blob: 555942ddc18d28680de47706b6cd1a35f0528b36 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
13//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000047#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/GetElementPtrTypeIterator.h"
50#include "llvm/Support/InstVisitor.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/STLExtras.h"
59#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000060#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061#include <sstream>
62using namespace llvm;
63using namespace llvm::PatternMatch;
64
65STATISTIC(NumCombined , "Number of insts combined");
66STATISTIC(NumConstProp, "Number of constant folds");
67STATISTIC(NumDeadInst , "Number of dead inst eliminated");
68STATISTIC(NumDeadStore, "Number of dead stores eliminated");
69STATISTIC(NumSunkInst , "Number of instructions sunk");
70
71namespace {
72 class VISIBILITY_HIDDEN InstCombiner
73 : public FunctionPass,
74 public InstVisitor<InstCombiner, Instruction*> {
75 // Worklist of all of the instructions that need to be simplified.
76 std::vector<Instruction*> Worklist;
77 DenseMap<Instruction*, unsigned> WorklistMap;
78 TargetData *TD;
79 bool MustPreserveLCSSA;
80 public:
81 static char ID; // Pass identification, replacement for typeid
82 InstCombiner() : FunctionPass((intptr_t)&ID) {}
83
84 /// AddToWorkList - Add the specified instruction to the worklist if it
85 /// isn't already in it.
86 void AddToWorkList(Instruction *I) {
87 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
88 Worklist.push_back(I);
89 }
90
91 // RemoveFromWorkList - remove I from the worklist if it exists.
92 void RemoveFromWorkList(Instruction *I) {
93 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
94 if (It == WorklistMap.end()) return; // Not in worklist.
95
96 // Don't bother moving everything down, just null out the slot.
97 Worklist[It->second] = 0;
98
99 WorklistMap.erase(It);
100 }
101
102 Instruction *RemoveOneFromWorkList() {
103 Instruction *I = Worklist.back();
104 Worklist.pop_back();
105 WorklistMap.erase(I);
106 return I;
107 }
108
109
110 /// AddUsersToWorkList - When an instruction is simplified, add all users of
111 /// the instruction to the work lists because they might get more simplified
112 /// now.
113 ///
114 void AddUsersToWorkList(Value &I) {
115 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
116 UI != UE; ++UI)
117 AddToWorkList(cast<Instruction>(*UI));
118 }
119
120 /// AddUsesToWorkList - When an instruction is simplified, add operands to
121 /// the work lists because they might get more simplified now.
122 ///
123 void AddUsesToWorkList(Instruction &I) {
124 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
125 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
126 AddToWorkList(Op);
127 }
128
129 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
130 /// dead. Add all of its operands to the worklist, turning them into
131 /// undef's to reduce the number of uses of those instructions.
132 ///
133 /// Return the specified operand before it is turned into an undef.
134 ///
135 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
136 Value *R = I.getOperand(op);
137
138 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
139 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
140 AddToWorkList(Op);
141 // Set the operand to undef to drop the use.
142 I.setOperand(i, UndefValue::get(Op->getType()));
143 }
144
145 return R;
146 }
147
148 public:
149 virtual bool runOnFunction(Function &F);
150
151 bool DoOneIteration(Function &F, unsigned ItNum);
152
153 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.addRequired<TargetData>();
155 AU.addPreservedID(LCSSAID);
156 AU.setPreservesCFG();
157 }
158
159 TargetData &getTargetData() const { return *TD; }
160
161 // Visitation implementation - Implement instruction combining for different
162 // instruction types. The semantics are as follows:
163 // Return Value:
164 // null - No change was made
165 // I - Change was made, I is still valid, I may be dead though
166 // otherwise - Change was made, replace I with returned instruction
167 //
168 Instruction *visitAdd(BinaryOperator &I);
169 Instruction *visitSub(BinaryOperator &I);
170 Instruction *visitMul(BinaryOperator &I);
171 Instruction *visitURem(BinaryOperator &I);
172 Instruction *visitSRem(BinaryOperator &I);
173 Instruction *visitFRem(BinaryOperator &I);
174 Instruction *commonRemTransforms(BinaryOperator &I);
175 Instruction *commonIRemTransforms(BinaryOperator &I);
176 Instruction *commonDivTransforms(BinaryOperator &I);
177 Instruction *commonIDivTransforms(BinaryOperator &I);
178 Instruction *visitUDiv(BinaryOperator &I);
179 Instruction *visitSDiv(BinaryOperator &I);
180 Instruction *visitFDiv(BinaryOperator &I);
181 Instruction *visitAnd(BinaryOperator &I);
182 Instruction *visitOr (BinaryOperator &I);
183 Instruction *visitXor(BinaryOperator &I);
184 Instruction *visitShl(BinaryOperator &I);
185 Instruction *visitAShr(BinaryOperator &I);
186 Instruction *visitLShr(BinaryOperator &I);
187 Instruction *commonShiftTransforms(BinaryOperator &I);
188 Instruction *visitFCmpInst(FCmpInst &I);
189 Instruction *visitICmpInst(ICmpInst &I);
190 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
191 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
192 Instruction *LHS,
193 ConstantInt *RHS);
194 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
195 ConstantInt *DivRHS);
196
197 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
198 ICmpInst::Predicate Cond, Instruction &I);
199 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
200 BinaryOperator &I);
201 Instruction *commonCastTransforms(CastInst &CI);
202 Instruction *commonIntCastTransforms(CastInst &CI);
203 Instruction *commonPointerCastTransforms(CastInst &CI);
204 Instruction *visitTrunc(TruncInst &CI);
205 Instruction *visitZExt(ZExtInst &CI);
206 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000207 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 Instruction *visitFPExt(CastInst &CI);
209 Instruction *visitFPToUI(CastInst &CI);
210 Instruction *visitFPToSI(CastInst &CI);
211 Instruction *visitUIToFP(CastInst &CI);
212 Instruction *visitSIToFP(CastInst &CI);
213 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000214 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitBitCast(BitCastInst &CI);
216 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
217 Instruction *FI);
218 Instruction *visitSelectInst(SelectInst &CI);
219 Instruction *visitCallInst(CallInst &CI);
220 Instruction *visitInvokeInst(InvokeInst &II);
221 Instruction *visitPHINode(PHINode &PN);
222 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
223 Instruction *visitAllocationInst(AllocationInst &AI);
224 Instruction *visitFreeInst(FreeInst &FI);
225 Instruction *visitLoadInst(LoadInst &LI);
226 Instruction *visitStoreInst(StoreInst &SI);
227 Instruction *visitBranchInst(BranchInst &BI);
228 Instruction *visitSwitchInst(SwitchInst &SI);
229 Instruction *visitInsertElementInst(InsertElementInst &IE);
230 Instruction *visitExtractElementInst(ExtractElementInst &EI);
231 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
232
233 // visitInstruction - Specify what to return for unhandled instructions...
234 Instruction *visitInstruction(Instruction &I) { return 0; }
235
236 private:
237 Instruction *visitCallSite(CallSite CS);
238 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000239 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000240 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
241 bool DoXform = true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 public:
244 // InsertNewInstBefore - insert an instruction New before instruction Old
245 // in the program. Add the new instruction to the worklist.
246 //
247 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
248 assert(New && New->getParent() == 0 &&
249 "New instruction already inserted into a basic block!");
250 BasicBlock *BB = Old.getParent();
251 BB->getInstList().insert(&Old, New); // Insert inst
252 AddToWorkList(New);
253 return New;
254 }
255
256 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
257 /// This also adds the cast to the worklist. Finally, this returns the
258 /// cast.
259 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
260 Instruction &Pos) {
261 if (V->getType() == Ty) return V;
262
263 if (Constant *CV = dyn_cast<Constant>(V))
264 return ConstantExpr::getCast(opc, CV, Ty);
265
266 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
267 AddToWorkList(C);
268 return C;
269 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000270
271 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
272 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
273 }
274
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275
276 // ReplaceInstUsesWith - This method is to be used when an instruction is
277 // found to be dead, replacable with another preexisting expression. Here
278 // we add all uses of I to the worklist, replace all uses of I with the new
279 // value, then return I, so that the inst combiner will know that I was
280 // modified.
281 //
282 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
283 AddUsersToWorkList(I); // Add all modified instrs to worklist
284 if (&I != V) {
285 I.replaceAllUsesWith(V);
286 return &I;
287 } else {
288 // If we are replacing the instruction with itself, this must be in a
289 // segment of unreachable code, so just clobber the instruction.
290 I.replaceAllUsesWith(UndefValue::get(I.getType()));
291 return &I;
292 }
293 }
294
295 // UpdateValueUsesWith - This method is to be used when an value is
296 // found to be replacable with another preexisting expression or was
297 // updated. Here we add all uses of I to the worklist, replace all uses of
298 // I with the new value (unless the instruction was just updated), then
299 // return true, so that the inst combiner will know that I was modified.
300 //
301 bool UpdateValueUsesWith(Value *Old, Value *New) {
302 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
303 if (Old != New)
304 Old->replaceAllUsesWith(New);
305 if (Instruction *I = dyn_cast<Instruction>(Old))
306 AddToWorkList(I);
307 if (Instruction *I = dyn_cast<Instruction>(New))
308 AddToWorkList(I);
309 return true;
310 }
311
312 // EraseInstFromFunction - When dealing with an instruction that has side
313 // effects or produces a void value, we can't rely on DCE to delete the
314 // instruction. Instead, visit methods should return the value returned by
315 // this function.
316 Instruction *EraseInstFromFunction(Instruction &I) {
317 assert(I.use_empty() && "Cannot erase instruction that is used!");
318 AddUsesToWorkList(I);
319 RemoveFromWorkList(&I);
320 I.eraseFromParent();
321 return 0; // Don't do anything with FI
322 }
323
324 private:
325 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
326 /// InsertBefore instruction. This is specialized a bit to avoid inserting
327 /// casts that are known to not do anything...
328 ///
329 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
330 Value *V, const Type *DestTy,
331 Instruction *InsertBefore);
332
333 /// SimplifyCommutative - This performs a few simplifications for
334 /// commutative operators.
335 bool SimplifyCommutative(BinaryOperator &I);
336
337 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
338 /// most-complex to least-complex order.
339 bool SimplifyCompare(CmpInst &I);
340
341 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
342 /// on the demanded bits.
343 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
344 APInt& KnownZero, APInt& KnownOne,
345 unsigned Depth = 0);
346
347 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
348 uint64_t &UndefElts, unsigned Depth = 0);
349
350 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
351 // PHI node as operand #0, see if we can fold the instruction into the PHI
352 // (which is only possible if all operands to the PHI are constants).
353 Instruction *FoldOpIntoPhi(Instruction &I);
354
355 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
356 // operator and they all are only used by the PHI, PHI together their
357 // inputs, and do the operation once, to the result of the PHI.
358 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
359 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
360
361
362 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
363 ConstantInt *AndRHS, BinaryOperator &TheAnd);
364
365 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
366 bool isSub, Instruction &I);
367 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
368 bool isSigned, bool Inside, Instruction &IB);
369 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
370 Instruction *MatchBSwap(BinaryOperator &I);
371 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000372 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
373
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374
375 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000376
377 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
378 APInt& KnownOne, unsigned Depth = 0);
379 bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0);
380 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
381 unsigned CastOpc,
382 int &NumCastsRemoved);
383 unsigned GetOrEnforceKnownAlignment(Value *V,
384 unsigned PrefAlign = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 };
386
387 char InstCombiner::ID = 0;
388 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
389}
390
391// getComplexity: Assign a complexity or rank value to LLVM Values...
392// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
393static unsigned getComplexity(Value *V) {
394 if (isa<Instruction>(V)) {
395 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
396 return 3;
397 return 4;
398 }
399 if (isa<Argument>(V)) return 3;
400 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
401}
402
403// isOnlyUse - Return true if this instruction will be deleted if we stop using
404// it.
405static bool isOnlyUse(Value *V) {
406 return V->hasOneUse() || isa<Constant>(V);
407}
408
409// getPromotedType - Return the specified type promoted as it would be to pass
410// though a va_arg area...
411static const Type *getPromotedType(const Type *Ty) {
412 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
413 if (ITy->getBitWidth() < 32)
414 return Type::Int32Ty;
415 }
416 return Ty;
417}
418
419/// getBitCastOperand - If the specified operand is a CastInst or a constant
420/// expression bitcast, return the operand value, otherwise return null.
421static Value *getBitCastOperand(Value *V) {
422 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
423 return I->getOperand(0);
424 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
425 if (CE->getOpcode() == Instruction::BitCast)
426 return CE->getOperand(0);
427 return 0;
428}
429
430/// This function is a wrapper around CastInst::isEliminableCastPair. It
431/// simply extracts arguments and returns what that function returns.
432static Instruction::CastOps
433isEliminableCastPair(
434 const CastInst *CI, ///< The first cast instruction
435 unsigned opcode, ///< The opcode of the second cast instruction
436 const Type *DstTy, ///< The target type for the second cast instruction
437 TargetData *TD ///< The target data for pointer size
438) {
439
440 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
441 const Type *MidTy = CI->getType(); // B from above
442
443 // Get the opcodes of the two Cast instructions
444 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
445 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
446
447 return Instruction::CastOps(
448 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
449 DstTy, TD->getIntPtrType()));
450}
451
452/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
453/// in any code being generated. It does not require codegen if V is simple
454/// enough or if the cast can be folded into other casts.
455static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
456 const Type *Ty, TargetData *TD) {
457 if (V->getType() == Ty || isa<Constant>(V)) return false;
458
459 // If this is another cast that can be eliminated, it isn't codegen either.
460 if (const CastInst *CI = dyn_cast<CastInst>(V))
461 if (isEliminableCastPair(CI, opcode, Ty, TD))
462 return false;
463 return true;
464}
465
466/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
467/// InsertBefore instruction. This is specialized a bit to avoid inserting
468/// casts that are known to not do anything...
469///
470Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
471 Value *V, const Type *DestTy,
472 Instruction *InsertBefore) {
473 if (V->getType() == DestTy) return V;
474 if (Constant *C = dyn_cast<Constant>(V))
475 return ConstantExpr::getCast(opcode, C, DestTy);
476
477 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
478}
479
480// SimplifyCommutative - This performs a few simplifications for commutative
481// operators:
482//
483// 1. Order operands such that they are listed from right (least complex) to
484// left (most complex). This puts constants before unary operators before
485// binary operators.
486//
487// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
488// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
489//
490bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
491 bool Changed = false;
492 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
493 Changed = !I.swapOperands();
494
495 if (!I.isAssociative()) return Changed;
496 Instruction::BinaryOps Opcode = I.getOpcode();
497 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
498 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
499 if (isa<Constant>(I.getOperand(1))) {
500 Constant *Folded = ConstantExpr::get(I.getOpcode(),
501 cast<Constant>(I.getOperand(1)),
502 cast<Constant>(Op->getOperand(1)));
503 I.setOperand(0, Op->getOperand(0));
504 I.setOperand(1, Folded);
505 return true;
506 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
507 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
508 isOnlyUse(Op) && isOnlyUse(Op1)) {
509 Constant *C1 = cast<Constant>(Op->getOperand(1));
510 Constant *C2 = cast<Constant>(Op1->getOperand(1));
511
512 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
513 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
514 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
515 Op1->getOperand(0),
516 Op1->getName(), &I);
517 AddToWorkList(New);
518 I.setOperand(0, New);
519 I.setOperand(1, Folded);
520 return true;
521 }
522 }
523 return Changed;
524}
525
526/// SimplifyCompare - For a CmpInst this function just orders the operands
527/// so that theyare listed from right (least complex) to left (most complex).
528/// This puts constants before unary operators before binary operators.
529bool InstCombiner::SimplifyCompare(CmpInst &I) {
530 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
531 return false;
532 I.swapOperands();
533 // Compare instructions are not associative so there's nothing else we can do.
534 return true;
535}
536
537// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
538// if the LHS is a constant zero (which is the 'negate' form).
539//
540static inline Value *dyn_castNegVal(Value *V) {
541 if (BinaryOperator::isNeg(V))
542 return BinaryOperator::getNegArgument(V);
543
544 // Constants can be considered to be negated values if they can be folded.
545 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
546 return ConstantExpr::getNeg(C);
547 return 0;
548}
549
550static inline Value *dyn_castNotVal(Value *V) {
551 if (BinaryOperator::isNot(V))
552 return BinaryOperator::getNotArgument(V);
553
554 // Constants can be considered to be not'ed values...
555 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
556 return ConstantInt::get(~C->getValue());
557 return 0;
558}
559
560// dyn_castFoldableMul - If this value is a multiply that can be folded into
561// other computations (because it has a constant operand), return the
562// non-constant operand of the multiply, and set CST to point to the multiplier.
563// Otherwise, return null.
564//
565static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
566 if (V->hasOneUse() && V->getType()->isInteger())
567 if (Instruction *I = dyn_cast<Instruction>(V)) {
568 if (I->getOpcode() == Instruction::Mul)
569 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
570 return I->getOperand(0);
571 if (I->getOpcode() == Instruction::Shl)
572 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
573 // The multiplier is really 1 << CST.
574 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
575 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
576 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
577 return I->getOperand(0);
578 }
579 }
580 return 0;
581}
582
583/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
584/// expression, return it.
585static User *dyn_castGetElementPtr(Value *V) {
586 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
588 if (CE->getOpcode() == Instruction::GetElementPtr)
589 return cast<User>(V);
590 return false;
591}
592
Dan Gohman2d648bb2008-04-10 18:43:06 +0000593/// getOpcode - If this is an Instruction or a ConstantExpr, return the
594/// opcode value. Otherwise return UserOp1.
595static unsigned getOpcode(User *U) {
596 if (Instruction *I = dyn_cast<Instruction>(U))
597 return I->getOpcode();
598 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
599 return CE->getOpcode();
600 // Use UserOp1 to mean there's no opcode.
601 return Instruction::UserOp1;
602}
603
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604/// AddOne - Add one to a ConstantInt
605static ConstantInt *AddOne(ConstantInt *C) {
606 APInt Val(C->getValue());
607 return ConstantInt::get(++Val);
608}
609/// SubOne - Subtract one from a ConstantInt
610static ConstantInt *SubOne(ConstantInt *C) {
611 APInt Val(C->getValue());
612 return ConstantInt::get(--Val);
613}
614/// Add - Add two ConstantInts together
615static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
616 return ConstantInt::get(C1->getValue() + C2->getValue());
617}
618/// And - Bitwise AND two ConstantInts together
619static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
620 return ConstantInt::get(C1->getValue() & C2->getValue());
621}
622/// Subtract - Subtract one ConstantInt from another
623static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
624 return ConstantInt::get(C1->getValue() - C2->getValue());
625}
626/// Multiply - Multiply two ConstantInts together
627static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
628 return ConstantInt::get(C1->getValue() * C2->getValue());
629}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000630/// MultiplyOverflows - True if the multiply can not be expressed in an int
631/// this size.
632static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
633 uint32_t W = C1->getBitWidth();
634 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
635 if (sign) {
636 LHSExt.sext(W * 2);
637 RHSExt.sext(W * 2);
638 } else {
639 LHSExt.zext(W * 2);
640 RHSExt.zext(W * 2);
641 }
642
643 APInt MulExt = LHSExt * RHSExt;
644
645 if (sign) {
646 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
647 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
648 return MulExt.slt(Min) || MulExt.sgt(Max);
649 } else
650 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
651}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652
653/// ComputeMaskedBits - Determine which of the bits specified in Mask are
654/// known to be either zero or one and return them in the KnownZero/KnownOne
655/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
656/// processing.
657/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
658/// we cannot optimize based on the assumption that it is zero without changing
659/// it to be an explicit zero. If we don't change it to zero, other code could
660/// optimized based on the contradictory assumption that it is non-zero.
661/// Because instcombine aggressively folds operations with undef args anyway,
662/// this won't lose us code quality.
Dan Gohman2d648bb2008-04-10 18:43:06 +0000663void InstCombiner::ComputeMaskedBits(Value *V, const APInt &Mask,
664 APInt& KnownZero, APInt& KnownOne,
665 unsigned Depth) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666 assert(V && "No Value?");
667 assert(Depth <= 6 && "Limit Search Depth");
668 uint32_t BitWidth = Mask.getBitWidth();
Dan Gohman2d648bb2008-04-10 18:43:06 +0000669 assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
670 "Not integer or pointer type!");
671 assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
672 (!isa<IntegerType>(V->getType()) ||
673 V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674 KnownZero.getBitWidth() == BitWidth &&
675 KnownOne.getBitWidth() == BitWidth &&
676 "V, Mask, KnownOne and KnownZero should have same BitWidth");
677 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
678 // We know all of the bits for a constant!
679 KnownOne = CI->getValue() & Mask;
680 KnownZero = ~KnownOne & Mask;
681 return;
682 }
Dan Gohman2d648bb2008-04-10 18:43:06 +0000683 // Null is all-zeros.
684 if (isa<ConstantPointerNull>(V)) {
685 KnownOne.clear();
686 KnownZero = Mask;
687 return;
688 }
689 // The address of an aligned GlobalValue has trailing zeros.
690 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
691 unsigned Align = GV->getAlignment();
692 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
693 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
694 if (Align > 0)
695 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
696 CountTrailingZeros_32(Align));
697 else
698 KnownZero.clear();
699 KnownOne.clear();
700 return;
701 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702
703 if (Depth == 6 || Mask == 0)
704 return; // Limit search depth.
705
Dan Gohman2d648bb2008-04-10 18:43:06 +0000706 User *I = dyn_cast<User>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 if (!I) return;
708
709 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
710 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
711
Dan Gohman2d648bb2008-04-10 18:43:06 +0000712 switch (getOpcode(I)) {
713 default: break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 case Instruction::And: {
715 // If either the LHS or the RHS are Zero, the result is zero.
716 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
717 APInt Mask2(Mask & ~KnownZero);
718 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
721
722 // Output known-1 bits are only known if set in both the LHS & RHS.
723 KnownOne &= KnownOne2;
724 // Output known-0 are known to be clear if zero in either the LHS | RHS.
725 KnownZero |= KnownZero2;
726 return;
727 }
728 case Instruction::Or: {
729 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
730 APInt Mask2(Mask & ~KnownOne);
731 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
732 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
733 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
734
735 // Output known-0 bits are only known if clear in both the LHS & RHS.
736 KnownZero &= KnownZero2;
737 // Output known-1 are known to be set if set in either the LHS | RHS.
738 KnownOne |= KnownOne2;
739 return;
740 }
741 case Instruction::Xor: {
742 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
743 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
745 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
746
747 // Output known-0 bits are known if clear or set in both the LHS & RHS.
748 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
749 // Output known-1 are known to be set if set in only one of the LHS, RHS.
750 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
751 KnownZero = KnownZeroOut;
752 return;
753 }
Dan Gohman2d648bb2008-04-10 18:43:06 +0000754 case Instruction::Mul: {
755 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
756 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
757 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
758 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
759 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
760
761 // If low bits are zero in either operand, output low known-0 bits.
762 // More trickiness is possible, but this is sufficient for the
763 // interesting case of alignment computation.
764 KnownOne.clear();
765 unsigned TrailZ = KnownZero.countTrailingOnes() +
766 KnownZero2.countTrailingOnes();
767 TrailZ = std::min(TrailZ, BitWidth);
768 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
769 KnownZero &= Mask;
770 return;
771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772 case Instruction::Select:
773 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
774 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
775 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
776 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
777
778 // Only known if known in both the LHS and RHS.
779 KnownOne &= KnownOne2;
780 KnownZero &= KnownZero2;
781 return;
782 case Instruction::FPTrunc:
783 case Instruction::FPExt:
784 case Instruction::FPToUI:
785 case Instruction::FPToSI:
786 case Instruction::SIToFP:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 case Instruction::UIToFP:
Dan Gohman2d648bb2008-04-10 18:43:06 +0000788 return; // Can't work with floating point.
789 case Instruction::PtrToInt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 case Instruction::IntToPtr:
Dan Gohman2d648bb2008-04-10 18:43:06 +0000791 // We can't handle these if we don't know the pointer size.
792 if (!TD) return;
793 // Fall through and handle them the same as zext/trunc.
794 case Instruction::ZExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000795 case Instruction::Trunc: {
796 // All these have integer operands
Dan Gohman2d648bb2008-04-10 18:43:06 +0000797 const Type *SrcTy = I->getOperand(0)->getType();
798 uint32_t SrcBitWidth = TD ?
799 TD->getTypeSizeInBits(SrcTy) :
800 SrcTy->getPrimitiveSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801 APInt MaskIn(Mask);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000802 MaskIn.zextOrTrunc(SrcBitWidth);
803 KnownZero.zextOrTrunc(SrcBitWidth);
804 KnownOne.zextOrTrunc(SrcBitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000806 KnownZero.zextOrTrunc(BitWidth);
807 KnownOne.zextOrTrunc(BitWidth);
808 // Any top bits are known to be zero.
809 if (BitWidth > SrcBitWidth)
810 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 return;
812 }
813 case Instruction::BitCast: {
814 const Type *SrcTy = I->getOperand(0)->getType();
Dan Gohman2d648bb2008-04-10 18:43:06 +0000815 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
817 return;
818 }
819 break;
820 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 case Instruction::SExt: {
822 // Compute the bits in the result that are not present in the input.
823 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
824 uint32_t SrcBitWidth = SrcTy->getBitWidth();
825
826 APInt MaskIn(Mask);
827 MaskIn.trunc(SrcBitWidth);
828 KnownZero.trunc(SrcBitWidth);
829 KnownOne.trunc(SrcBitWidth);
830 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
831 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
832 KnownZero.zext(BitWidth);
833 KnownOne.zext(BitWidth);
834
835 // If the sign bit of the input is known set or clear, then we know the
836 // top bits of the result.
837 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
838 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
839 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
840 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
841 return;
842 }
843 case Instruction::Shl:
844 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
845 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
846 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
847 APInt Mask2(Mask.lshr(ShiftAmt));
848 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 KnownZero <<= ShiftAmt;
851 KnownOne <<= ShiftAmt;
852 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
853 return;
854 }
855 break;
856 case Instruction::LShr:
857 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
858 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
859 // Compute the new bits that are at the top now.
860 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
861
862 // Unsigned shift right.
863 APInt Mask2(Mask.shl(ShiftAmt));
864 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
865 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
866 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
867 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
868 // high bits known zero.
869 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
870 return;
871 }
872 break;
873 case Instruction::AShr:
874 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
875 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
876 // Compute the new bits that are at the top now.
877 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
878
879 // Signed shift right.
880 APInt Mask2(Mask.shl(ShiftAmt));
881 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
882 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
883 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
884 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
885
886 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
887 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
888 KnownZero |= HighBits;
889 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
890 KnownOne |= HighBits;
891 return;
892 }
893 break;
Dan Gohman2d648bb2008-04-10 18:43:06 +0000894 case Instruction::Sub: {
895 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
896 // We know that the top bits of C-X are clear if X contains less bits
897 // than C (i.e. no wrap-around can happen). For example, 20-X is
898 // positive if we can prove that X is >= 0 and < 16.
899 if (!CLHS->getValue().isNegative()) {
900 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
901 // NLZ can't be BitWidth with no sign bit
902 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
903 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
904
905 // If all of the MaskV bits are known to be zero, then we know the output
906 // top bits are zero, because we now know that the output is from [0-C].
907 if ((KnownZero & MaskV) == MaskV) {
908 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
909 // Top bits known zero.
910 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
911 KnownOne = APInt(BitWidth, 0); // No one bits known.
912 } else {
913 KnownZero = KnownOne = APInt(BitWidth, 0); // Otherwise, nothing known.
914 }
915 return;
916 }
917 }
918 }
919 // fall through
Duncan Sandse71d4482008-03-21 08:32:17 +0000920 case Instruction::Add: {
Chris Lattner5ee84f82008-03-21 05:19:58 +0000921 // If either the LHS or the RHS are Zero, the result is zero.
922 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
923 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
924 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
925 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
926
927 // Output known-0 bits are known if clear or set in both the low clear bits
928 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
929 // low 3 bits clear.
930 unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
931 KnownZero2.countTrailingOnes());
932
933 KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
934 KnownOne = APInt(BitWidth, 0);
935 return;
Duncan Sandse71d4482008-03-21 08:32:17 +0000936 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000937 case Instruction::SRem:
938 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
939 APInt RA = Rem->getValue();
940 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
941 APInt LowBits = RA.isStrictlyPositive() ? ((RA - 1) | RA) : ~RA;
942 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
943 ComputeMaskedBits(I->getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
944
945 // The sign of a remainder is equal to the sign of the first
946 // operand (zero being positive).
947 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
948 KnownZero2 |= ~LowBits;
949 else if (KnownOne2[BitWidth-1])
950 KnownOne2 |= ~LowBits;
951
952 KnownZero |= KnownZero2 & Mask;
953 KnownOne |= KnownOne2 & Mask;
954
955 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
956 }
957 }
958 break;
959 case Instruction::URem:
960 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
961 APInt RA = Rem->getValue();
962 if (RA.isStrictlyPositive() && RA.isPowerOf2()) {
963 APInt LowBits = (RA - 1) | RA;
964 APInt Mask2 = LowBits & Mask;
965 KnownZero |= ~LowBits & Mask;
966 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
967 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
968 }
969 } else {
970 // Since the result is less than or equal to RHS, any leading zero bits
971 // in RHS must also exist in the result.
972 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Chris Lattner5ee84f82008-03-21 05:19:58 +0000973 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
974 Depth+1);
Nick Lewyckyc1372c82008-03-06 06:48:30 +0000975
976 uint32_t Leaders = KnownZero2.countLeadingOnes();
977 KnownZero |= APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
978 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
979 }
980 break;
Dan Gohman2d648bb2008-04-10 18:43:06 +0000981
982 case Instruction::Alloca:
983 case Instruction::Malloc: {
984 AllocationInst *AI = cast<AllocationInst>(V);
985 unsigned Align = AI->getAlignment();
986 if (Align == 0 && TD) {
987 if (isa<AllocaInst>(AI))
988 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
989 else if (isa<MallocInst>(AI)) {
990 // Malloc returns maximally aligned memory.
991 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
992 Align =
993 std::max(Align,
994 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
995 Align =
996 std::max(Align,
997 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
998 }
999 }
1000
1001 if (Align > 0)
1002 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
1003 CountTrailingZeros_32(Align));
1004 break;
1005 }
1006 case Instruction::GetElementPtr: {
1007 // Analyze all of the subscripts of this getelementptr instruction
1008 // to determine if we can prove known low zero bits.
1009 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
1010 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1011 ComputeMaskedBits(I->getOperand(0), LocalMask,
1012 LocalKnownZero, LocalKnownOne, Depth+1);
1013 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1014
1015 gep_type_iterator GTI = gep_type_begin(I);
1016 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1017 Value *Index = I->getOperand(i);
1018 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1019 // Handle struct member offset arithmetic.
1020 if (!TD) return;
1021 const StructLayout *SL = TD->getStructLayout(STy);
1022 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1023 uint64_t Offset = SL->getElementOffset(Idx);
1024 TrailZ = std::min(TrailZ,
1025 CountTrailingZeros_64(Offset));
1026 } else {
1027 // Handle array index arithmetic.
1028 const Type *IndexedTy = GTI.getIndexedType();
1029 if (!IndexedTy->isSized()) return;
1030 unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
1031 uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1;
1032 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
1033 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1034 ComputeMaskedBits(Index, LocalMask,
1035 LocalKnownZero, LocalKnownOne, Depth+1);
1036 TrailZ = std::min(TrailZ,
1037 CountTrailingZeros_64(TypeSize) +
1038 LocalKnownZero.countTrailingOnes());
1039 }
1040 }
1041
1042 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
1043 break;
1044 }
1045 case Instruction::PHI: {
1046 PHINode *P = cast<PHINode>(I);
1047 // Handle the case of a simple two-predecessor recurrence PHI.
1048 // There's a lot more that could theoretically be done here, but
1049 // this is sufficient to catch some interesting cases.
1050 if (P->getNumIncomingValues() == 2) {
1051 for (unsigned i = 0; i != 2; ++i) {
1052 Value *L = P->getIncomingValue(i);
1053 Value *R = P->getIncomingValue(!i);
1054 User *LU = dyn_cast<User>(L);
1055 unsigned Opcode = LU ? getOpcode(LU) : (unsigned)Instruction::UserOp1;
1056 // Check for operations that have the property that if
1057 // both their operands have low zero bits, the result
1058 // will have low zero bits.
1059 if (Opcode == Instruction::Add ||
1060 Opcode == Instruction::Sub ||
1061 Opcode == Instruction::And ||
1062 Opcode == Instruction::Or ||
1063 Opcode == Instruction::Mul) {
1064 Value *LL = LU->getOperand(0);
1065 Value *LR = LU->getOperand(1);
1066 // Find a recurrence.
1067 if (LL == I)
1068 L = LR;
1069 else if (LR == I)
1070 L = LL;
1071 else
1072 break;
1073 // Ok, we have a PHI of the form L op= R. Check for low
1074 // zero bits.
1075 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1076 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, Depth+1);
1077 Mask2 = APInt::getLowBitsSet(BitWidth,
1078 KnownZero2.countTrailingOnes());
1079 KnownOne2.clear();
1080 KnownZero2.clear();
1081 ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, Depth+1);
1082 KnownZero = Mask &
1083 APInt::getLowBitsSet(BitWidth,
1084 KnownZero2.countTrailingOnes());
1085 break;
1086 }
1087 }
1088 }
1089 break;
1090 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 }
1092}
1093
1094/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1095/// this predicate to simplify operations downstream. Mask is known to be zero
1096/// for bits that V cannot have.
Dan Gohman2d648bb2008-04-10 18:43:06 +00001097bool InstCombiner::MaskedValueIsZero(Value *V, const APInt& Mask,
1098 unsigned Depth) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001099 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1100 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1101 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 return (KnownZero & Mask) == Mask;
1103}
1104
1105/// ShrinkDemandedConstant - Check to see if the specified operand of the
1106/// specified instruction is a constant integer. If so, check to see if there
1107/// are any bits set in the constant that are not demanded. If so, shrink the
1108/// constant and return true.
1109static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1110 APInt Demanded) {
1111 assert(I && "No instruction?");
1112 assert(OpNo < I->getNumOperands() && "Operand index too large");
1113
1114 // If the operand is not a constant integer, nothing to do.
1115 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1116 if (!OpC) return false;
1117
1118 // If there are no bits set that aren't demanded, nothing to do.
1119 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1120 if ((~Demanded & OpC->getValue()) == 0)
1121 return false;
1122
1123 // This instruction is producing bits that are not demanded. Shrink the RHS.
1124 Demanded &= OpC->getValue();
1125 I->setOperand(OpNo, ConstantInt::get(Demanded));
1126 return true;
1127}
1128
1129// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1130// set of known zero and one bits, compute the maximum and minimum values that
1131// could have the specified known zero and known one bits, returning them in
1132// min/max.
1133static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
1134 const APInt& KnownZero,
1135 const APInt& KnownOne,
1136 APInt& Min, APInt& Max) {
1137 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
1138 assert(KnownZero.getBitWidth() == BitWidth &&
1139 KnownOne.getBitWidth() == BitWidth &&
1140 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
1141 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1142 APInt UnknownBits = ~(KnownZero|KnownOne);
1143
1144 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1145 // bit if it is unknown.
1146 Min = KnownOne;
1147 Max = KnownOne|UnknownBits;
1148
1149 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
1150 Min.set(BitWidth-1);
1151 Max.clear(BitWidth-1);
1152 }
1153}
1154
1155// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1156// a set of known zero and one bits, compute the maximum and minimum values that
1157// could have the specified known zero and known one bits, returning them in
1158// min/max.
1159static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +00001160 const APInt &KnownZero,
1161 const APInt &KnownOne,
1162 APInt &Min, APInt &Max) {
1163 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 assert(KnownZero.getBitWidth() == BitWidth &&
1165 KnownOne.getBitWidth() == BitWidth &&
1166 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
1167 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
1168 APInt UnknownBits = ~(KnownZero|KnownOne);
1169
1170 // The minimum value is when the unknown bits are all zeros.
1171 Min = KnownOne;
1172 // The maximum value is when the unknown bits are all ones.
1173 Max = KnownOne|UnknownBits;
1174}
1175
1176/// SimplifyDemandedBits - This function attempts to replace V with a simpler
1177/// value based on the demanded bits. When this function is called, it is known
1178/// that only the bits set in DemandedMask of the result of V are ever used
1179/// downstream. Consequently, depending on the mask and V, it may be possible
1180/// to replace V with a constant or one of its operands. In such cases, this
1181/// function does the replacement and returns true. In all other cases, it
1182/// returns false after analyzing the expression and setting KnownOne and known
1183/// to be one in the expression. KnownZero contains all the bits that are known
1184/// to be zero in the expression. These are provided to potentially allow the
1185/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1186/// the expression. KnownOne and KnownZero always follow the invariant that
1187/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1188/// the bits in KnownOne and KnownZero may only be accurate for those bits set
1189/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1190/// and KnownOne must all be the same.
1191bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1192 APInt& KnownZero, APInt& KnownOne,
1193 unsigned Depth) {
1194 assert(V != 0 && "Null pointer of Value???");
1195 assert(Depth <= 6 && "Limit Search Depth");
1196 uint32_t BitWidth = DemandedMask.getBitWidth();
1197 const IntegerType *VTy = cast<IntegerType>(V->getType());
1198 assert(VTy->getBitWidth() == BitWidth &&
1199 KnownZero.getBitWidth() == BitWidth &&
1200 KnownOne.getBitWidth() == BitWidth &&
1201 "Value *V, DemandedMask, KnownZero and KnownOne \
1202 must have same BitWidth");
1203 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1204 // We know all of the bits for a constant!
1205 KnownOne = CI->getValue() & DemandedMask;
1206 KnownZero = ~KnownOne & DemandedMask;
1207 return false;
1208 }
1209
1210 KnownZero.clear();
1211 KnownOne.clear();
1212 if (!V->hasOneUse()) { // Other users may use these bits.
1213 if (Depth != 0) { // Not at the root.
1214 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1215 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1216 return false;
1217 }
1218 // If this is the root being simplified, allow it to have multiple uses,
1219 // just set the DemandedMask to all bits.
1220 DemandedMask = APInt::getAllOnesValue(BitWidth);
1221 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1222 if (V != UndefValue::get(VTy))
1223 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1224 return false;
1225 } else if (Depth == 6) { // Limit search depth.
1226 return false;
1227 }
1228
1229 Instruction *I = dyn_cast<Instruction>(V);
1230 if (!I) return false; // Only analyze instructions.
1231
1232 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1233 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1234 switch (I->getOpcode()) {
1235 default: break;
1236 case Instruction::And:
1237 // If either the LHS or the RHS are Zero, the result is zero.
1238 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1239 RHSKnownZero, RHSKnownOne, Depth+1))
1240 return true;
1241 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1242 "Bits known to be one AND zero?");
1243
1244 // If something is known zero on the RHS, the bits aren't demanded on the
1245 // LHS.
1246 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1247 LHSKnownZero, LHSKnownOne, Depth+1))
1248 return true;
1249 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251
1252 // If all of the demanded bits are known 1 on one side, return the other.
1253 // These bits cannot contribute to the result of the 'and'.
1254 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1255 (DemandedMask & ~LHSKnownZero))
1256 return UpdateValueUsesWith(I, I->getOperand(0));
1257 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1258 (DemandedMask & ~RHSKnownZero))
1259 return UpdateValueUsesWith(I, I->getOperand(1));
1260
1261 // If all of the demanded bits in the inputs are known zeros, return zero.
1262 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1263 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1264
1265 // If the RHS is a constant, see if we can simplify it.
1266 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1267 return UpdateValueUsesWith(I, I);
1268
1269 // Output known-1 bits are only known if set in both the LHS & RHS.
1270 RHSKnownOne &= LHSKnownOne;
1271 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1272 RHSKnownZero |= LHSKnownZero;
1273 break;
1274 case Instruction::Or:
1275 // If either the LHS or the RHS are One, the result is One.
1276 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1277 RHSKnownZero, RHSKnownOne, Depth+1))
1278 return true;
1279 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1280 "Bits known to be one AND zero?");
1281 // If something is known one on the RHS, the bits aren't demanded on the
1282 // LHS.
1283 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1284 LHSKnownZero, LHSKnownOne, Depth+1))
1285 return true;
1286 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1287 "Bits known to be one AND zero?");
1288
1289 // If all of the demanded bits are known zero on one side, return the other.
1290 // These bits cannot contribute to the result of the 'or'.
1291 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1292 (DemandedMask & ~LHSKnownOne))
1293 return UpdateValueUsesWith(I, I->getOperand(0));
1294 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1295 (DemandedMask & ~RHSKnownOne))
1296 return UpdateValueUsesWith(I, I->getOperand(1));
1297
1298 // If all of the potentially set bits on one side are known to be set on
1299 // the other side, just use the 'other' side.
1300 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1301 (DemandedMask & (~RHSKnownZero)))
1302 return UpdateValueUsesWith(I, I->getOperand(0));
1303 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1304 (DemandedMask & (~LHSKnownZero)))
1305 return UpdateValueUsesWith(I, I->getOperand(1));
1306
1307 // If the RHS is a constant, see if we can simplify it.
1308 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1309 return UpdateValueUsesWith(I, I);
1310
1311 // Output known-0 bits are only known if clear in both the LHS & RHS.
1312 RHSKnownZero &= LHSKnownZero;
1313 // Output known-1 are known to be set if set in either the LHS | RHS.
1314 RHSKnownOne |= LHSKnownOne;
1315 break;
1316 case Instruction::Xor: {
1317 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1318 RHSKnownZero, RHSKnownOne, Depth+1))
1319 return true;
1320 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1321 "Bits known to be one AND zero?");
1322 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1323 LHSKnownZero, LHSKnownOne, Depth+1))
1324 return true;
1325 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1326 "Bits known to be one AND zero?");
1327
1328 // If all of the demanded bits are known zero on one side, return the other.
1329 // These bits cannot contribute to the result of the 'xor'.
1330 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1331 return UpdateValueUsesWith(I, I->getOperand(0));
1332 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1333 return UpdateValueUsesWith(I, I->getOperand(1));
1334
1335 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1336 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1337 (RHSKnownOne & LHSKnownOne);
1338 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1339 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1340 (RHSKnownOne & LHSKnownZero);
1341
1342 // If all of the demanded bits are known to be zero on one side or the
1343 // other, turn this into an *inclusive* or.
1344 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1345 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1346 Instruction *Or =
1347 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1348 I->getName());
1349 InsertNewInstBefore(Or, *I);
1350 return UpdateValueUsesWith(I, Or);
1351 }
1352
1353 // If all of the demanded bits on one side are known, and all of the set
1354 // bits on that side are also known to be set on the other side, turn this
1355 // into an AND, as we know the bits will be cleared.
