
145static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
146 /// Ignore PHI nodes, these will be flattened when duplication happens.
147 BasicBlock::const_iterator I = BB->getFirstNonPHI();
148
149 // Sum up the cost of each instruction until we get to the terminator. Don't
150 // include the terminator because the copy won't include it.
151 unsigned Size = 0;
152 for (; !isa<TerminatorInst>(I); ++I) {
153 // Debugger intrinsics don't incur code size.
154 if (isa<DbgInfoIntrinsic>(I)) continue;
155
156 // If this is a pointer->pointer bitcast, it is free.
157 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
158 continue;
159
160 // All other instructions count for at least one unit.
161 ++Size;
162
163 // Calls are more expensive. If they are non-intrinsic calls, we model them
164 // as having cost of 4. If they are a non-vector intrinsic, we model them
165 // as having cost of 2 total, and if they are a vector intrinsic, we model
166 // them as having cost 1.
167 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
168 if (!isa<IntrinsicInst>(CI))
169 Size += 3;
170 else if (!isa<VectorType>(CI->getType()))
171 Size += 1;
172 }
173 }
174
175 // Threading through a switch statement is particularly profitable. If this
176 // block ends in a switch, decrease its cost to make it more likely to happen.
177 if (isa<SwitchInst>(I))
178 Size = Size > 6 ? Size-6 : 0;
179
180 return Size;
181}
182
183
184
Mike Stumpfe095f32009-05-04 18:40:41 +0000185/// FindLoopHeaders - We do not want jump threading to turn proper loop
186/// structures into irreducible loops. Doing this breaks up the loop nesting
187/// hierarchy and pessimizes later transformations. To prevent this from
188/// happening, we first have to find the loop headers. Here we approximate this
189/// by finding targets of backedges in the CFG.
190///
191/// Note that there definitely are cases when we want to allow threading of
192/// edges across a loop header. For example, threading a jump from outside the
193/// loop (the preheader) to an exit block of the loop is definitely profitable.
194/// It is also almost always profitable to thread backedges from within the loop
195/// to exit blocks, and is often profitable to thread backedges to other blocks
196/// within the loop (forming a nested loop). This simple analysis is not rich
197/// enough to track all of these properties and keep it up-to-date as the CFG
198/// mutates, so we don't allow any of these transformations.
199///
200void JumpThreading::FindLoopHeaders(Function &F) {
201 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
202 FindFunctionBackedges(F, Edges);
203
204 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
205 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
206}
207
208
Chris Lattner6bf77502008-04-22 07:05:46 +0000209/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
210/// value for the PHI, factor them together so we get one block to thread for
211/// the whole group.
212/// This is important for things like "phi i1 [true, true, false, true, x]"
213/// where we only need to clone the block for the true blocks once.
214///
Nick Lewycky9683f182009-06-19 04:56:29 +0000215BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
Chris Lattner6bf77502008-04-22 07:05:46 +0000216 SmallVector<BasicBlock*, 16> CommonPreds;
217 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Nick Lewycky9683f182009-06-19 04:56:29 +0000218 if (PN->getIncomingValue(i) == Val)
Chris Lattner6bf77502008-04-22 07:05:46 +0000219 CommonPreds.push_back(PN->getIncomingBlock(i));
220
221 if (CommonPreds.size() == 1)
222 return CommonPreds[0];
223
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000224 DEBUG(errs() << " Factoring out " << CommonPreds.size()
225 << " common predecessors.\n");
Chris Lattner6bf77502008-04-22 07:05:46 +0000226 return SplitBlockPredecessors(PN->getParent(),
227 &CommonPreds[0], CommonPreds.size(),
228 ".thr_comm", this);
229}
Chris Lattner78567252009-11-06 18:15:14 +0000230
231/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
232/// hand sides of the compare instruction, try to determine the result. If the
233/// result can not be determined, a null pointer is returned.
234static Constant *GetResultOfComparison(CmpInst::Predicate pred,
235 Value *LHS, Value *RHS) {
236 if (Constant *CLHS = dyn_cast<Constant>(LHS))
237 if (Constant *CRHS = dyn_cast<Constant>(RHS))
238 return ConstantExpr::getCompare(pred, CLHS, CRHS);
Chris Lattner6bf77502008-04-22 07:05:46 +0000239
Chris Lattner78567252009-11-06 18:15:14 +0000240 if (LHS == RHS)
241 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
242 if (ICmpInst::isTrueWhenEqual(pred))
243 return ConstantInt::getTrue(LHS->getContext());
244 else
245 return ConstantInt::getFalse(LHS->getContext());
246 return 0;
247}
248
249
250/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
251/// if we can infer that the value is a known ConstantInt in any of our
252/// predecessors. If so, return the known the list of value and pred BB in the
253/// result vector. If a value is known to be undef, it is returned as null.
254///
255/// The BB basic block is known to start with a PHI node.
256///
257/// This returns true if there were any known values.
258///
259///
260/// TODO: Per PR2563, we could infer value range information about a predecessor
261/// based on its terminator.
262bool JumpThreading::
263ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
264 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
265
266 // If V is a constantint, then it is known in all predecessors.
