blob: 835d149eab4820e5f904c23a31320b231645d845 [file] [log] [blame]
Chris Lattner753a2b42010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25 if (ITy->getBitWidth() < 32)
26 return Type::getInt32Ty(Ty->getContext());
27 }
28 return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38 unsigned Align, unsigned PrefAlign) {
39
40 User *U = dyn_cast<User>(V);
41 if (!U) return Align;
42
43 switch (Operator::getOpcode(U)) {
44 default: break;
45 case Instruction::BitCast:
46 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47 case Instruction::GetElementPtr: {
48 // If all indexes are zero, it is just the alignment of the base pointer.
49 bool AllZeroOperands = true;
50 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51 if (!isa<Constant>(*i) ||
52 !cast<Constant>(*i)->isNullValue()) {
53 AllZeroOperands = false;
54 break;
55 }
56
57 if (AllZeroOperands) {
58 // Treat this like a bitcast.
59 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60 }
61 break;
62 }
63 }
64
65 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66 // If there is a large requested alignment and we can, bump up the alignment
67 // of the global.
68 if (!GV->isDeclaration()) {
69 if (GV->getAlignment() >= PrefAlign)
70 Align = GV->getAlignment();
71 else {
72 GV->setAlignment(PrefAlign);
73 Align = PrefAlign;
74 }
75 }
76 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77 // If there is a requested alignment and if this is an alloca, round up.
78 if (AI->getAlignment() >= PrefAlign)
79 Align = AI->getAlignment();
80 else {
81 AI->setAlignment(PrefAlign);
82 Align = PrefAlign;
83 }
84 }
85
86 return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94 unsigned PrefAlign) {
95 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96 sizeof(PrefAlign) * CHAR_BIT;
97 APInt Mask = APInt::getAllOnesValue(BitWidth);
98 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100 unsigned TrailZ = KnownZero.countTrailingOnes();
101 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103 if (PrefAlign > Align)
104 Align = EnforceKnownAlignment(V, Align, PrefAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000105
Chris Lattner753a2b42010-01-05 07:32:13 +0000106 // We don't need to make any adjustment.
107 return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113 unsigned MinAlign = std::min(DstAlign, SrcAlign);
114 unsigned CopyAlign = MI->getAlignment();
115
116 if (CopyAlign < MinAlign) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000117 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Chris Lattner753a2b42010-01-05 07:32:13 +0000118 MinAlign, false));
119 return MI;
120 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000121
Chris Lattner753a2b42010-01-05 07:32:13 +0000122 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123 // load/store.
124 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125 if (MemOpLength == 0) return 0;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000126
Chris Lattner753a2b42010-01-05 07:32:13 +0000127 // Source and destination pointer types are always "i8*" for intrinsic. See
128 // if the size is something we can handle with a single primitive load/store.
129 // A single load+store correctly handles overlapping memory in the memmove
130 // case.
131 unsigned Size = MemOpLength->getZExtValue();
132 if (Size == 0) return MI; // Delete this mem transfer.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000133
Chris Lattner753a2b42010-01-05 07:32:13 +0000134 if (Size > 8 || (Size&(Size-1)))
135 return 0; // If not 1/2/4/8 bytes, exit.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000136
Chris Lattner753a2b42010-01-05 07:32:13 +0000137 // Use an integer load+store unless we can find something better.
138 Type *NewPtrTy =
139 PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000140
Chris Lattner753a2b42010-01-05 07:32:13 +0000141 // Memcpy forces the use of i8* for the source and destination. That means
142 // that if you're using memcpy to move one double around, you'll get a cast
143 // from double* to i8*. We'd much rather use a double load+store rather than
144 // an i64 load+store, here because this improves the odds that the source or
145 // dest address will be promotable. See if we can find a better type than the
146 // integer datatype.
147 Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148 if (StrippedDest != MI->getOperand(1)) {
149 const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150 ->getElementType();
151 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
153 // down through these levels if so.
154 while (!SrcETy->isSingleValueType()) {
155 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156 if (STy->getNumElements() == 1)
157 SrcETy = STy->getElementType(0);
158 else
159 break;
160 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161 if (ATy->getNumElements() == 1)
162 SrcETy = ATy->getElementType();
163 else
164 break;
165 } else
166 break;
167 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000168
Chris Lattner753a2b42010-01-05 07:32:13 +0000169 if (SrcETy->isSingleValueType())
170 NewPtrTy = PointerType::getUnqual(SrcETy);
171 }
172 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000173
174
Chris Lattner753a2b42010-01-05 07:32:13 +0000175 // If the memcpy/memmove provides better alignment info than we can
176 // infer, use it.
177 SrcAlign = std::max(SrcAlign, CopyAlign);
178 DstAlign = std::max(DstAlign, CopyAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000179
Chris Lattner753a2b42010-01-05 07:32:13 +0000180 Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181 Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183 InsertNewInstBefore(L, *MI);
184 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186 // Set the size of the copy to 0, it will be deleted on the next iteration.