1356 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1357 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1358 // all known
1359 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1360 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1361 Instruction *And =
1362 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1363 InsertNewInstBefore(And, *I);
1364 return UpdateValueUsesWith(I, And);
1365 }
1366 }
1367
1368 // If the RHS is a constant, see if we can simplify it.
1369 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1370 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1371 return UpdateValueUsesWith(I, I);
1372
1373 RHSKnownZero = KnownZeroOut;
1374 RHSKnownOne = KnownOneOut;
1375 break;
1376 }
1377 case Instruction::Select:
1378 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1379 RHSKnownZero, RHSKnownOne, Depth+1))
1380 return true;
1381 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1382 LHSKnownZero, LHSKnownOne, Depth+1))
1383 return true;
1384 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1385 "Bits known to be one AND zero?");
1386 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1387 "Bits known to be one AND zero?");
1388
1389 // If the operands are constants, see if we can simplify them.
1390 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1391 return UpdateValueUsesWith(I, I);
1392 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1393 return UpdateValueUsesWith(I, I);
1394
1395 // Only known if known in both the LHS and RHS.
1396 RHSKnownOne &= LHSKnownOne;
1397 RHSKnownZero &= LHSKnownZero;
1398 break;
1399 case Instruction::Trunc: {
1400 uint32_t truncBf =
1401 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1402 DemandedMask.zext(truncBf);
1403 RHSKnownZero.zext(truncBf);
1404 RHSKnownOne.zext(truncBf);
1405 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1406 RHSKnownZero, RHSKnownOne, Depth+1))
1407 return true;
1408 DemandedMask.trunc(BitWidth);
1409 RHSKnownZero.trunc(BitWidth);
1410 RHSKnownOne.trunc(BitWidth);
1411 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1412 "Bits known to be one AND zero?");
1413 break;
1414 }
1415 case Instruction::BitCast:
1416 if (!I->getOperand(0)->getType()->isInteger())
1417 return false;
1418
1419 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1420 RHSKnownZero, RHSKnownOne, Depth+1))
1421 return true;
1422 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1423 "Bits known to be one AND zero?");
1424 break;
1425 case Instruction::ZExt: {
1426 // Compute the bits in the result that are not present in the input.
1427 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1428 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1429
1430 DemandedMask.trunc(SrcBitWidth);
1431 RHSKnownZero.trunc(SrcBitWidth);
1432 RHSKnownOne.trunc(SrcBitWidth);
1433 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1434 RHSKnownZero, RHSKnownOne, Depth+1))
1435 return true;
1436 DemandedMask.zext(BitWidth);
1437 RHSKnownZero.zext(BitWidth);
1438 RHSKnownOne.zext(BitWidth);
1439 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1440 "Bits known to be one AND zero?");
1441 // The top bits are known to be zero.
1442 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1443 break;
1444 }
1445 case Instruction::SExt: {
1446 // Compute the bits in the result that are not present in the input.
1447 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1448 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1449
1450 APInt InputDemandedBits = DemandedMask &
1451 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1452
1453 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1454 // If any of the sign extended bits are demanded, we know that the sign
1455 // bit is demanded.
1456 if ((NewBits & DemandedMask) != 0)
1457 InputDemandedBits.set(SrcBitWidth-1);
1458
1459 InputDemandedBits.trunc(SrcBitWidth);
1460 RHSKnownZero.trunc(SrcBitWidth);
1461 RHSKnownOne.trunc(SrcBitWidth);
1462 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1463 RHSKnownZero, RHSKnownOne, Depth+1))
1464 return true;
1465 InputDemandedBits.zext(BitWidth);
1466 RHSKnownZero.zext(BitWidth);
1467 RHSKnownOne.zext(BitWidth);
1468 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1469 "Bits known to be one AND zero?");
1470
1471 // If the sign bit of the input is known set or clear, then we know the
1472 // top bits of the result.
1473
1474 // If the input sign bit is known zero, or if the NewBits are not demanded
1475 // convert this into a zero extension.
1476 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1477 {
1478 // Convert to ZExt cast
1479 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1480 return UpdateValueUsesWith(I, NewCast);
1481 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1482 RHSKnownOne |= NewBits;
1483 }
1484 break;
1485 }
1486 case Instruction::Add: {
1487 // Figure out what the input bits are. If the top bits of the and result
1488 // are not demanded, then the add doesn't demand them from its input
1489 // either.
1490 uint32_t NLZ = DemandedMask.countLeadingZeros();
1491
1492 // If there is a constant on the RHS, there are a variety of xformations
1493 // we can do.
1494 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1495 // If null, this should be simplified elsewhere. Some of the xforms here
1496 // won't work if the RHS is zero.
1497 if (RHS->isZero())
1498 break;
1499
1500 // If the top bit of the output is demanded, demand everything from the
1501 // input. Otherwise, we demand all the input bits except NLZ top bits.
1502 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1503
1504 // Find information about known zero/one bits in the input.
1505 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1506 LHSKnownZero, LHSKnownOne, Depth+1))
1507 return true;
1508
1509 // If the RHS of the add has bits set that can't affect the input, reduce
1510 // the constant.
1511 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1512 return UpdateValueUsesWith(I, I);
1513
1514 // Avoid excess work.
1515 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1516 break;
1517
1518 // Turn it into OR if input bits are zero.
1519 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1520 Instruction *Or =
1521 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1522 I->getName());
1523 InsertNewInstBefore(Or, *I);
1524 return UpdateValueUsesWith(I, Or);
1525 }
1526
1527 // We can say something about the output known-zero and known-one bits,
1528 // depending on potential carries from the input constant and the
1529 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1530 // bits set and the RHS constant is 0x01001, then we know we have a known
1531 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1532
1533 // To compute this, we first compute the potential carry bits. These are
1534 // the bits which may be modified. I'm not aware of a better way to do
1535 // this scan.
1536 const APInt& RHSVal = RHS->getValue();
1537 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1538
1539 // Now that we know which bits have carries, compute the known-1/0 sets.
1540
1541 // Bits are known one if they are known zero in one operand and one in the
1542 // other, and there is no input carry.
1543 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1544 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1545
1546 // Bits are known zero if they are known zero in both operands and there
1547 // is no input carry.
1548 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1549 } else {
1550 // If the high-bits of this ADD are not demanded, then it does not demand
1551 // the high bits of its LHS or RHS.
1552 if (DemandedMask[BitWidth-1] == 0) {
1553 // Right fill the mask of bits for this ADD to demand the most
1554 // significant bit and all those below it.
1555 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1556 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1557 LHSKnownZero, LHSKnownOne, Depth+1))
1558 return true;
1559 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1560 LHSKnownZero, LHSKnownOne, Depth+1))
1561 return true;
1562 }
1563 }
1564 break;
1565 }
1566 case Instruction::Sub:
1567 // If the high-bits of this SUB are not demanded, then it does not demand
1568 // the high bits of its LHS or RHS.
1569 if (DemandedMask[BitWidth-1] == 0) {
1570 // Right fill the mask of bits for this SUB to demand the most
1571 // significant bit and all those below it.
1572 uint32_t NLZ = DemandedMask.countLeadingZeros();
1573 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1574 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1575 LHSKnownZero, LHSKnownOne, Depth+1))
1576 return true;
1577 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1578 LHSKnownZero, LHSKnownOne, Depth+1))
1579 return true;
1580 }
1581 break;
1582 case Instruction::Shl:
1583 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1584 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1585 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1586 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1587 RHSKnownZero, RHSKnownOne, Depth+1))
1588 return true;
1589 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1590 "Bits known to be one AND zero?");
1591 RHSKnownZero <<= ShiftAmt;
1592 RHSKnownOne <<= ShiftAmt;
1593 // low bits known zero.
1594 if (ShiftAmt)
1595 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1596 }
1597 break;
1598 case Instruction::LShr:
1599 // For a logical shift right
1600 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1601 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1602
1603 // Unsigned shift right.
1604 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1605 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1606 RHSKnownZero, RHSKnownOne, Depth+1))
1607 return true;
1608 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1609 "Bits known to be one AND zero?");
1610 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1611 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1612 if (ShiftAmt) {
1613 // Compute the new bits that are at the top now.
1614 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1615 RHSKnownZero |= HighBits; // high bits known zero.
1616 }
1617 }
1618 break;
1619 case Instruction::AShr:
1620 // If this is an arithmetic shift right and only the low-bit is set, we can
1621 // always convert this into a logical shr, even if the shift amount is
1622 // variable. The low bit of the shift cannot be an input sign bit unless
1623 // the shift amount is >= the size of the datatype, which is undefined.
1624 if (DemandedMask == 1) {
1625 // Perform the logical shift right.
1626 Value *NewVal = BinaryOperator::createLShr(
1627 I->getOperand(0), I->getOperand(1), I->getName());
1628 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1629 return UpdateValueUsesWith(I, NewVal);
1630 }
1631
1632 // If the sign bit is the only bit demanded by this ashr, then there is no
1633 // need to do it, the shift doesn't change the high bit.
1634 if (DemandedMask.isSignBit())
1635 return UpdateValueUsesWith(I, I->getOperand(0));
1636
1637 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1638 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1639
1640 // Signed shift right.
1641 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1642 // If any of the "high bits" are demanded, we should set the sign bit as
1643 // demanded.
1644 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1645 DemandedMaskIn.set(BitWidth-1);
1646 if (SimplifyDemandedBits(I->getOperand(0),
1647 DemandedMaskIn,
1648 RHSKnownZero, RHSKnownOne, Depth+1))
1649 return true;
1650 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1651 "Bits known to be one AND zero?");
1652 // Compute the new bits that are at the top now.
1653 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1654 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1655 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1656
1657 // Handle the sign bits.
1658 APInt SignBit(APInt::getSignBit(BitWidth));
1659 // Adjust to where it is now in the mask.
1660 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1661
1662 // If the input sign bit is known to be zero, or if none of the top bits
1663 // are demanded, turn this into an unsigned shift right.
1664 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1665 (HighBits & ~DemandedMask) == HighBits) {
1666 // Perform the logical shift right.
1667 Value *NewVal = BinaryOperator::createLShr(
1668 I->getOperand(0), SA, I->getName());
1669 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1670 return UpdateValueUsesWith(I, NewVal);
1671 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1672 RHSKnownOne |= HighBits;
1673 }
1674 }
1675 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001676 case Instruction::SRem:
1677 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1678 APInt RA = Rem->getValue();
1679 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1680 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) | RA : ~RA;
1681 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1682 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1683 LHSKnownZero, LHSKnownOne, Depth+1))
1684 return true;
1685
1686 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1687 LHSKnownZero |= ~LowBits;
1688 else if (LHSKnownOne[BitWidth-1])
1689 LHSKnownOne |= ~LowBits;
1690
1691 KnownZero |= LHSKnownZero & DemandedMask;
1692 KnownOne |= LHSKnownOne & DemandedMask;
1693
1694 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1695 }
1696 }
1697 break;
1698 case Instruction::URem:
1699 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1700 APInt RA = Rem->getValue();
1701 if (RA.isPowerOf2()) {
1702 APInt LowBits = (RA - 1) | RA;
1703 APInt Mask2 = LowBits & DemandedMask;
1704 KnownZero |= ~LowBits & DemandedMask;
1705 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1706 KnownZero, KnownOne, Depth+1))
1707 return true;
1708
1709 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1710 }
1711 } else {
1712 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1713 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1714 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
1715 KnownZero2, KnownOne2, Depth+1))
1716 return true;
1717
1718 uint32_t Leaders = KnownZero2.countLeadingOnes();
1719 KnownZero |= APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
1720 }
1721 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001722 }
1723
1724 // If the client is only demanding bits that we know, return the known
1725 // constant.
1726 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1727 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1728 return false;
1729}
1730
1731
1732/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1733/// 64 or fewer elements. DemandedElts contains the set of elements that are
1734/// actually used by the caller. This method analyzes which elements of the
1735/// operand are undef and returns that information in UndefElts.
1736///
1737/// If the information about demanded elements can be used to simplify the
1738/// operation, the operation is simplified, then the resultant value is
1739/// returned. This returns null if no change was made.
1740Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1741 uint64_t &UndefElts,
1742 unsigned Depth) {
1743 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1744 assert(VWidth <= 64 && "Vector too wide to analyze!");
1745 uint64_t EltMask = ~0ULL >> (64-VWidth);
1746 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1747 "Invalid DemandedElts!");
1748
1749 if (isa<UndefValue>(V)) {
1750 // If the entire vector is undefined, just return this info.
1751 UndefElts = EltMask;
1752 return 0;
1753 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1754 UndefElts = EltMask;
1755 return UndefValue::get(V->getType());
1756 }
1757
1758 UndefElts = 0;
1759 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1760 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1761 Constant *Undef = UndefValue::get(EltTy);
1762
1763 std::vector<Constant*> Elts;
1764 for (unsigned i = 0; i != VWidth; ++i)
1765 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1766 Elts.push_back(Undef);
1767 UndefElts |= (1ULL << i);
1768 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1769 Elts.push_back(Undef);
1770 UndefElts |= (1ULL << i);
1771 } else { // Otherwise, defined.
1772 Elts.push_back(CP->getOperand(i));
1773 }
1774
1775 // If we changed the constant, return it.
1776 Constant *NewCP = ConstantVector::get(Elts);
1777 return NewCP != CP ? NewCP : 0;
1778 } else if (isa<ConstantAggregateZero>(V)) {
1779 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1780 // set to undef.
1781 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1782 Constant *Zero = Constant::getNullValue(EltTy);
1783 Constant *Undef = UndefValue::get(EltTy);
1784 std::vector<Constant*> Elts;
1785 for (unsigned i = 0; i != VWidth; ++i)
1786 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1787 UndefElts = DemandedElts ^ EltMask;
1788 return ConstantVector::get(Elts);
1789 }
1790
1791 if (!V->hasOneUse()) { // Other users may use these bits.
1792 if (Depth != 0) { // Not at the root.
1793 // TODO: Just compute the UndefElts information recursively.
1794 return false;
1795 }
1796 return false;
1797 } else if (Depth == 10) { // Limit search depth.
1798 return false;
1799 }
1800
1801 Instruction *I = dyn_cast<Instruction>(V);
1802 if (!I) return false; // Only analyze instructions.
1803
1804 bool MadeChange = false;
1805 uint64_t UndefElts2;
1806 Value *TmpV;
1807 switch (I->getOpcode()) {
1808 default: break;
1809
1810 case Instruction::InsertElement: {
1811 // If this is a variable index, we don't know which element it overwrites.
1812 // demand exactly the same input as we produce.
1813 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1814 if (Idx == 0) {
1815 // Note that we can't propagate undef elt info, because we don't know
1816 // which elt is getting updated.
1817 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1818 UndefElts2, Depth+1);
1819 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1820 break;
1821 }
1822
1823 // If this is inserting an element that isn't demanded, remove this
1824 // insertelement.
1825 unsigned IdxNo = Idx->getZExtValue();
1826 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1827 return AddSoonDeadInstToWorklist(*I, 0);
1828
1829 // Otherwise, the element inserted overwrites whatever was there, so the
1830 // input demanded set is simpler than the output set.
1831 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1832 DemandedElts & ~(1ULL << IdxNo),
1833 UndefElts, Depth+1);
1834 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1835
1836 // The inserted element is defined.
1837 UndefElts |= 1ULL << IdxNo;
1838 break;
1839 }
1840 case Instruction::BitCast: {
1841 // Vector->vector casts only.
1842 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1843 if (!VTy) break;
1844 unsigned InVWidth = VTy->getNumElements();
1845 uint64_t InputDemandedElts = 0;
1846 unsigned Ratio;
1847
1848 if (VWidth == InVWidth) {
1849 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1850 // elements as are demanded of us.
1851 Ratio = 1;
1852 InputDemandedElts = DemandedElts;
1853 } else if (VWidth > InVWidth) {
1854 // Untested so far.
1855 break;
1856
1857 // If there are more elements in the result than there are in the source,
1858 // then an input element is live if any of the corresponding output
1859 // elements are live.
1860 Ratio = VWidth/InVWidth;
1861 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1862 if (DemandedElts & (1ULL << OutIdx))
1863 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1864 }
1865 } else {
1866 // Untested so far.
1867 break;
1868
1869 // If there are more elements in the source than there are in the result,
1870 // then an input element is live if the corresponding output element is
1871 // live.
1872 Ratio = InVWidth/VWidth;
1873 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1874 if (DemandedElts & (1ULL << InIdx/Ratio))
1875 InputDemandedElts |= 1ULL << InIdx;
1876 }
1877
1878 // div/rem demand all inputs, because they don't want divide by zero.
1879 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1880 UndefElts2, Depth+1);
1881 if (TmpV) {
1882 I->setOperand(0, TmpV);
1883 MadeChange = true;
1884 }
1885
1886 UndefElts = UndefElts2;
1887 if (VWidth > InVWidth) {
1888 assert(0 && "Unimp");
1889 // If there are more elements in the result than there are in the source,
1890 // then an output element is undef if the corresponding input element is
1891 // undef.
1892 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1893 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1894 UndefElts |= 1ULL << OutIdx;
1895 } else if (VWidth < InVWidth) {
1896 assert(0 && "Unimp");
1897 // If there are more elements in the source than there are in the result,
1898 // then a result element is undef if all of the corresponding input
1899 // elements are undef.
1900 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1901 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1902 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1903 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1904 }
1905 break;
1906 }
1907 case Instruction::And:
1908 case Instruction::Or:
1909 case Instruction::Xor:
1910 case Instruction::Add:
1911 case Instruction::Sub:
1912 case Instruction::Mul:
1913 // div/rem demand all inputs, because they don't want divide by zero.
1914 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1915 UndefElts, Depth+1);
1916 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1917 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1918 UndefElts2, Depth+1);
1919 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1920
1921 // Output elements are undefined if both are undefined. Consider things
1922 // like undef&0. The result is known zero, not undef.
1923 UndefElts &= UndefElts2;
1924 break;
1925
1926 case Instruction::Call: {
1927 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1928 if (!II) break;
1929 switch (II->getIntrinsicID()) {
1930 default: break;
1931
1932 // Binary vector operations that work column-wise. A dest element is a
1933 // function of the corresponding input elements from the two inputs.
1934 case Intrinsic::x86_sse_sub_ss:
1935 case Intrinsic::x86_sse_mul_ss:
1936 case Intrinsic::x86_sse_min_ss:
1937 case Intrinsic::x86_sse_max_ss:
1938 case Intrinsic::x86_sse2_sub_sd:
1939 case Intrinsic::x86_sse2_mul_sd:
1940 case Intrinsic::x86_sse2_min_sd:
1941 case Intrinsic::x86_sse2_max_sd:
1942 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1943 UndefElts, Depth+1);
1944 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1945 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1946 UndefElts2, Depth+1);
1947 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1948
1949 // If only the low elt is demanded and this is a scalarizable intrinsic,
1950 // scalarize it now.
1951 if (DemandedElts == 1) {
1952 switch (II->getIntrinsicID()) {
1953 default: break;
1954 case Intrinsic::x86_sse_sub_ss:
1955 case Intrinsic::x86_sse_mul_ss:
1956 case Intrinsic::x86_sse2_sub_sd:
1957 case Intrinsic::x86_sse2_mul_sd:
1958 // TODO: Lower MIN/MAX/ABS/etc
1959 Value *LHS = II->getOperand(1);
1960 Value *RHS = II->getOperand(2);
1961 // Extract the element as scalars.
1962 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1963 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1964
1965 switch (II->getIntrinsicID()) {
1966 default: assert(0 && "Case stmts out of sync!");
1967 case Intrinsic::x86_sse_sub_ss:
1968 case Intrinsic::x86_sse2_sub_sd:
1969 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
1970 II->getName()), *II);
1971 break;
1972 case Intrinsic::x86_sse_mul_ss:
1973 case Intrinsic::x86_sse2_mul_sd:
1974 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
1975 II->getName()), *II);
1976 break;
1977 }
1978
1979 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001980 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1981 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001982 InsertNewInstBefore(New, *II);
1983 AddSoonDeadInstToWorklist(*II, 0);
1984 return New;
1985 }
1986 }
1987
1988 // Output elements are undefined if both are undefined. Consider things
1989 // like undef&0. The result is known zero, not undef.
1990 UndefElts &= UndefElts2;
1991 break;
1992 }
1993 break;
1994 }
1995 }
1996 return MadeChange ? I : 0;
1997}
1998
Nick Lewycky2de09a92007-09-06 02:40:25 +00001999/// @returns true if the specified compare predicate is
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000/// true when both operands are equal...
Nick Lewycky2de09a92007-09-06 02:40:25 +00002001/// @brief Determine if the icmp Predicate is true when both operands are equal
2002static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002003 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
2004 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
2005 pred == ICmpInst::ICMP_SLE;
2006}
2007
Nick Lewycky2de09a92007-09-06 02:40:25 +00002008/// @returns true if the specified compare instruction is
2009/// true when both operands are equal...
2010/// @brief Determine if the ICmpInst returns true when both operands are equal
2011static bool isTrueWhenEqual(ICmpInst &ICI) {
2012 return isTrueWhenEqual(ICI.getPredicate());
2013}
2014
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015/// AssociativeOpt - Perform an optimization on an associative operator. This
2016/// function is designed to check a chain of associative operators for a
2017/// potential to apply a certain optimization. Since the optimization may be
2018/// applicable if the expression was reassociated, this checks the chain, then
2019/// reassociates the expression as necessary to expose the optimization
2020/// opportunity. This makes use of a special Functor, which must define
2021/// 'shouldApply' and 'apply' methods.
2022///
2023template<typename Functor>
2024Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2025 unsigned Opcode = Root.getOpcode();
2026 Value *LHS = Root.getOperand(0);
2027
2028 // Quick check, see if the immediate LHS matches...
2029 if (F.shouldApply(LHS))
2030 return F.apply(Root);
2031
2032 // Otherwise, if the LHS is not of the same opcode as the root, return.
2033 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2034 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
2035 // Should we apply this transform to the RHS?
2036 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2037
2038 // If not to the RHS, check to see if we should apply to the LHS...
2039 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2040 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2041 ShouldApply = true;
2042 }
2043
2044 // If the functor wants to apply the optimization to the RHS of LHSI,
2045 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2046 if (ShouldApply) {
2047 BasicBlock *BB = Root.getParent();
2048
2049 // Now all of the instructions are in the current basic block, go ahead
2050 // and perform the reassociation.
2051 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2052
2053 // First move the selected RHS to the LHS of the root...
2054 Root.setOperand(0, LHSI->getOperand(1));
2055
2056 // Make what used to be the LHS of the root be the user of the root...
2057 Value *ExtraOperand = TmpLHSI->getOperand(1);
2058 if (&Root == TmpLHSI) {
2059 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2060 return 0;
2061 }
2062 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
2063 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
2064 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2065 BasicBlock::iterator ARI = &Root; ++ARI;
2066 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2067 ARI = Root;
2068
2069 // Now propagate the ExtraOperand down the chain of instructions until we
2070 // get to LHSI.
2071 while (TmpLHSI != LHSI) {
2072 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
2073 // Move the instruction to immediately before the chain we are
2074 // constructing to avoid breaking dominance properties.
2075 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2076 BB->getInstList().insert(ARI, NextLHSI);
2077 ARI = NextLHSI;
2078
2079 Value *NextOp = NextLHSI->getOperand(1);
2080 NextLHSI->setOperand(1, ExtraOperand);
2081 TmpLHSI = NextLHSI;
2082 ExtraOperand = NextOp;
2083 }
2084
2085 // Now that the instructions are reassociated, have the functor perform
2086 // the transformation...
2087 return F.apply(Root);
2088 }
2089
2090 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2091 }
2092 return 0;
2093}
2094
2095
2096// AddRHS - Implements: X + X --> X << 1
2097struct AddRHS {
2098 Value *RHS;
2099 AddRHS(Value *rhs) : RHS(rhs) {}
2100 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2101 Instruction *apply(BinaryOperator &Add) const {
2102 return BinaryOperator::createShl(Add.getOperand(0),
2103 ConstantInt::get(Add.getType(), 1));
2104 }
2105};
2106
2107// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2108// iff C1&C2 == 0
2109struct AddMaskingAnd {
2110 Constant *C2;
2111 AddMaskingAnd(Constant *c) : C2(c) {}
2112 bool shouldApply(Value *LHS) const {
2113 ConstantInt *C1;
2114 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
2115 ConstantExpr::getAnd(C1, C2)->isNullValue();
2116 }
2117 Instruction *apply(BinaryOperator &Add) const {
2118 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
2119 }
2120};
2121
2122static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
2123 InstCombiner *IC) {
2124 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
2125 if (Constant *SOC = dyn_cast<Constant>(SO))
2126 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
2127
2128 return IC->InsertNewInstBefore(CastInst::create(
2129 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
2130 }
2131
2132 // Figure out if the constant is the left or the right argument.
2133 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2134 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
2135
2136 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2137 if (ConstIsRHS)
2138 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2139 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
2140 }
2141
2142 Value *Op0 = SO, *Op1 = ConstOperand;
2143 if (!ConstIsRHS)
2144 std::swap(Op0, Op1);
2145 Instruction *New;
2146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2147 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
2148 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2149 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
2150 SO->getName()+".cmp");
2151 else {
2152 assert(0 && "Unknown binary instruction type!");
2153 abort();
2154 }
2155 return IC->InsertNewInstBefore(New, I);
2156}
2157
2158// FoldOpIntoSelect - Given an instruction with a select as one operand and a
2159// constant as the other operand, try to fold the binary operator into the
2160// select arguments. This also works for Cast instructions, which obviously do
2161// not have a second operand.
2162static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2163 InstCombiner *IC) {
2164 // Don't modify shared select instructions
2165 if (!SI->hasOneUse()) return 0;
2166 Value *TV = SI->getOperand(1);
2167 Value *FV = SI->getOperand(2);
2168
2169 if (isa<Constant>(TV) || isa<Constant>(FV)) {
2170 // Bool selects with constant operands can be folded to logical ops.
2171 if (SI->getType() == Type::Int1Ty) return 0;
2172
2173 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2174 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2175
Gabor Greifd6da1d02008-04-06 20:25:17 +00002176 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
2177 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002178 }
2179 return 0;
2180}
2181
2182
2183/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2184/// node as operand #0, see if we can fold the instruction into the PHI (which
2185/// is only possible if all operands to the PHI are constants).
2186Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2187 PHINode *PN = cast<PHINode>(I.getOperand(0));
2188 unsigned NumPHIValues = PN->getNumIncomingValues();
2189 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
2190
2191 // Check to see if all of the operands of the PHI are constants. If there is
2192 // one non-constant value, remember the BB it is. If there is more than one
2193 // or if *it* is a PHI, bail out.
2194 BasicBlock *NonConstBB = 0;
2195 for (unsigned i = 0; i != NumPHIValues; ++i)
2196 if (!isa<Constant>(PN->getIncomingValue(i))) {
2197 if (NonConstBB) return 0; // More than one non-const value.
2198 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
2199 NonConstBB = PN->getIncomingBlock(i);
2200
2201 // If the incoming non-constant value is in I's block, we have an infinite
2202 // loop.
2203 if (NonConstBB == I.getParent())
2204 return 0;
2205 }
2206
2207 // If there is exactly one non-constant value, we can insert a copy of the
2208 // operation in that block. However, if this is a critical edge, we would be
2209 // inserting the computation one some other paths (e.g. inside a loop). Only
2210 // do this if the pred block is unconditionally branching into the phi block.
2211 if (NonConstBB) {
2212 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2213 if (!BI || !BI->isUnconditional()) return 0;
2214 }
2215
2216 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002217 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002218 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
2219 InsertNewInstBefore(NewPN, *PN);
2220 NewPN->takeName(PN);
2221
2222 // Next, add all of the operands to the PHI.
2223 if (I.getNumOperands() == 2) {
2224 Constant *C = cast<Constant>(I.getOperand(1));
2225 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00002226 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2228 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2229 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2230 else
2231 InV = ConstantExpr::get(I.getOpcode(), InC, C);
2232 } else {
2233 assert(PN->getIncomingBlock(i) == NonConstBB);
2234 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2235 InV = BinaryOperator::create(BO->getOpcode(),
2236 PN->getIncomingValue(i), C, "phitmp",
2237 NonConstBB->getTerminator());
2238 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2239 InV = CmpInst::create(CI->getOpcode(),
2240 CI->getPredicate(),
2241 PN->getIncomingValue(i), C, "phitmp",
2242 NonConstBB->getTerminator());
2243 else
2244 assert(0 && "Unknown binop!");
2245
2246 AddToWorkList(cast<Instruction>(InV));
2247 }
2248 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2249 }
2250 } else {
2251 CastInst *CI = cast<CastInst>(&I);
2252 const Type *RetTy = CI->getType();
2253 for (unsigned i = 0; i != NumPHIValues; ++i) {
2254 Value *InV;
2255 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
2256 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
2257 } else {
2258 assert(PN->getIncomingBlock(i) == NonConstBB);
2259 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
2260 I.getType(), "phitmp",
2261 NonConstBB->getTerminator());
2262 AddToWorkList(cast<Instruction>(InV));
2263 }
2264 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
2265 }
2266 }
2267 return ReplaceInstUsesWith(I, NewPN);
2268}
2269
Chris Lattner55476162008-01-29 06:52:45 +00002270
2271/// CannotBeNegativeZero - Return true if we can prove that the specified FP
2272/// value is never equal to -0.0.
2273///
2274/// Note that this function will need to be revisited when we support nondefault
2275/// rounding modes!
2276///
2277static bool CannotBeNegativeZero(const Value *V) {
2278 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2279 return !CFP->getValueAPF().isNegZero();
2280
2281 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2282 if (const Instruction *I = dyn_cast<Instruction>(V)) {
2283 if (I->getOpcode() == Instruction::Add &&
2284 isa<ConstantFP>(I->getOperand(1)) &&
2285 cast<ConstantFP>(I->getOperand(1))->isNullValue())
2286 return true;
2287
2288 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2289 if (II->getIntrinsicID() == Intrinsic::sqrt)
2290 return CannotBeNegativeZero(II->getOperand(1));
2291
2292 if (const CallInst *CI = dyn_cast<CallInst>(I))
2293 if (const Function *F = CI->getCalledFunction()) {
2294 if (F->isDeclaration()) {
2295 switch (F->getNameLen()) {
2296 case 3: // abs(x) != -0.0
2297 if (!strcmp(F->getNameStart(), "abs")) return true;
2298 break;
2299 case 4: // abs[lf](x) != -0.0
2300 if (!strcmp(F->getNameStart(), "absf")) return true;
2301 if (!strcmp(F->getNameStart(), "absl")) return true;
2302 break;
2303 }
2304 }
2305 }
2306 }
2307
2308 return false;
2309}
2310
2311
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
2313 bool Changed = SimplifyCommutative(I);
2314 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2315
2316 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2317 // X + undef -> undef
2318 if (isa<UndefValue>(RHS))
2319 return ReplaceInstUsesWith(I, RHS);
2320
2321 // X + 0 --> X
2322 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2323 if (RHSC->isNullValue())
2324 return ReplaceInstUsesWith(I, LHS);
2325 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002326 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2327 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002328 return ReplaceInstUsesWith(I, LHS);
2329 }
2330
2331 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2332 // X + (signbit) --> X ^ signbit
2333 const APInt& Val = CI->getValue();
2334 uint32_t BitWidth = Val.getBitWidth();
2335 if (Val == APInt::getSignBit(BitWidth))
2336 return BinaryOperator::createXor(LHS, RHS);
2337
2338 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2339 // (X & 254)+1 -> (X&254)|1
2340 if (!isa<VectorType>(I.getType())) {
2341 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2342 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2343 KnownZero, KnownOne))
2344 return &I;
2345 }
2346 }
2347
2348 if (isa<PHINode>(LHS))
2349 if (Instruction *NV = FoldOpIntoPhi(I))
2350 return NV;
2351
2352 ConstantInt *XorRHS = 0;
2353 Value *XorLHS = 0;
2354 if (isa<ConstantInt>(RHSC) &&
2355 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2356 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2357 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2358
2359 uint32_t Size = TySizeBits / 2;
2360 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2361 APInt CFF80Val(-C0080Val);
2362 do {
2363 if (TySizeBits > Size) {
2364 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2365 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2366 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2367 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2368 // This is a sign extend if the top bits are known zero.
2369 if (!MaskedValueIsZero(XorLHS,
2370 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2371 Size = 0; // Not a sign ext, but can't be any others either.
2372 break;
2373 }
2374 }
2375 Size >>= 1;
2376 C0080Val = APIntOps::lshr(C0080Val, Size);
2377 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2378 } while (Size >= 1);
2379
2380 // FIXME: This shouldn't be necessary. When the backends can handle types
2381 // with funny bit widths then this whole cascade of if statements should
2382 // be removed. It is just here to get the size of the "middle" type back
2383 // up to something that the back ends can handle.
2384 const Type *MiddleType = 0;
2385 switch (Size) {
2386 default: break;
2387 case 32: MiddleType = Type::Int32Ty; break;
2388 case 16: MiddleType = Type::Int16Ty; break;
2389 case 8: MiddleType = Type::Int8Ty; break;
2390 }
2391 if (MiddleType) {
2392 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2393 InsertNewInstBefore(NewTrunc, I);
2394 return new SExtInst(NewTrunc, I.getType(), I.getName());
2395 }
2396 }
2397 }
2398
2399 // X + X --> X << 1
2400 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2401 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2402
2403 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2404 if (RHSI->getOpcode() == Instruction::Sub)
2405 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2406 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2407 }
2408 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2409 if (LHSI->getOpcode() == Instruction::Sub)
2410 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2411 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2412 }
2413 }
2414
2415 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002416 // -A + -B --> -(A + B)
2417 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002418 if (LHS->getType()->isIntOrIntVector()) {
2419 if (Value *RHSV = dyn_castNegVal(RHS)) {
2420 Instruction *NewAdd = BinaryOperator::createAdd(LHSV, RHSV, "sum");
2421 InsertNewInstBefore(NewAdd, I);
2422 return BinaryOperator::createNeg(NewAdd);
2423 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002424 }
2425
2426 return BinaryOperator::createSub(RHS, LHSV);
2427 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428
2429 // A + -B --> A - B
2430 if (!isa<Constant>(RHS))
2431 if (Value *V = dyn_castNegVal(RHS))
2432 return BinaryOperator::createSub(LHS, V);
2433
2434
2435 ConstantInt *C2;
2436 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2437 if (X == RHS) // X*C + X --> X * (C+1)
2438 return BinaryOperator::createMul(RHS, AddOne(C2));
2439
2440 // X*C1 + X*C2 --> X * (C1+C2)
2441 ConstantInt *C1;
2442 if (X == dyn_castFoldableMul(RHS, C1))
2443 return BinaryOperator::createMul(X, Add(C1, C2));
2444 }
2445
2446 // X + X*C --> X * (C+1)
2447 if (dyn_castFoldableMul(RHS, C2) == LHS)
2448 return BinaryOperator::createMul(LHS, AddOne(C2));
2449
2450 // X + ~X --> -1 since ~X = -X-1
2451 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2452 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2453
2454
2455 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2456 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2457 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2458 return R;
2459
Nick Lewycky83598a72008-02-03 07:42:09 +00002460 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002461 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002462 Value *W, *X, *Y, *Z;
2463 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2464 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2465 if (W != Y) {
2466 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002467 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002468 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002469 std::swap(W, X);
2470 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002471 std::swap(Y, Z);
2472 std::swap(W, X);
2473 }
2474 }
2475
2476 if (W == Y) {
2477 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, Z,
2478 LHS->getName()), I);
2479 return BinaryOperator::createMul(W, NewAdd);
2480 }
2481 }
2482 }
2483
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002484 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2485 Value *X = 0;
2486 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2487 return BinaryOperator::createSub(SubOne(CRHS), X);
2488
2489 // (X & FF00) + xx00 -> (X+xx00) & FF00
2490 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2491 Constant *Anded = And(CRHS, C2);
2492 if (Anded == CRHS) {
2493 // See if all bits from the first bit set in the Add RHS up are included
2494 // in the mask. First, get the rightmost bit.
2495 const APInt& AddRHSV = CRHS->getValue();
2496
2497 // Form a mask of all bits from the lowest bit added through the top.
2498 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2499
2500 // See if the and mask includes all of these bits.
2501 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2502
2503 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2504 // Okay, the xform is safe. Insert the new add pronto.
2505 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2506 LHS->getName()), I);
2507 return BinaryOperator::createAnd(NewAdd, C2);
2508 }
2509 }
2510 }
2511
2512 // Try to fold constant add into select arguments.
2513 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2514 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2515 return R;
2516 }
2517
2518 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002519 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520 {
2521 CastInst *CI = dyn_cast<CastInst>(LHS);
2522 Value *Other = RHS;
2523 if (!CI) {
2524 CI = dyn_cast<CastInst>(RHS);
2525 Other = LHS;
2526 }
2527 if (CI && CI->getType()->isSized() &&
2528 (CI->getType()->getPrimitiveSizeInBits() ==
2529 TD->getIntPtrType()->getPrimitiveSizeInBits())
2530 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002531 unsigned AS =
2532 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002533 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2534 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002535 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536 return new PtrToIntInst(I2, CI->getType());
2537 }
2538 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002539
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002540 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002541 {
2542 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2543 Value *Other = RHS;
2544 if (!SI) {
2545 SI = dyn_cast<SelectInst>(RHS);
2546 Other = LHS;
2547 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002548 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002549 Value *TV = SI->getTrueValue();
2550 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002551 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002552
2553 // Can we fold the add into the argument of the select?
2554 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002555 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2556 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002557 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002558 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2559 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002560 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002561 }
2562 }
Chris Lattner55476162008-01-29 06:52:45 +00002563
2564 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2565 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2566 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2567 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568
2569 return Changed ? &I : 0;
2570}
2571
2572// isSignBit - Return true if the value represented by the constant only has the
2573// highest order bit set.
2574static bool isSignBit(ConstantInt *CI) {
2575 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2576 return CI->getValue() == APInt::getSignBit(NumBits);
2577}
2578
2579Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2580 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2581
2582 if (Op0 == Op1) // sub X, X -> 0
2583 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2584
2585 // If this is a 'B = x-(-A)', change to B = x+A...
2586 if (Value *V = dyn_castNegVal(Op1))
2587 return BinaryOperator::createAdd(Op0, V);
2588
2589 if (isa<UndefValue>(Op0))
2590 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2591 if (isa<UndefValue>(Op1))
2592 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2593
2594 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2595 // Replace (-1 - A) with (~A)...
2596 if (C->isAllOnesValue())
2597 return BinaryOperator::createNot(Op1);
2598
2599 // C - ~X == X + (1+C)
2600 Value *X = 0;
2601 if (match(Op1, m_Not(m_Value(X))))
2602 return BinaryOperator::createAdd(X, AddOne(C));
2603
2604 // -(X >>u 31) -> (X >>s 31)
2605 // -(X >>s 31) -> (X >>u 31)
2606 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002607 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002608 if (SI->getOpcode() == Instruction::LShr) {
2609 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2610 // Check to see if we are shifting out everything but the sign bit.
2611 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2612 SI->getType()->getPrimitiveSizeInBits()-1) {
2613 // Ok, the transformation is safe. Insert AShr.
2614 return BinaryOperator::create(Instruction::AShr,
2615 SI->getOperand(0), CU, SI->getName());
2616 }
2617 }
2618 }
2619 else if (SI->getOpcode() == Instruction::AShr) {
2620 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2621 // Check to see if we are shifting out everything but the sign bit.
2622 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2623 SI->getType()->getPrimitiveSizeInBits()-1) {
2624 // Ok, the transformation is safe. Insert LShr.
2625 return BinaryOperator::createLShr(
2626 SI->getOperand(0), CU, SI->getName());
2627 }
2628 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002629 }
2630 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002631 }
2632
2633 // Try to fold constant sub into select arguments.
2634 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2635 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2636 return R;
2637
2638 if (isa<PHINode>(Op0))
2639 if (Instruction *NV = FoldOpIntoPhi(I))
2640 return NV;
2641 }
2642
2643 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2644 if (Op1I->getOpcode() == Instruction::Add &&
2645 !Op0->getType()->isFPOrFPVector()) {
2646 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2647 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
2648 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2649 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
2650 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2651 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2652 // C1-(X+C2) --> (C1-C2)-X
2653 return BinaryOperator::createSub(Subtract(CI1, CI2),
2654 Op1I->getOperand(0));
2655 }
2656 }
2657
2658 if (Op1I->hasOneUse()) {
2659 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2660 // is not used by anyone else...
2661 //
2662 if (Op1I->getOpcode() == Instruction::Sub &&
2663 !Op1I->getType()->isFPOrFPVector()) {
2664 // Swap the two operands of the subexpr...
2665 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2666 Op1I->setOperand(0, IIOp1);
2667 Op1I->setOperand(1, IIOp0);
2668
2669 // Create the new top level add instruction...
2670 return BinaryOperator::createAdd(Op0, Op1);
2671 }
2672
2673 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2674 //
2675 if (Op1I->getOpcode() == Instruction::And &&
2676 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2677 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2678
2679 Value *NewNot =
2680 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
2681 return BinaryOperator::createAnd(Op0, NewNot);
2682 }
2683
2684 // 0 - (X sdiv C) -> (X sdiv -C)
2685 if (Op1I->getOpcode() == Instruction::SDiv)
2686 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2687 if (CSI->isZero())
2688 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2689 return BinaryOperator::createSDiv(Op1I->getOperand(0),
2690 ConstantExpr::getNeg(DivRHS));
2691
2692 // X - X*C --> X * (1-C)
2693 ConstantInt *C2 = 0;
2694 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2695 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
2696 return BinaryOperator::createMul(Op0, CP1);
2697 }
Dan Gohmanda338742007-09-17 17:31:57 +00002698
2699 // X - ((X / Y) * Y) --> X % Y
2700 if (Op1I->getOpcode() == Instruction::Mul)
2701 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2702 if (Op0 == I->getOperand(0) &&
2703 Op1I->getOperand(1) == I->getOperand(1)) {
2704 if (I->getOpcode() == Instruction::SDiv)
2705 return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
2706 if (I->getOpcode() == Instruction::UDiv)
2707 return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
2708 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002709 }
2710 }
2711
2712 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002713 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002714 if (Op0I->getOpcode() == Instruction::Add) {
2715 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2716 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2717 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2718 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2719 } else if (Op0I->getOpcode() == Instruction::Sub) {
2720 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2721 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
2722 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002723 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724
2725 ConstantInt *C1;
2726 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2727 if (X == Op1) // X*C - X --> X * (C-1)
2728 return BinaryOperator::createMul(Op1, SubOne(C1));
2729
2730 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2731 if (X == dyn_castFoldableMul(Op1, C2))
Zhou Shengc7d7cdc2008-02-22 10:00:35 +00002732 return BinaryOperator::createMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002733 }
2734 return 0;
2735}
2736
2737/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2738/// comparison only checks the sign bit. If it only checks the sign bit, set
2739/// TrueIfSigned if the result of the comparison is true when the input value is
2740/// signed.
