blob: 2ca37cc3458abedbd119f87b224c6bffac545809 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000021#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000024#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000025#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000026#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +000027#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000028#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000031#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000032#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000033#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000035using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000036using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000037
Chris Lattner81a0dc92011-02-09 17:15:04 +000038enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039
Duncan Sandsa3c44a52010-12-22 09:40:51 +000040STATISTIC(NumExpand, "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
Duncan Sands0aa85eb2012-03-13 11:42:19 +000044struct Query {
Micah Villmow3574eca2012-10-08 16:38:25 +000045 const DataLayout *TD;
Duncan Sands0aa85eb2012-03-13 11:42:19 +000046 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
Micah Villmow3574eca2012-10-08 16:38:25 +000049 Query(const DataLayout *td, const TargetLibraryInfo *tli,
Bill Wendling91337832012-05-17 20:27:58 +000050 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
Duncan Sands0aa85eb2012-03-13 11:42:19 +000051};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000055 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000056static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000057 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000058static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000060static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000061
Duncan Sandsf56138d2011-07-26 15:03:53 +000062/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000065 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000066 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000073 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000074 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76}
77
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000078/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90}
91
Duncan Sands18450092010-11-16 12:16:38 +000092/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
Chandler Carruthff739c12012-03-21 10:58:47 +000099 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
Duncan Sands18450092010-11-16 12:16:38 +0000105 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +0000106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
Duncan Sands18450092010-11-16 12:16:38 +0000113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000122
Duncan Sands3421d902010-12-21 13:32:22 +0000123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000129 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000130 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000149 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000150 }
Duncan Sands3421d902010-12-21 13:32:22 +0000151 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000153 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000154 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000155 }
Duncan Sands3421d902010-12-21 13:32:22 +0000156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000172 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000173 }
Duncan Sands3421d902010-12-21 13:32:22 +0000174 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000176 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000177 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000178 }
Duncan Sands3421d902010-12-21 13:32:22 +0000179 }
180 }
181
182 return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract. For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000190 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000191 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000219 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000221 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000222 }
Duncan Sands3421d902010-12-21 13:32:22 +0000223 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000225 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000226 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000227 }
Duncan Sands3421d902010-12-21 13:32:22 +0000228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000242 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000244 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000245 }
Duncan Sands3421d902010-12-21 13:32:22 +0000246 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000248 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000249 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000250 }
Duncan Sands3421d902010-12-21 13:32:22 +0000251 }
252 }
253
254 return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000260 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000281 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000282 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000285 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000286 }
Duncan Sands566edb02010-12-21 08:49:00 +0000287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000300 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000301 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000304 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000305 }
Duncan Sands566edb02010-12-21 08:49:00 +0000306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000323 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000324 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000326 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000327 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000328 }
Duncan Sands566edb02010-12-21 08:49:00 +0000329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000342 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000343 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000345 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000346 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000347 }
Duncan Sands566edb02010-12-21 08:49:00 +0000348 }
349 }
350
351 return 0;
352}
353
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000359 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000378 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000381 }
382
Duncan Sands7cf85e72011-01-01 16:12:09 +0000383 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000384 // If they both failed to simplify then return null.
385 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000415 return Simplified;
416 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000419 return Simplified;
420 }
421 }
422
423 return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value. Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000431 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000432 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000447
Duncan Sands50ca4d32011-02-03 09:37:39 +0000448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000449 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000461 }
462
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000463 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000502 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000503 return V;
504
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000505 return 0;
506}
507
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value. If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000513 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000523 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000529 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000535 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000536 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000537 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000538 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time. If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000556 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
Duncan Sands18450092010-11-16 12:16:38 +0000569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000571 return 0;
572
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000576 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000577 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000578 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588}
589
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000599 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000600
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000604
Duncan Sandsfea3b212010-12-15 14:07:39 +0000605 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000606 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000607 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000608
Duncan Sandsfea3b212010-12-15 14:07:39 +0000609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000612
Duncan Sandsfea3b212010-12-15 14:07:39 +0000613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000615 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000624 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000625
Duncan Sands82fdab32010-12-21 14:00:22 +0000626 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000629 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000630
Duncan Sands566edb02010-12-21 08:49:00 +0000631 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000633 MaxRecurse))
634 return V;
635
Duncan Sands3421d902010-12-21 13:32:22 +0000636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000638 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000639 return V;
640
Duncan Sands87689cf2010-11-19 09:20:39 +0000641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000650 return 0;
651}
652
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000654 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000655 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000658}
659
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
Dan Gohman819f9d62013-01-31 02:45:26 +0000666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +0000670static ConstantInt *stripAndComputeConstantOffsets(const DataLayout *TD,
671 Value *&V) {
Dan Gohmanf2335dc2013-01-31 00:12:20 +0000672 assert(V->getType()->isPointerTy());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000673
Dan Gohman3e3de562013-01-31 02:50:36 +0000674 // Without DataLayout, just be conservative for now. Theoretically, more could
675 // be done in this case.