267 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
268 ConstantInt *CI = dyn_cast<ConstantInt>(V);
269 Result.resize(TheFirstPHI->getNumIncomingValues());
270 for (unsigned i = 0, e = Result.size(); i != e; ++i)
271 Result.push_back(std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)));
272 return true;
273 }
274
275 // If V is a non-instruction value, or an instruction in a different block,
276 // then it can't be derived from a PHI.
277 Instruction *I = dyn_cast<Instruction>(V);
278 if (I == 0 || I->getParent() != BB)
279 return false;
280
281 /// If I is a PHI node, then we know the incoming values for any constants.
282 if (PHINode *PN = dyn_cast<PHINode>(I)) {
283 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
284 Value *InVal = PN->getIncomingValue(i);
285 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
286 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
287 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
288 }
289 }
290 return !Result.empty();
291 }
292
293 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
294
295 // Handle some boolean conditions.
296 if (I->getType()->getPrimitiveSizeInBits() == 1) {
297 // X | true -> true
298 // X & false -> false
299 if (I->getOpcode() == Instruction::Or ||
300 I->getOpcode() == Instruction::And) {
301 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
302 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
303
304 if (LHSVals.empty() && RHSVals.empty())
305 return false;
306
307 ConstantInt *InterestingVal;
308 if (I->getOpcode() == Instruction::Or)
309 InterestingVal = ConstantInt::getTrue(I->getContext());
310 else
311 InterestingVal = ConstantInt::getFalse(I->getContext());
312
313 // Scan for the sentinel.
314 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
315 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
316 Result.push_back(LHSVals[i]);
317 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
318 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
319 Result.push_back(RHSVals[i]);
320 return !Result.empty();
321 }
322
323 // TODO: Should handle the NOT form of XOR.
324
325 }
326
327 // Handle compare with phi operand, where the PHI is defined in this block.
328 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
329 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
330 if (PN && PN->getParent() == BB) {
331 // We can do this simplification if any comparisons fold to true or false.
332 // See if any do.
333 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
334 BasicBlock *PredBB = PN->getIncomingBlock(i);
335 Value *LHS = PN->getIncomingValue(i);
336 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
337
338 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
339 if (Res == 0) continue;
340
341 if (isa<UndefValue>(Res))
342 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
343 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
344 Result.push_back(std::make_pair(CI, PredBB));
345 }
346
347 return !Result.empty();
348 }
349
350 // TODO: We could also recurse to see if we can determine constants another
351 // way.
352 }
353 return false;
354}
355
356
Chris Lattner6bf77502008-04-22 07:05:46 +0000357
Chris Lattnere33583b2009-10-11 04:18:15 +0000358/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
359/// in an undefined jump, decide which block is best to revector to.
360///
361/// Since we can pick an arbitrary destination, we pick the successor with the
362/// fewest predecessors. This should reduce the in-degree of the others.
363///
364static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
365 TerminatorInst *BBTerm = BB->getTerminator();
366 unsigned MinSucc = 0;
367 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
368 // Compute the successor with the minimum number of predecessors.
369 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
370 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
371 TestBB = BBTerm->getSuccessor(i);
372 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
373 if (NumPreds < MinNumPreds)
374 MinSucc = i;
375 }
376
377 return MinSucc;
378}
379
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000380/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000381/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000382bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000383 // If this block has a single predecessor, and if that pred has a single
384 // successor, merge the blocks. This encourages recursive jump threading
385 // because now the condition in this block can be threaded through
386 // predecessors of our predecessor block.
Chris Lattner78567252009-11-06 18:15:14 +0000387 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000388 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
389 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000390 // If SinglePred was a loop header, BB becomes one.
391 if (LoopHeaders.erase(SinglePred))
392 LoopHeaders.insert(BB);
393
Chris Lattner3d86d242008-11-27 19:25:19 +0000394 // Remember if SinglePred was the entry block of the function. If so, we
395 // will need to move BB back to the entry position.
396 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000397 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000398
399 if (isEntry && BB != &BB->getParent()->getEntryBlock())
400 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000401 return true;
402 }
Chris Lattner78567252009-11-06 18:15:14 +0000403 }
404
405 // Look to see if the terminator is a branch of switch, if not we can't thread
406 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000407 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000408 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
409 // Can't thread an unconditional jump.
410 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000411 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000412 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000413 Condition = SI->getCondition();
414 else
415 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000416
417 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000418 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000419 // other blocks.
420 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000421 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000422 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000423 ++NumFolds;
424 ConstantFoldTerminator(BB);
425 return true;
426 }
427
Chris Lattner421fa9e2008-12-03 07:48:08 +0000428 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000429 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000430 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000431 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000432
433 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000434 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000435 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000436 if (i == BestSucc) continue;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000437 BBTerm->getSuccessor(i)->removePredecessor(BB);
438 }
439
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000440 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000441 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000442 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000443 BBTerm->eraseFromParent();
444 return true;
445 }
446
447 Instruction *CondInst = dyn_cast<Instruction>(Condition);
448
449 // If the condition is an instruction defined in another block, see if a
450 // predecessor has the same condition:
451 // br COND, BBX, BBY
452 // BBX:
453 // br COND, BBZ, BBW
454 if (!Condition->hasOneUse() && // Multiple uses.