2741static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2742 bool &TrueIfSigned) {
2743 switch (pred) {
2744 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2745 TrueIfSigned = true;
2746 return RHS->isZero();
2747 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2748 TrueIfSigned = true;
2749 return RHS->isAllOnesValue();
2750 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2751 TrueIfSigned = false;
2752 return RHS->isAllOnesValue();
2753 case ICmpInst::ICMP_UGT:
2754 // True if LHS u> RHS and RHS == high-bit-mask - 1
2755 TrueIfSigned = true;
2756 return RHS->getValue() ==
2757 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2758 case ICmpInst::ICMP_UGE:
2759 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2760 TrueIfSigned = true;
2761 return RHS->getValue() ==
2762 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2763 default:
2764 return false;
2765 }
2766}
2767
2768Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2769 bool Changed = SimplifyCommutative(I);
2770 Value *Op0 = I.getOperand(0);
2771
2772 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2773 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2774
2775 // Simplify mul instructions with a constant RHS...
2776 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2777 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2778
2779 // ((X << C1)*C2) == (X * (C2 << C1))
2780 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2781 if (SI->getOpcode() == Instruction::Shl)
2782 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2783 return BinaryOperator::createMul(SI->getOperand(0),
2784 ConstantExpr::getShl(CI, ShOp));
2785
2786 if (CI->isZero())
2787 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2788 if (CI->equalsInt(1)) // X * 1 == X
2789 return ReplaceInstUsesWith(I, Op0);
2790 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2791 return BinaryOperator::createNeg(Op0, I.getName());
2792
2793 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2794 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2795 return BinaryOperator::createShl(Op0,
2796 ConstantInt::get(Op0->getType(), Val.logBase2()));
2797 }
2798 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2799 if (Op1F->isNullValue())
2800 return ReplaceInstUsesWith(I, Op1);
2801
2802 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2803 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen2fc20782007-09-14 22:26:36 +00002804 // We need a better interface for long double here.
2805 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2806 if (Op1F->isExactlyValue(1.0))
2807 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002808 }
2809
2810 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2811 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2812 isa<ConstantInt>(Op0I->getOperand(1))) {
2813 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2814 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2815 Op1, "tmp");
2816 InsertNewInstBefore(Add, I);
2817 Value *C1C2 = ConstantExpr::getMul(Op1,
2818 cast<Constant>(Op0I->getOperand(1)));
2819 return BinaryOperator::createAdd(Add, C1C2);
2820
2821 }
2822
2823 // Try to fold constant mul into select arguments.
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827
2828 if (isa<PHINode>(Op0))
2829 if (Instruction *NV = FoldOpIntoPhi(I))
2830 return NV;
2831 }
2832
2833 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2834 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2835 return BinaryOperator::createMul(Op0v, Op1v);
2836
2837 // If one of the operands of the multiply is a cast from a boolean value, then
2838 // we know the bool is either zero or one, so this is a 'masking' multiply.
2839 // See if we can simplify things based on how the boolean was originally
2840 // formed.
2841 CastInst *BoolCast = 0;
2842 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2843 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2844 BoolCast = CI;
2845 if (!BoolCast)
2846 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2847 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2848 BoolCast = CI;
2849 if (BoolCast) {
2850 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2851 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2852 const Type *SCOpTy = SCIOp0->getType();
2853 bool TIS = false;
2854
2855 // If the icmp is true iff the sign bit of X is set, then convert this
2856 // multiply into a shift/and combination.
2857 if (isa<ConstantInt>(SCIOp1) &&
2858 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2859 TIS) {
2860 // Shift the X value right to turn it into "all signbits".
2861 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2862 SCOpTy->getPrimitiveSizeInBits()-1);
2863 Value *V =
2864 InsertNewInstBefore(
2865 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
2866 BoolCast->getOperand(0)->getName()+
2867 ".mask"), I);
2868
2869 // If the multiply type is not the same as the source type, sign extend
2870 // or truncate to the multiply type.
2871 if (I.getType() != V->getType()) {
2872 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2873 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2874 Instruction::CastOps opcode =
2875 (SrcBits == DstBits ? Instruction::BitCast :
2876 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2877 V = InsertCastBefore(opcode, V, I.getType(), I);
2878 }
2879
2880 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2881 return BinaryOperator::createAnd(V, OtherOp);
2882 }
2883 }
2884 }
2885
2886 return Changed ? &I : 0;
2887}
2888
2889/// This function implements the transforms on div instructions that work
2890/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2891/// used by the visitors to those instructions.
2892/// @brief Transforms common to all three div instructions
2893Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2894 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2895
Chris Lattner653ef3c2008-02-19 06:12:18 +00002896 // undef / X -> 0 for integer.
2897 // undef / X -> undef for FP (the undef could be a snan).
2898 if (isa<UndefValue>(Op0)) {
2899 if (Op0->getType()->isFPOrFPVector())
2900 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002901 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002902 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002903
2904 // X / undef -> undef
2905 if (isa<UndefValue>(Op1))
2906 return ReplaceInstUsesWith(I, Op1);
2907
Chris Lattner5be238b2008-01-28 00:58:18 +00002908 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2909 // This does not apply for fdiv.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002910 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
Chris Lattner5be238b2008-01-28 00:58:18 +00002911 // [su]div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in
2912 // the same basic block, then we replace the select with Y, and the
2913 // condition of the select with false (if the cond value is in the same BB).
2914 // If the select has uses other than the div, this allows them to be
2915 // simplified also. Note that div X, Y is just as good as div X, 0 (undef)
2916 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(1)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002917 if (ST->isNullValue()) {
2918 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2919 if (CondI && CondI->getParent() == I.getParent())
2920 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2921 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2922 I.setOperand(1, SI->getOperand(2));
2923 else
2924 UpdateValueUsesWith(SI, SI->getOperand(2));
2925 return &I;
2926 }
2927
Chris Lattner5be238b2008-01-28 00:58:18 +00002928 // Likewise for: [su]div X, (Cond ? Y : 0) -> div X, Y
2929 if (ConstantInt *ST = dyn_cast<ConstantInt>(SI->getOperand(2)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930 if (ST->isNullValue()) {
2931 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2932 if (CondI && CondI->getParent() == I.getParent())
2933 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2934 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2935 I.setOperand(1, SI->getOperand(1));
2936 else
2937 UpdateValueUsesWith(SI, SI->getOperand(1));
2938 return &I;
2939 }
2940 }
2941
2942 return 0;
2943}
2944
2945/// This function implements the transforms common to both integer division
2946/// instructions (udiv and sdiv). It is called by the visitors to those integer
2947/// division instructions.
2948/// @brief Common integer divide transforms
2949Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2951
2952 if (Instruction *Common = commonDivTransforms(I))
2953 return Common;
2954
2955 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2956 // div X, 1 == X
2957 if (RHS->equalsInt(1))
2958 return ReplaceInstUsesWith(I, Op0);
2959
2960 // (X / C1) / C2 -> X / (C1*C2)
2961 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2962 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2963 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002964 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2965 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2966 else
2967 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
2968 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002969 }
2970
2971 if (!RHS->isZero()) { // avoid X udiv 0
2972 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2973 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2974 return R;
2975 if (isa<PHINode>(Op0))
2976 if (Instruction *NV = FoldOpIntoPhi(I))
2977 return NV;
2978 }
2979 }
2980
2981 // 0 / X == 0, we don't need to preserve faults!
2982 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2983 if (LHS->equalsInt(0))
2984 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2985
2986 return 0;
2987}
2988
2989Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2990 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2991
2992 // Handle the integer div common cases
2993 if (Instruction *Common = commonIDivTransforms(I))
2994 return Common;
2995
2996 // X udiv C^2 -> X >> C
2997 // Check to see if this is an unsigned division with an exact power of 2,
2998 // if so, convert to a right shift.
2999 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3000 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
3001 return BinaryOperator::createLShr(Op0,
3002 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
3003 }
3004
3005 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
3006 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
3007 if (RHSI->getOpcode() == Instruction::Shl &&
3008 isa<ConstantInt>(RHSI->getOperand(0))) {
3009 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
3010 if (C1.isPowerOf2()) {
3011 Value *N = RHSI->getOperand(1);
3012 const Type *NTy = N->getType();
3013 if (uint32_t C2 = C1.logBase2()) {
3014 Constant *C2V = ConstantInt::get(NTy, C2);
3015 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
3016 }
3017 return BinaryOperator::createLShr(Op0, N);
3018 }
3019 }
3020 }
3021
3022 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3023 // where C1&C2 are powers of two.
3024 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3025 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3026 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3027 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
3028 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
3029 // Compute the shift amounts
3030 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
3031 // Construct the "on true" case of the select
3032 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3033 Instruction *TSI = BinaryOperator::createLShr(
3034 Op0, TC, SI->getName()+".t");
3035 TSI = InsertNewInstBefore(TSI, I);
3036
3037 // Construct the "on false" case of the select
3038 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3039 Instruction *FSI = BinaryOperator::createLShr(
3040 Op0, FC, SI->getName()+".f");
3041 FSI = InsertNewInstBefore(FSI, I);
3042
3043 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00003044 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003045 }
3046 }
3047 return 0;
3048}
3049
3050Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3051 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3052
3053 // Handle the integer div common cases
3054 if (Instruction *Common = commonIDivTransforms(I))
3055 return Common;
3056
3057 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3058 // sdiv X, -1 == -X
3059 if (RHS->isAllOnesValue())
3060 return BinaryOperator::createNeg(Op0);
3061
3062 // -X/C -> X/-C
3063 if (Value *LHSNeg = dyn_castNegVal(Op0))
3064 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
3065 }
3066
3067 // If the sign bits of both operands are zero (i.e. we can prove they are
3068 // unsigned inputs), turn this into a udiv.
3069 if (I.getType()->isInteger()) {
3070 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3071 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00003072 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003073 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
3074 }
3075 }
3076
3077 return 0;
3078}
3079
3080Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3081 return commonDivTransforms(I);
3082}
3083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003084/// This function implements the transforms on rem instructions that work
3085/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3086/// is used by the visitors to those instructions.
3087/// @brief Transforms common to all three rem instructions
3088Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
3089 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3090
Chris Lattner653ef3c2008-02-19 06:12:18 +00003091 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003092 if (Constant *LHS = dyn_cast<Constant>(Op0))
3093 if (LHS->isNullValue())
3094 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3095
Chris Lattner653ef3c2008-02-19 06:12:18 +00003096 if (isa<UndefValue>(Op0)) { // undef % X -> 0
3097 if (I.getType()->isFPOrFPVector())
3098 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003099 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00003100 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101 if (isa<UndefValue>(Op1))
3102 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
3103
3104 // Handle cases involving: rem X, (select Cond, Y, Z)
3105 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3106 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3107 // the same basic block, then we replace the select with Y, and the
3108 // condition of the select with false (if the cond value is in the same
3109 // BB). If the select has uses other than the div, this allows them to be
3110 // simplified also.
3111 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3112 if (ST->isNullValue()) {
3113 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3114 if (CondI && CondI->getParent() == I.getParent())
3115 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
3116 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3117 I.setOperand(1, SI->getOperand(2));
3118 else
3119 UpdateValueUsesWith(SI, SI->getOperand(2));
3120 return &I;
3121 }
3122 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3123 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3124 if (ST->isNullValue()) {
3125 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3126 if (CondI && CondI->getParent() == I.getParent())
3127 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
3128 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3129 I.setOperand(1, SI->getOperand(1));
3130 else
3131 UpdateValueUsesWith(SI, SI->getOperand(1));
3132 return &I;
3133 }
3134 }
3135
3136 return 0;
3137}
3138
3139/// This function implements the transforms common to both integer remainder
3140/// instructions (urem and srem). It is called by the visitors to those integer
3141/// remainder instructions.
3142/// @brief Common integer remainder transforms
3143Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3144 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3145
3146 if (Instruction *common = commonRemTransforms(I))
3147 return common;
3148
3149 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3150 // X % 0 == undef, we don't need to preserve faults!
3151 if (RHS->equalsInt(0))
3152 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3153
3154 if (RHS->equalsInt(1)) // X % 1 == 0
3155 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3156
3157 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3158 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3159 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3160 return R;
3161 } else if (isa<PHINode>(Op0I)) {
3162 if (Instruction *NV = FoldOpIntoPhi(I))
3163 return NV;
3164 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003165
3166 // See if we can fold away this rem instruction.
3167 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3168 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3169 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3170 KnownZero, KnownOne))
3171 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172 }
3173 }
3174
3175 return 0;
3176}
3177
3178Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3179 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3180
3181 if (Instruction *common = commonIRemTransforms(I))
3182 return common;
3183
3184 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3185 // X urem C^2 -> X and C
3186 // Check to see if this is an unsigned remainder with an exact power of 2,
3187 // if so, convert to a bitwise and.
3188 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3189 if (C->getValue().isPowerOf2())
3190 return BinaryOperator::createAnd(Op0, SubOne(C));
3191 }
3192
3193 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3194 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3195 if (RHSI->getOpcode() == Instruction::Shl &&
3196 isa<ConstantInt>(RHSI->getOperand(0))) {
3197 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3198 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
3199 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
3200 "tmp"), I);
3201 return BinaryOperator::createAnd(Op0, Add);
3202 }
3203 }
3204 }
3205
3206 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3207 // where C1&C2 are powers of two.
3208 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3209 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3210 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3211 // STO == 0 and SFO == 0 handled above.
3212 if ((STO->getValue().isPowerOf2()) &&
3213 (SFO->getValue().isPowerOf2())) {
3214 Value *TrueAnd = InsertNewInstBefore(
3215 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
3216 Value *FalseAnd = InsertNewInstBefore(
3217 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003218 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219 }
3220 }
3221 }
3222
3223 return 0;
3224}
3225
3226Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3227 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3228
Dan Gohmandb3dd962007-11-05 23:16:33 +00003229 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003230 if (Instruction *common = commonIRemTransforms(I))
3231 return common;
3232
3233 if (Value *RHSNeg = dyn_castNegVal(Op1))
3234 if (!isa<ConstantInt>(RHSNeg) ||
3235 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
3236 // X % -Y -> X % Y
3237 AddUsesToWorkList(I);
3238 I.setOperand(1, RHSNeg);
3239 return &I;
3240 }
3241
Dan Gohmandb3dd962007-11-05 23:16:33 +00003242 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003243 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003244 if (I.getType()->isInteger()) {
3245 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3246 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3247 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3248 return BinaryOperator::createURem(Op0, Op1, I.getName());
3249 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250 }
3251
3252 return 0;
3253}
3254
3255Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3256 return commonRemTransforms(I);
3257}
3258
3259// isMaxValueMinusOne - return true if this is Max-1
3260static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
3261 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3262 if (!isSigned)
3263 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
3264 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
3265}
3266
3267// isMinValuePlusOne - return true if this is Min+1
3268static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
3269 if (!isSigned)
3270 return C->getValue() == 1; // unsigned
3271
3272 // Calculate 1111111111000000000000
3273 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
3274 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
3275}
3276
3277// isOneBitSet - Return true if there is exactly one bit set in the specified
3278// constant.
3279static bool isOneBitSet(const ConstantInt *CI) {
3280 return CI->getValue().isPowerOf2();
3281}
3282
3283// isHighOnes - Return true if the constant is of the form 1+0+.
3284// This is the same as lowones(~X).
3285static bool isHighOnes(const ConstantInt *CI) {
3286 return (~CI->getValue() + 1).isPowerOf2();
3287}
3288
3289/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3290/// are carefully arranged to allow folding of expressions such as:
3291///
3292/// (A < B) | (A > B) --> (A != B)
3293///
3294/// Note that this is only valid if the first and second predicates have the
3295/// same sign. Is illegal to do: (A u< B) | (A s> B)
3296///
3297/// Three bits are used to represent the condition, as follows:
3298/// 0 A > B
3299/// 1 A == B
3300/// 2 A < B
3301///
3302/// <=> Value Definition
3303/// 000 0 Always false
3304/// 001 1 A > B
3305/// 010 2 A == B
3306/// 011 3 A >= B
3307/// 100 4 A < B
3308/// 101 5 A != B
3309/// 110 6 A <= B
3310/// 111 7 Always true
3311///
3312static unsigned getICmpCode(const ICmpInst *ICI) {
3313 switch (ICI->getPredicate()) {
3314 // False -> 0
3315 case ICmpInst::ICMP_UGT: return 1; // 001
3316 case ICmpInst::ICMP_SGT: return 1; // 001
3317 case ICmpInst::ICMP_EQ: return 2; // 010
3318 case ICmpInst::ICMP_UGE: return 3; // 011
3319 case ICmpInst::ICMP_SGE: return 3; // 011
3320 case ICmpInst::ICMP_ULT: return 4; // 100
3321 case ICmpInst::ICMP_SLT: return 4; // 100
3322 case ICmpInst::ICMP_NE: return 5; // 101
3323 case ICmpInst::ICMP_ULE: return 6; // 110
3324 case ICmpInst::ICMP_SLE: return 6; // 110
3325 // True -> 7
3326 default:
3327 assert(0 && "Invalid ICmp predicate!");
3328 return 0;
3329 }
3330}
3331
3332/// getICmpValue - This is the complement of getICmpCode, which turns an
3333/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003334/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003335/// of predicate to use in new icmp instructions.
3336static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3337 switch (code) {
3338 default: assert(0 && "Illegal ICmp code!");
3339 case 0: return ConstantInt::getFalse();
3340 case 1:
3341 if (sign)
3342 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3343 else
3344 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3345 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3346 case 3:
3347 if (sign)
3348 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3349 else
3350 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3351 case 4:
3352 if (sign)
3353 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3354 else
3355 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3356 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3357 case 6:
3358 if (sign)
3359 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3360 else
3361 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3362 case 7: return ConstantInt::getTrue();
3363 }
3364}
3365
3366static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3367 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3368 (ICmpInst::isSignedPredicate(p1) &&
3369 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3370 (ICmpInst::isSignedPredicate(p2) &&
3371 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3372}
3373
3374namespace {
3375// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3376struct FoldICmpLogical {
3377 InstCombiner &IC;
3378 Value *LHS, *RHS;
3379 ICmpInst::Predicate pred;
3380 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3381 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3382 pred(ICI->getPredicate()) {}
3383 bool shouldApply(Value *V) const {
3384 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3385 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003386 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3387 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003388 return false;
3389 }
3390 Instruction *apply(Instruction &Log) const {
3391 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3392 if (ICI->getOperand(0) != LHS) {
3393 assert(ICI->getOperand(1) == LHS);
3394 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3395 }
3396
3397 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3398 unsigned LHSCode = getICmpCode(ICI);
3399 unsigned RHSCode = getICmpCode(RHSICI);
3400 unsigned Code;
3401 switch (Log.getOpcode()) {
3402 case Instruction::And: Code = LHSCode & RHSCode; break;
3403 case Instruction::Or: Code = LHSCode | RHSCode; break;
3404 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3405 default: assert(0 && "Illegal logical opcode!"); return 0;
3406 }
3407
3408 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3409 ICmpInst::isSignedPredicate(ICI->getPredicate());
3410
3411 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3412 if (Instruction *I = dyn_cast<Instruction>(RV))
3413 return I;
3414 // Otherwise, it's a constant boolean value...
3415 return IC.ReplaceInstUsesWith(Log, RV);
3416 }
3417};
3418} // end anonymous namespace
3419
3420// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3421// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3422// guaranteed to be a binary operator.
3423Instruction *InstCombiner::OptAndOp(Instruction *Op,
3424 ConstantInt *OpRHS,
3425 ConstantInt *AndRHS,
3426 BinaryOperator &TheAnd) {
3427 Value *X = Op->getOperand(0);
3428 Constant *Together = 0;
3429 if (!Op->isShift())
3430 Together = And(AndRHS, OpRHS);
3431
3432 switch (Op->getOpcode()) {
3433 case Instruction::Xor:
3434 if (Op->hasOneUse()) {
3435 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3436 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
3437 InsertNewInstBefore(And, TheAnd);
3438 And->takeName(Op);
3439 return BinaryOperator::createXor(And, Together);
3440 }
3441 break;
3442 case Instruction::Or:
3443 if (Together == AndRHS) // (X | C) & C --> C
3444 return ReplaceInstUsesWith(TheAnd, AndRHS);
3445
3446 if (Op->hasOneUse() && Together != OpRHS) {
3447 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3448 Instruction *Or = BinaryOperator::createOr(X, Together);
3449 InsertNewInstBefore(Or, TheAnd);
3450 Or->takeName(Op);
3451 return BinaryOperator::createAnd(Or, AndRHS);
3452 }
3453 break;
3454 case Instruction::Add:
3455 if (Op->hasOneUse()) {
3456 // Adding a one to a single bit bit-field should be turned into an XOR
3457 // of the bit. First thing to check is to see if this AND is with a
3458 // single bit constant.
3459 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3460
3461 // If there is only one bit set...
3462 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3463 // Ok, at this point, we know that we are masking the result of the
3464 // ADD down to exactly one bit. If the constant we are adding has
3465 // no bits set below this bit, then we can eliminate the ADD.
3466 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3467
3468 // Check to see if any bits below the one bit set in AndRHSV are set.
3469 if ((AddRHS & (AndRHSV-1)) == 0) {
3470 // If not, the only thing that can effect the output of the AND is
3471 // the bit specified by AndRHSV. If that bit is set, the effect of
3472 // the XOR is to toggle the bit. If it is clear, then the ADD has
3473 // no effect.
3474 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3475 TheAnd.setOperand(0, X);
3476 return &TheAnd;
3477 } else {
3478 // Pull the XOR out of the AND.
3479 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
3480 InsertNewInstBefore(NewAnd, TheAnd);
3481 NewAnd->takeName(Op);
3482 return BinaryOperator::createXor(NewAnd, AndRHS);
3483 }
3484 }
3485 }
3486 }
3487 break;
3488
3489 case Instruction::Shl: {
3490 // We know that the AND will not produce any of the bits shifted in, so if
3491 // the anded constant includes them, clear them now!
3492 //
3493 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3494 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3495 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3496 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3497
3498 if (CI->getValue() == ShlMask) {
3499 // Masking out bits that the shift already masks
3500 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3501 } else if (CI != AndRHS) { // Reducing bits set in and.
3502 TheAnd.setOperand(1, CI);
3503 return &TheAnd;
3504 }
3505 break;
3506 }
3507 case Instruction::LShr:
3508 {
3509 // We know that the AND will not produce any of the bits shifted in, so if
3510 // the anded constant includes them, clear them now! This only applies to
3511 // unsigned shifts, because a signed shr may bring in set bits!
3512 //
3513 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3514 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3515 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3516 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3517
3518 if (CI->getValue() == ShrMask) {
3519 // Masking out bits that the shift already masks.
3520 return ReplaceInstUsesWith(TheAnd, Op);
3521 } else if (CI != AndRHS) {
3522 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3523 return &TheAnd;
3524 }
3525 break;
3526 }
3527 case Instruction::AShr:
3528 // Signed shr.
3529 // See if this is shifting in some sign extension, then masking it out
3530 // with an and.
3531 if (Op->hasOneUse()) {
3532 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3533 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3534 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3535 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3536 if (C == AndRHS) { // Masking out bits shifted in.
3537 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3538 // Make the argument unsigned.
3539 Value *ShVal = Op->getOperand(0);
3540 ShVal = InsertNewInstBefore(
3541 BinaryOperator::createLShr(ShVal, OpRHS,
3542 Op->getName()), TheAnd);
3543 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
3544 }
3545 }
3546 break;
3547 }
3548 return 0;
3549}
3550
3551
3552/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3553/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3554/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3555/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3556/// insert new instructions.
3557Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3558 bool isSigned, bool Inside,
3559 Instruction &IB) {
3560 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3561 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3562 "Lo is not <= Hi in range emission code!");
3563
3564 if (Inside) {
3565 if (Lo == Hi) // Trivially false.
3566 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3567
3568 // V >= Min && V < Hi --> V < Hi
3569 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3570 ICmpInst::Predicate pred = (isSigned ?
3571 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3572 return new ICmpInst(pred, V, Hi);
3573 }
3574
3575 // Emit V-Lo <u Hi-Lo
3576 Constant *NegLo = ConstantExpr::getNeg(Lo);
3577 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3578 InsertNewInstBefore(Add, IB);
3579 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3580 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3581 }
3582
3583 if (Lo == Hi) // Trivially true.
3584 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3585
3586 // V < Min || V >= Hi -> V > Hi-1
3587 Hi = SubOne(cast<ConstantInt>(Hi));
3588 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3589 ICmpInst::Predicate pred = (isSigned ?
3590 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3591 return new ICmpInst(pred, V, Hi);
3592 }
3593
3594 // Emit V-Lo >u Hi-1-Lo
3595 // Note that Hi has already had one subtracted from it, above.
3596 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3597 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3598 InsertNewInstBefore(Add, IB);
3599 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3600 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3601}
3602
3603// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3604// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3605// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3606// not, since all 1s are not contiguous.
3607static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3608 const APInt& V = Val->getValue();
3609 uint32_t BitWidth = Val->getType()->getBitWidth();
3610 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3611
3612 // look for the first zero bit after the run of ones
3613 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3614 // look for the first non-zero bit
3615 ME = V.getActiveBits();
3616 return true;
3617}
3618
3619/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3620/// where isSub determines whether the operator is a sub. If we can fold one of
3621/// the following xforms:
3622///
3623/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3624/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3625/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3626///
3627/// return (A +/- B).
3628///
3629Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3630 ConstantInt *Mask, bool isSub,
3631 Instruction &I) {
3632 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3633 if (!LHSI || LHSI->getNumOperands() != 2 ||
3634 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3635
3636 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3637
3638 switch (LHSI->getOpcode()) {
3639 default: return 0;
3640 case Instruction::And:
3641 if (And(N, Mask) == Mask) {
3642 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3643 if ((Mask->getValue().countLeadingZeros() +
3644 Mask->getValue().countPopulation()) ==
3645 Mask->getValue().getBitWidth())
3646 break;
3647
3648 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3649 // part, we don't need any explicit masks to take them out of A. If that
3650 // is all N is, ignore it.
3651 uint32_t MB = 0, ME = 0;
3652 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3653 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3654 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3655 if (MaskedValueIsZero(RHS, Mask))
3656 break;
3657 }
3658 }
3659 return 0;
3660 case Instruction::Or:
3661 case Instruction::Xor:
3662 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3663 if ((Mask->getValue().countLeadingZeros() +
3664 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3665 && And(N, Mask)->isZero())
3666 break;
3667 return 0;
3668 }
3669
3670 Instruction *New;
3671 if (isSub)
3672 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3673 else
3674 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3675 return InsertNewInstBefore(New, I);
3676}
3677
3678Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3679 bool Changed = SimplifyCommutative(I);
3680 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3681
3682 if (isa<UndefValue>(Op1)) // X & undef -> 0
3683 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3684
3685 // and X, X = X
3686 if (Op0 == Op1)
3687 return ReplaceInstUsesWith(I, Op1);
3688
3689 // See if we can simplify any instructions used by the instruction whose sole
3690 // purpose is to compute bits we don't care about.
3691 if (!isa<VectorType>(I.getType())) {
3692 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3693 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3694 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3695 KnownZero, KnownOne))
3696 return &I;
3697 } else {
3698 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3699 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3700 return ReplaceInstUsesWith(I, I.getOperand(0));
3701 } else if (isa<ConstantAggregateZero>(Op1)) {
3702 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3703 }
3704 }
3705
3706 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3707 const APInt& AndRHSMask = AndRHS->getValue();
3708 APInt NotAndRHS(~AndRHSMask);
3709
3710 // Optimize a variety of ((val OP C1) & C2) combinations...
3711 if (isa<BinaryOperator>(Op0)) {
3712 Instruction *Op0I = cast<Instruction>(Op0);
3713 Value *Op0LHS = Op0I->getOperand(0);
3714 Value *Op0RHS = Op0I->getOperand(1);
3715 switch (Op0I->getOpcode()) {
3716 case Instruction::Xor:
3717 case Instruction::Or:
3718 // If the mask is only needed on one incoming arm, push it up.
3719 if (Op0I->hasOneUse()) {
3720 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3721 // Not masking anything out for the LHS, move to RHS.
3722 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3723 Op0RHS->getName()+".masked");
3724 InsertNewInstBefore(NewRHS, I);
3725 return BinaryOperator::create(
3726 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3727 }
3728 if (!isa<Constant>(Op0RHS) &&
3729 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3730 // Not masking anything out for the RHS, move to LHS.
3731 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3732 Op0LHS->getName()+".masked");
3733 InsertNewInstBefore(NewLHS, I);
3734 return BinaryOperator::create(
3735 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3736 }
3737 }
3738
3739 break;
3740 case Instruction::Add:
3741 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3742 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3743 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3744 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3745 return BinaryOperator::createAnd(V, AndRHS);
3746 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3747 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
3748 break;
3749
3750 case Instruction::Sub:
3751 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3752 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3753 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3754 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3755 return BinaryOperator::createAnd(V, AndRHS);
3756 break;
3757 }
3758
3759 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3760 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3761 return Res;
3762 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3763 // If this is an integer truncation or change from signed-to-unsigned, and
3764 // if the source is an and/or with immediate, transform it. This
3765 // frequently occurs for bitfield accesses.
3766 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3767 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3768 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003769 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003770 if (CastOp->getOpcode() == Instruction::And) {
3771 // Change: and (cast (and X, C1) to T), C2
3772 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3773 // This will fold the two constants together, which may allow
3774 // other simplifications.
3775 Instruction *NewCast = CastInst::createTruncOrBitCast(
3776 CastOp->getOperand(0), I.getType(),
3777 CastOp->getName()+".shrunk");
3778 NewCast = InsertNewInstBefore(NewCast, I);
3779 // trunc_or_bitcast(C1)&C2
3780 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3781 C3 = ConstantExpr::getAnd(C3, AndRHS);
3782 return BinaryOperator::createAnd(NewCast, C3);
3783 } else if (CastOp->getOpcode() == Instruction::Or) {
3784 // Change: and (cast (or X, C1) to T), C2
3785 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3786 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3787 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3788 return ReplaceInstUsesWith(I, AndRHS);
3789 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003790 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791 }
3792 }
3793
3794 // Try to fold constant and into select arguments.
3795 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3796 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3797 return R;
3798 if (isa<PHINode>(Op0))
3799 if (Instruction *NV = FoldOpIntoPhi(I))
3800 return NV;
3801 }
3802
3803 Value *Op0NotVal = dyn_castNotVal(Op0);
3804 Value *Op1NotVal = dyn_castNotVal(Op1);
3805
3806 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3807 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3808
3809 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3810 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3811 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3812 I.getName()+".demorgan");
3813 InsertNewInstBefore(Or, I);
3814 return BinaryOperator::createNot(Or);
3815 }
3816
3817 {
3818 Value *A = 0, *B = 0, *C = 0, *D = 0;
3819 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3820 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3821 return ReplaceInstUsesWith(I, Op1);
3822
3823 // (A|B) & ~(A&B) -> A^B
3824 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3825 if ((A == C && B == D) || (A == D && B == C))
3826 return BinaryOperator::createXor(A, B);
3827 }
3828 }
3829
3830 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3831 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3832 return ReplaceInstUsesWith(I, Op0);
3833
3834 // ~(A&B) & (A|B) -> A^B
3835 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3836 if ((A == C && B == D) || (A == D && B == C))
3837 return BinaryOperator::createXor(A, B);
3838 }
3839 }
3840
3841 if (Op0->hasOneUse() &&
3842 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3843 if (A == Op1) { // (A^B)&A -> A&(A^B)
3844 I.swapOperands(); // Simplify below
3845 std::swap(Op0, Op1);
3846 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3847 cast<BinaryOperator>(Op0)->swapOperands();
3848 I.swapOperands(); // Simplify below
3849 std::swap(Op0, Op1);
3850 }
3851 }
3852 if (Op1->hasOneUse() &&
3853 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3854 if (B == Op0) { // B&(A^B) -> B&(B^A)
3855 cast<BinaryOperator>(Op1)->swapOperands();
3856 std::swap(A, B);
3857 }
3858 if (A == Op0) { // A&(A^B) -> A & ~B
3859 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3860 InsertNewInstBefore(NotB, I);
3861 return BinaryOperator::createAnd(A, NotB);
3862 }
3863 }
3864 }
3865
3866 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3867 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3868 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3869 return R;
3870
3871 Value *LHSVal, *RHSVal;
3872 ConstantInt *LHSCst, *RHSCst;
3873 ICmpInst::Predicate LHSCC, RHSCC;
3874 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3875 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3876 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3877 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3878 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3879 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3880 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003881 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3882
3883 // Don't try to fold ICMP_SLT + ICMP_ULT.
3884 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3885 ICmpInst::isSignedPredicate(LHSCC) ==
3886 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003888 ICmpInst::Predicate GT;
3889 if (ICmpInst::isSignedPredicate(LHSCC) ||
3890 (ICmpInst::isEquality(LHSCC) &&
3891 ICmpInst::isSignedPredicate(RHSCC)))
3892 GT = ICmpInst::ICMP_SGT;
3893 else
3894 GT = ICmpInst::ICMP_UGT;
3895
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3897 ICmpInst *LHS = cast<ICmpInst>(Op0);
3898 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3899 std::swap(LHS, RHS);
3900 std::swap(LHSCst, RHSCst);
3901 std::swap(LHSCC, RHSCC);
3902 }
3903
3904 // At this point, we know we have have two icmp instructions
3905 // comparing a value against two constants and and'ing the result
3906 // together. Because of the above check, we know that we only have
3907 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3908 // (from the FoldICmpLogical check above), that the two constants
3909 // are not equal and that the larger constant is on the RHS
3910 assert(LHSCst != RHSCst && "Compares not folded above?");
3911
3912 switch (LHSCC) {
3913 default: assert(0 && "Unknown integer condition code!");
3914 case ICmpInst::ICMP_EQ:
3915 switch (RHSCC) {
3916 default: assert(0 && "Unknown integer condition code!");
3917 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3918 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3919 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3920 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3921 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3922 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3923 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3924 return ReplaceInstUsesWith(I, LHS);
3925 }
3926 case ICmpInst::ICMP_NE:
3927 switch (RHSCC) {
3928 default: assert(0 && "Unknown integer condition code!");
3929 case ICmpInst::ICMP_ULT:
3930 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3931 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3932 break; // (X != 13 & X u< 15) -> no change
3933 case ICmpInst::ICMP_SLT:
3934 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3935 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3936 break; // (X != 13 & X s< 15) -> no change
3937 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3938 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3939 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3940 return ReplaceInstUsesWith(I, RHS);
3941 case ICmpInst::ICMP_NE:
3942 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3943 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3944 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3945 LHSVal->getName()+".off");
3946 InsertNewInstBefore(Add, I);
3947 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3948 ConstantInt::get(Add->getType(), 1));
3949 }
3950 break; // (X != 13 & X != 15) -> no change
3951 }
3952 break;
3953 case ICmpInst::ICMP_ULT:
3954 switch (RHSCC) {
3955 default: assert(0 && "Unknown integer condition code!");
3956 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3957 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3958 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3959 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3960 break;
3961 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3962 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3963 return ReplaceInstUsesWith(I, LHS);
3964 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3965 break;
3966 }
3967 break;
3968 case ICmpInst::ICMP_SLT:
3969 switch (RHSCC) {
3970 default: assert(0 && "Unknown integer condition code!");
3971 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3972 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3973 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3974 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3975 break;
3976 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3977 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3978 return ReplaceInstUsesWith(I, LHS);
3979 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3980 break;
3981 }
3982 break;
3983 case ICmpInst::ICMP_UGT:
3984 switch (RHSCC) {
3985 default: assert(0 && "Unknown integer condition code!");
3986 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
3987 return ReplaceInstUsesWith(I, LHS);
3988 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3989 return ReplaceInstUsesWith(I, RHS);
3990 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3991 break;
3992 case ICmpInst::ICMP_NE:
3993 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3994 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3995 break; // (X u> 13 & X != 15) -> no change
3996 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3997 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3998 true, I);
3999 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4000 break;
4001 }
4002 break;
4003 case ICmpInst::ICMP_SGT:
4004 switch (RHSCC) {
4005 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00004006 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004007 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4008 return ReplaceInstUsesWith(I, RHS);
4009 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4010 break;
4011 case ICmpInst::ICMP_NE:
4012 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4013 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4014 break; // (X s> 13 & X != 15) -> no change
4015 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4016 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4017 true, I);
4018 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4019 break;
4020 }
4021 break;
4022 }
4023 }
4024 }
4025
4026 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4027 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4028 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4029 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4030 const Type *SrcTy = Op0C->getOperand(0)->getType();
4031 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4032 // Only do this if the casts both really cause code to be generated.
4033 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4034 I.getType(), TD) &&
4035 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4036 I.getType(), TD)) {
4037 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
4038 Op1C->getOperand(0),
4039 I.getName());
4040 InsertNewInstBefore(NewOp, I);
4041 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4042 }
4043 }
4044
4045 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4046 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4047 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4048 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4049 SI0->getOperand(1) == SI1->getOperand(1) &&
4050 (SI0->hasOneUse() || SI1->hasOneUse())) {
4051 Instruction *NewOp =
4052 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
4053 SI1->getOperand(0),
4054 SI0->getName()), I);
4055 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4056 SI1->getOperand(1));
4057 }
4058 }
4059
Chris Lattner91882432007-10-24 05:38:08 +00004060 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
4061 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4062 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4063 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
4064 RHS->getPredicate() == FCmpInst::FCMP_ORD)
4065 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4066 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4067 // If either of the constants are nans, then the whole thing returns
4068 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004069 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004070 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4071 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4072 RHS->getOperand(0));
4073 }
4074 }
4075 }
4076
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004077 return Changed ? &I : 0;
4078}
4079
4080/// CollectBSwapParts - Look to see if the specified value defines a single byte
4081/// in the result. If it does, and if the specified byte hasn't been filled in
4082/// yet, fill it in and return false.
4083static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
4084 Instruction *I = dyn_cast<Instruction>(V);
4085 if (I == 0) return true;
4086
4087 // If this is an or instruction, it is an inner node of the bswap.
4088 if (I->getOpcode() == Instruction::Or)
4089 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4090 CollectBSwapParts(I->getOperand(1), ByteValues);
4091
4092 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
4093 // If this is a shift by a constant int, and it is "24", then its operand
4094 // defines a byte. We only handle unsigned types here.
4095 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
4096 // Not shifting the entire input by N-1 bytes?
4097 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
4098 8*(ByteValues.size()-1))
4099 return true;
4100
4101 unsigned DestNo;
4102 if (I->getOpcode() == Instruction::Shl) {
4103 // X << 24 defines the top byte with the lowest of the input bytes.
4104 DestNo = ByteValues.size()-1;
4105 } else {
4106 // X >>u 24 defines the low byte with the highest of the input bytes.
4107 DestNo = 0;
4108 }
4109
4110 // If the destination byte value is already defined, the values are or'd
4111 // together, which isn't a bswap (unless it's an or of the same bits).
4112 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4113 return true;
4114 ByteValues[DestNo] = I->getOperand(0);
4115 return false;
4116 }
4117
4118 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4119 // don't have this.
4120 Value *Shift = 0, *ShiftLHS = 0;
4121 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4122 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4123 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4124 return true;
4125 Instruction *SI = cast<Instruction>(Shift);
4126
4127 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
4128 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
4129 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
4130 return true;
4131
4132 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4133 unsigned DestByte;
4134 if (AndAmt->getValue().getActiveBits() > 64)
4135 return true;
4136 uint64_t AndAmtVal = AndAmt->getZExtValue();
4137 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
4138 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
4139 break;
4140 // Unknown mask for bswap.
4141 if (DestByte == ByteValues.size()) return true;
4142
4143 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
4144 unsigned SrcByte;
4145 if (SI->getOpcode() == Instruction::Shl)
4146 SrcByte = DestByte - ShiftBytes;
4147 else
4148 SrcByte = DestByte + ShiftBytes;
4149
4150 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4151 if (SrcByte != ByteValues.size()-DestByte-1)
4152 return true;
4153
4154 // If the destination byte value is already defined, the values are or'd
4155 // together, which isn't a bswap (unless it's an or of the same bits).
4156 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4157 return true;
4158 ByteValues[DestByte] = SI->getOperand(0);
4159 return false;
4160}
4161
4162/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4163/// If so, insert the new bswap intrinsic and return it.
4164Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4165 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
4166 if (!ITy || ITy->getBitWidth() % 16)
4167 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4168
4169 /// ByteValues - For each byte of the result, we keep track of which value
4170 /// defines each byte.
4171 SmallVector<Value*, 8> ByteValues;
4172 ByteValues.resize(ITy->getBitWidth()/8);
4173
4174 // Try to find all the pieces corresponding to the bswap.
4175 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4176 CollectBSwapParts(I.getOperand(1), ByteValues))
4177 return 0;
4178
4179 // Check to see if all of the bytes come from the same value.
4180 Value *V = ByteValues[0];
4181 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4182
4183 // Check to make sure that all of the bytes come from the same value.
4184 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4185 if (ByteValues[i] != V)
4186 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004187 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004188 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004189 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004190 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004191}
4192
4193
4194Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4195 bool Changed = SimplifyCommutative(I);
4196 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4197
4198 if (isa<UndefValue>(Op1)) // X | undef -> -1
4199 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4200
4201 // or X, X = X
4202 if (Op0 == Op1)
4203 return ReplaceInstUsesWith(I, Op0);
4204
4205 // See if we can simplify any instructions used by the instruction whose sole
4206 // purpose is to compute bits we don't care about.
4207 if (!isa<VectorType>(I.getType())) {
4208 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4209 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4210 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4211 KnownZero, KnownOne))
4212 return &I;
4213 } else if (isa<ConstantAggregateZero>(Op1)) {
4214 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4215 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4216 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4217 return ReplaceInstUsesWith(I, I.getOperand(1));
4218 }
4219
4220
4221
4222 // or X, -1 == -1
4223 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4224 ConstantInt *C1 = 0; Value *X = 0;
4225 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4226 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
4227 Instruction *Or = BinaryOperator::createOr(X, RHS);
4228 InsertNewInstBefore(Or, I);
4229 Or->takeName(Op0);
4230 return BinaryOperator::createAnd(Or,
4231 ConstantInt::get(RHS->getValue() | C1->getValue()));
4232 }
4233
4234 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4235 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
4236 Instruction *Or = BinaryOperator::createOr(X, RHS);
4237 InsertNewInstBefore(Or, I);
4238 Or->takeName(Op0);
4239 return BinaryOperator::createXor(Or,
4240 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4241 }
4242
4243 // Try to fold constant and into select arguments.