187 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188 return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193 if (MI->getAlignment() < Alignment) {
194 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195 Alignment, false));
196 return MI;
197 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000198
Chris Lattner753a2b42010-01-05 07:32:13 +0000199 // Extract the length and alignment and fill if they are constant.
200 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000202 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Chris Lattner753a2b42010-01-05 07:32:13 +0000203 return 0;
204 uint64_t Len = LenC->getZExtValue();
205 Alignment = MI->getAlignment();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000206
Chris Lattner753a2b42010-01-05 07:32:13 +0000207 // If the length is zero, this is a no-op
208 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000209
Chris Lattner753a2b42010-01-05 07:32:13 +0000210 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212 const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000213
Chris Lattner753a2b42010-01-05 07:32:13 +0000214 Value *Dest = MI->getDest();
215 Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217 // Alignment 0 is identity for alignment 1 for memset, but not store.
218 if (Alignment == 0) Alignment = 1;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000219
Chris Lattner753a2b42010-01-05 07:32:13 +0000220 // Extract the fill value and store.
221 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223 Dest, false, Alignment), *MI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000224
Chris Lattner753a2b42010-01-05 07:32:13 +0000225 // Set the size of the copy to 0, it will be deleted on the next iteration.
226 MI->setLength(Constant::getNullValue(LenC->getType()));
227 return MI;
228 }
229
230 return 0;
231}
232
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000233/// visitCallInst - CallInst simplification. This mostly only handles folding
Chris Lattner753a2b42010-01-05 07:32:13 +0000234/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
235/// the heavy lifting.
236///
237Instruction *InstCombiner::visitCallInst(CallInst &CI) {
238 if (isFreeCall(&CI))
239 return visitFree(CI);
240
241 // If the caller function is nounwind, mark the call as nounwind, even if the
242 // callee isn't.
243 if (CI.getParent()->getParent()->doesNotThrow() &&
244 !CI.doesNotThrow()) {
245 CI.setDoesNotThrow();
246 return &CI;
247 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000248
Chris Lattner753a2b42010-01-05 07:32:13 +0000249 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
250 if (!II) return visitCallSite(&CI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000251
Chris Lattner753a2b42010-01-05 07:32:13 +0000252 // Intrinsics cannot occur in an invoke, so handle them here instead of in
253 // visitCallSite.
254 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
255 bool Changed = false;
256
257 // memmove/cpy/set of zero bytes is a noop.
258 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
259 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
260
261 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
262 if (CI->getZExtValue() == 1) {
263 // Replace the instruction with just byte operations. We would
264 // transform other cases to loads/stores, but we don't know if
265 // alignment is sufficient.
266 }
267 }
268
269 // If we have a memmove and the source operation is a constant global,
270 // then the source and dest pointers can't alias, so we can change this
271 // into a call to memcpy.
272 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
273 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
274 if (GVSrc->isConstant()) {
275 Module *M = CI.getParent()->getParent()->getParent();
276 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
277 const Type *Tys[1];
278 Tys[0] = CI.getOperand(3)->getType();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000279 CI.setOperand(0,
Chris Lattner753a2b42010-01-05 07:32:13 +0000280 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
281 Changed = true;
282 }
283 }
284
285 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
286 // memmove(x,x,size) -> noop.
287 if (MTI->getSource() == MTI->getDest())
288 return EraseInstFromFunction(CI);
289 }
290
291 // If we can determine a pointer alignment that is bigger than currently
292 // set, update the alignment.
293 if (isa<MemTransferInst>(MI)) {
294 if (Instruction *I = SimplifyMemTransfer(MI))
295 return I;
296 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
297 if (Instruction *I = SimplifyMemSet(MSI))
298 return I;
299 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000300
Chris Lattner753a2b42010-01-05 07:32:13 +0000301 if (Changed) return II;
302 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000303
Chris Lattner753a2b42010-01-05 07:32:13 +0000304 switch (II->getIntrinsicID()) {
305 default: break;
Eric Christopher415326b2010-02-09 21:24:27 +0000306 case Intrinsic::objectsize: {
307 const Type *ReturnTy = CI.getType();
308 Value *Op1 = II->getOperand(1);
309 bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
310
Eric Christopher26d0e892010-02-11 01:48:54 +0000311 // We need target data for just about everything so depend on it.
Eric Christopher415326b2010-02-09 21:24:27 +0000312 if (!TD) break;
Eric Christopher26d0e892010-02-11 01:48:54 +0000313
314 // Get to the real allocated thing and offset as fast as possible.
Eric Christopher415326b2010-02-09 21:24:27 +0000315 Op1 = Op1->stripPointerCasts();
316
Eric Christopher26d0e892010-02-11 01:48:54 +0000317 // If we've stripped down to a single global variable that we
318 // can know the size of then just return that.
Eric Christopher415326b2010-02-09 21:24:27 +0000319 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320 if (GV->hasDefinitiveInitializer()) {
321 Constant *C = GV->getInitializer();
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000322 uint64_t globalSize = TD->getTypeAllocSize(C->getType());
Eric Christopher415326b2010-02-09 21:24:27 +0000323 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, globalSize));
324 } else {
325 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
326 return ReplaceInstUsesWith(CI, RetVal);
327 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000328 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
329
330 // Only handle constant GEPs here.