455 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
456 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
457 if (isa<BranchInst>(BB->getTerminator())) {
458 for (; PI != E; ++PI)
459 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
460 if (PBI->isConditional() && PBI->getCondition() == Condition &&
461 ProcessBranchOnDuplicateCond(*PI, BB))
462 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000463 } else {
464 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
465 for (; PI != E; ++PI)
466 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
467 if (PSI->getCondition() == Condition &&
468 ProcessSwitchOnDuplicateCond(*PI, BB))
469 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000470 }
471 }
472
Chris Lattner421fa9e2008-12-03 07:48:08 +0000473 // All the rest of our checks depend on the condition being an instruction.
474 if (CondInst == 0)
475 return false;
476
Chris Lattner177480b2008-04-20 21:13:06 +0000477 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000478 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
479 if (PN->getParent() == BB)
480 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000481
Nick Lewycky9683f182009-06-19 04:56:29 +0000482 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
483 if (isa<PHINode>(CondCmp->getOperand(0))) {
484 // If we have "br (phi != 42)" and the phi node has any constant values
485 // as operands, we can thread through this block.
486 //
487 // If we have "br (cmp phi, x)" and the phi node contains x such that the
488 // comparison uniquely identifies the branch target, we can thread
489 // through this block.
490
491 if (ProcessBranchOnCompare(CondCmp, BB))
492 return true;
493 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000494
495 // If we have a comparison, loop over the predecessors to see if there is
Chris Lattner78567252009-11-06 18:15:14 +0000496 // a condition with a lexically identical value.
Chris Lattner79c740f2009-06-19 16:27:56 +0000497 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
498 for (; PI != E; ++PI)
499 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
500 if (PBI->isConditional() && *PI != BB) {
501 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
502 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
503 CI->getOperand(1) == CondCmp->getOperand(1) &&
504 CI->getPredicate() == CondCmp->getPredicate()) {
505 // TODO: Could handle things like (x != 4) --> (x == 17)
506 if (ProcessBranchOnDuplicateCond(*PI, BB))
507 return true;
508 }
509 }
510 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000511 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000512
513 // Check for some cases that are worth simplifying. Right now we want to look
514 // for loads that are used by a switch or by the condition for the branch. If
515 // we see one, check to see if it's partially redundant. If so, insert a PHI
516 // which can then be used to thread the values.
517 //
518 // This is particularly important because reg2mem inserts loads and stores all
519 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000520 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000521 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
522 if (isa<Constant>(CondCmp->getOperand(1)))
523 SimplifyValue = CondCmp->getOperand(0);
524
525 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
526 if (SimplifyPartiallyRedundantLoad(LI))
527 return true;
528
Chris Lattner78567252009-11-06 18:15:14 +0000529
530 // Handle a variety of cases where we are branching on something derived from
531 // a PHI node in the current block. If we can prove that any predecessors
532 // compute a predictable value based on a PHI node, thread those predecessors.
533 //
534 // We only bother doing this if the current block has a PHI node and if the
535 // conditional instruction lives in the current block. If either condition
536 // fail, this won't be a computable value anyway.
537 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
538 if (ProcessThreadableEdges(CondInst, BB))
539 return true;
540
541
Chris Lattner69e067f2008-11-27 05:07:53 +0000542 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
543 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000544
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000545 return false;
546}
547
Chris Lattner421fa9e2008-12-03 07:48:08 +0000548/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
549/// block that jump on exactly the same condition. This means that we almost
550/// always know the direction of the edge in the DESTBB:
551/// PREDBB:
552/// br COND, DESTBB, BBY
553/// DESTBB:
554/// br COND, BBZ, BBW
555///
556/// If DESTBB has multiple predecessors, we can't just constant fold the branch
557/// in DESTBB, we have to thread over it.
558bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
559 BasicBlock *BB) {
560 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
561
562 // If both successors of PredBB go to DESTBB, we don't know anything. We can
563 // fold the branch to an unconditional one, which allows other recursive
564 // simplifications.
565 bool BranchDir;
566 if (PredBI->getSuccessor(1) != BB)
567 BranchDir = true;
568 else if (PredBI->getSuccessor(0) != BB)
569 BranchDir = false;
570 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000571 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000572 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000573 ++NumFolds;
574 ConstantFoldTerminator(PredBB);
575 return true;
576 }
577
578 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
579
580 // If the dest block has one predecessor, just fix the branch condition to a
581 // constant and fold it.
582 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000583 DEBUG(errs() << " In block '" << BB->getName()
584 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000585 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000586 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000587 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000588 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
589 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000590 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000591 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000592 return true;
593 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000594
Chris Lattner421fa9e2008-12-03 07:48:08 +0000595
596 // Next, figure out which successor we are threading to.
597 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
598
Mike Stumpfe095f32009-05-04 18:40:41 +0000599 // Ok, try to thread it!
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000600 return ThreadEdge(BB, PredBB, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000601}
602
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000603/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
604/// block that switch on exactly the same condition. This means that we almost
605/// always know the direction of the edge in the DESTBB:
606/// PREDBB:
607/// switch COND [... DESTBB, BBY ... ]
608/// DESTBB:
609/// switch COND [... BBZ, BBW ]
610///
611/// Optimizing switches like this is very important, because simplifycfg builds
612/// switches out of repeated 'if' conditions.
613bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
614 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000615 // Can't thread edge to self.