676 if (!TD)
677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
679 unsigned IntPtrWidth = TD->getPointerSizeInBits();
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000680 APInt Offset = APInt::getNullValue(IntPtrWidth);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000681
682 // Even though we don't look through PHI nodes, we could be called on an
683 // instruction in an unreachable block, which may be on a cycle.
684 SmallPtrSet<Value *, 4> Visited;
685 Visited.insert(V);
686 do {
687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Dan Gohman3e3de562013-01-31 02:50:36 +0000688 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000689 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000690 V = GEP->getPointerOperand();
691 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
692 V = cast<Operator>(V)->getOperand(0);
693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694 if (GA->mayBeOverridden())
695 break;
696 V = GA->getAliasee();
697 } else {
698 break;
699 }
700 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
701 } while (Visited.insert(V));
702
Dan Gohman3e3de562013-01-31 02:50:36 +0000703 Type *IntPtrTy = TD->getIntPtrType(V->getContext());
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +0000704 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000705}
706
707/// \brief Compute the constant difference between two pointer values.
708/// If the difference is not a constant, returns zero.
Dan Gohman3e3de562013-01-31 02:50:36 +0000709static Constant *computePointerDifference(const DataLayout *TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000710 Value *LHS, Value *RHS) {
711 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000712 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000713
714 // If LHS and RHS are not related via constant offsets to the same base
715 // value, there is nothing we can do here.
716 if (LHS != RHS)
717 return 0;
718
719 // Otherwise, the difference of LHS - RHS can be computed as:
720 // LHS - RHS
721 // = (LHSOffset + Base) - (RHSOffset + Base)
722 // = LHSOffset - RHSOffset
723 return ConstantExpr::getSub(LHSOffset, RHSOffset);
724}
725
Duncan Sandsfea3b212010-12-15 14:07:39 +0000726/// SimplifySubInst - Given operands for a Sub, see if we can
727/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000728static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000729 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000730 if (Constant *CLHS = dyn_cast<Constant>(Op0))
731 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
732 Constant *Ops[] = { CLHS, CRHS };
733 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000734 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000735 }
736
737 // X - undef -> undef
738 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000739 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000740 return UndefValue::get(Op0->getType());
741
742 // X - 0 -> X
743 if (match(Op1, m_Zero()))
744 return Op0;
745
746 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000747 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000748 return Constant::getNullValue(Op0->getType());
749
Duncan Sandsfe02c692011-01-18 09:24:58 +0000750 // (X*2) - X -> X
751 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000752 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000753 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
754 match(Op0, m_Shl(m_Specific(Op1), m_One())))
755 return Op1;
756
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000757 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
758 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
759 Value *Y = 0, *Z = Op1;
760 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
761 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000762 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000763 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000764 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000765 // It does, we successfully reassociated!
766 ++NumReassoc;
767 return W;
768 }
769 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000770 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000771 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000772 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000773 // It does, we successfully reassociated!
774 ++NumReassoc;
775 return W;
776 }
777 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000778
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000779 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
780 // For example, X - (X + 1) -> -1
781 X = Op0;
782 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
783 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000784 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000785 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000786 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000787 // It does, we successfully reassociated!
788 ++NumReassoc;
789 return W;
790 }
791 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000792 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000793 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000794 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000795 // It does, we successfully reassociated!
796 ++NumReassoc;
797 return W;
798 }
799 }
800
801 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
802 // For example, X - (X - Y) -> Y.
803 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000804 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
805 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000806 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000807 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000808 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000809 // It does, we successfully reassociated!
810 ++NumReassoc;
811 return W;
812 }
813
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000814 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
815 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
816 match(Op1, m_Trunc(m_Value(Y))))
817 if (X->getType() == Y->getType())
818 // See if "V === X - Y" simplifies.
819 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
820 // It does! Now see if "trunc V" simplifies.
821 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
822 // It does, return the simplified "trunc V".