331 if (CE->getOpcode() != Instruction::GetElementPtr) break;
332 GEPOperator *GEP = cast<GEPOperator>(CE);
333
Eric Christopherdfdddd82010-02-11 17:44:04 +0000334 // Make sure we're not a constant offset from an external
335 // global.
336 Value *Operand = GEP->getPointerOperand();
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000337 Operand = Operand->stripPointerCasts();
Eric Christopherdfdddd82010-02-11 17:44:04 +0000338 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
339 if (!GV->hasDefinitiveInitializer()) break;
340
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000341 // Get what we're pointing to and its size.
342 const PointerType *BaseType =
Eric Christopherdfdddd82010-02-11 17:44:04 +0000343 cast<PointerType>(Operand->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000344 uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
Eric Christopher26d0e892010-02-11 01:48:54 +0000345
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000346 // Get the current byte offset into the thing. Use the original
347 // operand in case we're looking through a bitcast.
Eric Christopher26d0e892010-02-11 01:48:54 +0000348 SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000349 const PointerType *OffsetType =
350 cast<PointerType>(GEP->getPointerOperand()->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000351 uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
Eric Christopher26d0e892010-02-11 01:48:54 +0000352
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000353 if (Size < Offset) {
354 // Out of bound reference? Negative index normalized to large
355 // index? Just return "I don't know".
356 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
357 return ReplaceInstUsesWith(CI, RetVal);
358 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000359
360 Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
361 return ReplaceInstUsesWith(CI, RetVal);
362
Eric Christopherdfdddd82010-02-11 17:44:04 +0000363 }
Eric Christopher415326b2010-02-09 21:24:27 +0000364 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000365 case Intrinsic::bswap:
366 // bswap(bswap(x)) -> x
367 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
368 if (Operand->getIntrinsicID() == Intrinsic::bswap)
369 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000370
Chris Lattner753a2b42010-01-05 07:32:13 +0000371 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
372 if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
373 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
374 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
375 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
376 TI->getType()->getPrimitiveSizeInBits();
377 Value *CV = ConstantInt::get(Operand->getType(), C);
378 Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
379 return new TruncInst(V, TI->getType());
380 }
381 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000382
Chris Lattner753a2b42010-01-05 07:32:13 +0000383 break;
384 case Intrinsic::powi:
385 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
386 // powi(x, 0) -> 1.0
387 if (Power->isZero())
388 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
389 // powi(x, 1) -> x
390 if (Power->isOne())
391 return ReplaceInstUsesWith(CI, II->getOperand(1));
392 // powi(x, -1) -> 1/x
393 if (Power->isAllOnesValue())
394 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
395 II->getOperand(1));
396 }
397 break;
398 case Intrinsic::cttz: {
399 // If all bits below the first known one are known zero,
400 // this value is constant.
401 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
402 uint32_t BitWidth = IT->getBitWidth();
403 APInt KnownZero(BitWidth, 0);
404 APInt KnownOne(BitWidth, 0);
405 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
406 KnownZero, KnownOne);
407 unsigned TrailingZeros = KnownOne.countTrailingZeros();
408 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
409 if ((Mask & KnownZero) == Mask)
410 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
411 APInt(BitWidth, TrailingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000412
Chris Lattner753a2b42010-01-05 07:32:13 +0000413 }
414 break;
415 case Intrinsic::ctlz: {
416 // If all bits above the first known one are known zero,
417 // this value is constant.
418 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
419 uint32_t BitWidth = IT->getBitWidth();
420 APInt KnownZero(BitWidth, 0);
421 APInt KnownOne(BitWidth, 0);
422 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
423 KnownZero, KnownOne);
424 unsigned LeadingZeros = KnownOne.countLeadingZeros();
425 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
426 if ((Mask & KnownZero) == Mask)
427 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
428 APInt(BitWidth, LeadingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000429
Chris Lattner753a2b42010-01-05 07:32:13 +0000430 }
431 break;
432 case Intrinsic::uadd_with_overflow: {
433 Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
434 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
435 uint32_t BitWidth = IT->getBitWidth();
436 APInt Mask = APInt::getSignBit(BitWidth);
437 APInt LHSKnownZero(BitWidth, 0);
438 APInt LHSKnownOne(BitWidth, 0);
439 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
440 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
441 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
442
443 if (LHSKnownNegative || LHSKnownPositive) {
444 APInt RHSKnownZero(BitWidth, 0);
445 APInt RHSKnownOne(BitWidth, 0);
446 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
447 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
448 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
449 if (LHSKnownNegative && RHSKnownNegative) {
450 // The sign bit is set in both cases: this MUST overflow.
451 // Create a simple add instruction, and insert it into the struct.
452 Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
453 Worklist.Add(Add);
454 Constant *V[] = {
455 UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
456 };
457 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
458 return InsertValueInst::Create(Struct, Add, 0);
459 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000460
Chris Lattner753a2b42010-01-05 07:32:13 +0000461 if (LHSKnownPositive && RHSKnownPositive) {
462 // The sign bit is clear in both cases: this CANNOT overflow.