4244 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4245 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4246 return R;
4247 if (isa<PHINode>(Op0))
4248 if (Instruction *NV = FoldOpIntoPhi(I))
4249 return NV;
4250 }
4251
4252 Value *A = 0, *B = 0;
4253 ConstantInt *C1 = 0, *C2 = 0;
4254
4255 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4256 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4257 return ReplaceInstUsesWith(I, Op1);
4258 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4259 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4260 return ReplaceInstUsesWith(I, Op0);
4261
4262 // (A | B) | C and A | (B | C) -> bswap if possible.
4263 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4264 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4265 match(Op1, m_Or(m_Value(), m_Value())) ||
4266 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4267 match(Op1, m_Shift(m_Value(), m_Value())))) {
4268 if (Instruction *BSwap = MatchBSwap(I))
4269 return BSwap;
4270 }
4271
4272 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4273 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4274 MaskedValueIsZero(Op1, C1->getValue())) {
4275 Instruction *NOr = BinaryOperator::createOr(A, Op1);
4276 InsertNewInstBefore(NOr, I);
4277 NOr->takeName(Op0);
4278 return BinaryOperator::createXor(NOr, C1);
4279 }
4280
4281 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4282 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4283 MaskedValueIsZero(Op0, C1->getValue())) {
4284 Instruction *NOr = BinaryOperator::createOr(A, Op0);
4285 InsertNewInstBefore(NOr, I);
4286 NOr->takeName(Op0);
4287 return BinaryOperator::createXor(NOr, C1);
4288 }
4289
4290 // (A & C)|(B & D)
4291 Value *C = 0, *D = 0;
4292 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4293 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4294 Value *V1 = 0, *V2 = 0, *V3 = 0;
4295 C1 = dyn_cast<ConstantInt>(C);
4296 C2 = dyn_cast<ConstantInt>(D);
4297 if (C1 && C2) { // (A & C1)|(B & C2)
4298 // If we have: ((V + N) & C1) | (V & C2)
4299 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4300 // replace with V+N.
4301 if (C1->getValue() == ~C2->getValue()) {
4302 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4303 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4304 // Add commutes, try both ways.
4305 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4306 return ReplaceInstUsesWith(I, A);
4307 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4308 return ReplaceInstUsesWith(I, A);
4309 }
4310 // Or commutes, try both ways.
4311 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4312 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4313 // Add commutes, try both ways.
4314 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4315 return ReplaceInstUsesWith(I, B);
4316 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4317 return ReplaceInstUsesWith(I, B);
4318 }
4319 }
4320 V1 = 0; V2 = 0; V3 = 0;
4321 }
4322
4323 // Check to see if we have any common things being and'ed. If so, find the
4324 // terms for V1 & (V2|V3).
4325 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4326 if (A == B) // (A & C)|(A & D) == A & (C|D)
4327 V1 = A, V2 = C, V3 = D;
4328 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4329 V1 = A, V2 = B, V3 = C;
4330 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4331 V1 = C, V2 = A, V3 = D;
4332 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4333 V1 = C, V2 = A, V3 = B;
4334
4335 if (V1) {
4336 Value *Or =
4337 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
4338 return BinaryOperator::createAnd(V1, Or);
4339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004340 }
4341 }
4342
4343 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4344 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4345 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4346 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4347 SI0->getOperand(1) == SI1->getOperand(1) &&
4348 (SI0->hasOneUse() || SI1->hasOneUse())) {
4349 Instruction *NewOp =
4350 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
4351 SI1->getOperand(0),
4352 SI0->getName()), I);
4353 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4354 SI1->getOperand(1));
4355 }
4356 }
4357
4358 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4359 if (A == Op1) // ~A | A == -1
4360 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4361 } else {
4362 A = 0;
4363 }
4364 // Note, A is still live here!
4365 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4366 if (Op0 == B)
4367 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4368
4369 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4370 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4371 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
4372 I.getName()+".demorgan"), I);
4373 return BinaryOperator::createNot(And);
4374 }
4375 }
4376
4377 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4378 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4379 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4380 return R;
4381
4382 Value *LHSVal, *RHSVal;
4383 ConstantInt *LHSCst, *RHSCst;
4384 ICmpInst::Predicate LHSCC, RHSCC;
4385 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4386 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4387 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4388 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4389 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4390 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4391 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4392 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4393 // We can't fold (ugt x, C) | (sgt x, C2).
4394 PredicatesFoldable(LHSCC, RHSCC)) {
4395 // Ensure that the larger constant is on the RHS.
4396 ICmpInst *LHS = cast<ICmpInst>(Op0);
4397 bool NeedsSwap;
4398 if (ICmpInst::isSignedPredicate(LHSCC))
4399 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4400 else
4401 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4402
4403 if (NeedsSwap) {
4404 std::swap(LHS, RHS);
4405 std::swap(LHSCst, RHSCst);
4406 std::swap(LHSCC, RHSCC);
4407 }
4408
4409 // At this point, we know we have have two icmp instructions
4410 // comparing a value against two constants and or'ing the result
4411 // together. Because of the above check, we know that we only have
4412 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4413 // FoldICmpLogical check above), that the two constants are not
4414 // equal.
4415 assert(LHSCst != RHSCst && "Compares not folded above?");
4416
4417 switch (LHSCC) {
4418 default: assert(0 && "Unknown integer condition code!");
4419 case ICmpInst::ICMP_EQ:
4420 switch (RHSCC) {
4421 default: assert(0 && "Unknown integer condition code!");
4422 case ICmpInst::ICMP_EQ:
4423 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4424 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4425 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4426 LHSVal->getName()+".off");
4427 InsertNewInstBefore(Add, I);
4428 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4429 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4430 }
4431 break; // (X == 13 | X == 15) -> no change
4432 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4433 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4434 break;
4435 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4436 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4437 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4438 return ReplaceInstUsesWith(I, RHS);
4439 }
4440 break;
4441 case ICmpInst::ICMP_NE:
4442 switch (RHSCC) {
4443 default: assert(0 && "Unknown integer condition code!");
4444 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4445 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4446 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4447 return ReplaceInstUsesWith(I, LHS);
4448 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4449 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4450 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4451 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4452 }
4453 break;
4454 case ICmpInst::ICMP_ULT:
4455 switch (RHSCC) {
4456 default: assert(0 && "Unknown integer condition code!");
4457 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4458 break;
4459 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004460 // If RHSCst is [us]MAXINT, it is always false. Not handling
4461 // this can cause overflow.
4462 if (RHSCst->isMaxValue(false))
4463 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004464 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4465 false, I);
4466 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4467 break;
4468 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4469 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4470 return ReplaceInstUsesWith(I, RHS);
4471 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4472 break;
4473 }
4474 break;
4475 case ICmpInst::ICMP_SLT:
4476 switch (RHSCC) {
4477 default: assert(0 && "Unknown integer condition code!");
4478 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4479 break;
4480 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004481 // If RHSCst is [us]MAXINT, it is always false. Not handling
4482 // this can cause overflow.
4483 if (RHSCst->isMaxValue(true))
4484 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004485 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4486 false, I);
4487 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4488 break;
4489 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4490 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4491 return ReplaceInstUsesWith(I, RHS);
4492 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4493 break;
4494 }
4495 break;
4496 case ICmpInst::ICMP_UGT:
4497 switch (RHSCC) {
4498 default: assert(0 && "Unknown integer condition code!");
4499 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4500 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4501 return ReplaceInstUsesWith(I, LHS);
4502 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4503 break;
4504 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4505 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4506 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4507 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4508 break;
4509 }
4510 break;
4511 case ICmpInst::ICMP_SGT:
4512 switch (RHSCC) {
4513 default: assert(0 && "Unknown integer condition code!");
4514 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4515 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4516 return ReplaceInstUsesWith(I, LHS);
4517 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4518 break;
4519 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4520 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4521 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4522 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4523 break;
4524 }
4525 break;
4526 }
4527 }
4528 }
4529
4530 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004531 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4533 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004534 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4535 !isa<ICmpInst>(Op1C->getOperand(0))) {
4536 const Type *SrcTy = Op0C->getOperand(0)->getType();
4537 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4538 // Only do this if the casts both really cause code to be
4539 // generated.
4540 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4541 I.getType(), TD) &&
4542 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4543 I.getType(), TD)) {
4544 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4545 Op1C->getOperand(0),
4546 I.getName());
4547 InsertNewInstBefore(NewOp, I);
4548 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4549 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004550 }
4551 }
Chris Lattner91882432007-10-24 05:38:08 +00004552 }
4553
4554
4555 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4556 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4557 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4558 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004559 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4560 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner91882432007-10-24 05:38:08 +00004561 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4562 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4563 // If either of the constants are nans, then the whole thing returns
4564 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004565 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004566 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4567
4568 // Otherwise, no need to compare the two constants, compare the
4569 // rest.
4570 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4571 RHS->getOperand(0));
4572 }
4573 }
4574 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004575
4576 return Changed ? &I : 0;
4577}
4578
4579// XorSelf - Implements: X ^ X --> 0
4580struct XorSelf {
4581 Value *RHS;
4582 XorSelf(Value *rhs) : RHS(rhs) {}
4583 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4584 Instruction *apply(BinaryOperator &Xor) const {
4585 return &Xor;
4586 }
4587};
4588
4589
4590Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4591 bool Changed = SimplifyCommutative(I);
4592 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4593
Evan Chenge5cd8032008-03-25 20:07:13 +00004594 if (isa<UndefValue>(Op1)) {
4595 if (isa<UndefValue>(Op0))
4596 // Handle undef ^ undef -> 0 special case. This is a common
4597 // idiom (misuse).
4598 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004599 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004600 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004601
4602 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4603 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004604 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004605 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4606 }
4607
4608 // See if we can simplify any instructions used by the instruction whose sole
4609 // purpose is to compute bits we don't care about.
4610 if (!isa<VectorType>(I.getType())) {
4611 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4612 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4613 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4614 KnownZero, KnownOne))
4615 return &I;
4616 } else if (isa<ConstantAggregateZero>(Op1)) {
4617 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4618 }
4619
4620 // Is this a ~ operation?
4621 if (Value *NotOp = dyn_castNotVal(&I)) {
4622 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4623 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4624 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4625 if (Op0I->getOpcode() == Instruction::And ||
4626 Op0I->getOpcode() == Instruction::Or) {
4627 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4628 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4629 Instruction *NotY =
4630 BinaryOperator::createNot(Op0I->getOperand(1),
4631 Op0I->getOperand(1)->getName()+".not");
4632 InsertNewInstBefore(NotY, I);
4633 if (Op0I->getOpcode() == Instruction::And)
4634 return BinaryOperator::createOr(Op0NotVal, NotY);
4635 else
4636 return BinaryOperator::createAnd(Op0NotVal, NotY);
4637 }
4638 }
4639 }
4640 }
4641
4642
4643 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004644 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4645 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4646 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004647 return new ICmpInst(ICI->getInversePredicate(),
4648 ICI->getOperand(0), ICI->getOperand(1));
4649
Nick Lewycky1405e922007-08-06 20:04:16 +00004650 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4651 return new FCmpInst(FCI->getInversePredicate(),
4652 FCI->getOperand(0), FCI->getOperand(1));
4653 }
4654
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004655 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4656 // ~(c-X) == X-c-1 == X+(-c-1)
4657 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4658 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4659 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4660 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4661 ConstantInt::get(I.getType(), 1));
4662 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
4663 }
4664
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004665 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004666 if (Op0I->getOpcode() == Instruction::Add) {
4667 // ~(X-c) --> (-c-1)-X
4668 if (RHS->isAllOnesValue()) {
4669 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4670 return BinaryOperator::createSub(
4671 ConstantExpr::getSub(NegOp0CI,
4672 ConstantInt::get(I.getType(), 1)),
4673 Op0I->getOperand(0));
4674 } else if (RHS->getValue().isSignBit()) {
4675 // (X + C) ^ signbit -> (X + C + signbit)
4676 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4677 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
4678
4679 }
4680 } else if (Op0I->getOpcode() == Instruction::Or) {
4681 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4682 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4683 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4684 // Anything in both C1 and C2 is known to be zero, remove it from
4685 // NewRHS.
4686 Constant *CommonBits = And(Op0CI, RHS);
4687 NewRHS = ConstantExpr::getAnd(NewRHS,
4688 ConstantExpr::getNot(CommonBits));
4689 AddToWorkList(Op0I);
4690 I.setOperand(0, Op0I->getOperand(0));
4691 I.setOperand(1, NewRHS);
4692 return &I;
4693 }
4694 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004695 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004696 }
4697
4698 // Try to fold constant and into select arguments.
4699 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4700 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4701 return R;
4702 if (isa<PHINode>(Op0))
4703 if (Instruction *NV = FoldOpIntoPhi(I))
4704 return NV;
4705 }
4706
4707 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4708 if (X == Op1)
4709 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4710
4711 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4712 if (X == Op0)
4713 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4714
4715
4716 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4717 if (Op1I) {
4718 Value *A, *B;
4719 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4720 if (A == Op0) { // B^(B|A) == (A|B)^B
4721 Op1I->swapOperands();
4722 I.swapOperands();
4723 std::swap(Op0, Op1);
4724 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4725 I.swapOperands(); // Simplified below.
4726 std::swap(Op0, Op1);
4727 }
4728 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4729 if (Op0 == A) // A^(A^B) == B
4730 return ReplaceInstUsesWith(I, B);
4731 else if (Op0 == B) // A^(B^A) == B
4732 return ReplaceInstUsesWith(I, A);
4733 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4734 if (A == Op0) { // A^(A&B) -> A^(B&A)
4735 Op1I->swapOperands();
4736 std::swap(A, B);
4737 }
4738 if (B == Op0) { // A^(B&A) -> (B&A)^A
4739 I.swapOperands(); // Simplified below.
4740 std::swap(Op0, Op1);
4741 }
4742 }
4743 }
4744
4745 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4746 if (Op0I) {
4747 Value *A, *B;
4748 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4749 if (A == Op1) // (B|A)^B == (A|B)^B
4750 std::swap(A, B);
4751 if (B == Op1) { // (A|B)^B == A & ~B
4752 Instruction *NotB =
4753 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4754 return BinaryOperator::createAnd(A, NotB);
4755 }
4756 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4757 if (Op1 == A) // (A^B)^A == B
4758 return ReplaceInstUsesWith(I, B);
4759 else if (Op1 == B) // (B^A)^A == B
4760 return ReplaceInstUsesWith(I, A);
4761 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4762 if (A == Op1) // (A&B)^A -> (B&A)^A
4763 std::swap(A, B);
4764 if (B == Op1 && // (B&A)^A == ~B & A
4765 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4766 Instruction *N =
4767 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
4768 return BinaryOperator::createAnd(N, Op1);
4769 }
4770 }
4771 }
4772
4773 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4774 if (Op0I && Op1I && Op0I->isShift() &&
4775 Op0I->getOpcode() == Op1I->getOpcode() &&
4776 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4777 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4778 Instruction *NewOp =
4779 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4780 Op1I->getOperand(0),
4781 Op0I->getName()), I);
4782 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4783 Op1I->getOperand(1));
4784 }
4785
4786 if (Op0I && Op1I) {
4787 Value *A, *B, *C, *D;
4788 // (A & B)^(A | B) -> A ^ B
4789 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4790 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4791 if ((A == C && B == D) || (A == D && B == C))
4792 return BinaryOperator::createXor(A, B);
4793 }
4794 // (A | B)^(A & B) -> A ^ B
4795 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4796 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4797 if ((A == C && B == D) || (A == D && B == C))
4798 return BinaryOperator::createXor(A, B);
4799 }
4800
4801 // (A & B)^(C & D)
4802 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4803 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4804 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4805 // (X & Y)^(X & Y) -> (Y^Z) & X
4806 Value *X = 0, *Y = 0, *Z = 0;
4807 if (A == C)
4808 X = A, Y = B, Z = D;
4809 else if (A == D)
4810 X = A, Y = B, Z = C;
4811 else if (B == C)
4812 X = B, Y = A, Z = D;
4813 else if (B == D)
4814 X = B, Y = A, Z = C;
4815
4816 if (X) {
4817 Instruction *NewOp =
4818 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4819 return BinaryOperator::createAnd(NewOp, X);
4820 }
4821 }
4822 }
4823
4824 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4825 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4826 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4827 return R;
4828
4829 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004830 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004831 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4832 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4833 const Type *SrcTy = Op0C->getOperand(0)->getType();
4834 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4835 // Only do this if the casts both really cause code to be generated.
4836 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4837 I.getType(), TD) &&
4838 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4839 I.getType(), TD)) {
4840 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4841 Op1C->getOperand(0),
4842 I.getName());
4843 InsertNewInstBefore(NewOp, I);
4844 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4845 }
4846 }
Chris Lattner91882432007-10-24 05:38:08 +00004847 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004848 return Changed ? &I : 0;
4849}
4850
4851/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4852/// overflowed for this type.
4853static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4854 ConstantInt *In2, bool IsSigned = false) {
4855 Result = cast<ConstantInt>(Add(In1, In2));
4856
4857 if (IsSigned)
4858 if (In2->getValue().isNegative())
4859 return Result->getValue().sgt(In1->getValue());
4860 else
4861 return Result->getValue().slt(In1->getValue());
4862 else
4863 return Result->getValue().ult(In1->getValue());
4864}
4865
4866/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4867/// code necessary to compute the offset from the base pointer (without adding
4868/// in the base pointer). Return the result as a signed integer of intptr size.
4869static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4870 TargetData &TD = IC.getTargetData();
4871 gep_type_iterator GTI = gep_type_begin(GEP);
4872 const Type *IntPtrTy = TD.getIntPtrType();
4873 Value *Result = Constant::getNullValue(IntPtrTy);
4874
4875 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00004876 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4878
4879 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4880 Value *Op = GEP->getOperand(i);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004881 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004882 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4883 if (OpC->isZero()) continue;
4884
4885 // Handle a struct index, which adds its field offset to the pointer.
4886 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4887 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4888
4889 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4890 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4891 else
4892 Result = IC.InsertNewInstBefore(
4893 BinaryOperator::createAdd(Result,
4894 ConstantInt::get(IntPtrTy, Size),
4895 GEP->getName()+".offs"), I);
4896 continue;
4897 }
4898
4899 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4900 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4901 Scale = ConstantExpr::getMul(OC, Scale);
4902 if (Constant *RC = dyn_cast<Constant>(Result))
4903 Result = ConstantExpr::getAdd(RC, Scale);
4904 else {
4905 // Emit an add instruction.
4906 Result = IC.InsertNewInstBefore(
4907 BinaryOperator::createAdd(Result, Scale,
4908 GEP->getName()+".offs"), I);
4909 }
4910 continue;
4911 }
4912 // Convert to correct type.
4913 if (Op->getType() != IntPtrTy) {
4914 if (Constant *OpC = dyn_cast<Constant>(Op))
4915 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4916 else
4917 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4918 Op->getName()+".c"), I);
4919 }
4920 if (Size != 1) {
4921 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4922 if (Constant *OpC = dyn_cast<Constant>(Op))
4923 Op = ConstantExpr::getMul(OpC, Scale);
4924 else // We'll let instcombine(mul) convert this to a shl if possible.
4925 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4926 GEP->getName()+".idx"), I);
4927 }
4928
4929 // Emit an add instruction.
4930 if (isa<Constant>(Op) && isa<Constant>(Result))
4931 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4932 cast<Constant>(Result));
4933 else
4934 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4935 GEP->getName()+".offs"), I);
4936 }
4937 return Result;
4938}
4939
Chris Lattnereba75862008-04-22 02:53:33 +00004940
4941/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4942/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4943/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4944/// complex, and scales are involved. The above expression would also be legal
4945/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
4946/// later form is less amenable to optimization though, and we are allowed to
4947/// generate the first by knowing that pointer arithmetic doesn't overflow.
4948///
4949/// If we can't emit an optimized form for this expression, this returns null.
4950///
4951static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
4952 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00004953 TargetData &TD = IC.getTargetData();
4954 gep_type_iterator GTI = gep_type_begin(GEP);
4955
4956 // Check to see if this gep only has a single variable index. If so, and if
4957 // any constant indices are a multiple of its scale, then we can compute this
4958 // in terms of the scale of the variable index. For example, if the GEP
4959 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
4960 // because the expression will cross zero at the same point.
4961 unsigned i, e = GEP->getNumOperands();
4962 int64_t Offset = 0;
4963 for (i = 1; i != e; ++i, ++GTI) {
4964 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4965 // Compute the aggregate offset of constant indices.
4966 if (CI->isZero()) continue;
4967
4968 // Handle a struct index, which adds its field offset to the pointer.
4969 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4970 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4971 } else {
4972 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4973 Offset += Size*CI->getSExtValue();
4974 }
4975 } else {
4976 // Found our variable index.
4977 break;
4978 }
4979 }
4980
4981 // If there are no variable indices, we must have a constant offset, just
4982 // evaluate it the general way.
4983 if (i == e) return 0;
4984
4985 Value *VariableIdx = GEP->getOperand(i);
4986 // Determine the scale factor of the variable element. For example, this is
4987 // 4 if the variable index is into an array of i32.
4988 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
4989
4990 // Verify that there are no other variable indices. If so, emit the hard way.
4991 for (++i, ++GTI; i != e; ++i, ++GTI) {
4992 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
4993 if (!CI) return 0;
4994
4995 // Compute the aggregate offset of constant indices.
4996 if (CI->isZero()) continue;
4997
4998 // Handle a struct index, which adds its field offset to the pointer.
4999 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5000 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5001 } else {
5002 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5003 Offset += Size*CI->getSExtValue();
5004 }
5005 }
5006
5007 // Okay, we know we have a single variable index, which must be a
5008 // pointer/array/vector index. If there is no offset, life is simple, return
5009 // the index.
5010 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5011 if (Offset == 0) {
5012 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5013 // we don't need to bother extending: the extension won't affect where the
5014 // computation crosses zero.
5015 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5016 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5017 VariableIdx->getNameStart(), &I);
5018 return VariableIdx;
5019 }
5020
5021 // Otherwise, there is an index. The computation we will do will be modulo
5022 // the pointer size, so get it.
5023 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5024
5025 Offset &= PtrSizeMask;
5026 VariableScale &= PtrSizeMask;
5027
5028 // To do this transformation, any constant index must be a multiple of the
5029 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5030 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5031 // multiple of the variable scale.
5032 int64_t NewOffs = Offset / (int64_t)VariableScale;
5033 if (Offset != NewOffs*(int64_t)VariableScale)
5034 return 0;
5035
5036 // Okay, we can do this evaluation. Start by converting the index to intptr.
5037 const Type *IntPtrTy = TD.getIntPtrType();
5038 if (VariableIdx->getType() != IntPtrTy)
5039 VariableIdx = CastInst::createIntegerCast(VariableIdx, IntPtrTy,
5040 true /*SExt*/,
5041 VariableIdx->getNameStart(), &I);
5042 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
5043 return BinaryOperator::createAdd(VariableIdx, OffsetVal, "offset", &I);
5044}
5045
5046
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005047/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5048/// else. At this point we know that the GEP is on the LHS of the comparison.
5049Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5050 ICmpInst::Predicate Cond,
5051 Instruction &I) {
5052 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5053
Chris Lattnereba75862008-04-22 02:53:33 +00005054 // Look through bitcasts.
5055 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5056 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005057
5058 Value *PtrBase = GEPLHS->getOperand(0);
5059 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005060 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005061 // This transformation (ignoring the base and scales) is valid because we
5062 // know pointers can't overflow. See if we can output an optimized form.
5063 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5064
5065 // If not, synthesize the offset the hard way.
5066 if (Offset == 0)
5067 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005068 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5069 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005070 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5071 // If the base pointers are different, but the indices are the same, just
5072 // compare the base pointer.
5073 if (PtrBase != GEPRHS->getOperand(0)) {
5074 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5075 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5076 GEPRHS->getOperand(0)->getType();
5077 if (IndicesTheSame)
5078 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5079 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5080 IndicesTheSame = false;
5081 break;
5082 }
5083
5084 // If all indices are the same, just compare the base pointers.
5085 if (IndicesTheSame)
5086 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5087 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5088
5089 // Otherwise, the base pointers are different and the indices are
5090 // different, bail out.
5091 return 0;
5092 }
5093
5094 // If one of the GEPs has all zero indices, recurse.
5095 bool AllZeros = true;
5096 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5097 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5098 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5099 AllZeros = false;
5100 break;
5101 }
5102 if (AllZeros)
5103 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5104 ICmpInst::getSwappedPredicate(Cond), I);
5105
5106 // If the other GEP has all zero indices, recurse.
5107 AllZeros = true;
5108 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5109 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5110 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5111 AllZeros = false;
5112 break;
5113 }
5114 if (AllZeros)
5115 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5116
5117 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5118 // If the GEPs only differ by one index, compare it.
5119 unsigned NumDifferences = 0; // Keep track of # differences.
5120 unsigned DiffOperand = 0; // The operand that differs.
5121 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5122 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5123 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5124 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5125 // Irreconcilable differences.
5126 NumDifferences = 2;
5127 break;
5128 } else {
5129 if (NumDifferences++) break;
5130 DiffOperand = i;
5131 }
5132 }
5133
5134 if (NumDifferences == 0) // SAME GEP?
5135 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005136 ConstantInt::get(Type::Int1Ty,
5137 isTrueWhenEqual(Cond)));
5138
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005139 else if (NumDifferences == 1) {
5140 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5141 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5142 // Make sure we do a signed comparison here.
5143 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5144 }
5145 }
5146
5147 // Only lower this if the icmp is the only user of the GEP or if we expect
5148 // the result to fold to a constant!
5149 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5150 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5151 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5152 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5153 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5154 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5155 }
5156 }
5157 return 0;
5158}
5159
5160Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5161 bool Changed = SimplifyCompare(I);
5162 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5163
5164 // Fold trivial predicates.
5165 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5166 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5167 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5168 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5169
5170 // Simplify 'fcmp pred X, X'
5171 if (Op0 == Op1) {
5172 switch (I.getPredicate()) {
5173 default: assert(0 && "Unknown predicate!");
5174 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5175 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5176 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5177 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5178 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5179 case FCmpInst::FCMP_OLT: // True if ordered and less than
5180 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5181 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5182
5183 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5184 case FCmpInst::FCMP_ULT: // True if unordered or less than
5185 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5186 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5187 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5188 I.setPredicate(FCmpInst::FCMP_UNO);
5189 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5190 return &I;
5191
5192 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5193 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5194 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5195 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5196 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5197 I.setPredicate(FCmpInst::FCMP_ORD);
5198 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5199 return &I;
5200 }
5201 }
5202
5203 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5204 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5205
5206 // Handle fcmp with constant RHS
5207 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5208 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5209 switch (LHSI->getOpcode()) {
5210 case Instruction::PHI:
5211 if (Instruction *NV = FoldOpIntoPhi(I))
5212 return NV;
5213 break;
5214 case Instruction::Select:
5215 // If either operand of the select is a constant, we can fold the
5216 // comparison into the select arms, which will cause one to be
5217 // constant folded and the select turned into a bitwise or.
5218 Value *Op1 = 0, *Op2 = 0;
5219 if (LHSI->hasOneUse()) {
5220 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5221 // Fold the known value into the constant operand.
5222 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5223 // Insert a new FCmp of the other select operand.
5224 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5225 LHSI->getOperand(2), RHSC,
5226 I.getName()), I);
5227 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5228 // Fold the known value into the constant operand.
5229 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5230 // Insert a new FCmp of the other select operand.
5231 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5232 LHSI->getOperand(1), RHSC,
5233 I.getName()), I);
5234 }
5235 }
5236
5237 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005238 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005239 break;
5240 }
5241 }
5242
5243 return Changed ? &I : 0;
5244}
5245
5246Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5247 bool Changed = SimplifyCompare(I);
5248 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5249 const Type *Ty = Op0->getType();
5250
5251 // icmp X, X
5252 if (Op0 == Op1)
5253 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5254 isTrueWhenEqual(I)));
5255
5256 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5257 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005259 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5260 // addresses never equal each other! We already know that Op0 != Op1.
5261 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5262 isa<ConstantPointerNull>(Op0)) &&
5263 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5264 isa<ConstantPointerNull>(Op1)))
5265 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5266 !isTrueWhenEqual(I)));
5267
5268 // icmp's with boolean values can always be turned into bitwise operations
5269 if (Ty == Type::Int1Ty) {
5270 switch (I.getPredicate()) {
5271 default: assert(0 && "Invalid icmp instruction!");
5272 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
5273 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
5274 InsertNewInstBefore(Xor, I);
5275 return BinaryOperator::createNot(Xor);
5276 }
5277 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
5278 return BinaryOperator::createXor(Op0, Op1);
5279
5280 case ICmpInst::ICMP_UGT:
5281 case ICmpInst::ICMP_SGT:
5282 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
5283 // FALL THROUGH
5284 case ICmpInst::ICMP_ULT:
5285 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
5286 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5287 InsertNewInstBefore(Not, I);
5288 return BinaryOperator::createAnd(Not, Op1);
5289 }
5290 case ICmpInst::ICMP_UGE:
5291 case ICmpInst::ICMP_SGE:
5292 std::swap(Op0, Op1); // Change icmp ge -> icmp le
5293 // FALL THROUGH
5294 case ICmpInst::ICMP_ULE:
5295 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
5296 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5297 InsertNewInstBefore(Not, I);
5298 return BinaryOperator::createOr(Not, Op1);
5299 }
5300 }
5301 }
5302
5303 // See if we are doing a comparison between a constant and an instruction that
5304 // can be folded into the comparison.
5305 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Christopher Lambfa6b3102007-12-20 07:21:11 +00005306 Value *A, *B;
5307
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005308 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5309 if (I.isEquality() && CI->isNullValue() &&
5310 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5311 // (icmp cond A B) if cond is equality
5312 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005313 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005314
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005315 switch (I.getPredicate()) {
5316 default: break;
5317 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5318 if (CI->isMinValue(false))
5319 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5320 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5321 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5322 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5323 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5324 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5325 if (CI->isMinValue(true))
5326 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5327 ConstantInt::getAllOnesValue(Op0->getType()));
5328
5329 break;
5330
5331 case ICmpInst::ICMP_SLT:
5332 if (CI->isMinValue(true)) // A <s MIN -> FALSE
5333 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5334 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5335 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5336 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5337 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5338 break;
5339
5340 case ICmpInst::ICMP_UGT:
5341 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
5342 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5343 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5344 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5345 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5346 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5347
5348 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5349 if (CI->isMaxValue(true))
5350 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5351 ConstantInt::getNullValue(Op0->getType()));
5352 break;
5353
5354 case ICmpInst::ICMP_SGT:
5355 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
5356 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5357 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5358 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5359 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5360 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5361 break;
5362
5363 case ICmpInst::ICMP_ULE:
5364 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5365 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5366 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5367 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5368 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5369 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5370 break;
5371
5372 case ICmpInst::ICMP_SLE:
5373 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5374 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5375 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5376 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5377 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5378 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5379 break;
5380
5381 case ICmpInst::ICMP_UGE:
5382 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5383 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5384 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5385 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5386 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5387 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5388 break;
5389
5390 case ICmpInst::ICMP_SGE:
5391 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5392 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5393 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5394 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5395 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5396 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5397 break;
5398 }
5399
5400 // If we still have a icmp le or icmp ge instruction, turn it into the
5401 // appropriate icmp lt or icmp gt instruction. Since the border cases have
5402 // already been handled above, this requires little checking.
5403 //
5404 switch (I.getPredicate()) {
5405 default: break;
5406 case ICmpInst::ICMP_ULE:
5407 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5408 case ICmpInst::ICMP_SLE:
5409 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5410 case ICmpInst::ICMP_UGE:
5411 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5412 case ICmpInst::ICMP_SGE:
5413 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5414 }
5415
5416 // See if we can fold the comparison based on bits known to be zero or one
5417 // in the input. If this comparison is a normal comparison, it demands all
5418 // bits, if it is a sign bit comparison, it only demands the sign bit.
5419
5420 bool UnusedBit;
5421 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5422
5423 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5424 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5425 if (SimplifyDemandedBits(Op0,
5426 isSignBit ? APInt::getSignBit(BitWidth)
5427 : APInt::getAllOnesValue(BitWidth),
5428 KnownZero, KnownOne, 0))
5429 return &I;
5430
5431 // Given the known and unknown bits, compute a range that the LHS could be
5432 // in.
5433 if ((KnownOne | KnownZero) != 0) {
5434 // Compute the Min, Max and RHS values based on the known bits. For the
5435 // EQ and NE we use unsigned values.
5436 APInt Min(BitWidth, 0), Max(BitWidth, 0);
5437 const APInt& RHSVal = CI->getValue();
5438 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5439 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5440 Max);
5441 } else {
5442 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
5443 Max);
5444 }
5445 switch (I.getPredicate()) { // LE/GE have been folded already.
5446 default: assert(0 && "Unknown icmp opcode!");
5447 case ICmpInst::ICMP_EQ:
5448 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5449 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5450 break;
5451 case ICmpInst::ICMP_NE:
5452 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5453 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5454 break;
5455 case ICmpInst::ICMP_ULT:
5456 if (Max.ult(RHSVal))
5457 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5458 if (Min.uge(RHSVal))
5459 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5460 break;
5461 case ICmpInst::ICMP_UGT:
5462 if (Min.ugt(RHSVal))
5463 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5464 if (Max.ule(RHSVal))
5465 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5466 break;
5467 case ICmpInst::ICMP_SLT:
5468 if (Max.slt(RHSVal))
5469 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5470 if (Min.sgt(RHSVal))
5471 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5472 break;
5473 case ICmpInst::ICMP_SGT:
5474 if (Min.sgt(RHSVal))
5475 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5476 if (Max.sle(RHSVal))
5477 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5478 break;
5479 }
5480 }
5481
5482 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5483 // instruction, see if that instruction also has constants so that the
5484 // instruction can be folded into the icmp
5485 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5486 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5487 return Res;
5488 }
5489
5490 // Handle icmp with constant (but not simple integer constant) RHS
5491 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5492 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5493 switch (LHSI->getOpcode()) {
5494 case Instruction::GetElementPtr:
5495 if (RHSC->isNullValue()) {
5496 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5497 bool isAllZeros = true;
5498 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5499 if (!isa<Constant>(LHSI->getOperand(i)) ||
5500 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5501 isAllZeros = false;
5502 break;
5503 }
5504 if (isAllZeros)
5505 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5506 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5507 }
5508 break;
5509
5510 case Instruction::PHI:
5511 if (Instruction *NV = FoldOpIntoPhi(I))
5512 return NV;
5513 break;
5514 case Instruction::Select: {
5515 // If either operand of the select is a constant, we can fold the
5516 // comparison into the select arms, which will cause one to be
5517 // constant folded and the select turned into a bitwise or.
5518 Value *Op1 = 0, *Op2 = 0;
5519 if (LHSI->hasOneUse()) {
5520 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5521 // Fold the known value into the constant operand.
5522 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5523 // Insert a new ICmp of the other select operand.
5524 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5525 LHSI->getOperand(2), RHSC,
5526 I.getName()), I);
5527 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5528 // Fold the known value into the constant operand.
5529 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5530 // Insert a new ICmp of the other select operand.
5531 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5532 LHSI->getOperand(1), RHSC,
5533 I.getName()), I);
5534 }
5535 }
5536
5537 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005538 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005539 break;
5540 }
5541 case Instruction::Malloc:
5542 // If we have (malloc != null), and if the malloc has a single use, we
5543 // can assume it is successful and remove the malloc.
5544 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5545 AddToWorkList(LHSI);
5546 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5547 !isTrueWhenEqual(I)));
5548 }
5549 break;
5550 }
5551 }
5552
5553 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5554 if (User *GEP = dyn_castGetElementPtr(Op0))
5555 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5556 return NI;
5557 if (User *GEP = dyn_castGetElementPtr(Op1))
5558 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5559 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5560 return NI;
5561
5562 // Test to see if the operands of the icmp are casted versions of other
5563 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5564 // now.
5565 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5566 if (isa<PointerType>(Op0->getType()) &&
5567 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5568 // We keep moving the cast from the left operand over to the right
5569 // operand, where it can often be eliminated completely.
5570 Op0 = CI->getOperand(0);
5571
5572 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5573 // so eliminate it as well.
5574 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5575 Op1 = CI2->getOperand(0);
5576
5577 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005578 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005579 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5580 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5581 } else {
5582 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005583 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005584 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005585 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005586 return new ICmpInst(I.getPredicate(), Op0, Op1);
5587 }
5588 }
5589
5590 if (isa<CastInst>(Op0)) {
5591 // Handle the special case of: icmp (cast bool to X), <cst>
5592 // This comes up when you have code like
5593 // int X = A < B;
5594 // if (X) ...
5595 // For generality, we handle any zero-extension of any operand comparison
5596 // with a constant or another cast from the same type.
5597 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5598 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5599 return R;
5600 }
5601
5602 if (I.isEquality()) {
5603 Value *A, *B, *C, *D;
5604 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5605 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5606 Value *OtherVal = A == Op1 ? B : A;
5607 return new ICmpInst(I.getPredicate(), OtherVal,
5608 Constant::getNullValue(A->getType()));
5609 }
5610
5611 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5612 // A^c1 == C^c2 --> A == C^(c1^c2)
5613 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5614 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5615 if (Op1->hasOneUse()) {
5616 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
5617 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5618 return new ICmpInst(I.getPredicate(), A,
5619 InsertNewInstBefore(Xor, I));
5620 }
5621
5622 // A^B == A^D -> B == D
5623 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5624 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5625 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5626 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5627 }
5628 }
5629
5630 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5631 (A == Op0 || B == Op0)) {
5632 // A == (A^B) -> B == 0
5633 Value *OtherVal = A == Op0 ? B : A;
5634 return new ICmpInst(I.getPredicate(), OtherVal,
5635 Constant::getNullValue(A->getType()));
5636 }
5637 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5638 // (A-B) == A -> B == 0
5639 return new ICmpInst(I.getPredicate(), B,
5640 Constant::getNullValue(B->getType()));
5641 }
5642 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5643 // A == (A-B) -> B == 0
5644 return new ICmpInst(I.getPredicate(), B,
5645 Constant::getNullValue(B->getType()));
5646 }
5647
5648 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5649 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5650 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5651 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5652 Value *X = 0, *Y = 0, *Z = 0;
5653
5654 if (A == C) {
5655 X = B; Y = D; Z = A;
5656 } else if (A == D) {
5657 X = B; Y = C; Z = A;
5658 } else if (B == C) {
5659 X = A; Y = D; Z = B;
5660 } else if (B == D) {
5661 X = A; Y = C; Z = B;
5662 }
5663
5664 if (X) { // Build (X^Y) & Z
5665 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5666 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5667 I.setOperand(0, Op1);
5668 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5669 return &I;
5670 }
5671 }
5672 }
5673 return Changed ? &I : 0;
5674}
5675
5676
5677/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5678/// and CmpRHS are both known to be integer constants.
5679Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5680 ConstantInt *DivRHS) {
5681 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5682 const APInt &CmpRHSV = CmpRHS->getValue();
5683
5684 // FIXME: If the operand types don't match the type of the divide
5685 // then don't attempt this transform. The code below doesn't have the
5686 // logic to deal with a signed divide and an unsigned compare (and
5687 // vice versa). This is because (x /s C1) <s C2 produces different
5688 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5689 // (x /u C1) <u C2. Simply casting the operands and result won't
5690 // work. :( The if statement below tests that condition and bails
5691 // if it finds it.
5692 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5693 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5694 return 0;
5695 if (DivRHS->isZero())
5696 return 0; // The ProdOV computation fails on divide by zero.
5697
5698 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5699 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5700 // C2 (CI). By solving for X we can turn this into a range check
5701 // instead of computing a divide.
5702 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5703
5704 // Determine if the product overflows by seeing if the product is
5705 // not equal to the divide. Make sure we do the same kind of divide
5706 // as in the LHS instruction that we're folding.
5707 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5708 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5709
5710 // Get the ICmp opcode
5711 ICmpInst::Predicate Pred = ICI.getPredicate();
5712
5713 // Figure out the interval that is being checked. For example, a comparison
5714 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5715 // Compute this interval based on the constants involved and the signedness of
5716 // the compare/divide. This computes a half-open interval, keeping track of
5717 // whether either value in the interval overflows. After analysis each
5718 // overflow variable is set to 0 if it's corresponding bound variable is valid
5719 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5720 int LoOverflow = 0, HiOverflow = 0;
5721 ConstantInt *LoBound = 0, *HiBound = 0;
5722
5723
5724 if (!DivIsSigned) { // udiv
5725 // e.g. X/5 op 3 --> [15, 20)
5726 LoBound = Prod;
5727 HiOverflow = LoOverflow = ProdOV;
5728 if (!HiOverflow)
5729 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00005730 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005731 if (CmpRHSV == 0) { // (X / pos) op 0
5732 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5733 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5734 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00005735 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005736 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5737 HiOverflow = LoOverflow = ProdOV;
5738 if (!HiOverflow)
5739 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5740 } else { // (X / pos) op neg
5741 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5742 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5743 LoOverflow = AddWithOverflow(LoBound, Prod,
5744 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5745 HiBound = AddOne(Prod);
5746 HiOverflow = ProdOV ? -1 : 0;
5747 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005748 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005749 if (CmpRHSV == 0) { // (X / neg) op 0
5750 // e.g. X/-5 op 0 --> [-4, 5)
5751 LoBound = AddOne(DivRHS);
5752 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5753 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5754 HiOverflow = 1; // [INTMIN+1, overflow)
5755 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5756 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005757 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005758 // e.g. X/-5 op 3 --> [-19, -14)
5759 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5760 if (!LoOverflow)
5761 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5762 HiBound = AddOne(Prod);
5763 } else { // (X / neg) op neg
5764 // e.g. X/-5 op -3 --> [15, 20)
5765 LoBound = Prod;
5766 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5767 HiBound = Subtract(Prod, DivRHS);
5768 }
5769
5770 // Dividing by a negative swaps the condition. LT <-> GT
5771 Pred = ICmpInst::getSwappedPredicate(Pred);
5772 }
5773
5774 Value *X = DivI->getOperand(0);
5775 switch (Pred) {
5776 default: assert(0 && "Unhandled icmp opcode!");
5777 case ICmpInst::ICMP_EQ:
5778 if (LoOverflow && HiOverflow)
5779 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5780 else if (HiOverflow)
5781 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5782 ICmpInst::ICMP_UGE, X, LoBound);
5783 else if (LoOverflow)
5784 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5785 ICmpInst::ICMP_ULT, X, HiBound);
5786 else
5787 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5788 case ICmpInst::ICMP_NE:
5789 if (LoOverflow && HiOverflow)
5790 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5791 else if (HiOverflow)
5792 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5793 ICmpInst::ICMP_ULT, X, LoBound);
5794 else if (LoOverflow)
5795 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5796 ICmpInst::ICMP_UGE, X, HiBound);
5797 else
5798 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5799 case ICmpInst::ICMP_ULT:
5800 case ICmpInst::ICMP_SLT:
5801 if (LoOverflow == +1) // Low bound is greater than input range.