823 return W;
824
825 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
Dan Gohman3e3de562013-01-31 02:50:36 +0000826 if (match(Op0, m_PtrToInt(m_Value(X))) &&
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000827 match(Op1, m_PtrToInt(m_Value(Y))))
Dan Gohman3e3de562013-01-31 02:50:36 +0000828 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000829 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
830
Duncan Sands3421d902010-12-21 13:32:22 +0000831 // Mul distributes over Sub. Try some generic simplifications based on this.
832 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000833 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000834 return V;
835
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000836 // i1 sub -> xor.
837 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000838 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000839 return V;
840
Duncan Sandsfea3b212010-12-15 14:07:39 +0000841 // Threading Sub over selects and phi nodes is pointless, so don't bother.
842 // Threading over the select in "A - select(cond, B, C)" means evaluating
843 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
844 // only if B and C are equal. If B and C are equal then (since we assume
845 // that operands have already been simplified) "select(cond, B, C)" should
846 // have been simplified to the common value of B and C already. Analysing
847 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
848 // for threading over phi nodes.
849
850 return 0;
851}
852
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000853Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000854 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000855 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000856 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
857 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000858}
859
Michael Ilseman09ee2502012-12-12 00:27:46 +0000860/// Given operands for an FAdd, see if we can fold the result. If not, this
861/// returns null.
862static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
863 const Query &Q, unsigned MaxRecurse) {
864 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
865 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
866 Constant *Ops[] = { CLHS, CRHS };
867 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
868 Ops, Q.TD, Q.TLI);
869 }
870
871 // Canonicalize the constant to the RHS.
872 std::swap(Op0, Op1);
873 }
874
875 // fadd X, -0 ==> X
876 if (match(Op1, m_NegZero()))
877 return Op0;
878
879 // fadd X, 0 ==> X, when we know X is not -0
880 if (match(Op1, m_Zero()) &&
881 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
882 return Op0;
883
884 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
885 // where nnan and ninf have to occur at least once somewhere in this
886 // expression
887 Value *SubOp = 0;
888 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
889 SubOp = Op1;
890 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
891 SubOp = Op0;
892 if (SubOp) {
893 Instruction *FSub = cast<Instruction>(SubOp);
894 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
895 (FMF.noInfs() || FSub->hasNoInfs()))
896 return Constant::getNullValue(Op0->getType());
897 }
898
899 return 0;
900}
901
902/// Given operands for an FSub, see if we can fold the result. If not, this
903/// returns null.
904static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
905 const Query &Q, unsigned MaxRecurse) {
906 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
907 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
908 Constant *Ops[] = { CLHS, CRHS };
909 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
910 Ops, Q.TD, Q.TLI);
911 }
912 }
913
914 // fsub X, 0 ==> X
915 if (match(Op1, m_Zero()))
916 return Op0;
917
918 // fsub X, -0 ==> X, when we know X is not -0
919 if (match(Op1, m_NegZero()) &&
920 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
921 return Op0;
922
923 // fsub 0, (fsub -0.0, X) ==> X
924 Value *X;
925 if (match(Op0, m_AnyZero())) {
926 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
927 return X;
928 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
929 return X;
930 }
931
932 // fsub nnan ninf x, x ==> 0.0
933 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
934 return Constant::getNullValue(Op0->getType());
935
936 return 0;
937}
938
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000939/// Given the operands for an FMul, see if we can fold the result
940static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
941 FastMathFlags FMF,
942 const Query &Q,
943 unsigned MaxRecurse) {
944 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
945 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
946 Constant *Ops[] = { CLHS, CRHS };
947 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
948 Ops, Q.TD, Q.TLI);
949 }
Michael Ilseman09ee2502012-12-12 00:27:46 +0000950
951 // Canonicalize the constant to the RHS.
952 std::swap(Op0, Op1);
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000953 }
954
Michael Ilseman09ee2502012-12-12 00:27:46 +0000955 // fmul X, 1.0 ==> X
956 if (match(Op1, m_FPOne()))
957 return Op0;
958
959 // fmul nnan nsz X, 0 ==> 0
960 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
961 return Op1;
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000962
963 return 0;
964}
965
Duncan Sands82fdab32010-12-21 14:00:22 +0000966/// SimplifyMulInst - Given operands for a Mul, see if we can
967/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000968static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
969 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000970 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
971 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
972 Constant *Ops[] = { CLHS, CRHS };
973 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000974 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000975 }
976
977 // Canonicalize the constant to the RHS.