463 // Create a simple add instruction, and insert it into the struct.
464 Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
465 Worklist.Add(Add);
466 Constant *V[] = {
467 UndefValue::get(LHS->getType()),
468 ConstantInt::getFalse(II->getContext())
469 };
470 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
471 return InsertValueInst::Create(Struct, Add, 0);
472 }
473 }
474 }
475 // FALL THROUGH uadd into sadd
476 case Intrinsic::sadd_with_overflow:
477 // Canonicalize constants into the RHS.
478 if (isa<Constant>(II->getOperand(1)) &&
479 !isa<Constant>(II->getOperand(2))) {
480 Value *LHS = II->getOperand(1);
481 II->setOperand(1, II->getOperand(2));
482 II->setOperand(2, LHS);
483 return II;
484 }
485
486 // X + undef -> undef
487 if (isa<UndefValue>(II->getOperand(2)))
488 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000489
Chris Lattner753a2b42010-01-05 07:32:13 +0000490 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
491 // X + 0 -> {X, false}
492 if (RHS->isZero()) {
493 Constant *V[] = {
494 UndefValue::get(II->getOperand(0)->getType()),
495 ConstantInt::getFalse(II->getContext())
496 };
497 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
498 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
499 }
500 }
501 break;
502 case Intrinsic::usub_with_overflow:
503 case Intrinsic::ssub_with_overflow:
504 // undef - X -> undef
505 // X - undef -> undef
506 if (isa<UndefValue>(II->getOperand(1)) ||
507 isa<UndefValue>(II->getOperand(2)))
508 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000509
Chris Lattner753a2b42010-01-05 07:32:13 +0000510 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
511 // X - 0 -> {X, false}
512 if (RHS->isZero()) {
513 Constant *V[] = {
514 UndefValue::get(II->getOperand(1)->getType()),
515 ConstantInt::getFalse(II->getContext())
516 };
517 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
518 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
519 }
520 }
521 break;
522 case Intrinsic::umul_with_overflow:
523 case Intrinsic::smul_with_overflow:
524 // Canonicalize constants into the RHS.
525 if (isa<Constant>(II->getOperand(1)) &&
526 !isa<Constant>(II->getOperand(2))) {
527 Value *LHS = II->getOperand(1);
528 II->setOperand(1, II->getOperand(2));
529 II->setOperand(2, LHS);
530 return II;
531 }
532
533 // X * undef -> undef
534 if (isa<UndefValue>(II->getOperand(2)))
535 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000536
Chris Lattner753a2b42010-01-05 07:32:13 +0000537 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
538 // X*0 -> {0, false}
539 if (RHSI->isZero())
540 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000541
Chris Lattner753a2b42010-01-05 07:32:13 +0000542 // X * 1 -> {X, false}
543 if (RHSI->equalsInt(1)) {
544 Constant *V[] = {
545 UndefValue::get(II->getOperand(1)->getType()),
546 ConstantInt::getFalse(II->getContext())
547 };
548 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
549 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
550 }
551 }
552 break;
553 case Intrinsic::ppc_altivec_lvx:
554 case Intrinsic::ppc_altivec_lvxl:
555 case Intrinsic::x86_sse_loadu_ps:
556 case Intrinsic::x86_sse2_loadu_pd:
557 case Intrinsic::x86_sse2_loadu_dq:
558 // Turn PPC lvx -> load if the pointer is known aligned.
559 // Turn X86 loadups -> load if the pointer is known aligned.
560 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
561 Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
562 PointerType::getUnqual(II->getType()));
563 return new LoadInst(Ptr);
564 }
565 break;
566 case Intrinsic::ppc_altivec_stvx:
567 case Intrinsic::ppc_altivec_stvxl:
568 // Turn stvx -> store if the pointer is known aligned.
569 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000570 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000571 PointerType::getUnqual(II->getOperand(1)->getType());
572 Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
573 return new StoreInst(II->getOperand(1), Ptr);
574 }
575 break;
576 case Intrinsic::x86_sse_storeu_ps:
577 case Intrinsic::x86_sse2_storeu_pd:
578 case Intrinsic::x86_sse2_storeu_dq:
579 // Turn X86 storeu -> store if the pointer is known aligned.
580 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000581 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000582 PointerType::getUnqual(II->getOperand(2)->getType());
583 Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
584 return new StoreInst(II->getOperand(2), Ptr);
585 }
586 break;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000587
Chris Lattner753a2b42010-01-05 07:32:13 +0000588 case Intrinsic::x86_sse_cvttss2si: {
589 // These intrinsics only demands the 0th element of its input vector. If
590 // we can simplify the input based on that, do so now.
591 unsigned VWidth =
592 cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
593 APInt DemandedElts(VWidth, 1);
594 APInt UndefElts(VWidth, 0);
595 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
596 UndefElts)) {
597 II->setOperand(1, V);
598 return II;
599 }
600 break;
601 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000602
Chris Lattner753a2b42010-01-05 07:32:13 +0000603 case Intrinsic::ppc_altivec_vperm:
604 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
605 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
606 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000607
Chris Lattner753a2b42010-01-05 07:32:13 +0000608 // Check that all of the elements are integer constants or undefs.