5802 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5803 if (LoOverflow == -1) // Low bound is less than input range.
5804 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5805 return new ICmpInst(Pred, X, LoBound);
5806 case ICmpInst::ICMP_UGT:
5807 case ICmpInst::ICMP_SGT:
5808 if (HiOverflow == +1) // High bound greater than input range.
5809 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5810 else if (HiOverflow == -1) // High bound less than input range.
5811 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5812 if (Pred == ICmpInst::ICMP_UGT)
5813 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5814 else
5815 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5816 }
5817}
5818
5819
5820/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5821///
5822Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5823 Instruction *LHSI,
5824 ConstantInt *RHS) {
5825 const APInt &RHSV = RHS->getValue();
5826
5827 switch (LHSI->getOpcode()) {
5828 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5829 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5830 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5831 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005832 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5833 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005834 Value *CompareVal = LHSI->getOperand(0);
5835
5836 // If the sign bit of the XorCST is not set, there is no change to
5837 // the operation, just stop using the Xor.
5838 if (!XorCST->getValue().isNegative()) {
5839 ICI.setOperand(0, CompareVal);
5840 AddToWorkList(LHSI);
5841 return &ICI;
5842 }
5843
5844 // Was the old condition true if the operand is positive?
5845 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5846
5847 // If so, the new one isn't.
5848 isTrueIfPositive ^= true;
5849
5850 if (isTrueIfPositive)
5851 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5852 else
5853 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5854 }
5855 }
5856 break;
5857 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5858 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5859 LHSI->getOperand(0)->hasOneUse()) {
5860 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5861
5862 // If the LHS is an AND of a truncating cast, we can widen the
5863 // and/compare to be the input width without changing the value
5864 // produced, eliminating a cast.
5865 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5866 // We can do this transformation if either the AND constant does not
5867 // have its sign bit set or if it is an equality comparison.
5868 // Extending a relational comparison when we're checking the sign
5869 // bit would not work.
5870 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00005871 (ICI.isEquality() ||
5872 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005873 uint32_t BitWidth =
5874 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5875 APInt NewCST = AndCST->getValue();
5876 NewCST.zext(BitWidth);
5877 APInt NewCI = RHSV;
5878 NewCI.zext(BitWidth);
5879 Instruction *NewAnd =
5880 BinaryOperator::createAnd(Cast->getOperand(0),
5881 ConstantInt::get(NewCST),LHSI->getName());
5882 InsertNewInstBefore(NewAnd, ICI);
5883 return new ICmpInst(ICI.getPredicate(), NewAnd,
5884 ConstantInt::get(NewCI));
5885 }
5886 }
5887
5888 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5889 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5890 // happens a LOT in code produced by the C front-end, for bitfield
5891 // access.
5892 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5893 if (Shift && !Shift->isShift())
5894 Shift = 0;
5895
5896 ConstantInt *ShAmt;
5897 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5898 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5899 const Type *AndTy = AndCST->getType(); // Type of the and.
5900
5901 // We can fold this as long as we can't shift unknown bits
5902 // into the mask. This can only happen with signed shift
5903 // rights, as they sign-extend.
5904 if (ShAmt) {
5905 bool CanFold = Shift->isLogicalShift();
5906 if (!CanFold) {
5907 // To test for the bad case of the signed shr, see if any
5908 // of the bits shifted in could be tested after the mask.
5909 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5910 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5911
5912 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5913 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5914 AndCST->getValue()) == 0)
5915 CanFold = true;
5916 }
5917
5918 if (CanFold) {
5919 Constant *NewCst;
5920 if (Shift->getOpcode() == Instruction::Shl)
5921 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5922 else
5923 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5924
5925 // Check to see if we are shifting out any of the bits being
5926 // compared.
5927 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5928 // If we shifted bits out, the fold is not going to work out.
5929 // As a special case, check to see if this means that the
5930 // result is always true or false now.
5931 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5932 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5933 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5934 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5935 } else {
5936 ICI.setOperand(1, NewCst);
5937 Constant *NewAndCST;
5938 if (Shift->getOpcode() == Instruction::Shl)
5939 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5940 else
5941 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5942 LHSI->setOperand(1, NewAndCST);
5943 LHSI->setOperand(0, Shift->getOperand(0));
5944 AddToWorkList(Shift); // Shift is dead.
5945 AddUsesToWorkList(ICI);
5946 return &ICI;
5947 }
5948 }
5949 }
5950
5951 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5952 // preferable because it allows the C<<Y expression to be hoisted out
5953 // of a loop if Y is invariant and X is not.
5954 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5955 ICI.isEquality() && !Shift->isArithmeticShift() &&
5956 isa<Instruction>(Shift->getOperand(0))) {
5957 // Compute C << Y.
5958 Value *NS;
5959 if (Shift->getOpcode() == Instruction::LShr) {
5960 NS = BinaryOperator::createShl(AndCST,
5961 Shift->getOperand(1), "tmp");
5962 } else {
5963 // Insert a logical shift.
5964 NS = BinaryOperator::createLShr(AndCST,
5965 Shift->getOperand(1), "tmp");
5966 }
5967 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5968
5969 // Compute X & (C << Y).
5970 Instruction *NewAnd =
5971 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
5972 InsertNewInstBefore(NewAnd, ICI);
5973
5974 ICI.setOperand(0, NewAnd);
5975 return &ICI;
5976 }
5977 }
5978 break;
5979
5980 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5981 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5982 if (!ShAmt) break;
5983
5984 uint32_t TypeBits = RHSV.getBitWidth();
5985
5986 // Check that the shift amount is in range. If not, don't perform
5987 // undefined shifts. When the shift is visited it will be
5988 // simplified.
5989 if (ShAmt->uge(TypeBits))
5990 break;
5991
5992 if (ICI.isEquality()) {
5993 // If we are comparing against bits always shifted out, the
5994 // comparison cannot succeed.
5995 Constant *Comp =
5996 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5997 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5998 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5999 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6000 return ReplaceInstUsesWith(ICI, Cst);
6001 }
6002
6003 if (LHSI->hasOneUse()) {
6004 // Otherwise strength reduce the shift into an and.
6005 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6006 Constant *Mask =
6007 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6008
6009 Instruction *AndI =
6010 BinaryOperator::createAnd(LHSI->getOperand(0),
6011 Mask, LHSI->getName()+".mask");
6012 Value *And = InsertNewInstBefore(AndI, ICI);
6013 return new ICmpInst(ICI.getPredicate(), And,
6014 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6015 }
6016 }
6017
6018 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6019 bool TrueIfSigned = false;
6020 if (LHSI->hasOneUse() &&
6021 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6022 // (X << 31) <s 0 --> (X&1) != 0
6023 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6024 (TypeBits-ShAmt->getZExtValue()-1));
6025 Instruction *AndI =
6026 BinaryOperator::createAnd(LHSI->getOperand(0),
6027 Mask, LHSI->getName()+".mask");
6028 Value *And = InsertNewInstBefore(AndI, ICI);
6029
6030 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6031 And, Constant::getNullValue(And->getType()));
6032 }
6033 break;
6034 }
6035
6036 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6037 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006038 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006039 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006040 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006041
Chris Lattner5ee84f82008-03-21 05:19:58 +00006042 // Check that the shift amount is in range. If not, don't perform
6043 // undefined shifts. When the shift is visited it will be
6044 // simplified.
6045 uint32_t TypeBits = RHSV.getBitWidth();
6046 if (ShAmt->uge(TypeBits))
6047 break;
6048
6049 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006050
Chris Lattner5ee84f82008-03-21 05:19:58 +00006051 // If we are comparing against bits always shifted out, the
6052 // comparison cannot succeed.
6053 APInt Comp = RHSV << ShAmtVal;
6054 if (LHSI->getOpcode() == Instruction::LShr)
6055 Comp = Comp.lshr(ShAmtVal);
6056 else
6057 Comp = Comp.ashr(ShAmtVal);
6058
6059 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6060 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6061 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6062 return ReplaceInstUsesWith(ICI, Cst);
6063 }
6064
6065 // Otherwise, check to see if the bits shifted out are known to be zero.
6066 // If so, we can compare against the unshifted value:
6067 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
6068 if (MaskedValueIsZero(LHSI->getOperand(0),
6069 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6070 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6071 ConstantExpr::getShl(RHS, ShAmt));
6072 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006073
Chris Lattner5ee84f82008-03-21 05:19:58 +00006074 if (LHSI->hasOneUse() || RHSV == 0) {
6075 // Otherwise strength reduce the shift into an and.
6076 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6077 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006078
Chris Lattner5ee84f82008-03-21 05:19:58 +00006079 Instruction *AndI =
6080 BinaryOperator::createAnd(LHSI->getOperand(0),
6081 Mask, LHSI->getName()+".mask");
6082 Value *And = InsertNewInstBefore(AndI, ICI);
6083 return new ICmpInst(ICI.getPredicate(), And,
6084 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006085 }
6086 break;
6087 }
6088
6089 case Instruction::SDiv:
6090 case Instruction::UDiv:
6091 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6092 // Fold this div into the comparison, producing a range check.
6093 // Determine, based on the divide type, what the range is being
6094 // checked. If there is an overflow on the low or high side, remember
6095 // it, otherwise compute the range [low, hi) bounding the new value.
6096 // See: InsertRangeTest above for the kinds of replacements possible.
6097 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6098 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6099 DivRHS))
6100 return R;
6101 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006102
6103 case Instruction::Add:
6104 // Fold: icmp pred (add, X, C1), C2
6105
6106 if (!ICI.isEquality()) {
6107 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6108 if (!LHSC) break;
6109 const APInt &LHSV = LHSC->getValue();
6110
6111 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6112 .subtract(LHSV);
6113
6114 if (ICI.isSignedPredicate()) {
6115 if (CR.getLower().isSignBit()) {
6116 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6117 ConstantInt::get(CR.getUpper()));
6118 } else if (CR.getUpper().isSignBit()) {
6119 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6120 ConstantInt::get(CR.getLower()));
6121 }
6122 } else {
6123 if (CR.getLower().isMinValue()) {
6124 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6125 ConstantInt::get(CR.getUpper()));
6126 } else if (CR.getUpper().isMinValue()) {
6127 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6128 ConstantInt::get(CR.getLower()));
6129 }
6130 }
6131 }
6132 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006133 }
6134
6135 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6136 if (ICI.isEquality()) {
6137 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6138
6139 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6140 // the second operand is a constant, simplify a bit.
6141 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6142 switch (BO->getOpcode()) {
6143 case Instruction::SRem:
6144 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6145 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6146 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6147 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6148 Instruction *NewRem =
6149 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
6150 BO->getName());
6151 InsertNewInstBefore(NewRem, ICI);
6152 return new ICmpInst(ICI.getPredicate(), NewRem,
6153 Constant::getNullValue(BO->getType()));
6154 }
6155 }
6156 break;
6157 case Instruction::Add:
6158 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6159 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6160 if (BO->hasOneUse())
6161 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6162 Subtract(RHS, BOp1C));
6163 } else if (RHSV == 0) {
6164 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6165 // efficiently invertible, or if the add has just this one use.
6166 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6167
6168 if (Value *NegVal = dyn_castNegVal(BOp1))
6169 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6170 else if (Value *NegVal = dyn_castNegVal(BOp0))
6171 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6172 else if (BO->hasOneUse()) {
6173 Instruction *Neg = BinaryOperator::createNeg(BOp1);
6174 InsertNewInstBefore(Neg, ICI);
6175 Neg->takeName(BO);
6176 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6177 }
6178 }
6179 break;
6180 case Instruction::Xor:
6181 // For the xor case, we can xor two constants together, eliminating
6182 // the explicit xor.
6183 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6184 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6185 ConstantExpr::getXor(RHS, BOC));
6186
6187 // FALLTHROUGH
6188 case Instruction::Sub:
6189 // Replace (([sub|xor] A, B) != 0) with (A != B)
6190 if (RHSV == 0)
6191 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6192 BO->getOperand(1));
6193 break;
6194
6195 case Instruction::Or:
6196 // If bits are being or'd in that are not present in the constant we
6197 // are comparing against, then the comparison could never succeed!
6198 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6199 Constant *NotCI = ConstantExpr::getNot(RHS);
6200 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6201 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6202 isICMP_NE));
6203 }
6204 break;
6205
6206 case Instruction::And:
6207 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6208 // If bits are being compared against that are and'd out, then the
6209 // comparison can never succeed!
6210 if ((RHSV & ~BOC->getValue()) != 0)
6211 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6212 isICMP_NE));
6213
6214 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6215 if (RHS == BOC && RHSV.isPowerOf2())
6216 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6217 ICmpInst::ICMP_NE, LHSI,
6218 Constant::getNullValue(RHS->getType()));
6219
6220 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
6221 if (isSignBit(BOC)) {
6222 Value *X = BO->getOperand(0);
6223 Constant *Zero = Constant::getNullValue(X->getType());
6224 ICmpInst::Predicate pred = isICMP_NE ?
6225 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6226 return new ICmpInst(pred, X, Zero);
6227 }
6228
6229 // ((X & ~7) == 0) --> X < 8
6230 if (RHSV == 0 && isHighOnes(BOC)) {
6231 Value *X = BO->getOperand(0);
6232 Constant *NegX = ConstantExpr::getNeg(BOC);
6233 ICmpInst::Predicate pred = isICMP_NE ?
6234 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6235 return new ICmpInst(pred, X, NegX);
6236 }
6237 }
6238 default: break;
6239 }
6240 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6241 // Handle icmp {eq|ne} <intrinsic>, intcst.
6242 if (II->getIntrinsicID() == Intrinsic::bswap) {
6243 AddToWorkList(II);
6244 ICI.setOperand(0, II->getOperand(1));
6245 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6246 return &ICI;
6247 }
6248 }
6249 } else { // Not a ICMP_EQ/ICMP_NE
6250 // If the LHS is a cast from an integral value of the same size,
6251 // then since we know the RHS is a constant, try to simlify.
6252 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6253 Value *CastOp = Cast->getOperand(0);
6254 const Type *SrcTy = CastOp->getType();
6255 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6256 if (SrcTy->isInteger() &&
6257 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6258 // If this is an unsigned comparison, try to make the comparison use
6259 // smaller constant values.
6260 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6261 // X u< 128 => X s> -1
6262 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6263 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6264 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6265 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6266 // X u> 127 => X s< 0
6267 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6268 Constant::getNullValue(SrcTy));
6269 }
6270 }
6271 }
6272 }
6273 return 0;
6274}
6275
6276/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6277/// We only handle extending casts so far.
6278///
6279Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6280 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6281 Value *LHSCIOp = LHSCI->getOperand(0);
6282 const Type *SrcTy = LHSCIOp->getType();
6283 const Type *DestTy = LHSCI->getType();
6284 Value *RHSCIOp;
6285
6286 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6287 // integer type is the same size as the pointer type.
6288 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6289 getTargetData().getPointerSizeInBits() ==
6290 cast<IntegerType>(DestTy)->getBitWidth()) {
6291 Value *RHSOp = 0;
6292 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6293 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6294 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6295 RHSOp = RHSC->getOperand(0);
6296 // If the pointer types don't match, insert a bitcast.
6297 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006298 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006299 }
6300
6301 if (RHSOp)
6302 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6303 }
6304
6305 // The code below only handles extension cast instructions, so far.
6306 // Enforce this.
6307 if (LHSCI->getOpcode() != Instruction::ZExt &&
6308 LHSCI->getOpcode() != Instruction::SExt)
6309 return 0;
6310
6311 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6312 bool isSignedCmp = ICI.isSignedPredicate();
6313
6314 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6315 // Not an extension from the same type?
6316 RHSCIOp = CI->getOperand(0);
6317 if (RHSCIOp->getType() != LHSCIOp->getType())
6318 return 0;
6319
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006320 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006321 // and the other is a zext), then we can't handle this.
6322 if (CI->getOpcode() != LHSCI->getOpcode())
6323 return 0;
6324
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006325 // Deal with equality cases early.
6326 if (ICI.isEquality())
6327 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6328
6329 // A signed comparison of sign extended values simplifies into a
6330 // signed comparison.
6331 if (isSignedCmp && isSignedExt)
6332 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6333
6334 // The other three cases all fold into an unsigned comparison.
6335 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006336 }
6337
6338 // If we aren't dealing with a constant on the RHS, exit early
6339 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6340 if (!CI)
6341 return 0;
6342
6343 // Compute the constant that would happen if we truncated to SrcTy then
6344 // reextended to DestTy.
6345 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6346 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6347
6348 // If the re-extended constant didn't change...
6349 if (Res2 == CI) {
6350 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6351 // For example, we might have:
6352 // %A = sext short %X to uint
6353 // %B = icmp ugt uint %A, 1330
6354 // It is incorrect to transform this into
6355 // %B = icmp ugt short %X, 1330
6356 // because %A may have negative value.
6357 //
6358 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6359 // OR operation is EQ/NE.
6360 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
6361 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6362 else
6363 return 0;
6364 }
6365
6366 // The re-extended constant changed so the constant cannot be represented
6367 // in the shorter type. Consequently, we cannot emit a simple comparison.
6368
6369 // First, handle some easy cases. We know the result cannot be equal at this
6370 // point so handle the ICI.isEquality() cases
6371 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6372 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6373 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6374 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6375
6376 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6377 // should have been folded away previously and not enter in here.
6378 Value *Result;
6379 if (isSignedCmp) {
6380 // We're performing a signed comparison.
6381 if (cast<ConstantInt>(CI)->getValue().isNegative())
6382 Result = ConstantInt::getFalse(); // X < (small) --> false
6383 else
6384 Result = ConstantInt::getTrue(); // X < (large) --> true
6385 } else {
6386 // We're performing an unsigned comparison.
6387 if (isSignedExt) {
6388 // We're performing an unsigned comp with a sign extended value.
6389 // This is true if the input is >= 0. [aka >s -1]
6390 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6391 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6392 NegOne, ICI.getName()), ICI);
6393 } else {
6394 // Unsigned extend & unsigned compare -> always true.
6395 Result = ConstantInt::getTrue();
6396 }
6397 }
6398
6399 // Finally, return the value computed.
6400 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6401 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6402 return ReplaceInstUsesWith(ICI, Result);
6403 } else {
6404 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6405 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6406 "ICmp should be folded!");
6407 if (Constant *CI = dyn_cast<Constant>(Result))
6408 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6409 else
6410 return BinaryOperator::createNot(Result);
6411 }
6412}
6413
6414Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6415 return commonShiftTransforms(I);
6416}
6417
6418Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6419 return commonShiftTransforms(I);
6420}
6421
6422Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006423 if (Instruction *R = commonShiftTransforms(I))
6424 return R;
6425
6426 Value *Op0 = I.getOperand(0);
6427
6428 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6429 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6430 if (CSI->isAllOnesValue())
6431 return ReplaceInstUsesWith(I, CSI);
6432
6433 // See if we can turn a signed shr into an unsigned shr.
6434 if (MaskedValueIsZero(Op0,
6435 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
6436 return BinaryOperator::createLShr(Op0, I.getOperand(1));
6437
6438 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006439}
6440
6441Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6442 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6443 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6444
6445 // shl X, 0 == X and shr X, 0 == X
6446 // shl 0, X == 0 and shr 0, X == 0
6447 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6448 Op0 == Constant::getNullValue(Op0->getType()))
6449 return ReplaceInstUsesWith(I, Op0);
6450
6451 if (isa<UndefValue>(Op0)) {
6452 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6453 return ReplaceInstUsesWith(I, Op0);
6454 else // undef << X -> 0, undef >>u X -> 0
6455 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6456 }
6457 if (isa<UndefValue>(Op1)) {
6458 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6459 return ReplaceInstUsesWith(I, Op0);
6460 else // X << undef, X >>u undef -> 0
6461 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6462 }
6463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006464 // Try to fold constant and into select arguments.
6465 if (isa<Constant>(Op0))
6466 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6467 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6468 return R;
6469
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006470 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6471 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6472 return Res;
6473 return 0;
6474}
6475
6476Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6477 BinaryOperator &I) {
6478 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6479
6480 // See if we can simplify any instructions used by the instruction whose sole
6481 // purpose is to compute bits we don't care about.
6482 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6483 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6484 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6485 KnownZero, KnownOne))
6486 return &I;
6487
6488 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6489 // of a signed value.
6490 //
6491 if (Op1->uge(TypeBits)) {
6492 if (I.getOpcode() != Instruction::AShr)
6493 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6494 else {
6495 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6496 return &I;
6497 }
6498 }
6499
6500 // ((X*C1) << C2) == (X * (C1 << C2))
6501 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6502 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6503 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
6504 return BinaryOperator::createMul(BO->getOperand(0),
6505 ConstantExpr::getShl(BOOp, Op1));
6506
6507 // Try to fold constant and into select arguments.
6508 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6509 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6510 return R;
6511 if (isa<PHINode>(Op0))
6512 if (Instruction *NV = FoldOpIntoPhi(I))
6513 return NV;
6514
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006515 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6516 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6517 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6518 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6519 // place. Don't try to do this transformation in this case. Also, we
6520 // require that the input operand is a shift-by-constant so that we have
6521 // confidence that the shifts will get folded together. We could do this
6522 // xform in more cases, but it is unlikely to be profitable.
6523 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6524 isa<ConstantInt>(TrOp->getOperand(1))) {
6525 // Okay, we'll do this xform. Make the shift of shift.
6526 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
6527 Instruction *NSh = BinaryOperator::create(I.getOpcode(), TrOp, ShAmt,
6528 I.getName());
6529 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6530
6531 // For logical shifts, the truncation has the effect of making the high
6532 // part of the register be zeros. Emulate this by inserting an AND to
6533 // clear the top bits as needed. This 'and' will usually be zapped by
6534 // other xforms later if dead.
6535 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6536 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6537 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6538
6539 // The mask we constructed says what the trunc would do if occurring
6540 // between the shifts. We want to know the effect *after* the second
6541 // shift. We know that it is a logical shift by a constant, so adjust the
6542 // mask as appropriate.
6543 if (I.getOpcode() == Instruction::Shl)
6544 MaskV <<= Op1->getZExtValue();
6545 else {
6546 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6547 MaskV = MaskV.lshr(Op1->getZExtValue());
6548 }
6549
6550 Instruction *And = BinaryOperator::createAnd(NSh, ConstantInt::get(MaskV),
6551 TI->getName());
6552 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6553
6554 // Return the value truncated to the interesting size.
6555 return new TruncInst(And, I.getType());
6556 }
6557 }
6558
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006559 if (Op0->hasOneUse()) {
6560 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6561 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6562 Value *V1, *V2;
6563 ConstantInt *CC;
6564 switch (Op0BO->getOpcode()) {
6565 default: break;
6566 case Instruction::Add:
6567 case Instruction::And:
6568 case Instruction::Or:
6569 case Instruction::Xor: {
6570 // These operators commute.
6571 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6572 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6573 match(Op0BO->getOperand(1),
6574 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6575 Instruction *YS = BinaryOperator::createShl(
6576 Op0BO->getOperand(0), Op1,
6577 Op0BO->getName());
6578 InsertNewInstBefore(YS, I); // (Y << C)
6579 Instruction *X =
6580 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6581 Op0BO->getOperand(1)->getName());
6582 InsertNewInstBefore(X, I); // (X + (Y << C))
6583 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6584 return BinaryOperator::createAnd(X, ConstantInt::get(
6585 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6586 }
6587
6588 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6589 Value *Op0BOOp1 = Op0BO->getOperand(1);
6590 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6591 match(Op0BOOp1,
6592 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6593 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6594 V2 == Op1) {
6595 Instruction *YS = BinaryOperator::createShl(
6596 Op0BO->getOperand(0), Op1,
6597 Op0BO->getName());
6598 InsertNewInstBefore(YS, I); // (Y << C)
6599 Instruction *XM =
6600 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6601 V1->getName()+".mask");
6602 InsertNewInstBefore(XM, I); // X & (CC << C)
6603
6604 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6605 }
6606 }
6607
6608 // FALL THROUGH.
6609 case Instruction::Sub: {
6610 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6611 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6612 match(Op0BO->getOperand(0),
6613 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6614 Instruction *YS = BinaryOperator::createShl(
6615 Op0BO->getOperand(1), Op1,
6616 Op0BO->getName());
6617 InsertNewInstBefore(YS, I); // (Y << C)
6618 Instruction *X =
6619 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
6620 Op0BO->getOperand(0)->getName());
6621 InsertNewInstBefore(X, I); // (X + (Y << C))
6622 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6623 return BinaryOperator::createAnd(X, ConstantInt::get(
6624 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6625 }
6626
6627 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6628 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6629 match(Op0BO->getOperand(0),
6630 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6631 m_ConstantInt(CC))) && V2 == Op1 &&
6632 cast<BinaryOperator>(Op0BO->getOperand(0))
6633 ->getOperand(0)->hasOneUse()) {
6634 Instruction *YS = BinaryOperator::createShl(
6635 Op0BO->getOperand(1), Op1,
6636 Op0BO->getName());
6637 InsertNewInstBefore(YS, I); // (Y << C)
6638 Instruction *XM =
6639 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6640 V1->getName()+".mask");
6641 InsertNewInstBefore(XM, I); // X & (CC << C)
6642
6643 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
6644 }
6645
6646 break;
6647 }
6648 }
6649
6650
6651 // If the operand is an bitwise operator with a constant RHS, and the
6652 // shift is the only use, we can pull it out of the shift.
6653 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6654 bool isValid = true; // Valid only for And, Or, Xor
6655 bool highBitSet = false; // Transform if high bit of constant set?
6656
6657 switch (Op0BO->getOpcode()) {
6658 default: isValid = false; break; // Do not perform transform!
6659 case Instruction::Add:
6660 isValid = isLeftShift;
6661 break;
6662 case Instruction::Or:
6663 case Instruction::Xor:
6664 highBitSet = false;
6665 break;
6666 case Instruction::And:
6667 highBitSet = true;
6668 break;
6669 }
6670
6671 // If this is a signed shift right, and the high bit is modified
6672 // by the logical operation, do not perform the transformation.
6673 // The highBitSet boolean indicates the value of the high bit of
6674 // the constant which would cause it to be modified for this
6675 // operation.
6676 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006677 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006678 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006679
6680 if (isValid) {
6681 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6682
6683 Instruction *NewShift =
6684 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
6685 InsertNewInstBefore(NewShift, I);
6686 NewShift->takeName(Op0BO);
6687
6688 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6689 NewRHS);
6690 }
6691 }
6692 }
6693 }
6694
6695 // Find out if this is a shift of a shift by a constant.
6696 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6697 if (ShiftOp && !ShiftOp->isShift())
6698 ShiftOp = 0;
6699
6700 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6701 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6702 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6703 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6704 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6705 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6706 Value *X = ShiftOp->getOperand(0);
6707
6708 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6709 if (AmtSum > TypeBits)
6710 AmtSum = TypeBits;
6711
6712 const IntegerType *Ty = cast<IntegerType>(I.getType());
6713
6714 // Check for (X << c1) << c2 and (X >> c1) >> c2
6715 if (I.getOpcode() == ShiftOp->getOpcode()) {
6716 return BinaryOperator::create(I.getOpcode(), X,
6717 ConstantInt::get(Ty, AmtSum));
6718 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6719 I.getOpcode() == Instruction::AShr) {
6720 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6721 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6722 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6723 I.getOpcode() == Instruction::LShr) {
6724 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6725 Instruction *Shift =
6726 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6727 InsertNewInstBefore(Shift, I);
6728
6729 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6730 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6731 }
6732
6733 // Okay, if we get here, one shift must be left, and the other shift must be
6734 // right. See if the amounts are equal.
6735 if (ShiftAmt1 == ShiftAmt2) {
6736 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6737 if (I.getOpcode() == Instruction::Shl) {
6738 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
6739 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6740 }
6741 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6742 if (I.getOpcode() == Instruction::LShr) {
6743 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
6744 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6745 }
6746 // We can simplify ((X << C) >>s C) into a trunc + sext.
6747 // NOTE: we could do this for any C, but that would make 'unusual' integer
6748 // types. For now, just stick to ones well-supported by the code
6749 // generators.
6750 const Type *SExtType = 0;
6751 switch (Ty->getBitWidth() - ShiftAmt1) {
6752 case 1 :
6753 case 8 :
6754 case 16 :
6755 case 32 :
6756 case 64 :
6757 case 128:
6758 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6759 break;
6760 default: break;
6761 }
6762 if (SExtType) {
6763 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6764 InsertNewInstBefore(NewTrunc, I);
6765 return new SExtInst(NewTrunc, Ty);
6766 }
6767 // Otherwise, we can't handle it yet.
6768 } else if (ShiftAmt1 < ShiftAmt2) {
6769 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6770
6771 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6772 if (I.getOpcode() == Instruction::Shl) {
6773 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6774 ShiftOp->getOpcode() == Instruction::AShr);
6775 Instruction *Shift =
6776 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6777 InsertNewInstBefore(Shift, I);
6778
6779 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6780 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6781 }
6782
6783 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6784 if (I.getOpcode() == Instruction::LShr) {
6785 assert(ShiftOp->getOpcode() == Instruction::Shl);
6786 Instruction *Shift =
6787 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6788 InsertNewInstBefore(Shift, I);
6789
6790 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6791 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6792 }
6793
6794 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6795 } else {
6796 assert(ShiftAmt2 < ShiftAmt1);
6797 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6798
6799 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6800 if (I.getOpcode() == Instruction::Shl) {
6801 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6802 ShiftOp->getOpcode() == Instruction::AShr);
6803 Instruction *Shift =
6804 BinaryOperator::create(ShiftOp->getOpcode(), X,
6805 ConstantInt::get(Ty, ShiftDiff));
6806 InsertNewInstBefore(Shift, I);
6807
6808 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6809 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6810 }
6811
6812 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6813 if (I.getOpcode() == Instruction::LShr) {
6814 assert(ShiftOp->getOpcode() == Instruction::Shl);
6815 Instruction *Shift =
6816 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6817 InsertNewInstBefore(Shift, I);
6818
6819 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6820 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6821 }
6822
6823 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6824 }
6825 }
6826 return 0;
6827}
6828
6829
6830/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6831/// expression. If so, decompose it, returning some value X, such that Val is
6832/// X*Scale+Offset.
6833///
6834static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6835 int &Offset) {
6836 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6837 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6838 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006839 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006840 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006841 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6842 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6843 if (I->getOpcode() == Instruction::Shl) {
6844 // This is a value scaled by '1 << the shift amt'.
6845 Scale = 1U << RHS->getZExtValue();
6846 Offset = 0;
6847 return I->getOperand(0);
6848 } else if (I->getOpcode() == Instruction::Mul) {
6849 // This value is scaled by 'RHS'.
6850 Scale = RHS->getZExtValue();
6851 Offset = 0;
6852 return I->getOperand(0);
6853 } else if (I->getOpcode() == Instruction::Add) {
6854 // We have X+C. Check to see if we really have (X*C2)+C1,
6855 // where C1 is divisible by C2.
6856 unsigned SubScale;
6857 Value *SubVal =
6858 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6859 Offset += RHS->getZExtValue();
6860 Scale = SubScale;
6861 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006862 }
6863 }
6864 }
6865
6866 // Otherwise, we can't look past this.
6867 Scale = 1;
6868 Offset = 0;
6869 return Val;
6870}
6871
6872
6873/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6874/// try to eliminate the cast by moving the type information into the alloc.
6875Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6876 AllocationInst &AI) {
6877 const PointerType *PTy = cast<PointerType>(CI.getType());
6878
6879 // Remove any uses of AI that are dead.
6880 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6881
6882 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6883 Instruction *User = cast<Instruction>(*UI++);
6884 if (isInstructionTriviallyDead(User)) {
6885 while (UI != E && *UI == User)
6886 ++UI; // If this instruction uses AI more than once, don't break UI.
6887
6888 ++NumDeadInst;
6889 DOUT << "IC: DCE: " << *User;
6890 EraseInstFromFunction(*User);
6891 }
6892 }
6893
6894 // Get the type really allocated and the type casted to.
6895 const Type *AllocElTy = AI.getAllocatedType();
6896 const Type *CastElTy = PTy->getElementType();
6897 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6898
6899 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6900 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6901 if (CastElTyAlign < AllocElTyAlign) return 0;
6902
6903 // If the allocation has multiple uses, only promote it if we are strictly
6904 // increasing the alignment of the resultant allocation. If we keep it the
6905 // same, we open the door to infinite loops of various kinds.
6906 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6907
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006908 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6909 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006910 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6911
6912 // See if we can satisfy the modulus by pulling a scale out of the array
6913 // size argument.
6914 unsigned ArraySizeScale;
6915 int ArrayOffset;
6916 Value *NumElements = // See if the array size is a decomposable linear expr.
6917 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6918
6919 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6920 // do the xform.
6921 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6922 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6923
6924 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6925 Value *Amt = 0;
6926 if (Scale == 1) {
6927 Amt = NumElements;
6928 } else {
6929 // If the allocation size is constant, form a constant mul expression
6930 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6931 if (isa<ConstantInt>(NumElements))
6932 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6933 // otherwise multiply the amount and the number of elements
6934 else if (Scale != 1) {
6935 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6936 Amt = InsertNewInstBefore(Tmp, AI);
6937 }
6938 }
6939
6940 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6941 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
6942 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6943 Amt = InsertNewInstBefore(Tmp, AI);
6944 }
6945
6946 AllocationInst *New;
6947 if (isa<MallocInst>(AI))
6948 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6949 else
6950 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6951 InsertNewInstBefore(New, AI);
6952 New->takeName(&AI);
6953
6954 // If the allocation has multiple uses, insert a cast and change all things
6955 // that used it to use the new cast. This will also hack on CI, but it will
6956 // die soon.
6957 if (!AI.hasOneUse()) {
6958 AddUsesToWorkList(AI);
6959 // New is the allocation instruction, pointer typed. AI is the original
6960 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6961 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
6962 InsertNewInstBefore(NewCast, AI);
6963 AI.replaceAllUsesWith(NewCast);
6964 }
6965 return ReplaceInstUsesWith(CI, New);
6966}
6967
6968/// CanEvaluateInDifferentType - Return true if we can take the specified value
6969/// and return it as type Ty without inserting any new casts and without
6970/// changing the computed value. This is used by code that tries to decide
6971/// whether promoting or shrinking integer operations to wider or smaller types
6972/// will allow us to eliminate a truncate or extend.
6973///
6974/// This is a truncation operation if Ty is smaller than V->getType(), or an
6975/// extension operation if Ty is larger.
Dan Gohman2d648bb2008-04-10 18:43:06 +00006976bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
6977 unsigned CastOpc,
6978 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006979 // We can always evaluate constants in another type.
6980 if (isa<ConstantInt>(V))
6981 return true;
6982
6983 Instruction *I = dyn_cast<Instruction>(V);
6984 if (!I) return false;
6985
6986 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
6987
Chris Lattneref70bb82007-08-02 06:11:14 +00006988 // If this is an extension or truncate, we can often eliminate it.
6989 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6990 // If this is a cast from the destination type, we can trivially eliminate
6991 // it, and this will remove a cast overall.
6992 if (I->getOperand(0)->getType() == Ty) {
6993 // If the first operand is itself a cast, and is eliminable, do not count
6994 // this as an eliminable cast. We would prefer to eliminate those two
6995 // casts first.
6996 if (!isa<CastInst>(I->getOperand(0)))
6997 ++NumCastsRemoved;
6998 return true;
6999 }
7000 }
7001
7002 // We can't extend or shrink something that has multiple uses: doing so would
7003 // require duplicating the instruction in general, which isn't profitable.
7004 if (!I->hasOneUse()) return false;
7005
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007006 switch (I->getOpcode()) {
7007 case Instruction::Add:
7008 case Instruction::Sub:
7009 case Instruction::And:
7010 case Instruction::Or:
7011 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007012 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007013 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7014 NumCastsRemoved) &&
7015 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7016 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007017
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007018 case Instruction::Mul:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007019 // A multiply can be truncated by truncating its operands.
7020 return Ty->getBitWidth() < OrigTy->getBitWidth() &&
7021 CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7022 NumCastsRemoved) &&
7023 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7024 NumCastsRemoved);
7025
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007026 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007027 // If we are truncating the result of this SHL, and if it's a shift of a
7028 // constant amount, we can always perform a SHL in a smaller type.
7029 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7030 uint32_t BitWidth = Ty->getBitWidth();
7031 if (BitWidth < OrigTy->getBitWidth() &&
7032 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007033 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7034 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007035 }
7036 break;
7037 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007038 // If this is a truncate of a logical shr, we can truncate it to a smaller
7039 // lshr iff we know that the bits we would otherwise be shifting in are
7040 // already zeros.
7041 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7042 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7043 uint32_t BitWidth = Ty->getBitWidth();
7044 if (BitWidth < OrigBitWidth &&
7045 MaskedValueIsZero(I->getOperand(0),
7046 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7047 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007048 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7049 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007050 }
7051 }
7052 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007053 case Instruction::ZExt:
7054 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007055 case Instruction::Trunc:
7056 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007057 // can safely replace it. Note that replacing it does not reduce the number
7058 // of casts in the input.
7059 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007060 return true;
Chris Lattner2799b2f2007-09-10 23:46:29 +00007061
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007062 break;
7063 default:
7064 // TODO: Can handle more cases here.
7065 break;
7066 }
7067
7068 return false;
7069}
7070
7071/// EvaluateInDifferentType - Given an expression that
7072/// CanEvaluateInDifferentType returns true for, actually insert the code to
7073/// evaluate the expression.
7074Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7075 bool isSigned) {
7076 if (Constant *C = dyn_cast<Constant>(V))
7077 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7078
7079 // Otherwise, it must be an instruction.
7080 Instruction *I = cast<Instruction>(V);
7081 Instruction *Res = 0;
7082 switch (I->getOpcode()) {
7083 case Instruction::Add:
7084 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007085 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007086 case Instruction::And:
7087 case Instruction::Or:
7088 case Instruction::Xor:
7089 case Instruction::AShr:
7090 case Instruction::LShr:
7091 case Instruction::Shl: {
7092 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7093 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7094 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
7095 LHS, RHS, I->getName());
7096 break;
7097 }
7098 case Instruction::Trunc:
7099 case Instruction::ZExt:
7100 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007101 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007102 // just return the source. There's no need to insert it because it is not
7103 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007104 if (I->getOperand(0)->getType() == Ty)
7105 return I->getOperand(0);
7106
Chris Lattneref70bb82007-08-02 06:11:14 +00007107 // Otherwise, must be the same type of case, so just reinsert a new one.
7108 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
7109 Ty, I->getName());
7110 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007111 default:
7112 // TODO: Can handle more cases here.
7113 assert(0 && "Unreachable!");
7114 break;
7115 }
7116
7117 return InsertNewInstBefore(Res, *I);
7118}
7119
7120/// @brief Implement the transforms common to all CastInst visitors.
7121Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7122 Value *Src = CI.getOperand(0);
7123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007124 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7125 // eliminate it now.
7126 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7127 if (Instruction::CastOps opc =
7128 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7129 // The first cast (CSrc) is eliminable so we need to fix up or replace
7130 // the second cast (CI). CSrc will then have a good chance of being dead.
7131 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
7132 }
7133 }
7134
7135 // If we are casting a select then fold the cast into the select
7136 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7137 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7138 return NV;
7139
7140 // If we are casting a PHI then fold the cast into the PHI
7141 if (isa<PHINode>(Src))
7142 if (Instruction *NV = FoldOpIntoPhi(CI))
7143 return NV;
7144
7145 return 0;
7146}
7147
7148/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7149Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7150 Value *Src = CI.getOperand(0);
7151
7152 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7153 // If casting the result of a getelementptr instruction with no offset, turn
7154 // this into a cast of the original pointer!
7155 if (GEP->hasAllZeroIndices()) {
7156 // Changing the cast operand is usually not a good idea but it is safe
7157 // here because the pointer operand is being replaced with another
7158 // pointer operand so the opcode doesn't need to change.
7159 AddToWorkList(GEP);
7160 CI.setOperand(0, GEP->getOperand(0));
7161 return &CI;
7162 }
7163
7164 // If the GEP has a single use, and the base pointer is a bitcast, and the
7165 // GEP computes a constant offset, see if we can convert these three
7166 // instructions into fewer. This typically happens with unions and other
7167 // non-type-safe code.
7168 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7169 if (GEP->hasAllConstantIndices()) {
7170 // We are guaranteed to get a constant from EmitGEPOffset.
7171 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7172 int64_t Offset = OffsetV->getSExtValue();
7173
7174 // Get the base pointer input of the bitcast, and the type it points to.
7175 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7176 const Type *GEPIdxTy =
7177 cast<PointerType>(OrigBase->getType())->getElementType();
7178 if (GEPIdxTy->isSized()) {
7179 SmallVector<Value*, 8> NewIndices;
7180
7181 // Start with the index over the outer type. Note that the type size
7182 // might be zero (even if the offset isn't zero) if the indexed type
7183 // is something like [0 x {int, int}]
7184 const Type *IntPtrTy = TD->getIntPtrType();
7185 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007186 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007187 FirstIdx = Offset/TySize;
7188 Offset %= TySize;
7189
7190 // Handle silly modulus not returning values values [0..TySize).
7191 if (Offset < 0) {
7192 --FirstIdx;
7193 Offset += TySize;
7194 assert(Offset >= 0);
7195 }
7196 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7197 }
7198
7199 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7200
7201 // Index into the types. If we fail, set OrigBase to null.
7202 while (Offset) {
7203 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7204 const StructLayout *SL = TD->getStructLayout(STy);
7205 if (Offset < (int64_t)SL->getSizeInBytes()) {
7206 unsigned Elt = SL->getElementContainingOffset(Offset);
7207 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7208
7209 Offset -= SL->getElementOffset(Elt);
7210 GEPIdxTy = STy->getElementType(Elt);
7211 } else {
7212 // Otherwise, we can't index into this, bail out.
7213 Offset = 0;
7214 OrigBase = 0;
7215 }
7216 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7217 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007218 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007219 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7220 Offset %= EltSize;
7221 } else {
7222 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7223 }
7224 GEPIdxTy = STy->getElementType();
7225 } else {
7226 // Otherwise, we can't index into this, bail out.