978 std::swap(Op0, Op1);
979 }
980
981 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000982 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000983 return Constant::getNullValue(Op0->getType());
984
985 // X * 0 -> 0
986 if (match(Op1, m_Zero()))
987 return Op1;
988
989 // X * 1 -> X
990 if (match(Op1, m_One()))
991 return Op0;
992
Duncan Sands1895e982011-01-30 18:03:50 +0000993 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000994 Value *X = 0;
995 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
996 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
997 return X;
Duncan Sands1895e982011-01-30 18:03:50 +0000998
Nick Lewycky54138802011-01-29 19:55:23 +0000999 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +00001000 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001001 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +00001002 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +00001003
1004 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001005 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001006 MaxRecurse))
1007 return V;
1008
1009 // Mul distributes over Add. Try some generic simplifications based on this.
1010 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001011 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +00001012 return V;
1013
1014 // If the operation is with the result of a select instruction, check whether
1015 // operating on either branch of the select always yields the same value.
1016 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001017 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001018 MaxRecurse))
1019 return V;
1020
1021 // If the operation is with the result of a phi instruction, check whether
1022 // operating on all incoming values of the phi always yields the same value.
1023 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001024 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001025 MaxRecurse))
1026 return V;
1027
1028 return 0;
1029}
1030
Michael Ilseman09ee2502012-12-12 00:27:46 +00001031Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1032 const DataLayout *TD, const TargetLibraryInfo *TLI,
1033 const DominatorTree *DT) {
1034 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1035}
1036
1037Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1038 const DataLayout *TD, const TargetLibraryInfo *TLI,
1039 const DominatorTree *DT) {
1040 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1041}
1042
Michael Ilsemaneb61c922012-11-27 00:46:26 +00001043Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1044 FastMathFlags FMF,
1045 const DataLayout *TD,
1046 const TargetLibraryInfo *TLI,
1047 const DominatorTree *DT) {
1048 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1049}
1050
Micah Villmow3574eca2012-10-08 16:38:25 +00001051Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001052 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +00001053 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001054 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +00001055}
1056
Duncan Sands593faa52011-01-28 16:51:11 +00001057/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1058/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +00001059static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001060 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +00001061 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1062 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1063 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001064 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +00001065 }
1066 }
1067
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001068 bool isSigned = Opcode == Instruction::SDiv;
1069
Duncan Sands593faa52011-01-28 16:51:11 +00001070 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001071 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001072 return Op1;
1073
1074 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001075 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001076 return Constant::getNullValue(Op0->getType());
1077
1078 // 0 / X -> 0, we don't need to preserve faults!
1079 if (match(Op0, m_Zero()))
1080 return Op0;
1081
1082 // X / 1 -> X
1083 if (match(Op1, m_One()))
1084 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +00001085
1086 if (Op0->getType()->isIntegerTy(1))
1087 // It can't be division by zero, hence it must be division by one.
1088 return Op0;
1089
1090 // X / X -> 1
1091 if (Op0 == Op1)
1092 return ConstantInt::get(Op0->getType(), 1);
1093
1094 // (X * Y) / Y -> X if the multiplication does not overflow.
1095 Value *X = 0, *Y = 0;
1096 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1097 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +00001098 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +00001099 // If the Mul knows it does not overflow, then we are good to go.
1100 if ((isSigned && Mul->hasNoSignedWrap()) ||
1101 (!isSigned && Mul->hasNoUnsignedWrap()))
1102 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001103 // If X has the form X = A / Y then X * Y cannot overflow.
1104 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1105 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1106 return X;
1107 }
1108
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001109 // (X rem Y) / Y -> 0
1110 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1111 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1112 return Constant::getNullValue(Op0->getType());
1113
1114 // If the operation is with the result of a select instruction, check whether
1115 // operating on either branch of the select always yields the same value.
1116 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001117 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001118 return V;
1119
1120 // If the operation is with the result of a phi instruction, check whether
1121 // operating on all incoming values of the phi always yields the same value.