616 if (PredBB == DestBB)
617 return false;
618
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000619 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
620 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
621
622 // There are a variety of optimizations that we can potentially do on these
623 // blocks: we order them from most to least preferable.
624
625 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
626 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000627 // growth. Skip debug info first.
628 BasicBlock::iterator BBI = DestBB->begin();
629 while (isa<DbgInfoIntrinsic>(BBI))
630 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000631
632 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000633 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000634 bool MadeChange = false;
635 // Ignore the default edge for now.
636 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
637 ConstantInt *DestVal = DestSI->getCaseValue(i);
638 BasicBlock *DestSucc = DestSI->getSuccessor(i);
639
640 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
641 // PredSI has an explicit case for it. If so, forward. If it is covered
642 // by the default case, we can't update PredSI.
643 unsigned PredCase = PredSI->findCaseValue(DestVal);
644 if (PredCase == 0) continue;
645
646 // If PredSI doesn't go to DestBB on this value, then it won't reach the
647 // case on this condition.
648 if (PredSI->getSuccessor(PredCase) != DestBB &&
649 DestSI->getSuccessor(i) != DestBB)
650 continue;
651
652 // Otherwise, we're safe to make the change. Make sure that the edge from
653 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000654 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
655 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000656
657 // If the destination has PHI nodes, just split the edge for updating
658 // simplicity.
659 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
660 SplitCriticalEdge(DestSI, i, this);
661 DestSucc = DestSI->getSuccessor(i);
662 }
663 FoldSingleEntryPHINodes(DestSucc);
664 PredSI->setSuccessor(PredCase, DestSucc);
665 MadeChange = true;
666 }
667
668 if (MadeChange)
669 return true;
670 }
671
672 return false;
673}
674
675
Chris Lattner69e067f2008-11-27 05:07:53 +0000676/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
677/// load instruction, eliminate it by replacing it with a PHI node. This is an
678/// important optimization that encourages jump threading, and needs to be run
679/// interlaced with other jump threading tasks.
680bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
681 // Don't hack volatile loads.
682 if (LI->isVolatile()) return false;
683
684 // If the load is defined in a block with exactly one predecessor, it can't be
685 // partially redundant.
686 BasicBlock *LoadBB = LI->getParent();
687 if (LoadBB->getSinglePredecessor())
688 return false;
689
690 Value *LoadedPtr = LI->getOperand(0);
691
692 // If the loaded operand is defined in the LoadBB, it can't be available.
693 // FIXME: Could do PHI translation, that would be fun :)
694 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
695 if (PtrOp->getParent() == LoadBB)
696 return false;
697
698 // Scan a few instructions up from the load, to see if it is obviously live at
699 // the entry to its block.
700 BasicBlock::iterator BBIt = LI;
701
Chris Lattner52c95852008-11-27 08:10:05 +0000702 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
703 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000704 // If the value if the load is locally available within the block, just use
705 // it. This frequently occurs for reg2mem'd allocas.
706 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000707
708 // If the returned value is the load itself, replace with an undef. This can
709 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000710 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000711 LI->replaceAllUsesWith(AvailableVal);
712 LI->eraseFromParent();
713 return true;
714 }
715
716 // Otherwise, if we scanned the whole block and got to the top of the block,
717 // we know the block is locally transparent to the load. If not, something
718 // might clobber its value.
719 if (BBIt != LoadBB->begin())
720 return false;
721
722
723 SmallPtrSet<BasicBlock*, 8> PredsScanned;
724 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
725 AvailablePredsTy AvailablePreds;
726 BasicBlock *OneUnavailablePred = 0;
727
728 // If we got here, the loaded value is transparent through to the start of the
729 // block. Check to see if it is available in any of the predecessor blocks.
730 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
731 PI != PE; ++PI) {
732 BasicBlock *PredBB = *PI;
733
734 // If we already scanned this predecessor, skip it.
735 if (!PredsScanned.insert(PredBB))
736 continue;
737
738 // Scan the predecessor to see if the value is available in the pred.
739 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000740 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000741 if (!PredAvailable) {
742 OneUnavailablePred = PredBB;
743 continue;
744 }
745
746 // If so, this load is partially redundant. Remember this info so that we
747 // can create a PHI node.
748 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
749 }
750
751 // If the loaded value isn't available in any predecessor, it isn't partially
752 // redundant.
753 if (AvailablePreds.empty()) return false;
754
755 // Okay, the loaded value is available in at least one (and maybe all!)
756 // predecessors. If the value is unavailable in more than one unique
757 // predecessor, we want to insert a merge block for those common predecessors.
758 // This ensures that we only have to insert one reload, thus not increasing
759 // code size.
760 BasicBlock *UnavailablePred = 0;
761
762 // If there is exactly one predecessor where the value is unavailable, the
763 // already computed 'OneUnavailablePred' block is it. If it ends in an
764 // unconditional branch, we know that it isn't a critical edge.
765 if (PredsScanned.size() == AvailablePreds.size()+1 &&
766 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
767 UnavailablePred = OneUnavailablePred;
768 } else if (PredsScanned.size() != AvailablePreds.size()) {
769 // Otherwise, we had multiple unavailable predecessors or we had a critical
770 // edge from the one.