7227 Offset = 0;
7228 OrigBase = 0;
7229 }
7230 }
7231 if (OrigBase) {
7232 // If we were able to index down into an element, create the GEP
7233 // and bitcast the result. This eliminates one bitcast, potentially
7234 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007235 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7236 NewIndices.begin(),
7237 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007238 InsertNewInstBefore(NGEP, CI);
7239 NGEP->takeName(GEP);
7240
7241 if (isa<BitCastInst>(CI))
7242 return new BitCastInst(NGEP, CI.getType());
7243 assert(isa<PtrToIntInst>(CI));
7244 return new PtrToIntInst(NGEP, CI.getType());
7245 }
7246 }
7247 }
7248 }
7249 }
7250
7251 return commonCastTransforms(CI);
7252}
7253
7254
7255
7256/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7257/// integer types. This function implements the common transforms for all those
7258/// cases.
7259/// @brief Implement the transforms common to CastInst with integer operands
7260Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7261 if (Instruction *Result = commonCastTransforms(CI))
7262 return Result;
7263
7264 Value *Src = CI.getOperand(0);
7265 const Type *SrcTy = Src->getType();
7266 const Type *DestTy = CI.getType();
7267 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7268 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7269
7270 // See if we can simplify any instructions used by the LHS whose sole
7271 // purpose is to compute bits we don't care about.
7272 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7273 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7274 KnownZero, KnownOne))
7275 return &CI;
7276
7277 // If the source isn't an instruction or has more than one use then we
7278 // can't do anything more.
7279 Instruction *SrcI = dyn_cast<Instruction>(Src);
7280 if (!SrcI || !Src->hasOneUse())
7281 return 0;
7282
7283 // Attempt to propagate the cast into the instruction for int->int casts.
7284 int NumCastsRemoved = 0;
7285 if (!isa<BitCastInst>(CI) &&
7286 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007287 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007288 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007289 // eliminates the cast, so it is always a win. If this is a zero-extension,
7290 // we need to do an AND to maintain the clear top-part of the computation,
7291 // so we require that the input have eliminated at least one cast. If this
7292 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007293 // require that two casts have been eliminated.
7294 bool DoXForm;
7295 switch (CI.getOpcode()) {
7296 default:
7297 // All the others use floating point so we shouldn't actually
7298 // get here because of the check above.
7299 assert(0 && "Unknown cast type");
7300 case Instruction::Trunc:
7301 DoXForm = true;
7302 break;
7303 case Instruction::ZExt:
7304 DoXForm = NumCastsRemoved >= 1;
7305 break;
7306 case Instruction::SExt:
7307 DoXForm = NumCastsRemoved >= 2;
7308 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007309 }
7310
7311 if (DoXForm) {
7312 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7313 CI.getOpcode() == Instruction::SExt);
7314 assert(Res->getType() == DestTy);
7315 switch (CI.getOpcode()) {
7316 default: assert(0 && "Unknown cast type!");
7317 case Instruction::Trunc:
7318 case Instruction::BitCast:
7319 // Just replace this cast with the result.
7320 return ReplaceInstUsesWith(CI, Res);
7321 case Instruction::ZExt: {
7322 // We need to emit an AND to clear the high bits.
7323 assert(SrcBitSize < DestBitSize && "Not a zext?");
7324 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7325 SrcBitSize));
7326 return BinaryOperator::createAnd(Res, C);
7327 }
7328 case Instruction::SExt:
7329 // We need to emit a cast to truncate, then a cast to sext.
7330 return CastInst::create(Instruction::SExt,
7331 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7332 CI), DestTy);
7333 }
7334 }
7335 }
7336
7337 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7338 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7339
7340 switch (SrcI->getOpcode()) {
7341 case Instruction::Add:
7342 case Instruction::Mul:
7343 case Instruction::And:
7344 case Instruction::Or:
7345 case Instruction::Xor:
7346 // If we are discarding information, rewrite.
7347 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7348 // Don't insert two casts if they cannot be eliminated. We allow
7349 // two casts to be inserted if the sizes are the same. This could
7350 // only be converting signedness, which is a noop.
7351 if (DestBitSize == SrcBitSize ||
7352 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7353 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7354 Instruction::CastOps opcode = CI.getOpcode();
7355 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7356 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7357 return BinaryOperator::create(
7358 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7359 }
7360 }
7361
7362 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7363 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7364 SrcI->getOpcode() == Instruction::Xor &&
7365 Op1 == ConstantInt::getTrue() &&
7366 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7367 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
7368 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
7369 }
7370 break;
7371 case Instruction::SDiv:
7372 case Instruction::UDiv:
7373 case Instruction::SRem:
7374 case Instruction::URem:
7375 // If we are just changing the sign, rewrite.
7376 if (DestBitSize == SrcBitSize) {
7377 // Don't insert two casts if they cannot be eliminated. We allow
7378 // two casts to be inserted if the sizes are the same. This could
7379 // only be converting signedness, which is a noop.
7380 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7381 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7382 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7383 Op0, DestTy, SrcI);
7384 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7385 Op1, DestTy, SrcI);
7386 return BinaryOperator::create(
7387 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7388 }
7389 }
7390 break;
7391
7392 case Instruction::Shl:
7393 // Allow changing the sign of the source operand. Do not allow
7394 // changing the size of the shift, UNLESS the shift amount is a
7395 // constant. We must not change variable sized shifts to a smaller
7396 // size, because it is undefined to shift more bits out than exist
7397 // in the value.
7398 if (DestBitSize == SrcBitSize ||
7399 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7400 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7401 Instruction::BitCast : Instruction::Trunc);
7402 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7403 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7404 return BinaryOperator::createShl(Op0c, Op1c);
7405 }
7406 break;
7407 case Instruction::AShr:
7408 // If this is a signed shr, and if all bits shifted in are about to be
7409 // truncated off, turn it into an unsigned shr to allow greater
7410 // simplifications.
7411 if (DestBitSize < SrcBitSize &&
7412 isa<ConstantInt>(Op1)) {
7413 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7414 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7415 // Insert the new logical shift right.
7416 return BinaryOperator::createLShr(Op0, Op1);
7417 }
7418 }
7419 break;
7420 }
7421 return 0;
7422}
7423
7424Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7425 if (Instruction *Result = commonIntCastTransforms(CI))
7426 return Result;
7427
7428 Value *Src = CI.getOperand(0);
7429 const Type *Ty = CI.getType();
7430 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7431 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7432
7433 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7434 switch (SrcI->getOpcode()) {
7435 default: break;
7436 case Instruction::LShr:
7437 // We can shrink lshr to something smaller if we know the bits shifted in
7438 // are already zeros.
7439 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7440 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7441
7442 // Get a mask for the bits shifting in.
7443 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7444 Value* SrcIOp0 = SrcI->getOperand(0);
7445 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7446 if (ShAmt >= DestBitWidth) // All zeros.
7447 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7448
7449 // Okay, we can shrink this. Truncate the input, then return a new
7450 // shift.
7451 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7452 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7453 Ty, CI);
7454 return BinaryOperator::createLShr(V1, V2);
7455 }
7456 } else { // This is a variable shr.
7457
7458 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7459 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7460 // loop-invariant and CSE'd.
7461 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7462 Value *One = ConstantInt::get(SrcI->getType(), 1);
7463
7464 Value *V = InsertNewInstBefore(
7465 BinaryOperator::createShl(One, SrcI->getOperand(1),
7466 "tmp"), CI);
7467 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
7468 SrcI->getOperand(0),
7469 "tmp"), CI);
7470 Value *Zero = Constant::getNullValue(V->getType());
7471 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7472 }
7473 }
7474 break;
7475 }
7476 }
7477
7478 return 0;
7479}
7480
Evan Chenge3779cf2008-03-24 00:21:34 +00007481/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7482/// in order to eliminate the icmp.
7483Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7484 bool DoXform) {
7485 // If we are just checking for a icmp eq of a single bit and zext'ing it
7486 // to an integer, then shift the bit to the appropriate place and then
7487 // cast to integer to avoid the comparison.
7488 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7489 const APInt &Op1CV = Op1C->getValue();
7490
7491 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7492 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7493 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7494 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7495 if (!DoXform) return ICI;
7496
7497 Value *In = ICI->getOperand(0);
7498 Value *Sh = ConstantInt::get(In->getType(),
7499 In->getType()->getPrimitiveSizeInBits()-1);
7500 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
7501 In->getName()+".lobit"),
7502 CI);
7503 if (In->getType() != CI.getType())
7504 In = CastInst::createIntegerCast(In, CI.getType(),
7505 false/*ZExt*/, "tmp", &CI);
7506
7507 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7508 Constant *One = ConstantInt::get(In->getType(), 1);
7509 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
7510 In->getName()+".not"),
7511 CI);
7512 }
7513
7514 return ReplaceInstUsesWith(CI, In);
7515 }
7516
7517
7518
7519 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7520 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7521 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7522 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7523 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7524 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7525 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7526 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7527 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7528 // This only works for EQ and NE
7529 ICI->isEquality()) {
7530 // If Op1C some other power of two, convert:
7531 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7532 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7533 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7534 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7535
7536 APInt KnownZeroMask(~KnownZero);
7537 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7538 if (!DoXform) return ICI;
7539
7540 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7541 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7542 // (X&4) == 2 --> false
7543 // (X&4) != 2 --> true
7544 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7545 Res = ConstantExpr::getZExt(Res, CI.getType());
7546 return ReplaceInstUsesWith(CI, Res);
7547 }
7548
7549 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7550 Value *In = ICI->getOperand(0);
7551 if (ShiftAmt) {
7552 // Perform a logical shr by shiftamt.
7553 // Insert the shift to put the result in the low bit.
7554 In = InsertNewInstBefore(BinaryOperator::createLShr(In,
7555 ConstantInt::get(In->getType(), ShiftAmt),
7556 In->getName()+".lobit"), CI);
7557 }
7558
7559 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7560 Constant *One = ConstantInt::get(In->getType(), 1);
7561 In = BinaryOperator::createXor(In, One, "tmp");
7562 InsertNewInstBefore(cast<Instruction>(In), CI);
7563 }
7564
7565 if (CI.getType() == In->getType())
7566 return ReplaceInstUsesWith(CI, In);
7567 else
7568 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
7569 }
7570 }
7571 }
7572
7573 return 0;
7574}
7575
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007576Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7577 // If one of the common conversion will work ..
7578 if (Instruction *Result = commonIntCastTransforms(CI))
7579 return Result;
7580
7581 Value *Src = CI.getOperand(0);
7582
7583 // If this is a cast of a cast
7584 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7585 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7586 // types and if the sizes are just right we can convert this into a logical
7587 // 'and' which will be much cheaper than the pair of casts.
7588 if (isa<TruncInst>(CSrc)) {
7589 // Get the sizes of the types involved
7590 Value *A = CSrc->getOperand(0);
7591 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7592 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7593 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7594 // If we're actually extending zero bits and the trunc is a no-op
7595 if (MidSize < DstSize && SrcSize == DstSize) {
7596 // Replace both of the casts with an And of the type mask.
7597 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7598 Constant *AndConst = ConstantInt::get(AndValue);
7599 Instruction *And =
7600 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
7601 // Unfortunately, if the type changed, we need to cast it back.
7602 if (And->getType() != CI.getType()) {
7603 And->setName(CSrc->getName()+".mask");
7604 InsertNewInstBefore(And, CI);
7605 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
7606 }
7607 return And;
7608 }
7609 }
7610 }
7611
Evan Chenge3779cf2008-03-24 00:21:34 +00007612 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7613 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007614
Evan Chenge3779cf2008-03-24 00:21:34 +00007615 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7616 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7617 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7618 // of the (zext icmp) will be transformed.
7619 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7620 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7621 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7622 (transformZExtICmp(LHS, CI, false) ||
7623 transformZExtICmp(RHS, CI, false))) {
7624 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7625 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
7626 return BinaryOperator::create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007627 }
Evan Chenge3779cf2008-03-24 00:21:34 +00007628 }
7629
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007630 return 0;
7631}
7632
7633Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7634 if (Instruction *I = commonIntCastTransforms(CI))
7635 return I;
7636
7637 Value *Src = CI.getOperand(0);
7638
7639 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7640 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7641 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7642 // If we are just checking for a icmp eq of a single bit and zext'ing it
7643 // to an integer, then shift the bit to the appropriate place and then
7644 // cast to integer to avoid the comparison.
7645 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7646 const APInt &Op1CV = Op1C->getValue();
7647
7648 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7649 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7650 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7651 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7652 Value *In = ICI->getOperand(0);
7653 Value *Sh = ConstantInt::get(In->getType(),
7654 In->getType()->getPrimitiveSizeInBits()-1);
7655 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
7656 In->getName()+".lobit"),
7657 CI);
7658 if (In->getType() != CI.getType())
7659 In = CastInst::createIntegerCast(In, CI.getType(),
7660 true/*SExt*/, "tmp", &CI);
7661
7662 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
7663 In = InsertNewInstBefore(BinaryOperator::createNot(In,
7664 In->getName()+".not"), CI);
7665
7666 return ReplaceInstUsesWith(CI, In);
7667 }
7668 }
7669 }
7670
7671 return 0;
7672}
7673
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007674/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7675/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007676static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007677 APFloat F = CFP->getValueAPF();
7678 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
Chris Lattner5e0610f2008-04-20 00:41:09 +00007679 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007680 return 0;
7681}
7682
7683/// LookThroughFPExtensions - If this is an fp extension instruction, look
7684/// through it until we get the source value.
7685static Value *LookThroughFPExtensions(Value *V) {
7686 if (Instruction *I = dyn_cast<Instruction>(V))
7687 if (I->getOpcode() == Instruction::FPExt)
7688 return LookThroughFPExtensions(I->getOperand(0));
7689
7690 // If this value is a constant, return the constant in the smallest FP type
7691 // that can accurately represent it. This allows us to turn
7692 // (float)((double)X+2.0) into x+2.0f.
7693 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7694 if (CFP->getType() == Type::PPC_FP128Ty)
7695 return V; // No constant folding of this.
7696 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007697 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007698 return V;
7699 if (CFP->getType() == Type::DoubleTy)
7700 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007701 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007702 return V;
7703 // Don't try to shrink to various long double types.
7704 }
7705
7706 return V;
7707}
7708
7709Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7710 if (Instruction *I = commonCastTransforms(CI))
7711 return I;
7712
7713 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7714 // smaller than the destination type, we can eliminate the truncate by doing
7715 // the add as the smaller type. This applies to add/sub/mul/div as well as
7716 // many builtins (sqrt, etc).
7717 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7718 if (OpI && OpI->hasOneUse()) {
7719 switch (OpI->getOpcode()) {
7720 default: break;
7721 case Instruction::Add:
7722 case Instruction::Sub:
7723 case Instruction::Mul:
7724 case Instruction::FDiv:
7725 case Instruction::FRem:
7726 const Type *SrcTy = OpI->getType();
7727 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7728 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7729 if (LHSTrunc->getType() != SrcTy &&
7730 RHSTrunc->getType() != SrcTy) {
7731 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7732 // If the source types were both smaller than the destination type of
7733 // the cast, do this xform.
7734 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7735 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7736 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7737 CI.getType(), CI);
7738 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7739 CI.getType(), CI);
7740 return BinaryOperator::create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
7741 }
7742 }
7743 break;
7744 }
7745 }
7746 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007747}
7748
7749Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7750 return commonCastTransforms(CI);
7751}
7752
7753Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
7754 return commonCastTransforms(CI);
7755}
7756
7757Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
7758 return commonCastTransforms(CI);
7759}
7760
7761Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7762 return commonCastTransforms(CI);
7763}
7764
7765Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7766 return commonCastTransforms(CI);
7767}
7768
7769Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7770 return commonPointerCastTransforms(CI);
7771}
7772
Chris Lattner7c1626482008-01-08 07:23:51 +00007773Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7774 if (Instruction *I = commonCastTransforms(CI))
7775 return I;
7776
7777 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7778 if (!DestPointee->isSized()) return 0;
7779
7780 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7781 ConstantInt *Cst;
7782 Value *X;
7783 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7784 m_ConstantInt(Cst)))) {
7785 // If the source and destination operands have the same type, see if this
7786 // is a single-index GEP.
7787 if (X->getType() == CI.getType()) {
7788 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00007789 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00007790
7791 // Convert the constant to intptr type.
7792 APInt Offset = Cst->getValue();
7793 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7794
7795 // If Offset is evenly divisible by Size, we can do this xform.
7796 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7797 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00007798 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00007799 }
7800 }
7801 // TODO: Could handle other cases, e.g. where add is indexing into field of
7802 // struct etc.
7803 } else if (CI.getOperand(0)->hasOneUse() &&
7804 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7805 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7806 // "inttoptr+GEP" instead of "add+intptr".
7807
7808 // Get the size of the pointee type.
7809 uint64_t Size = TD->getABITypeSize(DestPointee);
7810
7811 // Convert the constant to intptr type.
7812 APInt Offset = Cst->getValue();
7813 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7814
7815 // If Offset is evenly divisible by Size, we can do this xform.
7816 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7817 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7818
7819 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7820 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007821 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00007822 }
7823 }
7824 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007825}
7826
7827Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7828 // If the operands are integer typed then apply the integer transforms,
7829 // otherwise just apply the common ones.
7830 Value *Src = CI.getOperand(0);
7831 const Type *SrcTy = Src->getType();
7832 const Type *DestTy = CI.getType();
7833
7834 if (SrcTy->isInteger() && DestTy->isInteger()) {
7835 if (Instruction *Result = commonIntCastTransforms(CI))
7836 return Result;
7837 } else if (isa<PointerType>(SrcTy)) {
7838 if (Instruction *I = commonPointerCastTransforms(CI))
7839 return I;
7840 } else {
7841 if (Instruction *Result = commonCastTransforms(CI))
7842 return Result;
7843 }
7844
7845
7846 // Get rid of casts from one type to the same type. These are useless and can
7847 // be replaced by the operand.
7848 if (DestTy == Src->getType())
7849 return ReplaceInstUsesWith(CI, Src);
7850
7851 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7852 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7853 const Type *DstElTy = DstPTy->getElementType();
7854 const Type *SrcElTy = SrcPTy->getElementType();
7855
Nate Begemandf5b3612008-03-31 00:22:16 +00007856 // If the address spaces don't match, don't eliminate the bitcast, which is
7857 // required for changing types.
7858 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
7859 return 0;
7860
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007861 // If we are casting a malloc or alloca to a pointer to a type of the same
7862 // size, rewrite the allocation instruction to allocate the "right" type.
7863 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7864 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7865 return V;
7866
7867 // If the source and destination are pointers, and this cast is equivalent
7868 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7869 // This can enhance SROA and other transforms that want type-safe pointers.
7870 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7871 unsigned NumZeros = 0;
7872 while (SrcElTy != DstElTy &&
7873 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7874 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7875 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7876 ++NumZeros;
7877 }
7878
7879 // If we found a path from the src to dest, create the getelementptr now.
7880 if (SrcElTy == DstElTy) {
7881 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007882 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
7883 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007884 }
7885 }
7886
7887 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7888 if (SVI->hasOneUse()) {
7889 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7890 // a bitconvert to a vector with the same # elts.
7891 if (isa<VectorType>(DestTy) &&
7892 cast<VectorType>(DestTy)->getNumElements() ==
7893 SVI->getType()->getNumElements()) {
7894 CastInst *Tmp;
7895 // If either of the operands is a cast from CI.getType(), then
7896 // evaluating the shuffle in the casted destination's type will allow
7897 // us to eliminate at least one cast.
7898 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7899 Tmp->getOperand(0)->getType() == DestTy) ||
7900 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7901 Tmp->getOperand(0)->getType() == DestTy)) {
7902 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7903 SVI->getOperand(0), DestTy, &CI);
7904 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7905 SVI->getOperand(1), DestTy, &CI);
7906 // Return a new shuffle vector. Use the same element ID's, as we
7907 // know the vector types match #elts.
7908 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7909 }
7910 }
7911 }
7912 }
7913 return 0;
7914}
7915
7916/// GetSelectFoldableOperands - We want to turn code that looks like this:
7917/// %C = or %A, %B
7918/// %D = select %cond, %C, %A
7919/// into:
7920/// %C = select %cond, %B, 0
7921/// %D = or %A, %C
7922///
7923/// Assuming that the specified instruction is an operand to the select, return
7924/// a bitmask indicating which operands of this instruction are foldable if they
7925/// equal the other incoming value of the select.
7926///
7927static unsigned GetSelectFoldableOperands(Instruction *I) {
7928 switch (I->getOpcode()) {
7929 case Instruction::Add:
7930 case Instruction::Mul:
7931 case Instruction::And:
7932 case Instruction::Or:
7933 case Instruction::Xor:
7934 return 3; // Can fold through either operand.
7935 case Instruction::Sub: // Can only fold on the amount subtracted.
7936 case Instruction::Shl: // Can only fold on the shift amount.
7937 case Instruction::LShr:
7938 case Instruction::AShr:
7939 return 1;
7940 default:
7941 return 0; // Cannot fold
7942 }
7943}
7944
7945/// GetSelectFoldableConstant - For the same transformation as the previous
7946/// function, return the identity constant that goes into the select.
7947static Constant *GetSelectFoldableConstant(Instruction *I) {
7948 switch (I->getOpcode()) {
7949 default: assert(0 && "This cannot happen!"); abort();
7950 case Instruction::Add:
7951 case Instruction::Sub:
7952 case Instruction::Or:
7953 case Instruction::Xor:
7954 case Instruction::Shl:
7955 case Instruction::LShr:
7956 case Instruction::AShr:
7957 return Constant::getNullValue(I->getType());
7958 case Instruction::And:
7959 return Constant::getAllOnesValue(I->getType());
7960 case Instruction::Mul:
7961 return ConstantInt::get(I->getType(), 1);
7962 }
7963}
7964
7965/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7966/// have the same opcode and only one use each. Try to simplify this.
7967Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7968 Instruction *FI) {
7969 if (TI->getNumOperands() == 1) {
7970 // If this is a non-volatile load or a cast from the same type,
7971 // merge.
7972 if (TI->isCast()) {
7973 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7974 return 0;
7975 } else {
7976 return 0; // unknown unary op.
7977 }
7978
7979 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007980 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
7981 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007982 InsertNewInstBefore(NewSI, SI);
7983 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7984 TI->getType());
7985 }
7986
7987 // Only handle binary operators here.
7988 if (!isa<BinaryOperator>(TI))
7989 return 0;
7990
7991 // Figure out if the operations have any operands in common.
7992 Value *MatchOp, *OtherOpT, *OtherOpF;
7993 bool MatchIsOpZero;
7994 if (TI->getOperand(0) == FI->getOperand(0)) {
7995 MatchOp = TI->getOperand(0);
7996 OtherOpT = TI->getOperand(1);
7997 OtherOpF = FI->getOperand(1);
7998 MatchIsOpZero = true;
7999 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8000 MatchOp = TI->getOperand(1);
8001 OtherOpT = TI->getOperand(0);
8002 OtherOpF = FI->getOperand(0);
8003 MatchIsOpZero = false;
8004 } else if (!TI->isCommutative()) {
8005 return 0;
8006 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8007 MatchOp = TI->getOperand(0);
8008 OtherOpT = TI->getOperand(1);
8009 OtherOpF = FI->getOperand(0);
8010 MatchIsOpZero = true;
8011 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8012 MatchOp = TI->getOperand(1);
8013 OtherOpT = TI->getOperand(0);
8014 OtherOpF = FI->getOperand(1);
8015 MatchIsOpZero = true;
8016 } else {
8017 return 0;
8018 }
8019
8020 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008021 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8022 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008023 InsertNewInstBefore(NewSI, SI);
8024
8025 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8026 if (MatchIsOpZero)
8027 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
8028 else
8029 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
8030 }
8031 assert(0 && "Shouldn't get here");
8032 return 0;
8033}
8034
8035Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8036 Value *CondVal = SI.getCondition();
8037 Value *TrueVal = SI.getTrueValue();
8038 Value *FalseVal = SI.getFalseValue();
8039
8040 // select true, X, Y -> X
8041 // select false, X, Y -> Y
8042 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8043 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8044
8045 // select C, X, X -> X
8046 if (TrueVal == FalseVal)
8047 return ReplaceInstUsesWith(SI, TrueVal);
8048
8049 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8050 return ReplaceInstUsesWith(SI, FalseVal);
8051 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8052 return ReplaceInstUsesWith(SI, TrueVal);
8053 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8054 if (isa<Constant>(TrueVal))
8055 return ReplaceInstUsesWith(SI, TrueVal);
8056 else
8057 return ReplaceInstUsesWith(SI, FalseVal);
8058 }
8059
8060 if (SI.getType() == Type::Int1Ty) {
8061 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8062 if (C->getZExtValue()) {
8063 // Change: A = select B, true, C --> A = or B, C
8064 return BinaryOperator::createOr(CondVal, FalseVal);
8065 } else {
8066 // Change: A = select B, false, C --> A = and !B, C
8067 Value *NotCond =
8068 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8069 "not."+CondVal->getName()), SI);
8070 return BinaryOperator::createAnd(NotCond, FalseVal);
8071 }
8072 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8073 if (C->getZExtValue() == false) {
8074 // Change: A = select B, C, false --> A = and B, C
8075 return BinaryOperator::createAnd(CondVal, TrueVal);
8076 } else {
8077 // Change: A = select B, C, true --> A = or !B, C
8078 Value *NotCond =
8079 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8080 "not."+CondVal->getName()), SI);
8081 return BinaryOperator::createOr(NotCond, TrueVal);
8082 }
8083 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008084
8085 // select a, b, a -> a&b
8086 // select a, a, b -> a|b
8087 if (CondVal == TrueVal)
8088 return BinaryOperator::createOr(CondVal, FalseVal);
8089 else if (CondVal == FalseVal)
8090 return BinaryOperator::createAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008091 }
8092
8093 // Selecting between two integer constants?
8094 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8095 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8096 // select C, 1, 0 -> zext C to int
8097 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
8098 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
8099 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8100 // select C, 0, 1 -> zext !C to int
8101 Value *NotCond =
8102 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
8103 "not."+CondVal->getName()), SI);
8104 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
8105 }
8106
8107 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8108
8109 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8110
8111 // (x <s 0) ? -1 : 0 -> ashr x, 31
8112 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8113 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8114 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8115 // The comparison constant and the result are not neccessarily the
8116 // same width. Make an all-ones value by inserting a AShr.
8117 Value *X = IC->getOperand(0);
8118 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8119 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
8120 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
8121 ShAmt, "ones");
8122 InsertNewInstBefore(SRA, SI);
8123
8124 // Finally, convert to the type of the select RHS. We figure out
8125 // if this requires a SExt, Trunc or BitCast based on the sizes.
8126 Instruction::CastOps opc = Instruction::BitCast;
8127 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8128 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8129 if (SRASize < SISize)
8130 opc = Instruction::SExt;
8131 else if (SRASize > SISize)
8132 opc = Instruction::Trunc;
8133 return CastInst::create(opc, SRA, SI.getType());
8134 }
8135 }
8136
8137
8138 // If one of the constants is zero (we know they can't both be) and we
8139 // have an icmp instruction with zero, and we have an 'and' with the
8140 // non-constant value, eliminate this whole mess. This corresponds to
8141 // cases like this: ((X & 27) ? 27 : 0)
8142 if (TrueValC->isZero() || FalseValC->isZero())
8143 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8144 cast<Constant>(IC->getOperand(1))->isNullValue())
8145 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8146 if (ICA->getOpcode() == Instruction::And &&
8147 isa<ConstantInt>(ICA->getOperand(1)) &&
8148 (ICA->getOperand(1) == TrueValC ||
8149 ICA->getOperand(1) == FalseValC) &&
8150 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8151 // Okay, now we know that everything is set up, we just don't
8152 // know whether we have a icmp_ne or icmp_eq and whether the
8153 // true or false val is the zero.
8154 bool ShouldNotVal = !TrueValC->isZero();
8155 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8156 Value *V = ICA;
8157 if (ShouldNotVal)
8158 V = InsertNewInstBefore(BinaryOperator::create(
8159 Instruction::Xor, V, ICA->getOperand(1)), SI);
8160 return ReplaceInstUsesWith(SI, V);
8161 }
8162 }
8163 }
8164
8165 // See if we are selecting two values based on a comparison of the two values.
8166 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8167 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8168 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008169 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8170 // This is not safe in general for floating point:
8171 // consider X== -0, Y== +0.
8172 // It becomes safe if either operand is a nonzero constant.
8173 ConstantFP *CFPt, *CFPf;
8174 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8175 !CFPt->getValueAPF().isZero()) ||
8176 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8177 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008178 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008179 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008180 // Transform (X != Y) ? X : Y -> X
8181 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8182 return ReplaceInstUsesWith(SI, TrueVal);
8183 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8184
8185 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8186 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008187 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8188 // This is not safe in general for floating point:
8189 // consider X== -0, Y== +0.
8190 // It becomes safe if either operand is a nonzero constant.
8191 ConstantFP *CFPt, *CFPf;
8192 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8193 !CFPt->getValueAPF().isZero()) ||
8194 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8195 !CFPf->getValueAPF().isZero()))
8196 return ReplaceInstUsesWith(SI, FalseVal);
8197 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008198 // Transform (X != Y) ? Y : X -> Y
8199 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8200 return ReplaceInstUsesWith(SI, TrueVal);
8201 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8202 }
8203 }
8204
8205 // See if we are selecting two values based on a comparison of the two values.
8206 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
8207 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
8208 // Transform (X == Y) ? X : Y -> Y
8209 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8210 return ReplaceInstUsesWith(SI, FalseVal);
8211 // Transform (X != Y) ? X : Y -> X
8212 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8213 return ReplaceInstUsesWith(SI, TrueVal);
8214 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8215
8216 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
8217 // Transform (X == Y) ? Y : X -> X
8218 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
8219 return ReplaceInstUsesWith(SI, FalseVal);
8220 // Transform (X != Y) ? Y : X -> Y
8221 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
8222 return ReplaceInstUsesWith(SI, TrueVal);
8223 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
8224 }
8225 }
8226
8227 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8228 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8229 if (TI->hasOneUse() && FI->hasOneUse()) {
8230 Instruction *AddOp = 0, *SubOp = 0;
8231
8232 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8233 if (TI->getOpcode() == FI->getOpcode())
8234 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8235 return IV;
8236
8237 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8238 // even legal for FP.
8239 if (TI->getOpcode() == Instruction::Sub &&
8240 FI->getOpcode() == Instruction::Add) {
8241 AddOp = FI; SubOp = TI;
8242 } else if (FI->getOpcode() == Instruction::Sub &&
8243 TI->getOpcode() == Instruction::Add) {
8244 AddOp = TI; SubOp = FI;
8245 }
8246
8247 if (AddOp) {
8248 Value *OtherAddOp = 0;
8249 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8250 OtherAddOp = AddOp->getOperand(1);
8251 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8252 OtherAddOp = AddOp->getOperand(0);
8253 }
8254
8255 if (OtherAddOp) {
8256 // So at this point we know we have (Y -> OtherAddOp):
8257 // select C, (add X, Y), (sub X, Z)
8258 Value *NegVal; // Compute -Z
8259 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8260 NegVal = ConstantExpr::getNeg(C);
8261 } else {
8262 NegVal = InsertNewInstBefore(
8263 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
8264 }
8265
8266 Value *NewTrueOp = OtherAddOp;
8267 Value *NewFalseOp = NegVal;
8268 if (AddOp != TI)
8269 std::swap(NewTrueOp, NewFalseOp);
8270 Instruction *NewSel =
Gabor Greifd6da1d02008-04-06 20:25:17 +00008271 SelectInst::Create(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008272
8273 NewSel = InsertNewInstBefore(NewSel, SI);
8274 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
8275 }
8276 }
8277 }
8278
8279 // See if we can fold the select into one of our operands.
8280 if (SI.getType()->isInteger()) {
8281 // See the comment above GetSelectFoldableOperands for a description of the
8282 // transformation we are doing here.
8283 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8284 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8285 !isa<Constant>(FalseVal))
8286 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8287 unsigned OpToFold = 0;
8288 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8289 OpToFold = 1;
8290 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8291 OpToFold = 2;
8292 }
8293
8294 if (OpToFold) {
8295 Constant *C = GetSelectFoldableConstant(TVI);
8296 Instruction *NewSel =
Gabor Greifd6da1d02008-04-06 20:25:17 +00008297 SelectInst::Create(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008298 InsertNewInstBefore(NewSel, SI);
8299 NewSel->takeName(TVI);
8300 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
8301 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
8302 else {
8303 assert(0 && "Unknown instruction!!");
8304 }
8305 }
8306 }
8307
8308 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8309 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8310 !isa<Constant>(TrueVal))
8311 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8312 unsigned OpToFold = 0;
8313 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8314 OpToFold = 1;
8315 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8316 OpToFold = 2;
8317 }
8318
8319 if (OpToFold) {
8320 Constant *C = GetSelectFoldableConstant(FVI);
8321 Instruction *NewSel =
Gabor Greifd6da1d02008-04-06 20:25:17 +00008322 SelectInst::Create(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008323 InsertNewInstBefore(NewSel, SI);
8324 NewSel->takeName(FVI);
8325 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
8326 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
8327 else
8328 assert(0 && "Unknown instruction!!");
8329 }
8330 }
8331 }
8332
8333 if (BinaryOperator::isNot(CondVal)) {
8334 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8335 SI.setOperand(1, FalseVal);
8336 SI.setOperand(2, TrueVal);
8337 return &SI;
8338 }
8339
8340 return 0;
8341}
8342
Dan Gohman2d648bb2008-04-10 18:43:06 +00008343/// EnforceKnownAlignment - If the specified pointer points to an object that
8344/// we control, modify the object's alignment to PrefAlign. This isn't
8345/// often possible though. If alignment is important, a more reliable approach
8346/// is to simply align all global variables and allocation instructions to
8347/// their preferred alignment from the beginning.
8348///
8349static unsigned EnforceKnownAlignment(Value *V,
8350 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008351
Dan Gohman2d648bb2008-04-10 18:43:06 +00008352 User *U = dyn_cast<User>(V);
8353 if (!U) return Align;
8354
8355 switch (getOpcode(U)) {
8356 default: break;
8357 case Instruction::BitCast:
8358 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8359 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008360 // If all indexes are zero, it is just the alignment of the base pointer.
8361 bool AllZeroOperands = true;
Dan Gohman2d648bb2008-04-10 18:43:06 +00008362 for (unsigned i = 1, e = U->getNumOperands(); i != e; ++i)
8363 if (!isa<Constant>(U->getOperand(i)) ||
8364 !cast<Constant>(U->getOperand(i))->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008365 AllZeroOperands = false;
8366 break;
8367 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008368
8369 if (AllZeroOperands) {
8370 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008371 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008372 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008373 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008374 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008375 }
8376
8377 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8378 // If there is a large requested alignment and we can, bump up the alignment
8379 // of the global.
8380 if (!GV->isDeclaration()) {
8381 GV->setAlignment(PrefAlign);
8382 Align = PrefAlign;
8383 }
8384 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8385 // If there is a requested alignment and if this is an alloca, round up. We
8386 // don't do this for malloc, because some systems can't respect the request.
8387 if (isa<AllocaInst>(AI)) {
8388 AI->setAlignment(PrefAlign);
8389 Align = PrefAlign;
8390 }
8391 }
8392
8393 return Align;
8394}
8395
8396/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8397/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8398/// and it is more than the alignment of the ultimate object, see if we can
8399/// increase the alignment of the ultimate object, making this check succeed.
8400unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8401 unsigned PrefAlign) {
8402 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8403 sizeof(PrefAlign) * CHAR_BIT;
8404 APInt Mask = APInt::getAllOnesValue(BitWidth);
8405 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8406 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8407 unsigned TrailZ = KnownZero.countTrailingOnes();
8408 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8409
8410 if (PrefAlign > Align)
8411 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8412
8413 // We don't need to make any adjustment.
8414 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008415}
8416
Chris Lattner00ae5132008-01-13 23:50:23 +00008417Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008418 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8419 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008420 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8421 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8422
8423 if (CopyAlign < MinAlign) {
8424 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8425 return MI;
8426 }
8427
8428 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8429 // load/store.
8430 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8431 if (MemOpLength == 0) return 0;
8432
Chris Lattnerc669fb62008-01-14 00:28:35 +00008433 // Source and destination pointer types are always "i8*" for intrinsic. See
8434 // if the size is something we can handle with a single primitive load/store.
8435 // A single load+store correctly handles overlapping memory in the memmove
8436 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008437 unsigned Size = MemOpLength->getZExtValue();
8438 if (Size == 0 || Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008439 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008440
Chris Lattnerc669fb62008-01-14 00:28:35 +00008441 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008442 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008443
8444 // Memcpy forces the use of i8* for the source and destination. That means
8445 // that if you're using memcpy to move one double around, you'll get a cast
8446 // from double* to i8*. We'd much rather use a double load+store rather than
8447 // an i64 load+store, here because this improves the odds that the source or
8448 // dest address will be promotable. See if we can find a better type than the
8449 // integer datatype.
8450 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8451 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8452 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8453 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8454 // down through these levels if so.
8455 while (!SrcETy->isFirstClassType()) {
8456 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8457 if (STy->getNumElements() == 1)
8458 SrcETy = STy->getElementType(0);
8459 else
8460 break;
8461 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8462 if (ATy->getNumElements() == 1)
8463 SrcETy = ATy->getElementType();
8464 else
8465 break;
8466 } else
8467 break;
8468 }
8469
8470 if (SrcETy->isFirstClassType())
8471 NewPtrTy = PointerType::getUnqual(SrcETy);
8472 }
8473 }
8474
8475
Chris Lattner00ae5132008-01-13 23:50:23 +00008476 // If the memcpy/memmove provides better alignment info than we can
8477 // infer, use it.
8478 SrcAlign = std::max(SrcAlign, CopyAlign);
8479 DstAlign = std::max(DstAlign, CopyAlign);
8480
8481 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8482 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00008483 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8484 InsertNewInstBefore(L, *MI);
8485 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8486
8487 // Set the size of the copy to 0, it will be deleted on the next iteration.
8488 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8489 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00008490}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008491
8492/// visitCallInst - CallInst simplification. This mostly only handles folding
8493/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8494/// the heavy lifting.
8495///
8496Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8497 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8498 if (!II) return visitCallSite(&CI);
8499
8500 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8501 // visitCallSite.
8502 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8503 bool Changed = false;
8504
8505 // memmove/cpy/set of zero bytes is a noop.
8506 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8507 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8508
8509 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8510 if (CI->getZExtValue() == 1) {
8511 // Replace the instruction with just byte operations. We would
8512 // transform other cases to loads/stores, but we don't know if
8513 // alignment is sufficient.
8514 }
8515 }
8516
8517 // If we have a memmove and the source operation is a constant global,
8518 // then the source and dest pointers can't alias, so we can change this
8519 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00008520 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008521 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8522 if (GVSrc->isConstant()) {
8523 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008524 Intrinsic::ID MemCpyID;
8525 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8526 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008527 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008528 MemCpyID = Intrinsic::memcpy_i64;
8529 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008530 Changed = true;
8531 }
8532 }
8533
8534 // If we can determine a pointer alignment that is bigger than currently
8535 // set, update the alignment.
8536 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00008537 if (Instruction *I = SimplifyMemTransfer(MI))
8538 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008539 } else if (isa<MemSetInst>(MI)) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008540 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008541 if (MI->getAlignment()->getZExtValue() < Alignment) {
8542 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8543 Changed = true;
8544 }
8545 }
8546
8547 if (Changed) return II;
8548 } else {
8549 switch (II->getIntrinsicID()) {
8550 default: break;
8551 case Intrinsic::ppc_altivec_lvx:
8552 case Intrinsic::ppc_altivec_lvxl:
8553 case Intrinsic::x86_sse_loadu_ps:
8554 case Intrinsic::x86_sse2_loadu_pd:
8555 case Intrinsic::x86_sse2_loadu_dq:
8556 // Turn PPC lvx -> load if the pointer is known aligned.
8557 // Turn X86 loadups -> load if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008558 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008559 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8560 PointerType::getUnqual(II->getType()),
8561 CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008562 return new LoadInst(Ptr);
8563 }
8564 break;
8565 case Intrinsic::ppc_altivec_stvx:
8566 case Intrinsic::ppc_altivec_stvxl:
8567 // Turn stvx -> store if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008568 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00008569 const Type *OpPtrTy =
8570 PointerType::getUnqual(II->getOperand(1)->getType());
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008571 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008572 return new StoreInst(II->getOperand(1), Ptr);
8573 }
8574 break;
8575 case Intrinsic::x86_sse_storeu_ps:
8576 case Intrinsic::x86_sse2_storeu_pd:
8577 case Intrinsic::x86_sse2_storeu_dq:
8578 case Intrinsic::x86_sse2_storel_dq:
8579 // Turn X86 storeu -> store if the pointer is known aligned.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008580 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00008581 const Type *OpPtrTy =
8582 PointerType::getUnqual(II->getOperand(2)->getType());
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008583 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008584 return new StoreInst(II->getOperand(2), Ptr);
8585 }
8586 break;
8587
8588 case Intrinsic::x86_sse_cvttss2si: {
8589 // These intrinsics only demands the 0th element of its input vector. If
8590 // we can simplify the input based on that, do so now.
8591 uint64_t UndefElts;
8592 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8593 UndefElts)) {
8594 II->setOperand(1, V);
8595 return II;
8596 }
8597 break;
8598 }
8599
8600 case Intrinsic::ppc_altivec_vperm:
8601 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
8602 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
8603 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
8604
8605 // Check that all of the elements are integer constants or undefs.
8606 bool AllEltsOk = true;
8607 for (unsigned i = 0; i != 16; ++i) {
8608 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8609 !isa<UndefValue>(Mask->getOperand(i))) {
8610 AllEltsOk = false;
8611 break;
8612 }
8613 }
8614
8615 if (AllEltsOk) {
8616 // Cast the input vectors to byte vectors.
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008617 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8618 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008619 Value *Result = UndefValue::get(Op0->getType());
8620
8621 // Only extract each element once.
8622 Value *ExtractedElts[32];
8623 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8624
8625 for (unsigned i = 0; i != 16; ++i) {
8626 if (isa<UndefValue>(Mask->getOperand(i)))
8627 continue;
8628 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
8629 Idx &= 31; // Match the hardware behavior.
8630
8631 if (ExtractedElts[Idx] == 0) {
8632 Instruction *Elt =
8633 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
8634 InsertNewInstBefore(Elt, CI);
8635 ExtractedElts[Idx] = Elt;
8636 }
8637
8638 // Insert this value into the result vector.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008639 Result = InsertElementInst::Create(Result, ExtractedElts[Idx], i, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008640 InsertNewInstBefore(cast<Instruction>(Result), CI);
8641 }
8642 return CastInst::create(Instruction::BitCast, Result, CI.getType());
8643 }
8644 }
8645 break;
8646
8647 case Intrinsic::stackrestore: {
8648 // If the save is right next to the restore, remove the restore. This can
8649 // happen when variable allocas are DCE'd.