1122 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001123 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001124 return V;
1125
Duncan Sands593faa52011-01-28 16:51:11 +00001126 return 0;
1127}
1128
1129/// SimplifySDivInst - Given operands for an SDiv, see if we can
1130/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001131static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1132 unsigned MaxRecurse) {
1133 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001134 return V;
1135
Duncan Sands593faa52011-01-28 16:51:11 +00001136 return 0;
1137}
1138
Micah Villmow3574eca2012-10-08 16:38:25 +00001139Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001140 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001141 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001142 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001143}
1144
1145/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1146/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001147static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1148 unsigned MaxRecurse) {
1149 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001150 return V;
1151
Duncan Sands593faa52011-01-28 16:51:11 +00001152 return 0;
1153}
1154
Micah Villmow3574eca2012-10-08 16:38:25 +00001155Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001156 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001157 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001158 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001159}
1160
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001161static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1162 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001163 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001164 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001165 return Op0;
1166
1167 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001168 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001169 return Op1;
1170
1171 return 0;
1172}
1173
Micah Villmow3574eca2012-10-08 16:38:25 +00001174Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001175 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001176 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001177 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001178}
1179
Duncan Sandsf24ed772011-05-02 16:27:02 +00001180/// SimplifyRem - Given operands for an SRem or URem, see if we can
1181/// fold the result. If not, this returns null.
1182static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001183 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001184 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1185 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1186 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001187 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001188 }
1189 }
1190
Duncan Sandsf24ed772011-05-02 16:27:02 +00001191 // X % undef -> undef
1192 if (match(Op1, m_Undef()))
1193 return Op1;
1194
1195 // undef % X -> 0
1196 if (match(Op0, m_Undef()))
1197 return Constant::getNullValue(Op0->getType());
1198
1199 // 0 % X -> 0, we don't need to preserve faults!
1200 if (match(Op0, m_Zero()))
1201 return Op0;
1202
1203 // X % 0 -> undef, we don't need to preserve faults!
1204 if (match(Op1, m_Zero()))
1205 return UndefValue::get(Op0->getType());
1206
1207 // X % 1 -> 0
1208 if (match(Op1, m_One()))
1209 return Constant::getNullValue(Op0->getType());
1210
1211 if (Op0->getType()->isIntegerTy(1))
1212 // It can't be remainder by zero, hence it must be remainder by one.
1213 return Constant::getNullValue(Op0->getType());
1214
1215 // X % X -> 0
1216 if (Op0 == Op1)
1217 return Constant::getNullValue(Op0->getType());
1218
1219 // If the operation is with the result of a select instruction, check whether
1220 // operating on either branch of the select always yields the same value.
1221 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001222 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001223 return V;
1224
1225 // If the operation is with the result of a phi instruction, check whether
1226 // operating on all incoming values of the phi always yields the same value.
1227 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001228 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001229 return V;
1230
1231 return 0;
1232}
1233
1234/// SimplifySRemInst - Given operands for an SRem, see if we can
1235/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001236static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1237 unsigned MaxRecurse) {
1238 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001239 return V;
1240
1241 return 0;
1242}
1243
Micah Villmow3574eca2012-10-08 16:38:25 +00001244Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001245 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001246 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001247 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001248}
1249
1250/// SimplifyURemInst - Given operands for a URem, see if we can
1251/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001252static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001253 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001254 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001255 return V;
1256
1257 return 0;
1258}
1259
Micah Villmow3574eca2012-10-08 16:38:25 +00001260Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001261 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001262 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001263 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001264}
1265
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001266static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001267 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001268 // undef % X -> undef (the undef could be a snan).
1269 if (match(Op0, m_Undef()))
1270 return Op0;
1271
1272 // X % undef -> undef
1273 if (match(Op1, m_Undef()))
1274 return Op1;
1275
1276 return 0;
1277}
1278
Micah Villmow3574eca2012-10-08 16:38:25 +00001279Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001280 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001281 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001282 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001283}
1284
Duncan Sandscf80bc12011-01-14 14:44:12 +00001285/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001286/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001287static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001288 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001289 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1290 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1291 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001292 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001293 }
1294 }
1295
Duncan Sandscf80bc12011-01-14 14:44:12 +00001296 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001297 if (match(Op0, m_Zero()))
1298 return Op0;
1299
Duncan Sandscf80bc12011-01-14 14:44:12 +00001300 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001301 if (match(Op1, m_Zero()))
1302 return Op0;
1303
Duncan Sandscf80bc12011-01-14 14:44:12 +00001304 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001305 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001306 return Op1;
1307
1308 // Shifting by the bitwidth or more is undefined.
1309 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1310 if (CI->getValue().getLimitedValue() >=
1311 Op0->getType()->getScalarSizeInBits())
1312 return UndefValue::get(Op0->getType());
1313
Duncan Sandscf80bc12011-01-14 14:44:12 +00001314 // If the operation is with the result of a select instruction, check whether
1315 // operating on either branch of the select always yields the same value.
1316 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001317 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001318 return V;
1319
1320 // If the operation is with the result of a phi instruction, check whether
1321 // operating on all incoming values of the phi always yields the same value.