609 bool AllEltsOk = true;
610 for (unsigned i = 0; i != 16; ++i) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000611 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
Chris Lattner753a2b42010-01-05 07:32:13 +0000612 !isa<UndefValue>(Mask->getOperand(i))) {
613 AllEltsOk = false;
614 break;
615 }
616 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000617
Chris Lattner753a2b42010-01-05 07:32:13 +0000618 if (AllEltsOk) {
619 // Cast the input vectors to byte vectors.
620 Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
621 Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
622 Value *Result = UndefValue::get(Op0->getType());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000623
Chris Lattner753a2b42010-01-05 07:32:13 +0000624 // Only extract each element once.
625 Value *ExtractedElts[32];
626 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000627
Chris Lattner753a2b42010-01-05 07:32:13 +0000628 for (unsigned i = 0; i != 16; ++i) {
629 if (isa<UndefValue>(Mask->getOperand(i)))
630 continue;
631 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
632 Idx &= 31; // Match the hardware behavior.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000633
Chris Lattner753a2b42010-01-05 07:32:13 +0000634 if (ExtractedElts[Idx] == 0) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000635 ExtractedElts[Idx] =
636 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
Chris Lattner753a2b42010-01-05 07:32:13 +0000637 ConstantInt::get(Type::getInt32Ty(II->getContext()),
638 Idx&15, false), "tmp");
639 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000640
Chris Lattner753a2b42010-01-05 07:32:13 +0000641 // Insert this value into the result vector.
642 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
643 ConstantInt::get(Type::getInt32Ty(II->getContext()),
644 i, false), "tmp");
645 }
646 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
647 }
648 }
649 break;
650
651 case Intrinsic::stackrestore: {
652 // If the save is right next to the restore, remove the restore. This can
653 // happen when variable allocas are DCE'd.
654 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
655 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
656 BasicBlock::iterator BI = SS;
657 if (&*++BI == II)
658 return EraseInstFromFunction(CI);
659 }
660 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000661
Chris Lattner753a2b42010-01-05 07:32:13 +0000662 // Scan down this block to see if there is another stack restore in the
663 // same block without an intervening call/alloca.
664 BasicBlock::iterator BI = II;
665 TerminatorInst *TI = II->getParent()->getTerminator();
666 bool CannotRemove = false;
667 for (++BI; &*BI != TI; ++BI) {
668 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
669 CannotRemove = true;
670 break;
671 }
672 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
674 // If there is a stackrestore below this one, remove this one.
675 if (II->getIntrinsicID() == Intrinsic::stackrestore)
676 return EraseInstFromFunction(CI);
677 // Otherwise, ignore the intrinsic.
678 } else {
679 // If we found a non-intrinsic call, we can't remove the stack
680 // restore.
681 CannotRemove = true;
682 break;
683 }
684 }
685 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000686
Chris Lattner753a2b42010-01-05 07:32:13 +0000687 // If the stack restore is in a return/unwind block and if there are no
688 // allocas or calls between the restore and the return, nuke the restore.
689 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
690 return EraseInstFromFunction(CI);
691 break;
692 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000693 }
694
695 return visitCallSite(II);
696}
697
698// InvokeInst simplification
699//
700Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
701 return visitCallSite(&II);
702}
703
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000704/// isSafeToEliminateVarargsCast - If this cast does not affect the value
Chris Lattner753a2b42010-01-05 07:32:13 +0000705/// passed through the varargs area, we can eliminate the use of the cast.
706static bool isSafeToEliminateVarargsCast(const CallSite CS,
707 const CastInst * const CI,
708 const TargetData * const TD,
709 const int ix) {
710 if (!CI->isLosslessCast())
711 return false;
712
713 // The size of ByVal arguments is derived from the type, so we
714 // can't change to a type with a different size. If the size were
715 // passed explicitly we could avoid this check.
716 if (!CS.paramHasAttr(ix, Attribute::ByVal))
717 return true;
718
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000719 const Type* SrcTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000720 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
721 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
722 if (!SrcTy->isSized() || !DstTy->isSized())
723 return false;
724 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
725 return false;
726 return true;
727}
728
729// visitCallSite - Improvements for call and invoke instructions.
730//
731Instruction *InstCombiner::visitCallSite(CallSite CS) {
732 bool Changed = false;
733
734 // If the callee is a constexpr cast of a function, attempt to move the cast
735 // to the arguments of the call/invoke.
736 if (transformConstExprCastCall(CS)) return 0;
737
738 Value *Callee = CS.getCalledValue();
739
740 if (Function *CalleeF = dyn_cast<Function>(Callee))
Chris Lattnerd5695612010-02-01 18:11:34 +0000741 // If the call and callee calling conventions don't match, this call must
742 // be unreachable, as the call is undefined.
743 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
744 // Only do this for calls to a function with a body. A prototype may
745 // not actually end up matching the implementation's calling conv for a
746 // variety of reasons (e.g. it may be written in assembly).