771 SmallVector<BasicBlock*, 8> PredsToSplit;
772 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
773
774 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
775 AvailablePredSet.insert(AvailablePreds[i].first);
776
777 // Add all the unavailable predecessors to the PredsToSplit list.
778 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
779 PI != PE; ++PI)
780 if (!AvailablePredSet.count(*PI))
781 PredsToSplit.push_back(*PI);
782
783 // Split them out to their own block.
784 UnavailablePred =
785 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
786 "thread-split", this);
787 }
788
789 // If the value isn't available in all predecessors, then there will be
790 // exactly one where it isn't available. Insert a load on that edge and add
791 // it to the AvailablePreds list.
792 if (UnavailablePred) {
793 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
794 "Can't handle critical edge here!");
795 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
796 UnavailablePred->getTerminator());
797 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
798 }
799
800 // Now we know that each predecessor of this block has a value in
801 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000802 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000803
804 // Create a PHI node at the start of the block for the PRE'd load value.
805 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
806 PN->takeName(LI);
807
808 // Insert new entries into the PHI for each predecessor. A single block may
809 // have multiple entries here.
810 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
811 ++PI) {
812 AvailablePredsTy::iterator I =
813 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
814 std::make_pair(*PI, (Value*)0));
815
816 assert(I != AvailablePreds.end() && I->first == *PI &&
817 "Didn't find entry for predecessor!");
818
819 PN->addIncoming(I->second, I->first);
820 }
821
822 //cerr << "PRE: " << *LI << *PN << "\n";
823
824 LI->replaceAllUsesWith(PN);
825 LI->eraseFromParent();
826
827 return true;
828}
829
Chris Lattner78567252009-11-06 18:15:14 +0000830/// FindMostPopularDest - The specified list contains multiple possible
831/// threadable destinations. Pick the one that occurs the most frequently in
832/// the list.
833static BasicBlock *
834FindMostPopularDest(BasicBlock *BB,
835 const SmallVectorImpl<std::pair<BasicBlock*,
836 BasicBlock*> > &PredToDestList) {
837 assert(!PredToDestList.empty());
838
839 // Determine popularity. If there are multiple possible destinations, we
840 // explicitly choose to ignore 'undef' destinations. We prefer to thread
841 // blocks with known and real destinations to threading undef. We'll handle
842 // them later if interesting.
843 DenseMap<BasicBlock*, unsigned> DestPopularity;
844 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
845 if (PredToDestList[i].second)
846 DestPopularity[PredToDestList[i].second]++;
847
848 // Find the most popular dest.
849 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
850 BasicBlock *MostPopularDest = DPI->first;
851 unsigned Popularity = DPI->second;
852 SmallVector<BasicBlock*, 4> SamePopularity;
853
854 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
855 // If the popularity of this entry isn't higher than the popularity we've
856 // seen so far, ignore it.
857 if (DPI->second < Popularity)
858 ; // ignore.
859 else if (DPI->second == Popularity) {
860 // If it is the same as what we've seen so far, keep track of it.
861 SamePopularity.push_back(DPI->first);
862 } else {
863 // If it is more popular, remember it.
864 SamePopularity.clear();
865 MostPopularDest = DPI->first;
866 Popularity = DPI->second;
867 }
868 }
869
870 // Okay, now we know the most popular destination. If there is more than
871 // destination, we need to determine one. This is arbitrary, but we need
872 // to make a deterministic decision. Pick the first one that appears in the
873 // successor list.
874 if (!SamePopularity.empty()) {
875 SamePopularity.push_back(MostPopularDest);
876 TerminatorInst *TI = BB->getTerminator();
877 for (unsigned i = 0; ; ++i) {
878 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
879
880 if (std::find(SamePopularity.begin(), SamePopularity.end(),
881 TI->getSuccessor(i)) == SamePopularity.end())
882 continue;
883
884 MostPopularDest = TI->getSuccessor(i);
885 break;
886 }
887 }
888
889 // Okay, we have finally picked the most popular destination.
890 return MostPopularDest;
891}
892
893bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
894 BasicBlock *BB) {
895 // If threading this would thread across a loop header, don't even try to
896 // thread the edge.
897 if (LoopHeaders.count(BB))
898 return false;
899
900
901
902 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
903 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
904 return false;
905 assert(!PredValues.empty() &&
906 "ComputeValueKnownInPredecessors returned true with no values");
907
908 DEBUG(errs() << "IN BB: " << *BB;
909 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
910 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
911 if (PredValues[i].first)
912 errs() << *PredValues[i].first;
913 else
914 errs() << "UNDEF";
915 errs() << " for pred '" << PredValues[i].second->getName()
916 << "'.\n";
917 });
918
919 // Decide what we want to thread through. Convert our list of known values to
920 // a list of known destinations for each pred. This also discards duplicate
921 // predecessors and keeps track of the undefined inputs (which are represented
922 // as a null dest in the PredToDestList.
923 SmallPtrSet<BasicBlock*, 16> SeenPreds;
924 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
925
926 BasicBlock *OnlyDest = 0;
927 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
928
929 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
930 BasicBlock *Pred = PredValues[i].second;
931 if (!SeenPreds.insert(Pred))
932 continue; // Duplicate predecessor entry.