1322 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001323 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001324 return V;
1325
1326 return 0;
1327}
1328
1329/// SimplifyShlInst - Given operands for an Shl, see if we can
1330/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001331static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001332 const Query &Q, unsigned MaxRecurse) {
1333 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001334 return V;
1335
1336 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001337 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001338 return Constant::getNullValue(Op0->getType());
1339
Chris Lattner81a0dc92011-02-09 17:15:04 +00001340 // (X >> A) << A -> X
1341 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001342 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001343 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001344 return 0;
1345}
1346
Chris Lattner81a0dc92011-02-09 17:15:04 +00001347Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +00001348 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00001349 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001350 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1351 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001352}
1353
1354/// SimplifyLShrInst - Given operands for an LShr, see if we can
1355/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001356static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001357 const Query &Q, unsigned MaxRecurse) {
1358 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001359 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001360
1361 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001362 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001363 return Constant::getNullValue(Op0->getType());
1364
Chris Lattner81a0dc92011-02-09 17:15:04 +00001365 // (X << A) >> A -> X
1366 Value *X;
1367 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1368 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1369 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001370
Duncan Sandsc43cee32011-01-14 00:37:45 +00001371 return 0;
1372}
1373
Chris Lattner81a0dc92011-02-09 17:15:04 +00001374Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001375 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001376 const TargetLibraryInfo *TLI,
1377 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001378 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1379 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001380}
1381
1382/// SimplifyAShrInst - Given operands for an AShr, see if we can
1383/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001384static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001385 const Query &Q, unsigned MaxRecurse) {
1386 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001387 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001388
1389 // all ones >>a X -> all ones
1390 if (match(Op0, m_AllOnes()))
1391 return Op0;
1392
1393 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001394 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001395 return Constant::getAllOnesValue(Op0->getType());
1396
Chris Lattner81a0dc92011-02-09 17:15:04 +00001397 // (X << A) >> A -> X
1398 Value *X;
1399 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1400 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1401 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001402
Duncan Sandsc43cee32011-01-14 00:37:45 +00001403 return 0;
1404}
1405
Chris Lattner81a0dc92011-02-09 17:15:04 +00001406Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001407 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001408 const TargetLibraryInfo *TLI,
1409 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001410 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1411 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001412}
1413
Chris Lattnerd06094f2009-11-10 00:55:12 +00001414/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001415/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001416static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001417 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001418 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1419 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1420 Constant *Ops[] = { CLHS, CRHS };
1421 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001422 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001423 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001424
Chris Lattnerd06094f2009-11-10 00:55:12 +00001425 // Canonicalize the constant to the RHS.
1426 std::swap(Op0, Op1);
1427 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001428
Chris Lattnerd06094f2009-11-10 00:55:12 +00001429 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001430 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001431 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001432
Chris Lattnerd06094f2009-11-10 00:55:12 +00001433 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001434 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001435 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001436
Duncan Sands2b749872010-11-17 18:52:15 +00001437 // X & 0 = 0
1438 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001439 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001440
Duncan Sands2b749872010-11-17 18:52:15 +00001441 // X & -1 = X
1442 if (match(Op1, m_AllOnes()))
1443 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001444
Chris Lattnerd06094f2009-11-10 00:55:12 +00001445 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001446 if (match(Op0, m_Not(m_Specific(Op1))) ||
1447 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001448 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001449
Chris Lattnerd06094f2009-11-10 00:55:12 +00001450 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001451 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001452 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001453 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001454 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001455
Chris Lattnerd06094f2009-11-10 00:55:12 +00001456 // A & (A | ?) = A
1457 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001458 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001459 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001460
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001461 // A & (-A) = A if A is a power of two or zero.
1462 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1463 match(Op1, m_Neg(m_Specific(Op0)))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001464 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001465 return Op0;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001466 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001467 return Op1;
1468 }
1469
Duncan Sands566edb02010-12-21 08:49:00 +00001470 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001471 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1472 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001473 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001474
Duncan Sands3421d902010-12-21 13:32:22 +00001475 // And distributes over Or. Try some generic simplifications based on this.
1476 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001477 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001478 return V;
1479
1480 // And distributes over Xor. Try some generic simplifications based on this.
1481 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001482 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001483 return V;
1484
1485 // Or distributes over And. Try some generic simplifications based on this.