747 !CalleeF->isDeclaration()) {
Chris Lattner753a2b42010-01-05 07:32:13 +0000748 Instruction *OldCall = CS.getInstruction();
Chris Lattner753a2b42010-01-05 07:32:13 +0000749 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000750 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner753a2b42010-01-05 07:32:13 +0000751 OldCall);
752 // If OldCall dues not return void then replaceAllUsesWith undef.
753 // This allows ValueHandlers and custom metadata to adjust itself.
754 if (!OldCall->getType()->isVoidTy())
755 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
Chris Lattner830f3f22010-02-01 18:04:58 +0000756 if (isa<CallInst>(OldCall))
Chris Lattner753a2b42010-01-05 07:32:13 +0000757 return EraseInstFromFunction(*OldCall);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000758
Chris Lattner830f3f22010-02-01 18:04:58 +0000759 // We cannot remove an invoke, because it would change the CFG, just
760 // change the callee to a null pointer.
761 cast<InvokeInst>(OldCall)->setOperand(0,
762 Constant::getNullValue(CalleeF->getType()));
Chris Lattner753a2b42010-01-05 07:32:13 +0000763 return 0;
764 }
765
766 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
767 // This instruction is not reachable, just remove it. We insert a store to
768 // undef so that we know that this code is not reachable, despite the fact
769 // that we can't modify the CFG here.
770 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
771 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
772 CS.getInstruction());
773
774 // If CS dues not return void then replaceAllUsesWith undef.
775 // This allows ValueHandlers and custom metadata to adjust itself.
776 if (!CS.getInstruction()->getType()->isVoidTy())
777 CS.getInstruction()->
778 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
779
780 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
781 // Don't break the CFG, insert a dummy cond branch.
782 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
783 ConstantInt::getTrue(Callee->getContext()), II);
784 }
785 return EraseInstFromFunction(*CS.getInstruction());
786 }
787
788 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
789 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
790 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
791 return transformCallThroughTrampoline(CS);
792
793 const PointerType *PTy = cast<PointerType>(Callee->getType());
794 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
795 if (FTy->isVarArg()) {
796 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
797 // See if we can optimize any arguments passed through the varargs area of
798 // the call.
799 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
800 E = CS.arg_end(); I != E; ++I, ++ix) {
801 CastInst *CI = dyn_cast<CastInst>(*I);
802 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
803 *I = CI->getOperand(0);
804 Changed = true;
805 }
806 }
807 }
808
809 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
810 // Inline asm calls cannot throw - mark them 'nounwind'.
811 CS.setDoesNotThrow();
812 Changed = true;
813 }
814
815 return Changed ? CS.getInstruction() : 0;
816}
817
818// transformConstExprCastCall - If the callee is a constexpr cast of a function,
819// attempt to move the cast to the arguments of the call/invoke.
820//
821bool InstCombiner::transformConstExprCastCall(CallSite CS) {
822 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
823 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000824 if (CE->getOpcode() != Instruction::BitCast ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000825 !isa<Function>(CE->getOperand(0)))
826 return false;
827 Function *Callee = cast<Function>(CE->getOperand(0));
828 Instruction *Caller = CS.getInstruction();
829 const AttrListPtr &CallerPAL = CS.getAttributes();
830
831 // Okay, this is a cast from a function to a different type. Unless doing so
832 // would cause a type conversion of one of our arguments, change this call to
833 // be a direct call with arguments casted to the appropriate types.
834 //
835 const FunctionType *FT = Callee->getFunctionType();
836 const Type *OldRetTy = Caller->getType();
837 const Type *NewRetTy = FT->getReturnType();
838
Duncan Sands1df98592010-02-16 11:11:14 +0000839 if (NewRetTy->isStructTy())
Chris Lattner753a2b42010-01-05 07:32:13 +0000840 return false; // TODO: Handle multiple return values.
841
842 // Check to see if we are changing the return type...
843 if (OldRetTy != NewRetTy) {
844 if (Callee->isDeclaration() &&
845 // Conversion is ok if changing from one pointer type to another or from
846 // a pointer to an integer of the same size.
Duncan Sands1df98592010-02-16 11:11:14 +0000847 !((OldRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000848 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +0000849 (NewRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000850 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
851 return false; // Cannot transform this return value.
852
853 if (!Caller->use_empty() &&
854 // void -> non-void is handled specially
855 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
856 return false; // Cannot transform this return value.
857
858 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
859 Attributes RAttrs = CallerPAL.getRetAttributes();
860 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
861 return false; // Attribute not compatible with transformed value.
862 }
863
864 // If the callsite is an invoke instruction, and the return value is used by
865 // a PHI node in a successor, we cannot change the return type of the call
866 // because there is no place to put the cast instruction (without breaking
867 // the critical edge). Bail out in this case.