933
934 // If the predecessor ends with an indirect goto, we can't change its
935 // destination.
936 if (isa<IndirectBrInst>(Pred->getTerminator()))
937 continue;
938
939 ConstantInt *Val = PredValues[i].first;
940
941 BasicBlock *DestBB;
942 if (Val == 0) // Undef.
943 DestBB = 0;
944 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
945 DestBB = BI->getSuccessor(Val->isZero());
946 else {
947 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
948 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
949 }
950
951 // If we have exactly one destination, remember it for efficiency below.
952 if (i == 0)
953 OnlyDest = DestBB;
954 else if (OnlyDest != DestBB)
955 OnlyDest = MultipleDestSentinel;
956
957 PredToDestList.push_back(std::make_pair(Pred, DestBB));
958 }
959
960 // If all edges were unthreadable, we fail.
961 if (PredToDestList.empty())
962 return false;
963
964 // Determine which is the most common successor. If we have many inputs and
965 // this block is a switch, we want to start by threading the batch that goes
966 // to the most popular destination first. If we only know about one
967 // threadable destination (the common case) we can avoid this.
968 BasicBlock *MostPopularDest = OnlyDest;
969
970 if (MostPopularDest == MultipleDestSentinel)
971 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
972
973 // Now that we know what the most popular destination is, factor all
974 // predecessors that will jump to it into a single predecessor.
975 SmallVector<BasicBlock*, 16> PredsToFactor;
976 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
977 if (PredToDestList[i].second == MostPopularDest)
978 PredsToFactor.push_back(PredToDestList[i].first);
979
980 BasicBlock *PredToThread;
981 if (PredsToFactor.size() == 1)
982 PredToThread = PredsToFactor[0];
983 else {
984 DEBUG(errs() << " Factoring out " << PredsToFactor.size()
985 << " common predecessors.\n");
986 PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
987 PredsToFactor.size(),
988 ".thr_comm", this);
989 }
990
991 // If the threadable edges are branching on an undefined value, we get to pick
992 // the destination that these predecessors should get to.
993 if (MostPopularDest == 0)
994 MostPopularDest = BB->getTerminator()->
995 getSuccessor(GetBestDestForJumpOnUndef(BB));
996
997 // Ok, try to thread it!
998 return ThreadEdge(BB, PredToThread, MostPopularDest);
999}
Chris Lattner69e067f2008-11-27 05:07:53 +00001000
Chris Lattnere33583b2009-10-11 04:18:15 +00001001/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001002/// the current block. See if there are any simplifications we can do based on
1003/// inputs to the phi node.
1004///
1005bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001006 BasicBlock *BB = PN->getParent();
1007
Chris Lattnerf7807f62009-11-06 18:22:54 +00001008 // If any of the predecessor blocks end in an unconditional branch, we can
1009 // *duplicate* the jump into that block in order to further encourage jump
1010 // threading and to eliminate cases where we have branch on a phi of an icmp
1011 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001012
1013 // We don't want to do this tranformation for switches, because we don't
1014 // really want to duplicate a switch.
1015 if (isa<SwitchInst>(BB->getTerminator()))
1016 return false;
1017
1018 // Look for unconditional branch predecessors.
1019 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1020 BasicBlock *PredBB = PN->getIncomingBlock(i);
1021 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1022 if (PredBr->isUnconditional() &&
1023 // Try to duplicate BB into PredBB.
1024 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1025 return true;
1026 }
1027
Chris Lattner6b65f472009-10-11 04:40:21 +00001028 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001029}
1030
Chris Lattnera5ddb592008-04-22 21:40:39 +00001031/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
Nick Lewycky9683f182009-06-19 04:56:29 +00001032/// node and a value. If we can identify when the comparison is true between
1033/// the phi inputs and the value, we can fold the compare for that edge and
1034/// thread through it.
Chris Lattnera5ddb592008-04-22 21:40:39 +00001035bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
1036 PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
Nick Lewycky9683f182009-06-19 04:56:29 +00001037 Value *RHS = Cmp->getOperand(1);
Chris Lattnera5ddb592008-04-22 21:40:39 +00001038
1039 // If the phi isn't in the current block, an incoming edge to this block
1040 // doesn't control the destination.
1041 if (PN->getParent() != BB)
1042 return false;
1043
1044 // We can do this simplification if any comparisons fold to true or false.
1045 // See if any do.
Nick Lewycky9683f182009-06-19 04:56:29 +00001046 Value *PredVal = 0;
Chris Lattnera5ddb592008-04-22 21:40:39 +00001047 bool TrueDirection = false;
1048 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Nick Lewycky9683f182009-06-19 04:56:29 +00001049 PredVal = PN->getIncomingValue(i);
Chris Lattnera5ddb592008-04-22 21:40:39 +00001050
Chris Lattner78567252009-11-06 18:15:14 +00001051 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS);
Nick Lewycky9683f182009-06-19 04:56:29 +00001052 if (!Res) {
1053 PredVal = 0;
1054 continue;
1055 }
1056
Chris Lattnera5ddb592008-04-22 21:40:39 +00001057 // If this folded to a constant expr, we can't do anything.
1058 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
1059 TrueDirection = ResC->getZExtValue();
1060 break;
1061 }
1062 // If this folded to undef, just go the false way.