1486 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001487 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001488 return V;
1489
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001490 // If the operation is with the result of a select instruction, check whether
1491 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001492 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001493 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1494 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001495 return V;
1496
1497 // If the operation is with the result of a phi instruction, check whether
1498 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001499 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001500 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001501 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001502 return V;
1503
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001504 return 0;
1505}
1506
Micah Villmow3574eca2012-10-08 16:38:25 +00001507Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001508 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001509 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001510 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001511}
1512
Chris Lattnerd06094f2009-11-10 00:55:12 +00001513/// SimplifyOrInst - Given operands for an Or, see if we can
1514/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001515static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1516 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001517 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1518 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1519 Constant *Ops[] = { CLHS, CRHS };
1520 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001521 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001522 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001523
Chris Lattnerd06094f2009-11-10 00:55:12 +00001524 // Canonicalize the constant to the RHS.
1525 std::swap(Op0, Op1);
1526 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001527
Chris Lattnerd06094f2009-11-10 00:55:12 +00001528 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001529 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001530 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001531
Chris Lattnerd06094f2009-11-10 00:55:12 +00001532 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001533 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001534 return Op0;
1535
Duncan Sands2b749872010-11-17 18:52:15 +00001536 // X | 0 = X
1537 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001538 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001539
Duncan Sands2b749872010-11-17 18:52:15 +00001540 // X | -1 = -1
1541 if (match(Op1, m_AllOnes()))
1542 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001543
Chris Lattnerd06094f2009-11-10 00:55:12 +00001544 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001545 if (match(Op0, m_Not(m_Specific(Op1))) ||
1546 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001547 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001548
Chris Lattnerd06094f2009-11-10 00:55:12 +00001549 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001550 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001551 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001552 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001553 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001554
Chris Lattnerd06094f2009-11-10 00:55:12 +00001555 // A | (A & ?) = A
1556 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001557 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001558 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001559
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001560 // ~(A & ?) | A = -1
1561 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1562 (A == Op1 || B == Op1))
1563 return Constant::getAllOnesValue(Op1->getType());
1564
1565 // A | ~(A & ?) = -1
1566 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1567 (A == Op0 || B == Op0))
1568 return Constant::getAllOnesValue(Op0->getType());
1569
Duncan Sands566edb02010-12-21 08:49:00 +00001570 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001571 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1572 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001573 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001574
Duncan Sands3421d902010-12-21 13:32:22 +00001575 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001576 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1577 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001578 return V;
1579
1580 // And distributes over Or. Try some generic simplifications based on this.
1581 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001582 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001583 return V;
1584
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001585 // If the operation is with the result of a select instruction, check whether
1586 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001587 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001588 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001589 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001590 return V;
1591
1592 // If the operation is with the result of a phi instruction, check whether
1593 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001594 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001595 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001596 return V;
1597
Chris Lattnerd06094f2009-11-10 00:55:12 +00001598 return 0;
1599}
1600
Micah Villmow3574eca2012-10-08 16:38:25 +00001601Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001602 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001603 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001604 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001605}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001606
Duncan Sands2b749872010-11-17 18:52:15 +00001607/// SimplifyXorInst - Given operands for a Xor, see if we can
1608/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001609static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1610 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001611 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1612 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1613 Constant *Ops[] = { CLHS, CRHS };
1614 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001615 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001616 }
1617
1618 // Canonicalize the constant to the RHS.
1619 std::swap(Op0, Op1);
1620 }
1621
1622 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001623 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001624 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001625
1626 // A ^ 0 = A
1627 if (match(Op1, m_Zero()))
1628 return Op0;
1629
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001630 // A ^ A = 0
1631 if (Op0 == Op1)
1632 return Constant::getNullValue(Op0->getType());
1633
Duncan Sands2b749872010-11-17 18:52:15 +00001634 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001635 if (match(Op0, m_Not(m_Specific(Op1))) ||
1636 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001637 return Constant::getAllOnesValue(Op0->getType());
1638
Duncan Sands566edb02010-12-21 08:49:00 +00001639 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001640 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1641 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001642 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001643
Duncan Sands3421d902010-12-21 13:32:22 +00001644 // And distributes over Xor. Try some generic simplifications based on this.
1645 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001646 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001647 return V;
1648
Duncan Sands87689cf2010-11-19 09:20:39 +00001649 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1650 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1651 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1652 // only if B and C are equal. If B and C are equal then (since we assume
1653 // that operands have already been simplified) "select(cond, B, C)" should
1654 // have been simplified to the common value of B and C already. Analysing
1655 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1656 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001657
1658 return 0;
1659}
1660
Micah Villmow3574eca2012-10-08 16:38:25 +00001661Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001662 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001663 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001664 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001665}
1666
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001667static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001668 return CmpInst::makeCmpResultType(Op->getType());
1669}
1670
Duncan Sandse864b5b2011-05-07 16:56:49 +00001671/// ExtractEquivalentCondition - Rummage around inside V looking for something
1672/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1673/// otherwise return null. Helper function for analyzing max/min idioms.