8650 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8651 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8652 BasicBlock::iterator BI = SS;
8653 if (&*++BI == II)
8654 return EraseInstFromFunction(CI);
8655 }
8656 }
8657
Chris Lattner416d91c2008-02-18 06:12:38 +00008658 // Scan down this block to see if there is another stack restore in the
8659 // same block without an intervening call/alloca.
8660 BasicBlock::iterator BI = II;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008661 TerminatorInst *TI = II->getParent()->getTerminator();
Chris Lattner416d91c2008-02-18 06:12:38 +00008662 bool CannotRemove = false;
8663 for (++BI; &*BI != TI; ++BI) {
8664 if (isa<AllocaInst>(BI)) {
8665 CannotRemove = true;
8666 break;
8667 }
8668 if (isa<CallInst>(BI)) {
8669 if (!isa<IntrinsicInst>(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008670 CannotRemove = true;
8671 break;
8672 }
Chris Lattner416d91c2008-02-18 06:12:38 +00008673 // If there is a stackrestore below this one, remove this one.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008674 return EraseInstFromFunction(CI);
Chris Lattner416d91c2008-02-18 06:12:38 +00008675 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008676 }
Chris Lattner416d91c2008-02-18 06:12:38 +00008677
8678 // If the stack restore is in a return/unwind block and if there are no
8679 // allocas or calls between the restore and the return, nuke the restore.
8680 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8681 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008682 break;
8683 }
8684 }
8685 }
8686
8687 return visitCallSite(II);
8688}
8689
8690// InvokeInst simplification
8691//
8692Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
8693 return visitCallSite(&II);
8694}
8695
8696// visitCallSite - Improvements for call and invoke instructions.
8697//
8698Instruction *InstCombiner::visitCallSite(CallSite CS) {
8699 bool Changed = false;
8700
8701 // If the callee is a constexpr cast of a function, attempt to move the cast
8702 // to the arguments of the call/invoke.
8703 if (transformConstExprCastCall(CS)) return 0;
8704
8705 Value *Callee = CS.getCalledValue();
8706
8707 if (Function *CalleeF = dyn_cast<Function>(Callee))
8708 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8709 Instruction *OldCall = CS.getInstruction();
8710 // If the call and callee calling conventions don't match, this call must
8711 // be unreachable, as the call is undefined.
8712 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008713 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
8714 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008715 if (!OldCall->use_empty())
8716 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8717 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8718 return EraseInstFromFunction(*OldCall);
8719 return 0;
8720 }
8721
8722 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8723 // This instruction is not reachable, just remove it. We insert a store to
8724 // undef so that we know that this code is not reachable, despite the fact
8725 // that we can't modify the CFG here.
8726 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00008727 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008728 CS.getInstruction());
8729
8730 if (!CS.getInstruction()->use_empty())
8731 CS.getInstruction()->
8732 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8733
8734 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8735 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008736 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
8737 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008738 }
8739 return EraseInstFromFunction(*CS.getInstruction());
8740 }
8741
Duncan Sands74833f22007-09-17 10:26:40 +00008742 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
8743 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
8744 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
8745 return transformCallThroughTrampoline(CS);
8746
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008747 const PointerType *PTy = cast<PointerType>(Callee->getType());
8748 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8749 if (FTy->isVarArg()) {
8750 // See if we can optimize any arguments passed through the varargs area of
8751 // the call.
8752 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
8753 E = CS.arg_end(); I != E; ++I)
8754 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
8755 // If this cast does not effect the value passed through the varargs
8756 // area, we can eliminate the use of the cast.
8757 Value *Op = CI->getOperand(0);
8758 if (CI->isLosslessCast()) {
8759 *I = Op;
8760 Changed = true;
8761 }
8762 }
8763 }
8764
Duncan Sands2937e352007-12-19 21:13:37 +00008765 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00008766 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00008767 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00008768 Changed = true;
8769 }
8770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008771 return Changed ? CS.getInstruction() : 0;
8772}
8773
8774// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8775// attempt to move the cast to the arguments of the call/invoke.
8776//
8777bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8778 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8779 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
8780 if (CE->getOpcode() != Instruction::BitCast ||
8781 !isa<Function>(CE->getOperand(0)))
8782 return false;
8783 Function *Callee = cast<Function>(CE->getOperand(0));
8784 Instruction *Caller = CS.getInstruction();
Chris Lattner1c8733e2008-03-12 17:45:29 +00008785 const PAListPtr &CallerPAL = CS.getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008786
8787 // Okay, this is a cast from a function to a different type. Unless doing so
8788 // would cause a type conversion of one of our arguments, change this call to
8789 // be a direct call with arguments casted to the appropriate types.
8790 //
8791 const FunctionType *FT = Callee->getFunctionType();
8792 const Type *OldRetTy = Caller->getType();
8793
Devang Pateld091d322008-03-11 18:04:06 +00008794 if (isa<StructType>(FT->getReturnType()))
8795 return false; // TODO: Handle multiple return values.
8796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008797 // Check to see if we are changing the return type...
8798 if (OldRetTy != FT->getReturnType()) {
8799 if (Callee->isDeclaration() && !Caller->use_empty() &&
8800 // Conversion is ok if changing from pointer to int of same size.
8801 !(isa<PointerType>(FT->getReturnType()) &&
8802 TD->getIntPtrType() == OldRetTy))
8803 return false; // Cannot transform this return value.
8804
Duncan Sands5c489582008-01-06 10:12:28 +00008805 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00008806 // void -> non-void is handled specially
Duncan Sands4ced1f82008-01-13 08:02:44 +00008807 FT->getReturnType() != Type::VoidTy &&
8808 !CastInst::isCastable(FT->getReturnType(), OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00008809 return false; // Cannot transform this return value.
8810
Chris Lattner1c8733e2008-03-12 17:45:29 +00008811 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
8812 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00008813 if (RAttrs & ParamAttr::typeIncompatible(FT->getReturnType()))
8814 return false; // Attribute not compatible with transformed value.
8815 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008816
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008817 // If the callsite is an invoke instruction, and the return value is used by
8818 // a PHI node in a successor, we cannot change the return type of the call
8819 // because there is no place to put the cast instruction (without breaking
8820 // the critical edge). Bail out in this case.
8821 if (!Caller->use_empty())
8822 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8823 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8824 UI != E; ++UI)
8825 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8826 if (PN->getParent() == II->getNormalDest() ||
8827 PN->getParent() == II->getUnwindDest())
8828 return false;
8829 }
8830
8831 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8832 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8833
8834 CallSite::arg_iterator AI = CS.arg_begin();
8835 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8836 const Type *ParamTy = FT->getParamType(i);
8837 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00008838
8839 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00008840 return false; // Cannot transform this parameter value.
8841
Chris Lattner1c8733e2008-03-12 17:45:29 +00008842 if (CallerPAL.getParamAttrs(i + 1) & ParamAttr::typeIncompatible(ParamTy))
8843 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00008844
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008845 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
Duncan Sands5c489582008-01-06 10:12:28 +00008846 // Some conversions are safe even if we do not have a body.
8847 // Either we can cast directly, or we can upconvert the argument
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008848 bool isConvertible = ActTy == ParamTy ||
8849 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
8850 (ParamTy->isInteger() && ActTy->isInteger() &&
8851 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8852 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8853 && c->getValue().isStrictlyPositive());
8854 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008855 }
8856
8857 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8858 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00008859 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008860
Chris Lattner1c8733e2008-03-12 17:45:29 +00008861 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
8862 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00008863 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00008864 // won't be dropping them. Check that these extra arguments have attributes
8865 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008866 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
8867 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00008868 break;
Chris Lattner1c8733e2008-03-12 17:45:29 +00008869 ParameterAttributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Duncan Sands4ced1f82008-01-13 08:02:44 +00008870 if (PAttrs & ParamAttr::VarArgsIncompatible)
8871 return false;
8872 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008873
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008874 // Okay, we decided that this is a safe thing to do: go ahead and start
8875 // inserting cast instructions as necessary...
8876 std::vector<Value*> Args;
8877 Args.reserve(NumActualArgs);
Chris Lattner1c8733e2008-03-12 17:45:29 +00008878 SmallVector<ParamAttrsWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00008879 attrVec.reserve(NumCommonArgs);
8880
8881 // Get any return attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008882 ParameterAttributes RAttrs = CallerPAL.getParamAttrs(0);
Duncan Sandsc849e662008-01-06 18:27:01 +00008883
8884 // If the return value is not being used, the type may not be compatible
8885 // with the existing attributes. Wipe out any problematic attributes.
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00008886 RAttrs &= ~ParamAttr::typeIncompatible(FT->getReturnType());
Duncan Sandsc849e662008-01-06 18:27:01 +00008887
8888 // Add the new return attributes.
8889 if (RAttrs)
8890 attrVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008891
8892 AI = CS.arg_begin();
8893 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8894 const Type *ParamTy = FT->getParamType(i);
8895 if ((*AI)->getType() == ParamTy) {
8896 Args.push_back(*AI);
8897 } else {
8898 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
8899 false, ParamTy, false);
8900 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
8901 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
8902 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008903
8904 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008905 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sandsc849e662008-01-06 18:27:01 +00008906 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008907 }
8908
8909 // If the function takes more arguments than the call was taking, add them
8910 // now...
8911 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8912 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8913
8914 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00008915 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008916 if (!FT->isVarArg()) {
8917 cerr << "WARNING: While resolving call to function '"
8918 << Callee->getName() << "' arguments were dropped!\n";
8919 } else {
8920 // Add all of the arguments in their promoted form to the arg list...
8921 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8922 const Type *PTy = getPromotedType((*AI)->getType());
8923 if (PTy != (*AI)->getType()) {
8924 // Must promote to pass through va_arg area!
8925 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8926 PTy, false);
8927 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
8928 InsertNewInstBefore(Cast, *Caller);
8929 Args.push_back(Cast);
8930 } else {
8931 Args.push_back(*AI);
8932 }
Duncan Sandsc849e662008-01-06 18:27:01 +00008933
Duncan Sands4ced1f82008-01-13 08:02:44 +00008934 // Add any parameter attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00008935 if (ParameterAttributes PAttrs = CallerPAL.getParamAttrs(i + 1))
Duncan Sands4ced1f82008-01-13 08:02:44 +00008936 attrVec.push_back(ParamAttrsWithIndex::get(i + 1, PAttrs));
8937 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008938 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00008939 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008940
8941 if (FT->getReturnType() == Type::VoidTy)
8942 Caller->setName(""); // Void type should not have a name.
8943
Chris Lattner1c8733e2008-03-12 17:45:29 +00008944 const PAListPtr &NewCallerPAL = PAListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00008945
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008946 Instruction *NC;
8947 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00008948 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
8949 Args.begin(), Args.end(), Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00008950 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00008951 cast<InvokeInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008952 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00008953 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
8954 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008955 CallInst *CI = cast<CallInst>(Caller);
8956 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008957 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008958 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Duncan Sandsc849e662008-01-06 18:27:01 +00008959 cast<CallInst>(NC)->setParamAttrs(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008960 }
8961
8962 // Insert a cast of the return type as necessary.
8963 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00008964 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008965 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008966 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00008967 OldRetTy, false);
8968 NV = NC = CastInst::create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008969
8970 // If this is an invoke instruction, we should insert it after the first
8971 // non-phi, instruction in the normal successor block.
8972 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8973 BasicBlock::iterator I = II->getNormalDest()->begin();
8974 while (isa<PHINode>(I)) ++I;
8975 InsertNewInstBefore(NC, *I);
8976 } else {
8977 // Otherwise, it's a call, just insert cast right after the call instr
8978 InsertNewInstBefore(NC, *Caller);
8979 }
8980 AddUsersToWorkList(*Caller);
8981 } else {
8982 NV = UndefValue::get(Caller->getType());
8983 }
8984 }
8985
8986 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8987 Caller->replaceAllUsesWith(NV);
8988 Caller->eraseFromParent();
8989 RemoveFromWorkList(Caller);
8990 return true;
8991}
8992
Duncan Sands74833f22007-09-17 10:26:40 +00008993// transformCallThroughTrampoline - Turn a call to a function created by the
8994// init_trampoline intrinsic into a direct call to the underlying function.
8995//
8996Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
8997 Value *Callee = CS.getCalledValue();
8998 const PointerType *PTy = cast<PointerType>(Callee->getType());
8999 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00009000 const PAListPtr &Attrs = CS.getParamAttrs();
Duncan Sands48b81112008-01-14 19:52:09 +00009001
9002 // If the call already has the 'nest' attribute somewhere then give up -
9003 // otherwise 'nest' would occur twice after splicing in the chain.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009004 if (Attrs.hasAttrSomewhere(ParamAttr::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009005 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009006
9007 IntrinsicInst *Tramp =
9008 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9009
9010 Function *NestF =
9011 cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
9012 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9013 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9014
Chris Lattner1c8733e2008-03-12 17:45:29 +00009015 const PAListPtr &NestAttrs = NestF->getParamAttrs();
9016 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009017 unsigned NestIdx = 1;
9018 const Type *NestTy = 0;
Dale Johannesenf4666f52008-02-19 21:38:47 +00009019 ParameterAttributes NestAttr = ParamAttr::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009020
9021 // Look for a parameter marked with the 'nest' attribute.
9022 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9023 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Chris Lattner1c8733e2008-03-12 17:45:29 +00009024 if (NestAttrs.paramHasAttr(NestIdx, ParamAttr::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009025 // Record the parameter type and any other attributes.
9026 NestTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009027 NestAttr = NestAttrs.getParamAttrs(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009028 break;
9029 }
9030
9031 if (NestTy) {
9032 Instruction *Caller = CS.getInstruction();
9033 std::vector<Value*> NewArgs;
9034 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9035
Chris Lattner1c8733e2008-03-12 17:45:29 +00009036 SmallVector<ParamAttrsWithIndex, 8> NewAttrs;
9037 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009038
Duncan Sands74833f22007-09-17 10:26:40 +00009039 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009040 // mean appending it. Likewise for attributes.
9041
9042 // Add any function result attributes.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009043 if (ParameterAttributes Attr = Attrs.getParamAttrs(0))
9044 NewAttrs.push_back(ParamAttrsWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009045
Duncan Sands74833f22007-09-17 10:26:40 +00009046 {
9047 unsigned Idx = 1;
9048 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9049 do {
9050 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009051 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009052 Value *NestVal = Tramp->getOperand(3);
9053 if (NestVal->getType() != NestTy)
9054 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9055 NewArgs.push_back(NestVal);
Duncan Sands48b81112008-01-14 19:52:09 +00009056 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009057 }
9058
9059 if (I == E)
9060 break;
9061
Duncan Sands48b81112008-01-14 19:52:09 +00009062 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009063 NewArgs.push_back(*I);
Chris Lattner1c8733e2008-03-12 17:45:29 +00009064 if (ParameterAttributes Attr = Attrs.getParamAttrs(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009065 NewAttrs.push_back
9066 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009067
9068 ++Idx, ++I;
9069 } while (1);
9070 }
9071
9072 // The trampoline may have been bitcast to a bogus type (FTy).
9073 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009074 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009075
Duncan Sands74833f22007-09-17 10:26:40 +00009076 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009077 NewTypes.reserve(FTy->getNumParams()+1);
9078
Duncan Sands74833f22007-09-17 10:26:40 +00009079 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009080 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009081 {
9082 unsigned Idx = 1;
9083 FunctionType::param_iterator I = FTy->param_begin(),
9084 E = FTy->param_end();
9085
9086 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009087 if (Idx == NestIdx)
9088 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009089 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009090
9091 if (I == E)
9092 break;
9093
Duncan Sands48b81112008-01-14 19:52:09 +00009094 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009095 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009096
9097 ++Idx, ++I;
9098 } while (1);
9099 }
9100
9101 // Replace the trampoline call with a direct call. Let the generic
9102 // code sort out any function type mismatches.
9103 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009104 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009105 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9106 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Chris Lattner1c8733e2008-03-12 17:45:29 +00009107 const PAListPtr &NewPAL = PAListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009108
9109 Instruction *NewCaller;
9110 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009111 NewCaller = InvokeInst::Create(NewCallee,
9112 II->getNormalDest(), II->getUnwindDest(),
9113 NewArgs.begin(), NewArgs.end(),
9114 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009115 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009116 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009117 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009118 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9119 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009120 if (cast<CallInst>(Caller)->isTailCall())
9121 cast<CallInst>(NewCaller)->setTailCall();
9122 cast<CallInst>(NewCaller)->
9123 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009124 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009125 }
9126 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9127 Caller->replaceAllUsesWith(NewCaller);
9128 Caller->eraseFromParent();
9129 RemoveFromWorkList(Caller);
9130 return 0;
9131 }
9132 }
9133
9134 // Replace the trampoline call with a direct call. Since there is no 'nest'
9135 // parameter, there is no need to adjust the argument list. Let the generic
9136 // code sort out any function type mismatches.
9137 Constant *NewCallee =
9138 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9139 CS.setCalledFunction(NewCallee);
9140 return CS.getInstruction();
9141}
9142
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009143/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9144/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9145/// and a single binop.
9146Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9147 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9148 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9149 isa<CmpInst>(FirstInst));
9150 unsigned Opc = FirstInst->getOpcode();
9151 Value *LHSVal = FirstInst->getOperand(0);
9152 Value *RHSVal = FirstInst->getOperand(1);
9153
9154 const Type *LHSType = LHSVal->getType();
9155 const Type *RHSType = RHSVal->getType();
9156
9157 // Scan to see if all operands are the same opcode, all have one use, and all
9158 // kill their operands (i.e. the operands have one use).
9159 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9160 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9161 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9162 // Verify type of the LHS matches so we don't fold cmp's of different
9163 // types or GEP's with different index types.
9164 I->getOperand(0)->getType() != LHSType ||
9165 I->getOperand(1)->getType() != RHSType)
9166 return 0;
9167
9168 // If they are CmpInst instructions, check their predicates
9169 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9170 if (cast<CmpInst>(I)->getPredicate() !=
9171 cast<CmpInst>(FirstInst)->getPredicate())
9172 return 0;
9173
9174 // Keep track of which operand needs a phi node.
9175 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9176 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9177 }
9178
9179 // Otherwise, this is safe to transform, determine if it is profitable.
9180
9181 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9182 // Indexes are often folded into load/store instructions, so we don't want to
9183 // hide them behind a phi.
9184 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9185 return 0;
9186
9187 Value *InLHS = FirstInst->getOperand(0);
9188 Value *InRHS = FirstInst->getOperand(1);
9189 PHINode *NewLHS = 0, *NewRHS = 0;
9190 if (LHSVal == 0) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009191 NewLHS = PHINode::Create(LHSType, FirstInst->getOperand(0)->getName()+".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009192 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9193 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9194 InsertNewInstBefore(NewLHS, PN);
9195 LHSVal = NewLHS;
9196 }
9197
9198 if (RHSVal == 0) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009199 NewRHS = PHINode::Create(RHSType, FirstInst->getOperand(1)->getName()+".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009200 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9201 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9202 InsertNewInstBefore(NewRHS, PN);
9203 RHSVal = NewRHS;
9204 }
9205
9206 // Add all operands to the new PHIs.
9207 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9208 if (NewLHS) {
9209 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9210 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9211 }
9212 if (NewRHS) {
9213 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9214 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9215 }
9216 }
9217
9218 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
9219 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
9220 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9221 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
9222 RHSVal);
9223 else {
9224 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009225 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009226 }
9227}
9228
9229/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9230/// of the block that defines it. This means that it must be obvious the value
9231/// of the load is not changed from the point of the load to the end of the
9232/// block it is in.
9233///
9234/// Finally, it is safe, but not profitable, to sink a load targetting a
9235/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9236/// to a register.
9237static bool isSafeToSinkLoad(LoadInst *L) {
9238 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9239
9240 for (++BBI; BBI != E; ++BBI)
9241 if (BBI->mayWriteToMemory())
9242 return false;
9243
9244 // Check for non-address taken alloca. If not address-taken already, it isn't
9245 // profitable to do this xform.
9246 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9247 bool isAddressTaken = false;
9248 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9249 UI != E; ++UI) {
9250 if (isa<LoadInst>(UI)) continue;
9251 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9252 // If storing TO the alloca, then the address isn't taken.
9253 if (SI->getOperand(1) == AI) continue;
9254 }
9255 isAddressTaken = true;
9256 break;
9257 }
9258
9259 if (!isAddressTaken)
9260 return false;
9261 }
9262
9263 return true;
9264}
9265
9266
9267// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9268// operator and they all are only used by the PHI, PHI together their
9269// inputs, and do the operation once, to the result of the PHI.
9270Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9271 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9272
9273 // Scan the instruction, looking for input operations that can be folded away.
9274 // If all input operands to the phi are the same instruction (e.g. a cast from
9275 // the same type or "+42") we can pull the operation through the PHI, reducing
9276 // code size and simplifying code.
9277 Constant *ConstantOp = 0;
9278 const Type *CastSrcTy = 0;
9279 bool isVolatile = false;
9280 if (isa<CastInst>(FirstInst)) {
9281 CastSrcTy = FirstInst->getOperand(0)->getType();
9282 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9283 // Can fold binop, compare or shift here if the RHS is a constant,
9284 // otherwise call FoldPHIArgBinOpIntoPHI.
9285 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9286 if (ConstantOp == 0)
9287 return FoldPHIArgBinOpIntoPHI(PN);
9288 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9289 isVolatile = LI->isVolatile();
9290 // We can't sink the load if the loaded value could be modified between the
9291 // load and the PHI.
9292 if (LI->getParent() != PN.getIncomingBlock(0) ||
9293 !isSafeToSinkLoad(LI))
9294 return 0;
9295 } else if (isa<GetElementPtrInst>(FirstInst)) {
9296 if (FirstInst->getNumOperands() == 2)
9297 return FoldPHIArgBinOpIntoPHI(PN);
9298 // Can't handle general GEPs yet.
9299 return 0;
9300 } else {
9301 return 0; // Cannot fold this operation.
9302 }
9303
9304 // Check to see if all arguments are the same operation.
9305 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9306 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9307 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9308 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9309 return 0;
9310 if (CastSrcTy) {
9311 if (I->getOperand(0)->getType() != CastSrcTy)
9312 return 0; // Cast operation must match.
9313 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9314 // We can't sink the load if the loaded value could be modified between
9315 // the load and the PHI.
9316 if (LI->isVolatile() != isVolatile ||
9317 LI->getParent() != PN.getIncomingBlock(i) ||
9318 !isSafeToSinkLoad(LI))
9319 return 0;
9320 } else if (I->getOperand(1) != ConstantOp) {
9321 return 0;
9322 }
9323 }
9324
9325 // Okay, they are all the same operation. Create a new PHI node of the
9326 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009327 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9328 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009329 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9330
9331 Value *InVal = FirstInst->getOperand(0);
9332 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9333
9334 // Add all operands to the new PHI.
9335 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9336 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9337 if (NewInVal != InVal)
9338 InVal = 0;
9339 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9340 }
9341
9342 Value *PhiVal;
9343 if (InVal) {
9344 // The new PHI unions all of the same values together. This is really
9345 // common, so we handle it intelligently here for compile-time speed.
9346 PhiVal = InVal;
9347 delete NewPN;
9348 } else {
9349 InsertNewInstBefore(NewPN, PN);
9350 PhiVal = NewPN;
9351 }
9352
9353 // Insert and return the new operation.
9354 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
9355 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
9356 else if (isa<LoadInst>(FirstInst))
9357 return new LoadInst(PhiVal, "", isVolatile);
9358 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
9359 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
9360 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
9361 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
9362 PhiVal, ConstantOp);
9363 else
9364 assert(0 && "Unknown operation");
9365 return 0;
9366}
9367
9368/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9369/// that is dead.
9370static bool DeadPHICycle(PHINode *PN,
9371 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9372 if (PN->use_empty()) return true;
9373 if (!PN->hasOneUse()) return false;
9374
9375 // Remember this node, and if we find the cycle, return.
9376 if (!PotentiallyDeadPHIs.insert(PN))
9377 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00009378
9379 // Don't scan crazily complex things.
9380 if (PotentiallyDeadPHIs.size() == 16)
9381 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009382
9383 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9384 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9385
9386 return false;
9387}
9388
Chris Lattner27b695d2007-11-06 21:52:06 +00009389/// PHIsEqualValue - Return true if this phi node is always equal to
9390/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9391/// z = some value; x = phi (y, z); y = phi (x, z)
9392static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9393 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9394 // See if we already saw this PHI node.
9395 if (!ValueEqualPHIs.insert(PN))
9396 return true;
9397
9398 // Don't scan crazily complex things.
9399 if (ValueEqualPHIs.size() == 16)
9400 return false;
9401
9402 // Scan the operands to see if they are either phi nodes or are equal to
9403 // the value.
9404 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9405 Value *Op = PN->getIncomingValue(i);
9406 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9407 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9408 return false;
9409 } else if (Op != NonPhiInVal)
9410 return false;
9411 }
9412
9413 return true;
9414}
9415
9416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009417// PHINode simplification
9418//
9419Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9420 // If LCSSA is around, don't mess with Phi nodes
9421 if (MustPreserveLCSSA) return 0;
9422
9423 if (Value *V = PN.hasConstantValue())
9424 return ReplaceInstUsesWith(PN, V);
9425
9426 // If all PHI operands are the same operation, pull them through the PHI,
9427 // reducing code size.
9428 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9429 PN.getIncomingValue(0)->hasOneUse())
9430 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9431 return Result;
9432
9433 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9434 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9435 // PHI)... break the cycle.
9436 if (PN.hasOneUse()) {
9437 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9438 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9439 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9440 PotentiallyDeadPHIs.insert(&PN);
9441 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9442 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9443 }
9444
9445 // If this phi has a single use, and if that use just computes a value for
9446 // the next iteration of a loop, delete the phi. This occurs with unused
9447 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9448 // common case here is good because the only other things that catch this
9449 // are induction variable analysis (sometimes) and ADCE, which is only run
9450 // late.
9451 if (PHIUser->hasOneUse() &&
9452 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9453 PHIUser->use_back() == &PN) {
9454 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9455 }
9456 }
9457
Chris Lattner27b695d2007-11-06 21:52:06 +00009458 // We sometimes end up with phi cycles that non-obviously end up being the
9459 // same value, for example:
9460 // z = some value; x = phi (y, z); y = phi (x, z)
9461 // where the phi nodes don't necessarily need to be in the same block. Do a
9462 // quick check to see if the PHI node only contains a single non-phi value, if
9463 // so, scan to see if the phi cycle is actually equal to that value.
9464 {
9465 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9466 // Scan for the first non-phi operand.
9467 while (InValNo != NumOperandVals &&
9468 isa<PHINode>(PN.getIncomingValue(InValNo)))
9469 ++InValNo;
9470
9471 if (InValNo != NumOperandVals) {
9472 Value *NonPhiInVal = PN.getOperand(InValNo);
9473
9474 // Scan the rest of the operands to see if there are any conflicts, if so
9475 // there is no need to recursively scan other phis.
9476 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9477 Value *OpVal = PN.getIncomingValue(InValNo);
9478 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9479 break;
9480 }
9481
9482 // If we scanned over all operands, then we have one unique value plus
9483 // phi values. Scan PHI nodes to see if they all merge in each other or
9484 // the value.
9485 if (InValNo == NumOperandVals) {
9486 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9487 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9488 return ReplaceInstUsesWith(PN, NonPhiInVal);
9489 }
9490 }
9491 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009492 return 0;
9493}
9494
9495static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9496 Instruction *InsertPoint,
9497 InstCombiner *IC) {
9498 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9499 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
9500 // We must cast correctly to the pointer type. Ensure that we
9501 // sign extend the integer value if it is smaller as this is
9502 // used for address computation.
9503 Instruction::CastOps opcode =
9504 (VTySize < PtrSize ? Instruction::SExt :
9505 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9506 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
9507}
9508
9509
9510Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
9511 Value *PtrOp = GEP.getOperand(0);
9512 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
9513 // If so, eliminate the noop.
9514 if (GEP.getNumOperands() == 1)
9515 return ReplaceInstUsesWith(GEP, PtrOp);
9516
9517 if (isa<UndefValue>(GEP.getOperand(0)))
9518 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9519
9520 bool HasZeroPointerIndex = false;
9521 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9522 HasZeroPointerIndex = C->isNullValue();
9523
9524 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
9525 return ReplaceInstUsesWith(GEP, PtrOp);
9526
9527 // Eliminate unneeded casts for indices.
9528 bool MadeChange = false;
9529
9530 gep_type_iterator GTI = gep_type_begin(GEP);
9531 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
9532 if (isa<SequentialType>(*GTI)) {
9533 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
9534 if (CI->getOpcode() == Instruction::ZExt ||
9535 CI->getOpcode() == Instruction::SExt) {
9536 const Type *SrcTy = CI->getOperand(0)->getType();
9537 // We can eliminate a cast from i32 to i64 iff the target
9538 // is a 32-bit pointer target.
9539 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9540 MadeChange = true;
9541 GEP.setOperand(i, CI->getOperand(0));
9542 }
9543 }
9544 }
9545 // If we are using a wider index than needed for this platform, shrink it
9546 // to what we need. If the incoming value needs a cast instruction,
9547 // insert it. This explicit cast can make subsequent optimizations more
9548 // obvious.
9549 Value *Op = GEP.getOperand(i);
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009550 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009551 if (Constant *C = dyn_cast<Constant>(Op)) {
9552 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
9553 MadeChange = true;
9554 } else {
9555 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9556 GEP);
9557 GEP.setOperand(i, Op);
9558 MadeChange = true;
9559 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009560 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009561 }
9562 }
9563 if (MadeChange) return &GEP;
9564
9565 // If this GEP instruction doesn't move the pointer, and if the input operand
9566 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9567 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00009568 if (GEP.hasAllZeroIndices()) {
9569 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9570 // If the bitcast is of an allocation, and the allocation will be
9571 // converted to match the type of the cast, don't touch this.
9572 if (isa<AllocationInst>(BCI->getOperand(0))) {
9573 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00009574 if (Instruction *I = visitBitCast(*BCI)) {
9575 if (I != BCI) {
9576 I->takeName(BCI);
9577 BCI->getParent()->getInstList().insert(BCI, I);
9578 ReplaceInstUsesWith(*BCI, I);
9579 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009580 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00009581 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009582 }
9583 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9584 }
9585 }
9586
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009587 // Combine Indices - If the source pointer to this getelementptr instruction
9588 // is a getelementptr instruction, combine the indices of the two
9589 // getelementptr instructions into a single instruction.
9590 //
9591 SmallVector<Value*, 8> SrcGEPOperands;
9592 if (User *Src = dyn_castGetElementPtr(PtrOp))
9593 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
9594
9595 if (!SrcGEPOperands.empty()) {
9596 // Note that if our source is a gep chain itself that we wait for that
9597 // chain to be resolved before we perform this transformation. This
9598 // avoids us creating a TON of code in some cases.
9599 //
9600 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9601 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9602 return 0; // Wait until our source is folded to completion.
9603
9604 SmallVector<Value*, 8> Indices;
9605
9606 // Find out whether the last index in the source GEP is a sequential idx.
9607 bool EndsWithSequential = false;
9608 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9609 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
9610 EndsWithSequential = !isa<StructType>(*I);
9611
9612 // Can we combine the two pointer arithmetics offsets?
9613 if (EndsWithSequential) {
9614 // Replace: gep (gep %P, long B), long A, ...
9615 // With: T = long A+B; gep %P, T, ...
9616 //
9617 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
9618 if (SO1 == Constant::getNullValue(SO1->getType())) {
9619 Sum = GO1;
9620 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9621 Sum = SO1;
9622 } else {
9623 // If they aren't the same type, convert both to an integer of the
9624 // target's pointer size.
9625 if (SO1->getType() != GO1->getType()) {
9626 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
9627 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
9628 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
9629 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
9630 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009631 unsigned PS = TD->getPointerSizeInBits();
9632 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009633 // Convert GO1 to SO1's type.
9634 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
9635
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009636 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009637 // Convert SO1 to GO1's type.
9638 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
9639 } else {
9640 const Type *PT = TD->getIntPtrType();
9641 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
9642 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
9643 }
9644 }
9645 }
9646 if (isa<Constant>(SO1) && isa<Constant>(GO1))
9647 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
9648 else {
9649 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
9650 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
9651 }
9652 }
9653
9654 // Recycle the GEP we already have if possible.
9655 if (SrcGEPOperands.size() == 2) {
9656 GEP.setOperand(0, SrcGEPOperands[0]);
9657 GEP.setOperand(1, Sum);
9658 return &GEP;
9659 } else {
9660 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9661 SrcGEPOperands.end()-1);
9662 Indices.push_back(Sum);
9663 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
9664 }
9665 } else if (isa<Constant>(*GEP.idx_begin()) &&
9666 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
9667 SrcGEPOperands.size() != 1) {
9668 // Otherwise we can do the fold if the first index of the GEP is a zero
9669 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
9670 SrcGEPOperands.end());
9671 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
9672 }
9673
9674 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +00009675 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
9676 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009677
9678 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
9679 // GEP of global variable. If all of the indices for this GEP are
9680 // constants, we can promote this to a constexpr instead of an instruction.
9681
9682 // Scan for nonconstants...
9683 SmallVector<Constant*, 8> Indices;
9684 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
9685 for (; I != E && isa<Constant>(*I); ++I)
9686 Indices.push_back(cast<Constant>(*I));
9687
9688 if (I == E) { // If they are all constants...
9689 Constant *CE = ConstantExpr::getGetElementPtr(GV,
9690 &Indices[0],Indices.size());
9691
9692 // Replace all uses of the GEP with the new constexpr...
9693 return ReplaceInstUsesWith(GEP, CE);
9694 }
9695 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
9696 if (!isa<PointerType>(X->getType())) {
9697 // Not interesting. Source pointer must be a cast from pointer.
9698 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009699 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
9700 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009701 //
9702 // This occurs when the program declares an array extern like "int X[];"
9703 //
9704 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
9705 const PointerType *XTy = cast<PointerType>(X->getType());
9706 if (const ArrayType *XATy =
9707 dyn_cast<ArrayType>(XTy->getElementType()))
9708 if (const ArrayType *CATy =
9709 dyn_cast<ArrayType>(CPTy->getElementType()))
9710 if (CATy->getElementType() == XATy->getElementType()) {
9711 // At this point, we know that the cast source type is a pointer
9712 // to an array of the same type as the destination pointer
9713 // array. Because the array type is never stepped over (there
9714 // is a leading zero) we can fold the cast into this GEP.
9715 GEP.setOperand(0, X);
9716 return &GEP;
9717 }
9718 } else if (GEP.getNumOperands() == 2) {
9719 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009720 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
9721 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009722 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
9723 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
9724 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009725 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
9726 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00009727 Value *Idx[2];
9728 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9729 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009730 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +00009731 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009732 // V and GEP are both pointer types --> BitCast
9733 return new BitCastInst(V, GEP.getType());
9734 }
9735
9736 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009737 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009738 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009739 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009740
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009741 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009742 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009743 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009744
9745 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
9746 // allow either a mul, shift, or constant here.
9747 Value *NewIdx = 0;
9748 ConstantInt *Scale = 0;
9749 if (ArrayEltSize == 1) {
9750 NewIdx = GEP.getOperand(1);
9751 Scale = ConstantInt::get(NewIdx->getType(), 1);
9752 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
9753 NewIdx = ConstantInt::get(CI->getType(), 1);
9754 Scale = CI;
9755 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
9756 if (Inst->getOpcode() == Instruction::Shl &&
9757 isa<ConstantInt>(Inst->getOperand(1))) {
9758 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
9759 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
9760 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
9761 NewIdx = Inst->getOperand(0);
9762 } else if (Inst->getOpcode() == Instruction::Mul &&
9763 isa<ConstantInt>(Inst->getOperand(1))) {
9764 Scale = cast<ConstantInt>(Inst->getOperand(1));
9765 NewIdx = Inst->getOperand(0);
9766 }
9767 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009768
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009769 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009770 // out, perform the transformation. Note, we don't know whether Scale is
9771 // signed or not. We'll use unsigned version of division/modulo
9772 // operation after making sure Scale doesn't have the sign bit set.
9773 if (Scale && Scale->getSExtValue() >= 0LL &&
9774 Scale->getZExtValue() % ArrayEltSize == 0) {
9775 Scale = ConstantInt::get(Scale->getType(),
9776 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009777 if (Scale->getZExtValue() != 1) {
9778 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009779 false /*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009780 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
9781 NewIdx = InsertNewInstBefore(Sc, GEP);
9782 }
9783
9784 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00009785 Value *Idx[2];
9786 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9787 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009788 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +00009789 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009790 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9791 // The NewGEP must be pointer typed, so must the old one -> BitCast
9792 return new BitCastInst(NewGEP, GEP.getType());
9793 }
9794 }
9795 }
9796 }
9797
9798 return 0;
9799}
9800
9801Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9802 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009803 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009804 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9805 const Type *NewTy =
9806 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
9807 AllocationInst *New = 0;
9808
9809 // Create and insert the replacement instruction...
9810 if (isa<MallocInst>(AI))
9811 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
9812 else {
9813 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
9814 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
9815 }
9816
9817 InsertNewInstBefore(New, AI);
9818
9819 // Scan to the end of the allocation instructions, to skip over a block of
9820 // allocas if possible...
9821 //
9822 BasicBlock::iterator It = New;
9823 while (isa<AllocationInst>(*It)) ++It;
9824
9825 // Now that I is pointing to the first non-allocation-inst in the block,
9826 // insert our getelementptr instruction...
9827 //
9828 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00009829 Value *Idx[2];
9830 Idx[0] = NullIdx;
9831 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +00009832 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
9833 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009834
9835 // Now make everything use the getelementptr instead of the original
9836 // allocation.
9837 return ReplaceInstUsesWith(AI, V);
9838 } else if (isa<UndefValue>(AI.getArraySize())) {
9839 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9840 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009841 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009842
9843 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9844 // Note that we only do this for alloca's, because malloc should allocate and
9845 // return a unique pointer, even for a zero byte allocation.
9846 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009847 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009848 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9849
9850 return 0;
9851}
9852
9853Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
9854 Value *Op = FI.getOperand(0);
9855
9856 // free undef -> unreachable.
9857 if (isa<UndefValue>(Op)) {
9858 // Insert a new store to null because we cannot modify the CFG here.
9859 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009860 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009861 return EraseInstFromFunction(FI);
9862 }
9863
9864 // If we have 'free null' delete the instruction. This can happen in stl code
9865 // when lots of inlining happens.
9866 if (isa<ConstantPointerNull>(Op))
9867 return EraseInstFromFunction(FI);
9868
9869 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
9870 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
9871 FI.setOperand(0, CI->getOperand(0));
9872 return &FI;
9873 }
9874
9875 // Change free (gep X, 0,0,0,0) into free(X)
9876 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
9877 if (GEPI->hasAllZeroIndices()) {
9878 AddToWorkList(GEPI);
9879 FI.setOperand(0, GEPI->getOperand(0));
9880 return &FI;
9881 }
9882 }
9883
9884 // Change free(malloc) into nothing, if the malloc has a single use.
9885 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
9886 if (MI->hasOneUse()) {
9887 EraseInstFromFunction(FI);
9888 return EraseInstFromFunction(*MI);
9889 }
9890
9891 return 0;
9892}
9893
9894
9895/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +00009896static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +00009897 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009898 User *CI = cast<User>(LI.getOperand(0));
9899 Value *CastOp = CI->getOperand(0);
9900
Devang Patela0f8ea82007-10-18 19:52:32 +00009901 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
9902 // Instead of loading constant c string, use corresponding integer value
9903 // directly if string length is small enough.
9904 const std::string &Str = CE->getOperand(0)->getStringValue();
9905 if (!Str.empty()) {
9906 unsigned len = Str.length();
9907 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
9908 unsigned numBits = Ty->getPrimitiveSizeInBits();
9909 // Replace LI with immediate integer store.
9910 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00009911 APInt StrVal(numBits, 0);
9912 APInt SingleChar(numBits, 0);
9913 if (TD->isLittleEndian()) {
9914 for (signed i = len-1; i >= 0; i--) {
9915 SingleChar = (uint64_t) Str[i];
9916 StrVal = (StrVal << 8) | SingleChar;
9917 }
9918 } else {
9919 for (unsigned i = 0; i < len; i++) {
9920 SingleChar = (uint64_t) Str[i];
9921 StrVal = (StrVal << 8) | SingleChar;
9922 }
9923 // Append NULL at the end.
9924 SingleChar = 0;
9925 StrVal = (StrVal << 8) | SingleChar;
9926 }
9927 Value *NL = ConstantInt::get(StrVal);
9928 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +00009929 }
9930 }
9931 }
9932
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009933 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9934 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9935 const Type *SrcPTy = SrcTy->getElementType();
9936
9937 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
9938 isa<VectorType>(DestPTy)) {
9939 // If the source is an array, the code below will not succeed. Check to
9940 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9941 // constants.
9942 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9943 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9944 if (ASrcTy->getNumElements() != 0) {
9945 Value *Idxs[2];
9946 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9947 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
9948 SrcTy = cast<PointerType>(CastOp->getType());
9949 SrcPTy = SrcTy->getElementType();
9950 }
9951
9952 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
9953 isa<VectorType>(SrcPTy)) &&
9954 // Do not allow turning this into a load of an integer, which is then
9955 // casted to a pointer, this pessimizes pointer analysis a lot.
9956 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
9957 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9958 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
9959
9960 // Okay, we are casting from one integer or pointer type to another of
9961 // the same size. Instead of casting the pointer before the load, cast
9962 // the result of the loaded value.
9963 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
9964 CI->getName(),
9965 LI.isVolatile()),LI);
9966 // Now cast the result of the load.
9967 return new BitCastInst(NewLoad, LI.getType());
9968 }
9969 }
9970 }
9971 return 0;
9972}
9973
9974/// isSafeToLoadUnconditionally - Return true if we know that executing a load
9975/// from this value cannot trap. If it is not obviously safe to load from the
9976/// specified pointer, we do a quick local scan of the basic block containing
9977/// ScanFrom, to determine if the address is already accessed.
9978static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009979 // If it is an alloca it is always safe to load from.
9980 if (isa<AllocaInst>(V)) return true;
9981
Duncan Sandse40a94a2007-09-19 10:25:38 +00009982 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009983 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +00009984 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009985 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009986
9987 // Otherwise, be a little bit agressive by scanning the local block where we
9988 // want to check to see if the pointer is already being loaded or stored
9989 // from/to. If so, the previous load or store would have already trapped,
9990 // so there is no harm doing an extra load (also, CSE will later eliminate
9991 // the load entirely).