868 if (!Caller->use_empty())
869 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
870 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
871 UI != E; ++UI)
872 if (PHINode *PN = dyn_cast<PHINode>(*UI))
873 if (PN->getParent() == II->getNormalDest() ||
874 PN->getParent() == II->getUnwindDest())
875 return false;
876 }
877
878 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
879 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
880
881 CallSite::arg_iterator AI = CS.arg_begin();
882 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
883 const Type *ParamTy = FT->getParamType(i);
884 const Type *ActTy = (*AI)->getType();
885
886 if (!CastInst::isCastable(ActTy, ParamTy))
887 return false; // Cannot transform this parameter value.
888
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000889 if (CallerPAL.getParamAttributes(i + 1)
Chris Lattner753a2b42010-01-05 07:32:13 +0000890 & Attribute::typeIncompatible(ParamTy))
891 return false; // Attribute not compatible with transformed value.
892
893 // Converting from one pointer type to another or between a pointer and an
894 // integer of the same size is safe even if we do not have a body.
895 bool isConvertible = ActTy == ParamTy ||
Duncan Sands1df98592010-02-16 11:11:14 +0000896 (TD && ((ParamTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000897 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +0000898 (ActTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000899 ActTy == TD->getIntPtrType(Caller->getContext()))));
900 if (Callee->isDeclaration() && !isConvertible) return false;
901 }
902
903 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
904 Callee->isDeclaration())
905 return false; // Do not delete arguments unless we have a function body.
906
907 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
908 !CallerPAL.isEmpty())
909 // In this case we have more arguments than the new function type, but we
910 // won't be dropping them. Check that these extra arguments have attributes
911 // that are compatible with being a vararg call argument.
912 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
913 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
914 break;
915 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
916 if (PAttrs & Attribute::VarArgsIncompatible)
917 return false;
918 }
919
920 // Okay, we decided that this is a safe thing to do: go ahead and start
921 // inserting cast instructions as necessary...
922 std::vector<Value*> Args;
923 Args.reserve(NumActualArgs);
924 SmallVector<AttributeWithIndex, 8> attrVec;
925 attrVec.reserve(NumCommonArgs);
926
927 // Get any return attributes.
928 Attributes RAttrs = CallerPAL.getRetAttributes();
929
930 // If the return value is not being used, the type may not be compatible
931 // with the existing attributes. Wipe out any problematic attributes.
932 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
933
934 // Add the new return attributes.
935 if (RAttrs)
936 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
937
938 AI = CS.arg_begin();
939 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
940 const Type *ParamTy = FT->getParamType(i);
941 if ((*AI)->getType() == ParamTy) {
942 Args.push_back(*AI);
943 } else {
944 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
945 false, ParamTy, false);
946 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
947 }
948
949 // Add any parameter attributes.
950 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
951 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
952 }
953
954 // If the function takes more arguments than the call was taking, add them
955 // now.
956 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
957 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
958
959 // If we are removing arguments to the function, emit an obnoxious warning.
960 if (FT->getNumParams() < NumActualArgs) {
961 if (!FT->isVarArg()) {
962 errs() << "WARNING: While resolving call to function '"
963 << Callee->getName() << "' arguments were dropped!\n";
964 } else {
965 // Add all of the arguments in their promoted form to the arg list.
966 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
967 const Type *PTy = getPromotedType((*AI)->getType());
968 if (PTy != (*AI)->getType()) {
969 // Must promote to pass through va_arg area!
970 Instruction::CastOps opcode =
971 CastInst::getCastOpcode(*AI, false, PTy, false);
972 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
973 } else {
974 Args.push_back(*AI);
975 }
976
977 // Add any parameter attributes.
978 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
979 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
980 }
981 }
982 }
983
984 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
985 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
986
987 if (NewRetTy->isVoidTy())
988 Caller->setName(""); // Void type should not have a name.
989
990 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
991 attrVec.end());
992
993 Instruction *NC;
994 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
995 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
996 Args.begin(), Args.end(),
997 Caller->getName(), Caller);
998 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
999 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1000 } else {
1001 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1002 Caller->getName(), Caller);
1003 CallInst *CI = cast<CallInst>(Caller);
1004 if (CI->isTailCall())
1005 cast<CallInst>(NC)->setTailCall();
1006 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1007 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1008 }
1009
1010 // Insert a cast of the return type as necessary.
1011 Value *NV = NC;
1012 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1013 if (!NV->getType()->isVoidTy()) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001014 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Chris Lattner753a2b42010-01-05 07:32:13 +00001015 OldRetTy, false);
1016 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1017
1018 // If this is an invoke instruction, we should insert it after the first
1019 // non-phi, instruction in the normal successor block.
1020 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1021 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1022 InsertNewInstBefore(NC, *I);
1023 } else {
1024 // Otherwise, it's a call, just insert cast right after the call instr
1025 InsertNewInstBefore(NC, *Caller);
1026 }
1027 Worklist.AddUsersToWorkList(*Caller);
1028 } else {
1029 NV = UndefValue::get(Caller->getType());
1030 }
1031 }
1032
1033
1034 if (!Caller->use_empty())
1035 Caller->replaceAllUsesWith(NV);
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001036
Chris Lattner753a2b42010-01-05 07:32:13 +00001037 EraseInstFromFunction(*Caller);
1038 return true;
1039}
1040
1041// transformCallThroughTrampoline - Turn a call to a function created by the
1042// init_trampoline intrinsic into a direct call to the underlying function.