1063 if (isa<UndefValue>(Res)) {
1064 TrueDirection = false;
1065 break;
1066 }
1067
1068 // Otherwise, we can't fold this input.
Nick Lewycky9683f182009-06-19 04:56:29 +00001069 PredVal = 0;
Chris Lattnera5ddb592008-04-22 21:40:39 +00001070 }
1071
1072 // If no match, bail out.
Nick Lewycky9683f182009-06-19 04:56:29 +00001073 if (PredVal == 0)
Chris Lattnera5ddb592008-04-22 21:40:39 +00001074 return false;
1075
Chris Lattnera5ddb592008-04-22 21:40:39 +00001076 // If so, we can actually do this threading. Merge any common predecessors
1077 // that will act the same.
Nick Lewycky9683f182009-06-19 04:56:29 +00001078 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
Chris Lattnera5ddb592008-04-22 21:40:39 +00001079
1080 // Next, get our successor.
1081 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
1082
Mike Stumpfe095f32009-05-04 18:40:41 +00001083 // Ok, try to thread it!
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001084 return ThreadEdge(BB, PredBB, SuccBB);
1085}
1086
Chris Lattnera5ddb592008-04-22 21:40:39 +00001087
Chris Lattner78c552e2009-10-11 07:24:57 +00001088/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1089/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1090/// NewPred using the entries from OldPred (suitably mapped).
1091static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1092 BasicBlock *OldPred,
1093 BasicBlock *NewPred,
1094 DenseMap<Instruction*, Value*> &ValueMap) {
1095 for (BasicBlock::iterator PNI = PHIBB->begin();
1096 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1097 // Ok, we have a PHI node. Figure out what the incoming value was for the
1098 // DestBlock.
1099 Value *IV = PN->getIncomingValueForBlock(OldPred);
1100
1101 // Remap the value if necessary.
1102 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1103 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1104 if (I != ValueMap.end())
1105 IV = I->second;
1106 }
1107
1108 PN->addIncoming(IV, NewPred);
1109 }
1110}
Chris Lattner6bf77502008-04-22 07:05:46 +00001111
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001112/// ThreadEdge - We have decided that it is safe and profitable to thread an
1113/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
1114/// change.
Mike Stumpfe095f32009-05-04 18:40:41 +00001115bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001116 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001117 // If threading to the same block as we come from, we would infinite loop.
1118 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001119 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1120 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001121 return false;
1122 }
1123
1124 // If threading this would thread across a loop header, don't thread the edge.
1125 // See the comments above FindLoopHeaders for justifications and caveats.
1126 if (LoopHeaders.count(BB)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001127 DEBUG(errs() << " Not threading from '" << PredBB->getName()
1128 << "' across loop header BB '" << BB->getName()
1129 << "' to dest BB '" << SuccBB->getName()
1130 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001131 return false;
1132 }
1133
Chris Lattner78c552e2009-10-11 07:24:57 +00001134 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1135 if (JumpThreadCost > Threshold) {
1136 DEBUG(errs() << " Not threading BB '" << BB->getName()
1137 << "' - Cost is too high: " << JumpThreadCost << "\n");
1138 return false;
1139 }
1140
Mike Stumpfe095f32009-05-04 18:40:41 +00001141 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001142 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001143 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001144 << ", across block:\n "
1145 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001146
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001147 // We are going to have to map operands from the original BB block to the new
1148 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1149 // account for entry from PredBB.
1150 DenseMap<Instruction*, Value*> ValueMapping;
1151
Owen Anderson1d0be152009-08-13 21:58:54 +00001152 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1153 BB->getName()+".thread",
1154 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001155 NewBB->moveAfter(PredBB);
1156
1157 BasicBlock::iterator BI = BB->begin();
1158 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1159 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1160
1161 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1162 // mapping and using it to remap operands in the cloned instructions.
1163 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001164 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001165 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001166 NewBB->getInstList().push_back(New);
1167 ValueMapping[BI] = New;
1168
1169 // Remap operands to patch up intra-block references.
1170 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001171 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1172 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1173 if (I != ValueMapping.end())
1174 New->setOperand(i, I->second);
1175 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001176 }
1177
1178 // We didn't copy the terminator from BB over to NewBB, because there is now
1179 // an unconditional jump to SuccBB. Insert the unconditional jump.
1180 BranchInst::Create(SuccBB, NewBB);
1181
1182 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1183 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001184 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001185
Chris Lattner433a0db2009-10-10 09:05:58 +00001186 // If there were values defined in BB that are used outside the block, then we
1187 // now have to update all uses of the value to use either the original value,
1188 // the cloned value, or some PHI derived value. This can require arbitrary
1189 // PHI insertion, of which we are prepared to do, clean these up now.
1190 SSAUpdater SSAUpdate;
1191 SmallVector<Use*, 16> UsesToRename;
1192 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1193 // Scan all uses of this instruction to see if it is used outside of its
1194 // block, and if so, record them in UsesToRename.
1195 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1196 ++UI) {
1197 Instruction *User = cast<Instruction>(*UI);
1198 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1199 if (UserPN->getIncomingBlock(UI) == BB)
1200 continue;
1201 } else if (User->getParent() == BB)
1202 continue;
1203
1204 UsesToRename.push_back(&UI.getUse());
1205 }
1206
1207 // If there are no uses outside the block, we're done with this instruction.