9992 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
9993
9994 while (BBI != E) {
9995 --BBI;
9996
9997 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9998 if (LI->getOperand(0) == V) return true;
9999 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10000 if (SI->getOperand(1) == V) return true;
10001
10002 }
10003 return false;
10004}
10005
Chris Lattner0270a112007-08-11 18:48:48 +000010006/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
10007/// until we find the underlying object a pointer is referring to or something
10008/// we don't understand. Note that the returned pointer may be offset from the
10009/// input, because we ignore GEP indices.
10010static Value *GetUnderlyingObject(Value *Ptr) {
10011 while (1) {
10012 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
10013 if (CE->getOpcode() == Instruction::BitCast ||
10014 CE->getOpcode() == Instruction::GetElementPtr)
10015 Ptr = CE->getOperand(0);
10016 else
10017 return Ptr;
10018 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
10019 Ptr = BCI->getOperand(0);
10020 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
10021 Ptr = GEP->getOperand(0);
10022 } else {
10023 return Ptr;
10024 }
10025 }
10026}
10027
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010028Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10029 Value *Op = LI.getOperand(0);
10030
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010031 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010032 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10033 if (KnownAlign >
10034 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10035 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010036 LI.setAlignment(KnownAlign);
10037
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010038 // load (cast X) --> cast (load X) iff safe
10039 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010040 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010041 return Res;
10042
10043 // None of the following transforms are legal for volatile loads.
10044 if (LI.isVolatile()) return 0;
10045
10046 if (&LI.getParent()->front() != &LI) {
10047 BasicBlock::iterator BBI = &LI; --BBI;
10048 // If the instruction immediately before this is a store to the same
10049 // address, do a simple form of store->load forwarding.
10050 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10051 if (SI->getOperand(1) == LI.getOperand(0))
10052 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10053 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10054 if (LIB->getOperand(0) == LI.getOperand(0))
10055 return ReplaceInstUsesWith(LI, LIB);
10056 }
10057
Christopher Lamb2c175392007-12-29 07:56:53 +000010058 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10059 const Value *GEPI0 = GEPI->getOperand(0);
10060 // TODO: Consider a target hook for valid address spaces for this xform.
10061 if (isa<ConstantPointerNull>(GEPI0) &&
10062 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010063 // Insert a new store to null instruction before the load to indicate
10064 // that this code is not reachable. We do this instead of inserting
10065 // an unreachable instruction directly because we cannot modify the
10066 // CFG.
10067 new StoreInst(UndefValue::get(LI.getType()),
10068 Constant::getNullValue(Op->getType()), &LI);
10069 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10070 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010071 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010072
10073 if (Constant *C = dyn_cast<Constant>(Op)) {
10074 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010075 // TODO: Consider a target hook for valid address spaces for this xform.
10076 if (isa<UndefValue>(C) || (C->isNullValue() &&
10077 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010078 // Insert a new store to null instruction before the load to indicate that
10079 // this code is not reachable. We do this instead of inserting an
10080 // unreachable instruction directly because we cannot modify the CFG.
10081 new StoreInst(UndefValue::get(LI.getType()),
10082 Constant::getNullValue(Op->getType()), &LI);
10083 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10084 }
10085
10086 // Instcombine load (constant global) into the value loaded.
10087 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10088 if (GV->isConstant() && !GV->isDeclaration())
10089 return ReplaceInstUsesWith(LI, GV->getInitializer());
10090
10091 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010092 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010093 if (CE->getOpcode() == Instruction::GetElementPtr) {
10094 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10095 if (GV->isConstant() && !GV->isDeclaration())
10096 if (Constant *V =
10097 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10098 return ReplaceInstUsesWith(LI, V);
10099 if (CE->getOperand(0)->isNullValue()) {
10100 // Insert a new store to null instruction before the load to indicate
10101 // that this code is not reachable. We do this instead of inserting
10102 // an unreachable instruction directly because we cannot modify the
10103 // CFG.
10104 new StoreInst(UndefValue::get(LI.getType()),
10105 Constant::getNullValue(Op->getType()), &LI);
10106 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10107 }
10108
10109 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010110 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010111 return Res;
10112 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010113 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010114 }
Chris Lattner0270a112007-08-11 18:48:48 +000010115
10116 // If this load comes from anywhere in a constant global, and if the global
10117 // is all undef or zero, we know what it loads.
10118 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
10119 if (GV->isConstant() && GV->hasInitializer()) {
10120 if (GV->getInitializer()->isNullValue())
10121 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10122 else if (isa<UndefValue>(GV->getInitializer()))
10123 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10124 }
10125 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010126
10127 if (Op->hasOneUse()) {
10128 // Change select and PHI nodes to select values instead of addresses: this
10129 // helps alias analysis out a lot, allows many others simplifications, and
10130 // exposes redundancy in the code.
10131 //
10132 // Note that we cannot do the transformation unless we know that the
10133 // introduced loads cannot trap! Something like this is valid as long as
10134 // the condition is always false: load (select bool %C, int* null, int* %G),
10135 // but it would not be valid if we transformed it to load from null
10136 // unconditionally.
10137 //
10138 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10139 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10140 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10141 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10142 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10143 SI->getOperand(1)->getName()+".val"), LI);
10144 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10145 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010146 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010147 }
10148
10149 // load (select (cond, null, P)) -> load P
10150 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10151 if (C->isNullValue()) {
10152 LI.setOperand(0, SI->getOperand(2));
10153 return &LI;
10154 }
10155
10156 // load (select (cond, P, null)) -> load P
10157 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10158 if (C->isNullValue()) {
10159 LI.setOperand(0, SI->getOperand(1));
10160 return &LI;
10161 }
10162 }
10163 }
10164 return 0;
10165}
10166
10167/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10168/// when possible.
10169static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10170 User *CI = cast<User>(SI.getOperand(1));
10171 Value *CastOp = CI->getOperand(0);
10172
10173 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10174 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10175 const Type *SrcPTy = SrcTy->getElementType();
10176
10177 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10178 // If the source is an array, the code below will not succeed. Check to
10179 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10180 // constants.
10181 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10182 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10183 if (ASrcTy->getNumElements() != 0) {
10184 Value* Idxs[2];
10185 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10186 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10187 SrcTy = cast<PointerType>(CastOp->getType());
10188 SrcPTy = SrcTy->getElementType();
10189 }
10190
10191 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10192 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10193 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10194
10195 // Okay, we are casting from one integer or pointer type to another of
10196 // the same size. Instead of casting the pointer before
10197 // the store, cast the value to be stored.
10198 Value *NewCast;
10199 Value *SIOp0 = SI.getOperand(0);
10200 Instruction::CastOps opcode = Instruction::BitCast;
10201 const Type* CastSrcTy = SIOp0->getType();
10202 const Type* CastDstTy = SrcPTy;
10203 if (isa<PointerType>(CastDstTy)) {
10204 if (CastSrcTy->isInteger())
10205 opcode = Instruction::IntToPtr;
10206 } else if (isa<IntegerType>(CastDstTy)) {
10207 if (isa<PointerType>(SIOp0->getType()))
10208 opcode = Instruction::PtrToInt;
10209 }
10210 if (Constant *C = dyn_cast<Constant>(SIOp0))
10211 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10212 else
10213 NewCast = IC.InsertNewInstBefore(
10214 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
10215 SI);
10216 return new StoreInst(NewCast, CastOp);
10217 }
10218 }
10219 }
10220 return 0;
10221}
10222
10223Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10224 Value *Val = SI.getOperand(0);
10225 Value *Ptr = SI.getOperand(1);
10226
10227 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10228 EraseInstFromFunction(SI);
10229 ++NumCombined;
10230 return 0;
10231 }
10232
10233 // If the RHS is an alloca with a single use, zapify the store, making the
10234 // alloca dead.
10235 if (Ptr->hasOneUse()) {
10236 if (isa<AllocaInst>(Ptr)) {
10237 EraseInstFromFunction(SI);
10238 ++NumCombined;
10239 return 0;
10240 }
10241
10242 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10243 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10244 GEP->getOperand(0)->hasOneUse()) {
10245 EraseInstFromFunction(SI);
10246 ++NumCombined;
10247 return 0;
10248 }
10249 }
10250
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010251 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010252 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10253 if (KnownAlign >
10254 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10255 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010256 SI.setAlignment(KnownAlign);
10257
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010258 // Do really simple DSE, to catch cases where there are several consequtive
10259 // stores to the same location, separated by a few arithmetic operations. This
10260 // situation often occurs with bitfield accesses.
10261 BasicBlock::iterator BBI = &SI;
10262 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10263 --ScanInsts) {
10264 --BBI;
10265
10266 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10267 // Prev store isn't volatile, and stores to the same location?
10268 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10269 ++NumDeadStore;
10270 ++BBI;
10271 EraseInstFromFunction(*PrevSI);
10272 continue;
10273 }
10274 break;
10275 }
10276
10277 // If this is a load, we have to stop. However, if the loaded value is from
10278 // the pointer we're loading and is producing the pointer we're storing,
10279 // then *this* store is dead (X = load P; store X -> P).
10280 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +000010281 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010282 EraseInstFromFunction(SI);
10283 ++NumCombined;
10284 return 0;
10285 }
10286 // Otherwise, this is a load from some other location. Stores before it
10287 // may not be dead.
10288 break;
10289 }
10290
10291 // Don't skip over loads or things that can modify memory.
10292 if (BBI->mayWriteToMemory())
10293 break;
10294 }
10295
10296
10297 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10298
10299 // store X, null -> turns into 'unreachable' in SimplifyCFG
10300 if (isa<ConstantPointerNull>(Ptr)) {
10301 if (!isa<UndefValue>(Val)) {
10302 SI.setOperand(0, UndefValue::get(Val->getType()));
10303 if (Instruction *U = dyn_cast<Instruction>(Val))
10304 AddToWorkList(U); // Dropped a use.
10305 ++NumCombined;
10306 }
10307 return 0; // Do not modify these!
10308 }
10309
10310 // store undef, Ptr -> noop
10311 if (isa<UndefValue>(Val)) {
10312 EraseInstFromFunction(SI);
10313 ++NumCombined;
10314 return 0;
10315 }
10316
10317 // If the pointer destination is a cast, see if we can fold the cast into the
10318 // source instead.
10319 if (isa<CastInst>(Ptr))
10320 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10321 return Res;
10322 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10323 if (CE->isCast())
10324 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10325 return Res;
10326
10327
10328 // If this store is the last instruction in the basic block, and if the block
10329 // ends with an unconditional branch, try to move it to the successor block.
10330 BBI = &SI; ++BBI;
10331 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10332 if (BI->isUnconditional())
10333 if (SimplifyStoreAtEndOfBlock(SI))
10334 return 0; // xform done!
10335
10336 return 0;
10337}
10338
10339/// SimplifyStoreAtEndOfBlock - Turn things like:
10340/// if () { *P = v1; } else { *P = v2 }
10341/// into a phi node with a store in the successor.
10342///
10343/// Simplify things like:
10344/// *P = v1; if () { *P = v2; }
10345/// into a phi node with a store in the successor.
10346///
10347bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10348 BasicBlock *StoreBB = SI.getParent();
10349
10350 // Check to see if the successor block has exactly two incoming edges. If
10351 // so, see if the other predecessor contains a store to the same location.
10352 // if so, insert a PHI node (if needed) and move the stores down.
10353 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10354
10355 // Determine whether Dest has exactly two predecessors and, if so, compute
10356 // the other predecessor.
10357 pred_iterator PI = pred_begin(DestBB);
10358 BasicBlock *OtherBB = 0;
10359 if (*PI != StoreBB)
10360 OtherBB = *PI;
10361 ++PI;
10362 if (PI == pred_end(DestBB))
10363 return false;
10364
10365 if (*PI != StoreBB) {
10366 if (OtherBB)
10367 return false;
10368 OtherBB = *PI;
10369 }
10370 if (++PI != pred_end(DestBB))
10371 return false;
10372
10373
10374 // Verify that the other block ends in a branch and is not otherwise empty.
10375 BasicBlock::iterator BBI = OtherBB->getTerminator();
10376 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10377 if (!OtherBr || BBI == OtherBB->begin())
10378 return false;
10379
10380 // If the other block ends in an unconditional branch, check for the 'if then
10381 // else' case. there is an instruction before the branch.
10382 StoreInst *OtherStore = 0;
10383 if (OtherBr->isUnconditional()) {
10384 // If this isn't a store, or isn't a store to the same location, bail out.
10385 --BBI;
10386 OtherStore = dyn_cast<StoreInst>(BBI);
10387 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10388 return false;
10389 } else {
10390 // Otherwise, the other block ended with a conditional branch. If one of the
10391 // destinations is StoreBB, then we have the if/then case.
10392 if (OtherBr->getSuccessor(0) != StoreBB &&
10393 OtherBr->getSuccessor(1) != StoreBB)
10394 return false;
10395
10396 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10397 // if/then triangle. See if there is a store to the same ptr as SI that
10398 // lives in OtherBB.
10399 for (;; --BBI) {
10400 // Check to see if we find the matching store.
10401 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10402 if (OtherStore->getOperand(1) != SI.getOperand(1))
10403 return false;
10404 break;
10405 }
10406 // If we find something that may be using the stored value, or if we run
10407 // out of instructions, we can't do the xform.
10408 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
10409 BBI == OtherBB->begin())
10410 return false;
10411 }
10412
10413 // In order to eliminate the store in OtherBr, we have to
10414 // make sure nothing reads the stored value in StoreBB.
10415 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10416 // FIXME: This should really be AA driven.
10417 if (isa<LoadInst>(I) || I->mayWriteToMemory())
10418 return false;
10419 }
10420 }
10421
10422 // Insert a PHI node now if we need it.
10423 Value *MergedVal = OtherStore->getOperand(0);
10424 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000010425 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010426 PN->reserveOperandSpace(2);
10427 PN->addIncoming(SI.getOperand(0), SI.getParent());
10428 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10429 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10430 }
10431
10432 // Advance to a place where it is safe to insert the new store and
10433 // insert it.
10434 BBI = DestBB->begin();
10435 while (isa<PHINode>(BBI)) ++BBI;
10436 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10437 OtherStore->isVolatile()), *BBI);
10438
10439 // Nuke the old stores.
10440 EraseInstFromFunction(SI);
10441 EraseInstFromFunction(*OtherStore);
10442 ++NumCombined;
10443 return true;
10444}
10445
10446
10447Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10448 // Change br (not X), label True, label False to: br X, label False, True
10449 Value *X = 0;
10450 BasicBlock *TrueDest;
10451 BasicBlock *FalseDest;
10452 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10453 !isa<Constant>(X)) {
10454 // Swap Destinations and condition...
10455 BI.setCondition(X);
10456 BI.setSuccessor(0, FalseDest);
10457 BI.setSuccessor(1, TrueDest);
10458 return &BI;
10459 }
10460
10461 // Cannonicalize fcmp_one -> fcmp_oeq
10462 FCmpInst::Predicate FPred; Value *Y;
10463 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10464 TrueDest, FalseDest)))
10465 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10466 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10467 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
10468 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
10469 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10470 NewSCC->takeName(I);
10471 // Swap Destinations and condition...
10472 BI.setCondition(NewSCC);
10473 BI.setSuccessor(0, FalseDest);
10474 BI.setSuccessor(1, TrueDest);
10475 RemoveFromWorkList(I);
10476 I->eraseFromParent();
10477 AddToWorkList(NewSCC);
10478 return &BI;
10479 }
10480
10481 // Cannonicalize icmp_ne -> icmp_eq
10482 ICmpInst::Predicate IPred;
10483 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10484 TrueDest, FalseDest)))
10485 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10486 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10487 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10488 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
10489 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
10490 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10491 NewSCC->takeName(I);
10492 // Swap Destinations and condition...
10493 BI.setCondition(NewSCC);
10494 BI.setSuccessor(0, FalseDest);
10495 BI.setSuccessor(1, TrueDest);
10496 RemoveFromWorkList(I);
10497 I->eraseFromParent();;
10498 AddToWorkList(NewSCC);
10499 return &BI;
10500 }
10501
10502 return 0;
10503}
10504
10505Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10506 Value *Cond = SI.getCondition();
10507 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10508 if (I->getOpcode() == Instruction::Add)
10509 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10510 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10511 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
10512 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
10513 AddRHS));
10514 SI.setOperand(0, I->getOperand(0));
10515 AddToWorkList(I);
10516 return &SI;
10517 }
10518 }
10519 return 0;
10520}
10521
10522/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10523/// is to leave as a vector operation.
10524static bool CheapToScalarize(Value *V, bool isConstant) {
10525 if (isa<ConstantAggregateZero>(V))
10526 return true;
10527 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
10528 if (isConstant) return true;
10529 // If all elts are the same, we can extract.
10530 Constant *Op0 = C->getOperand(0);
10531 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10532 if (C->getOperand(i) != Op0)
10533 return false;
10534 return true;
10535 }
10536 Instruction *I = dyn_cast<Instruction>(V);
10537 if (!I) return false;
10538
10539 // Insert element gets simplified to the inserted element or is deleted if
10540 // this is constant idx extract element and its a constant idx insertelt.
10541 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10542 isa<ConstantInt>(I->getOperand(2)))
10543 return true;
10544 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10545 return true;
10546 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10547 if (BO->hasOneUse() &&
10548 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10549 CheapToScalarize(BO->getOperand(1), isConstant)))
10550 return true;
10551 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10552 if (CI->hasOneUse() &&
10553 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10554 CheapToScalarize(CI->getOperand(1), isConstant)))
10555 return true;
10556
10557 return false;
10558}
10559
10560/// Read and decode a shufflevector mask.
10561///
10562/// It turns undef elements into values that are larger than the number of
10563/// elements in the input.
10564static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10565 unsigned NElts = SVI->getType()->getNumElements();
10566 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10567 return std::vector<unsigned>(NElts, 0);
10568 if (isa<UndefValue>(SVI->getOperand(2)))
10569 return std::vector<unsigned>(NElts, 2*NElts);
10570
10571 std::vector<unsigned> Result;
10572 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
10573 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
10574 if (isa<UndefValue>(CP->getOperand(i)))
10575 Result.push_back(NElts*2); // undef -> 8
10576 else
10577 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
10578 return Result;
10579}
10580
10581/// FindScalarElement - Given a vector and an element number, see if the scalar
10582/// value is already around as a register, for example if it were inserted then
10583/// extracted from the vector.
10584static Value *FindScalarElement(Value *V, unsigned EltNo) {
10585 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
10586 const VectorType *PTy = cast<VectorType>(V->getType());
10587 unsigned Width = PTy->getNumElements();
10588 if (EltNo >= Width) // Out of range access.
10589 return UndefValue::get(PTy->getElementType());
10590
10591 if (isa<UndefValue>(V))
10592 return UndefValue::get(PTy->getElementType());
10593 else if (isa<ConstantAggregateZero>(V))
10594 return Constant::getNullValue(PTy->getElementType());
10595 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
10596 return CP->getOperand(EltNo);
10597 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
10598 // If this is an insert to a variable element, we don't know what it is.
10599 if (!isa<ConstantInt>(III->getOperand(2)))
10600 return 0;
10601 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
10602
10603 // If this is an insert to the element we are looking for, return the
10604 // inserted value.
10605 if (EltNo == IIElt)
10606 return III->getOperand(1);
10607
10608 // Otherwise, the insertelement doesn't modify the value, recurse on its
10609 // vector input.
10610 return FindScalarElement(III->getOperand(0), EltNo);
10611 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
10612 unsigned InEl = getShuffleMask(SVI)[EltNo];
10613 if (InEl < Width)
10614 return FindScalarElement(SVI->getOperand(0), InEl);
10615 else if (InEl < Width*2)
10616 return FindScalarElement(SVI->getOperand(1), InEl - Width);
10617 else
10618 return UndefValue::get(PTy->getElementType());
10619 }
10620
10621 // Otherwise, we don't know.
10622 return 0;
10623}
10624
10625Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
10626
10627 // If vector val is undef, replace extract with scalar undef.
10628 if (isa<UndefValue>(EI.getOperand(0)))
10629 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10630
10631 // If vector val is constant 0, replace extract with scalar 0.
10632 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
10633 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
10634
10635 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
10636 // If vector val is constant with uniform operands, replace EI
10637 // with that operand
10638 Constant *op0 = C->getOperand(0);
10639 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10640 if (C->getOperand(i) != op0) {
10641 op0 = 0;
10642 break;
10643 }
10644 if (op0)
10645 return ReplaceInstUsesWith(EI, op0);
10646 }
10647
10648 // If extracting a specified index from the vector, see if we can recursively
10649 // find a previously computed scalar that was inserted into the vector.
10650 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10651 unsigned IndexVal = IdxC->getZExtValue();
10652 unsigned VectorWidth =
10653 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
10654
10655 // If this is extracting an invalid index, turn this into undef, to avoid
10656 // crashing the code below.
10657 if (IndexVal >= VectorWidth)
10658 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10659
10660 // This instruction only demands the single element from the input vector.
10661 // If the input vector has a single use, simplify it based on this use
10662 // property.
10663 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
10664 uint64_t UndefElts;
10665 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
10666 1 << IndexVal,
10667 UndefElts)) {
10668 EI.setOperand(0, V);
10669 return &EI;
10670 }
10671 }
10672
10673 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
10674 return ReplaceInstUsesWith(EI, Elt);
10675
10676 // If the this extractelement is directly using a bitcast from a vector of
10677 // the same number of elements, see if we can find the source element from
10678 // it. In this case, we will end up needing to bitcast the scalars.
10679 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
10680 if (const VectorType *VT =
10681 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
10682 if (VT->getNumElements() == VectorWidth)
10683 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
10684 return new BitCastInst(Elt, EI.getType());
10685 }
10686 }
10687
10688 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
10689 if (I->hasOneUse()) {
10690 // Push extractelement into predecessor operation if legal and
10691 // profitable to do so
10692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
10693 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
10694 if (CheapToScalarize(BO, isConstantElt)) {
10695 ExtractElementInst *newEI0 =
10696 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
10697 EI.getName()+".lhs");
10698 ExtractElementInst *newEI1 =
10699 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
10700 EI.getName()+".rhs");
10701 InsertNewInstBefore(newEI0, EI);
10702 InsertNewInstBefore(newEI1, EI);
10703 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
10704 }
10705 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000010706 unsigned AS =
10707 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000010708 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
10709 PointerType::get(EI.getType(), AS),EI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010710 GetElementPtrInst *GEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010711 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName() + ".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010712 InsertNewInstBefore(GEP, EI);
10713 return new LoadInst(GEP);
10714 }
10715 }
10716 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
10717 // Extracting the inserted element?
10718 if (IE->getOperand(2) == EI.getOperand(1))
10719 return ReplaceInstUsesWith(EI, IE->getOperand(1));
10720 // If the inserted and extracted elements are constants, they must not
10721 // be the same value, extract from the pre-inserted value instead.
10722 if (isa<Constant>(IE->getOperand(2)) &&
10723 isa<Constant>(EI.getOperand(1))) {
10724 AddUsesToWorkList(EI);
10725 EI.setOperand(0, IE->getOperand(0));
10726 return &EI;
10727 }
10728 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
10729 // If this is extracting an element from a shufflevector, figure out where
10730 // it came from and extract from the appropriate input element instead.
10731 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
10732 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
10733 Value *Src;
10734 if (SrcIdx < SVI->getType()->getNumElements())
10735 Src = SVI->getOperand(0);
10736 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
10737 SrcIdx -= SVI->getType()->getNumElements();
10738 Src = SVI->getOperand(1);
10739 } else {
10740 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
10741 }
10742 return new ExtractElementInst(Src, SrcIdx);
10743 }
10744 }
10745 }
10746 return 0;
10747}
10748
10749/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
10750/// elements from either LHS or RHS, return the shuffle mask and true.
10751/// Otherwise, return false.
10752static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
10753 std::vector<Constant*> &Mask) {
10754 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
10755 "Invalid CollectSingleShuffleElements");
10756 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10757
10758 if (isa<UndefValue>(V)) {
10759 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10760 return true;
10761 } else if (V == LHS) {
10762 for (unsigned i = 0; i != NumElts; ++i)
10763 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10764 return true;
10765 } else if (V == RHS) {
10766 for (unsigned i = 0; i != NumElts; ++i)
10767 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
10768 return true;
10769 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10770 // If this is an insert of an extract from some other vector, include it.
10771 Value *VecOp = IEI->getOperand(0);
10772 Value *ScalarOp = IEI->getOperand(1);
10773 Value *IdxOp = IEI->getOperand(2);
10774
10775 if (!isa<ConstantInt>(IdxOp))
10776 return false;
10777 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10778
10779 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10780 // Okay, we can handle this if the vector we are insertinting into is
10781 // transitively ok.
10782 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10783 // If so, update the mask to reflect the inserted undef.
10784 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
10785 return true;
10786 }
10787 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10788 if (isa<ConstantInt>(EI->getOperand(1)) &&
10789 EI->getOperand(0)->getType() == V->getType()) {
10790 unsigned ExtractedIdx =
10791 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10792
10793 // This must be extracting from either LHS or RHS.
10794 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10795 // Okay, we can handle this if the vector we are insertinting into is
10796 // transitively ok.
10797 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10798 // If so, update the mask to reflect the inserted value.
10799 if (EI->getOperand(0) == LHS) {
10800 Mask[InsertedIdx & (NumElts-1)] =
10801 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10802 } else {
10803 assert(EI->getOperand(0) == RHS);
10804 Mask[InsertedIdx & (NumElts-1)] =
10805 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
10806
10807 }
10808 return true;
10809 }
10810 }
10811 }
10812 }
10813 }
10814 // TODO: Handle shufflevector here!
10815
10816 return false;
10817}
10818
10819/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10820/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10821/// that computes V and the LHS value of the shuffle.
10822static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
10823 Value *&RHS) {
10824 assert(isa<VectorType>(V->getType()) &&
10825 (RHS == 0 || V->getType() == RHS->getType()) &&
10826 "Invalid shuffle!");
10827 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10828
10829 if (isa<UndefValue>(V)) {
10830 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10831 return V;
10832 } else if (isa<ConstantAggregateZero>(V)) {
10833 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
10834 return V;
10835 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10836 // If this is an insert of an extract from some other vector, include it.
10837 Value *VecOp = IEI->getOperand(0);
10838 Value *ScalarOp = IEI->getOperand(1);
10839 Value *IdxOp = IEI->getOperand(2);
10840
10841 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10842 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10843 EI->getOperand(0)->getType() == V->getType()) {
10844 unsigned ExtractedIdx =
10845 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10846 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10847
10848 // Either the extracted from or inserted into vector must be RHSVec,
10849 // otherwise we'd end up with a shuffle of three inputs.
10850 if (EI->getOperand(0) == RHS || RHS == 0) {
10851 RHS = EI->getOperand(0);
10852 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
10853 Mask[InsertedIdx & (NumElts-1)] =
10854 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
10855 return V;
10856 }
10857
10858 if (VecOp == RHS) {
10859 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
10860 // Everything but the extracted element is replaced with the RHS.
10861 for (unsigned i = 0; i != NumElts; ++i) {
10862 if (i != InsertedIdx)
10863 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
10864 }
10865 return V;
10866 }
10867
10868 // If this insertelement is a chain that comes from exactly these two
10869 // vectors, return the vector and the effective shuffle.
10870 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
10871 return EI->getOperand(0);
10872
10873 }
10874 }
10875 }
10876 // TODO: Handle shufflevector here!
10877
10878 // Otherwise, can't do anything fancy. Return an identity vector.
10879 for (unsigned i = 0; i != NumElts; ++i)
10880 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10881 return V;
10882}
10883
10884Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
10885 Value *VecOp = IE.getOperand(0);
10886 Value *ScalarOp = IE.getOperand(1);
10887 Value *IdxOp = IE.getOperand(2);
10888
10889 // Inserting an undef or into an undefined place, remove this.
10890 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
10891 ReplaceInstUsesWith(IE, VecOp);
10892
10893 // If the inserted element was extracted from some other vector, and if the
10894 // indexes are constant, try to turn this into a shufflevector operation.
10895 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10896 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10897 EI->getOperand(0)->getType() == IE.getType()) {
10898 unsigned NumVectorElts = IE.getType()->getNumElements();
10899 unsigned ExtractedIdx =
10900 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10901 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10902
10903 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
10904 return ReplaceInstUsesWith(IE, VecOp);
10905
10906 if (InsertedIdx >= NumVectorElts) // Out of range insert.
10907 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
10908
10909 // If we are extracting a value from a vector, then inserting it right
10910 // back into the same place, just use the input vector.
10911 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
10912 return ReplaceInstUsesWith(IE, VecOp);
10913
10914 // We could theoretically do this for ANY input. However, doing so could
10915 // turn chains of insertelement instructions into a chain of shufflevector
10916 // instructions, and right now we do not merge shufflevectors. As such,
10917 // only do this in a situation where it is clear that there is benefit.
10918 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
10919 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
10920 // the values of VecOp, except then one read from EIOp0.
10921 // Build a new shuffle mask.
10922 std::vector<Constant*> Mask;
10923 if (isa<UndefValue>(VecOp))
10924 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
10925 else {
10926 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
10927 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
10928 NumVectorElts));
10929 }
10930 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10931 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
10932 ConstantVector::get(Mask));
10933 }
10934
10935 // If this insertelement isn't used by some other insertelement, turn it
10936 // (and any insertelements it points to), into one big shuffle.
10937 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
10938 std::vector<Constant*> Mask;
10939 Value *RHS = 0;
10940 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
10941 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
10942 // We now have a shuffle of LHS, RHS, Mask.
10943 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
10944 }
10945 }
10946 }
10947
10948 return 0;
10949}
10950
10951
10952Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
10953 Value *LHS = SVI.getOperand(0);
10954 Value *RHS = SVI.getOperand(1);
10955 std::vector<unsigned> Mask = getShuffleMask(&SVI);
10956
10957 bool MadeChange = false;
10958
10959 // Undefined shuffle mask -> undefined value.
10960 if (isa<UndefValue>(SVI.getOperand(2)))
10961 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
10962
10963 // If we have shuffle(x, undef, mask) and any elements of mask refer to
10964 // the undef, change them to undefs.
10965 if (isa<UndefValue>(SVI.getOperand(1))) {
10966 // Scan to see if there are any references to the RHS. If so, replace them
10967 // with undef element refs and set MadeChange to true.
10968 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10969 if (Mask[i] >= e && Mask[i] != 2*e) {
10970 Mask[i] = 2*e;
10971 MadeChange = true;
10972 }
10973 }
10974
10975 if (MadeChange) {
10976 // Remap any references to RHS to use LHS.
10977 std::vector<Constant*> Elts;
10978 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10979 if (Mask[i] == 2*e)
10980 Elts.push_back(UndefValue::get(Type::Int32Ty));
10981 else
10982 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
10983 }
10984 SVI.setOperand(2, ConstantVector::get(Elts));
10985 }
10986 }
10987
10988 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
10989 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
10990 if (LHS == RHS || isa<UndefValue>(LHS)) {
10991 if (isa<UndefValue>(LHS) && LHS == RHS) {
10992 // shuffle(undef,undef,mask) -> undef.
10993 return ReplaceInstUsesWith(SVI, LHS);
10994 }
10995
10996 // Remap any references to RHS to use LHS.
10997 std::vector<Constant*> Elts;
10998 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10999 if (Mask[i] >= 2*e)
11000 Elts.push_back(UndefValue::get(Type::Int32Ty));
11001 else {
11002 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
11003 (Mask[i] < e && isa<UndefValue>(LHS)))
11004 Mask[i] = 2*e; // Turn into undef.
11005 else
11006 Mask[i] &= (e-1); // Force to LHS.
11007 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11008 }
11009 }
11010 SVI.setOperand(0, SVI.getOperand(1));
11011 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11012 SVI.setOperand(2, ConstantVector::get(Elts));
11013 LHS = SVI.getOperand(0);
11014 RHS = SVI.getOperand(1);
11015 MadeChange = true;
11016 }
11017
11018 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11019 bool isLHSID = true, isRHSID = true;
11020
11021 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11022 if (Mask[i] >= e*2) continue; // Ignore undef values.
11023 // Is this an identity shuffle of the LHS value?
11024 isLHSID &= (Mask[i] == i);
11025
11026 // Is this an identity shuffle of the RHS value?
11027 isRHSID &= (Mask[i]-e == i);
11028 }
11029
11030 // Eliminate identity shuffles.
11031 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11032 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11033
11034 // If the LHS is a shufflevector itself, see if we can combine it with this
11035 // one without producing an unusual shuffle. Here we are really conservative:
11036 // we are absolutely afraid of producing a shuffle mask not in the input
11037 // program, because the code gen may not be smart enough to turn a merged
11038 // shuffle into two specific shuffles: it may produce worse code. As such,
11039 // we only merge two shuffles if the result is one of the two input shuffle
11040 // masks. In this case, merging the shuffles just removes one instruction,
11041 // which we know is safe. This is good for things like turning:
11042 // (splat(splat)) -> splat.
11043 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11044 if (isa<UndefValue>(RHS)) {
11045 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11046
11047 std::vector<unsigned> NewMask;
11048 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11049 if (Mask[i] >= 2*e)
11050 NewMask.push_back(2*e);
11051 else
11052 NewMask.push_back(LHSMask[Mask[i]]);
11053
11054 // If the result mask is equal to the src shuffle or this shuffle mask, do
11055 // the replacement.
11056 if (NewMask == LHSMask || NewMask == Mask) {
11057 std::vector<Constant*> Elts;
11058 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11059 if (NewMask[i] >= e*2) {
11060 Elts.push_back(UndefValue::get(Type::Int32Ty));
11061 } else {
11062 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11063 }
11064 }
11065 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11066 LHSSVI->getOperand(1),
11067 ConstantVector::get(Elts));
11068 }
11069 }
11070 }
11071
11072 return MadeChange ? &SVI : 0;
11073}
11074
11075
11076
11077
11078/// TryToSinkInstruction - Try to move the specified instruction from its
11079/// current block into the beginning of DestBlock, which can only happen if it's
11080/// safe to move the instruction past all of the instructions between it and the
11081/// end of its block.
11082static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11083 assert(I->hasOneUse() && "Invariants didn't hold!");
11084
11085 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
11086 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
11087
11088 // Do not sink alloca instructions out of the entry block.
11089 if (isa<AllocaInst>(I) && I->getParent() ==
11090 &DestBlock->getParent()->getEntryBlock())
11091 return false;
11092
11093 // We can only sink load instructions if there is nothing between the load and
11094 // the end of block that could change the value.
11095 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
11096 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
11097 Scan != E; ++Scan)
11098 if (Scan->mayWriteToMemory())
11099 return false;
11100 }
11101
11102 BasicBlock::iterator InsertPos = DestBlock->begin();
11103 while (isa<PHINode>(InsertPos)) ++InsertPos;
11104
11105 I->moveBefore(InsertPos);
11106 ++NumSunkInst;
11107 return true;
11108}
11109
11110
11111/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11112/// all reachable code to the worklist.
11113///
11114/// This has a couple of tricks to make the code faster and more powerful. In
11115/// particular, we constant fold and DCE instructions as we go, to avoid adding
11116/// them to the worklist (this significantly speeds up instcombine on code where
11117/// many instructions are dead or constant). Additionally, if we find a branch
11118/// whose condition is a known constant, we only visit the reachable successors.
11119///
11120static void AddReachableCodeToWorklist(BasicBlock *BB,
11121 SmallPtrSet<BasicBlock*, 64> &Visited,
11122 InstCombiner &IC,
11123 const TargetData *TD) {
11124 std::vector<BasicBlock*> Worklist;
11125 Worklist.push_back(BB);
11126
11127 while (!Worklist.empty()) {
11128 BB = Worklist.back();
11129 Worklist.pop_back();
11130
11131 // We have now visited this block! If we've already been here, ignore it.
11132 if (!Visited.insert(BB)) continue;
11133
11134 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11135 Instruction *Inst = BBI++;
11136
11137 // DCE instruction if trivially dead.
11138 if (isInstructionTriviallyDead(Inst)) {
11139 ++NumDeadInst;
11140 DOUT << "IC: DCE: " << *Inst;
11141 Inst->eraseFromParent();
11142 continue;
11143 }
11144
11145 // ConstantProp instruction if trivially constant.
11146 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11147 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11148 Inst->replaceAllUsesWith(C);
11149 ++NumConstProp;
11150 Inst->eraseFromParent();
11151 continue;
11152 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011153
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011154 IC.AddToWorkList(Inst);
11155 }
11156
11157 // Recursively visit successors. If this is a branch or switch on a
11158 // constant, only visit the reachable successor.
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011159 if (BB->getUnwindDest())
11160 Worklist.push_back(BB->getUnwindDest());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011161 TerminatorInst *TI = BB->getTerminator();
11162 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11163 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11164 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011165 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
11166 if (ReachableBB != BB->getUnwindDest())
11167 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011168 continue;
11169 }
11170 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11171 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11172 // See if this is an explicit destination.
11173 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11174 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011175 BasicBlock *ReachableBB = SI->getSuccessor(i);
11176 if (ReachableBB != BB->getUnwindDest())
11177 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011178 continue;
11179 }
11180
11181 // Otherwise it is the default destination.
11182 Worklist.push_back(SI->getSuccessor(0));
11183 continue;
11184 }
11185 }
11186
11187 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11188 Worklist.push_back(TI->getSuccessor(i));
11189 }
11190}
11191
11192bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11193 bool Changed = false;
11194 TD = &getAnalysis<TargetData>();
11195
11196 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11197 << F.getNameStr() << "\n");
11198
11199 {
11200 // Do a depth-first traversal of the function, populate the worklist with
11201 // the reachable instructions. Ignore blocks that are not reachable. Keep
11202 // track of which blocks we visit.
11203 SmallPtrSet<BasicBlock*, 64> Visited;
11204 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11205
11206 // Do a quick scan over the function. If we find any blocks that are
11207 // unreachable, remove any instructions inside of them. This prevents
11208 // the instcombine code from having to deal with some bad special cases.
11209 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11210 if (!Visited.count(BB)) {
11211 Instruction *Term = BB->getTerminator();
11212 while (Term != BB->begin()) { // Remove instrs bottom-up
11213 BasicBlock::iterator I = Term; --I;
11214
11215 DOUT << "IC: DCE: " << *I;
11216 ++NumDeadInst;
11217
11218 if (!I->use_empty())
11219 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11220 I->eraseFromParent();
11221 }
11222 }
11223 }
11224
11225 while (!Worklist.empty()) {
11226 Instruction *I = RemoveOneFromWorkList();
11227 if (I == 0) continue; // skip null values.
11228
11229 // Check to see if we can DCE the instruction.
11230 if (isInstructionTriviallyDead(I)) {
11231 // Add operands to the worklist.
11232 if (I->getNumOperands() < 4)
11233 AddUsesToWorkList(*I);
11234 ++NumDeadInst;
11235
11236 DOUT << "IC: DCE: " << *I;
11237
11238 I->eraseFromParent();
11239 RemoveFromWorkList(I);
11240 continue;
11241 }
11242
11243 // Instruction isn't dead, see if we can constant propagate it.
11244 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11245 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11246
11247 // Add operands to the worklist.
11248 AddUsesToWorkList(*I);
11249 ReplaceInstUsesWith(*I, C);
11250
11251 ++NumConstProp;
11252 I->eraseFromParent();
11253 RemoveFromWorkList(I);
11254 continue;
11255 }
11256
11257 // See if we can trivially sink this instruction to a successor basic block.
11258 if (I->hasOneUse()) {
11259 BasicBlock *BB = I->getParent();
11260 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11261 if (UserParent != BB) {
11262 bool UserIsSuccessor = false;
11263 // See if the user is one of our successors.
11264 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11265 if (*SI == UserParent) {
11266 UserIsSuccessor = true;
11267 break;
11268 }
11269
11270 // If the user is one of our immediate successors, and if that successor
11271 // only has us as a predecessors (we'd have to split the critical edge
11272 // otherwise), we can keep going.
11273 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11274 next(pred_begin(UserParent)) == pred_end(UserParent))
11275 // Okay, the CFG is simple enough, try to sink this instruction.
11276 Changed |= TryToSinkInstruction(I, UserParent);
11277 }
11278 }
11279
11280 // Now that we have an instruction, try combining it to simplify it...
11281#ifndef NDEBUG
11282 std::string OrigI;
11283#endif
11284 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11285 if (Instruction *Result = visit(*I)) {
11286 ++NumCombined;
11287 // Should we replace the old instruction with a new one?
11288 if (Result != I) {
11289 DOUT << "IC: Old = " << *I
11290 << " New = " << *Result;
11291
11292 // Everything uses the new instruction now.
11293 I->replaceAllUsesWith(Result);
11294
11295 // Push the new instruction and any users onto the worklist.
11296 AddToWorkList(Result);
11297 AddUsersToWorkList(*Result);
11298
11299 // Move the name to the new instruction first.
11300 Result->takeName(I);
11301
11302 // Insert the new instruction into the basic block...
11303 BasicBlock *InstParent = I->getParent();
11304 BasicBlock::iterator InsertPos = I;
11305
11306 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11307 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11308 ++InsertPos;
11309
11310 InstParent->getInstList().insert(InsertPos, Result);
11311
11312 // Make sure that we reprocess all operands now that we reduced their
11313 // use counts.
11314 AddUsesToWorkList(*I);
11315
11316 // Instructions can end up on the worklist more than once. Make sure
11317 // we do not process an instruction that has been deleted.
11318 RemoveFromWorkList(I);
11319
11320 // Erase the old instruction.
11321 InstParent->getInstList().erase(I);
11322 } else {
11323#ifndef NDEBUG
11324 DOUT << "IC: Mod = " << OrigI
11325 << " New = " << *I;
11326#endif
11327
11328 // If the instruction was modified, it's possible that it is now dead.
11329 // if so, remove it.
11330 if (isInstructionTriviallyDead(I)) {
11331 // Make sure we process all operands now that we are reducing their
11332 // use counts.
11333 AddUsesToWorkList(*I);
11334
11335 // Instructions may end up in the worklist more than once. Erase all
11336 // occurrences of this instruction.
11337 RemoveFromWorkList(I);
11338 I->eraseFromParent();
11339 } else {
11340 AddToWorkList(I);
11341 AddUsersToWorkList(*I);
11342 }
11343 }
11344 Changed = true;
11345 }
11346 }
11347
11348 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000011349
11350 // Do an explicit clear, this shrinks the map if needed.
11351 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011352 return Changed;
11353}
11354
11355
11356bool InstCombiner::runOnFunction(Function &F) {
11357 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11358
11359 bool EverMadeChange = false;
11360
11361 // Iterate while there is work to do.
11362 unsigned Iteration = 0;
11363 while (DoOneIteration(F, Iteration++))
11364 EverMadeChange = true;
11365 return EverMadeChange;
11366}
11367
11368FunctionPass *llvm::createInstructionCombiningPass() {
11369 return new InstCombiner();
11370}
11371