1043//
1044Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1045 Value *Callee = CS.getCalledValue();
1046 const PointerType *PTy = cast<PointerType>(Callee->getType());
1047 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1048 const AttrListPtr &Attrs = CS.getAttributes();
1049
1050 // If the call already has the 'nest' attribute somewhere then give up -
1051 // otherwise 'nest' would occur twice after splicing in the chain.
1052 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1053 return 0;
1054
1055 IntrinsicInst *Tramp =
1056 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1057
1058 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1059 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1060 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1061
1062 const AttrListPtr &NestAttrs = NestF->getAttributes();
1063 if (!NestAttrs.isEmpty()) {
1064 unsigned NestIdx = 1;
1065 const Type *NestTy = 0;
1066 Attributes NestAttr = Attribute::None;
1067
1068 // Look for a parameter marked with the 'nest' attribute.
1069 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1070 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1071 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1072 // Record the parameter type and any other attributes.
1073 NestTy = *I;
1074 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1075 break;
1076 }
1077
1078 if (NestTy) {
1079 Instruction *Caller = CS.getInstruction();
1080 std::vector<Value*> NewArgs;
1081 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1082
1083 SmallVector<AttributeWithIndex, 8> NewAttrs;
1084 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1085
1086 // Insert the nest argument into the call argument list, which may
1087 // mean appending it. Likewise for attributes.
1088
1089 // Add any result attributes.
1090 if (Attributes Attr = Attrs.getRetAttributes())
1091 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1092
1093 {
1094 unsigned Idx = 1;
1095 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1096 do {
1097 if (Idx == NestIdx) {
1098 // Add the chain argument and attributes.
1099 Value *NestVal = Tramp->getOperand(3);
1100 if (NestVal->getType() != NestTy)
1101 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1102 NewArgs.push_back(NestVal);
1103 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1104 }
1105
1106 if (I == E)
1107 break;
1108
1109 // Add the original argument and attributes.
1110 NewArgs.push_back(*I);
1111 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1112 NewAttrs.push_back
1113 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1114
1115 ++Idx, ++I;
1116 } while (1);
1117 }
1118
1119 // Add any function attributes.
1120 if (Attributes Attr = Attrs.getFnAttributes())
1121 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1122
1123 // The trampoline may have been bitcast to a bogus type (FTy).
1124 // Handle this by synthesizing a new function type, equal to FTy
1125 // with the chain parameter inserted.
1126
1127 std::vector<const Type*> NewTypes;
1128 NewTypes.reserve(FTy->getNumParams()+1);
1129
1130 // Insert the chain's type into the list of parameter types, which may
1131 // mean appending it.
1132 {
1133 unsigned Idx = 1;
1134 FunctionType::param_iterator I = FTy->param_begin(),
1135 E = FTy->param_end();
1136
1137 do {
1138 if (Idx == NestIdx)
1139 // Add the chain's type.
1140 NewTypes.push_back(NestTy);
1141
1142 if (I == E)
1143 break;
1144
1145 // Add the original type.
1146 NewTypes.push_back(*I);
1147
1148 ++Idx, ++I;
1149 } while (1);
1150 }
1151
1152 // Replace the trampoline call with a direct call. Let the generic
1153 // code sort out any function type mismatches.
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001154 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner753a2b42010-01-05 07:32:13 +00001155 FTy->isVarArg());
1156 Constant *NewCallee =
1157 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001158 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner753a2b42010-01-05 07:32:13 +00001159 PointerType::getUnqual(NewFTy));
1160 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1161 NewAttrs.end());
1162
1163 Instruction *NewCaller;
1164 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1165 NewCaller = InvokeInst::Create(NewCallee,
1166 II->getNormalDest(), II->getUnwindDest(),
1167 NewArgs.begin(), NewArgs.end(),
1168 Caller->getName(), Caller);
1169 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1170 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1171 } else {
1172 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1173 Caller->getName(), Caller);
1174 if (cast<CallInst>(Caller)->isTailCall())
1175 cast<CallInst>(NewCaller)->setTailCall();
1176 cast<CallInst>(NewCaller)->
1177 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1178 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1179 }
1180 if (!Caller->getType()->isVoidTy())
1181 Caller->replaceAllUsesWith(NewCaller);
1182 Caller->eraseFromParent();
1183 Worklist.Remove(Caller);
1184 return 0;
1185 }
1186 }
1187
1188 // Replace the trampoline call with a direct call. Since there is no 'nest'
1189 // parameter, there is no need to adjust the argument list. Let the generic
1190 // code sort out any function type mismatches.
1191 Constant *NewCallee =
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001192 NestF->getType() == PTy ? NestF :
Chris Lattner753a2b42010-01-05 07:32:13 +00001193 ConstantExpr::getBitCast(NestF, PTy);
1194 CS.setCalledFunction(NewCallee);
1195 return CS.getInstruction();
1196}
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001197