1208 if (UsesToRename.empty())
1209 continue;
1210
1211 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1212
1213 // We found a use of I outside of BB. Rename all uses of I that are outside
1214 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1215 // with the two values we know.
1216 SSAUpdate.Initialize(I);
1217 SSAUpdate.AddAvailableValue(BB, I);
1218 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1219
1220 while (!UsesToRename.empty())
1221 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1222 DEBUG(errs() << "\n");
1223 }
1224
1225
Chris Lattneref0c6742008-12-01 04:48:07 +00001226 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001227 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1228 // us to simplify any PHI nodes in BB.
1229 TerminatorInst *PredTerm = PredBB->getTerminator();
1230 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1231 if (PredTerm->getSuccessor(i) == BB) {
1232 BB->removePredecessor(PredBB);
1233 PredTerm->setSuccessor(i, NewBB);
1234 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001235
1236 // At this point, the IR is fully up to date and consistent. Do a quick scan
1237 // over the new instructions and zap any that are constants or dead. This
1238 // frequently happens because of phi translation.
1239 BI = NewBB->begin();
1240 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1241 Instruction *Inst = BI++;
Chris Lattner7b550cc2009-11-06 04:27:31 +00001242 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Chris Lattneref0c6742008-12-01 04:48:07 +00001243 Inst->replaceAllUsesWith(C);
1244 Inst->eraseFromParent();
1245 continue;
1246 }
1247
1248 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1249 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001250
1251 // Threaded an edge!
1252 ++NumThreads;
1253 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001254}
Chris Lattner78c552e2009-10-11 07:24:57 +00001255
1256/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1257/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1258/// If we can duplicate the contents of BB up into PredBB do so now, this
1259/// improves the odds that the branch will be on an analyzable instruction like
1260/// a compare.
1261bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1262 BasicBlock *PredBB) {
1263 // If BB is a loop header, then duplicating this block outside the loop would
1264 // cause us to transform this into an irreducible loop, don't do this.
1265 // See the comments above FindLoopHeaders for justifications and caveats.
1266 if (LoopHeaders.count(BB)) {
1267 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1268 << "' into predecessor block '" << PredBB->getName()
1269 << "' - it might create an irreducible loop!\n");
1270 return false;
1271 }
1272
1273 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1274 if (DuplicationCost > Threshold) {
1275 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1276 << "' - Cost is too high: " << DuplicationCost << "\n");
1277 return false;
1278 }
1279
1280 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1281 // of PredBB.
1282 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1283 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1284 << DuplicationCost << " block is:" << *BB << "\n");
1285
1286 // We are going to have to map operands from the original BB block into the
1287 // PredBB block. Evaluate PHI nodes in BB.
1288 DenseMap<Instruction*, Value*> ValueMapping;
1289
1290 BasicBlock::iterator BI = BB->begin();
1291 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1292 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1293
1294 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1295
1296 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1297 // mapping and using it to remap operands in the cloned instructions.
1298 for (; BI != BB->end(); ++BI) {
1299 Instruction *New = BI->clone();
1300 New->setName(BI->getName());
1301 PredBB->getInstList().insert(OldPredBranch, New);
1302 ValueMapping[BI] = New;
1303
1304 // Remap operands to patch up intra-block references.
1305 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1306 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1307 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1308 if (I != ValueMapping.end())
1309 New->setOperand(i, I->second);
1310 }
1311 }
1312
1313 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1314 // add entries to the PHI nodes for branch from PredBB now.
1315 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1316 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1317 ValueMapping);
1318 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1319 ValueMapping);
1320
1321 // If there were values defined in BB that are used outside the block, then we
1322 // now have to update all uses of the value to use either the original value,
1323 // the cloned value, or some PHI derived value. This can require arbitrary
1324 // PHI insertion, of which we are prepared to do, clean these up now.
1325 SSAUpdater SSAUpdate;
1326 SmallVector<Use*, 16> UsesToRename;
1327 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1328 // Scan all uses of this instruction to see if it is used outside of its
1329 // block, and if so, record them in UsesToRename.
1330 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1331 ++UI) {
1332 Instruction *User = cast<Instruction>(*UI);
1333 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1334 if (UserPN->getIncomingBlock(UI) == BB)
1335 continue;
1336 } else if (User->getParent() == BB)
1337 continue;
1338
1339 UsesToRename.push_back(&UI.getUse());
1340 }
1341
1342 // If there are no uses outside the block, we're done with this instruction.
1343 if (UsesToRename.empty())
1344 continue;
1345
1346 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1347
1348 // We found a use of I outside of BB. Rename all uses of I that are outside
1349 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1350 // with the two values we know.
1351 SSAUpdate.Initialize(I);
1352 SSAUpdate.AddAvailableValue(BB, I);
1353 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1354
1355 while (!UsesToRename.empty())
1356 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1357 DEBUG(errs() << "\n");
1358 }
1359
1360 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1361 // that we nuked.
1362 BB->removePredecessor(PredBB);
1363
1364 // Remove the unconditional branch at the end of the PredBB block.
1365 OldPredBranch->eraseFromParent();
1366
1367 ++NumDupes;
1368 return true;
1369}
1370
1371