1674static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1675 Value *LHS, Value *RHS) {
1676 SelectInst *SI = dyn_cast<SelectInst>(V);
1677 if (!SI)
1678 return 0;
1679 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1680 if (!Cmp)
1681 return 0;
1682 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1683 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1684 return Cmp;
1685 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1686 LHS == CmpRHS && RHS == CmpLHS)
1687 return Cmp;
1688 return 0;
1689}
1690
Dan Gohman3e3de562013-01-31 02:50:36 +00001691static Constant *computePointerICmp(const DataLayout *TD,
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001692 const TargetLibraryInfo *TLI,
Chandler Carruth58725a62012-03-25 21:28:14 +00001693 CmpInst::Predicate Pred,
1694 Value *LHS, Value *RHS) {
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001695 // First, skip past any trivial no-ops.
1696 LHS = LHS->stripPointerCasts();
1697 RHS = RHS->stripPointerCasts();
1698
1699 // A non-null pointer is not equal to a null pointer.
1700 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1701 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1702 return ConstantInt::get(GetCompareTy(LHS),
1703 !CmpInst::isTrueWhenEqual(Pred));
1704
Chandler Carruth58725a62012-03-25 21:28:14 +00001705 // We can only fold certain predicates on pointer comparisons.
1706 switch (Pred) {
1707 default:
1708 return 0;
1709
1710 // Equality comaprisons are easy to fold.
1711 case CmpInst::ICMP_EQ:
1712 case CmpInst::ICMP_NE:
1713 break;
1714
1715 // We can only handle unsigned relational comparisons because 'inbounds' on
1716 // a GEP only protects against unsigned wrapping.
1717 case CmpInst::ICMP_UGT:
1718 case CmpInst::ICMP_UGE:
1719 case CmpInst::ICMP_ULT:
1720 case CmpInst::ICMP_ULE:
1721 // However, we have to switch them to their signed variants to handle
1722 // negative indices from the base pointer.
1723 Pred = ICmpInst::getSignedPredicate(Pred);
1724 break;
1725 }
1726
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001727 // Strip off any constant offsets so that we can reason about them.
1728 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1729 // here and compare base addresses like AliasAnalysis does, however there are
1730 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1731 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1732 // doesn't need to guarantee pointer inequality when it says NoAlias.
1733 ConstantInt *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1734 ConstantInt *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruth58725a62012-03-25 21:28:14 +00001735
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001736 // If LHS and RHS are related via constant offsets to the same base
1737 // value, we can replace it with an icmp which just compares the offsets.
1738 if (LHS == RHS)
1739 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
Chandler Carruth58725a62012-03-25 21:28:14 +00001740
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001741 // Various optimizations for (in)equality comparisons.
1742 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1743 // Different non-empty allocations that exist at the same time have
1744 // different addresses (if the program can tell). Global variables always
1745 // exist, so they always exist during the lifetime of each other and all
1746 // allocas. Two different allocas usually have different addresses...
1747 //
1748 // However, if there's an @llvm.stackrestore dynamically in between two
1749 // allocas, they may have the same address. It's tempting to reduce the
1750 // scope of the problem by only looking at *static* allocas here. That would
1751 // cover the majority of allocas while significantly reducing the likelihood
1752 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1753 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1754 // an entry block. Also, if we have a block that's not attached to a
1755 // function, we can't tell if it's "static" under the current definition.
1756 // Theoretically, this problem could be fixed by creating a new kind of
1757 // instruction kind specifically for static allocas. Such a new instruction
1758 // could be required to be at the top of the entry block, thus preventing it
1759 // from being subject to a @llvm.stackrestore. Instcombine could even
1760 // convert regular allocas into these special allocas. It'd be nifty.
1761 // However, until then, this problem remains open.
1762 //
1763 // So, we'll assume that two non-empty allocas have different addresses
1764 // for now.
1765 //
1766 // With all that, if the offsets are within the bounds of their allocations
1767 // (and not one-past-the-end! so we can't use inbounds!), and their
1768 // allocations aren't the same, the pointers are not equal.
1769 //
1770 // Note that it's not necessary to check for LHS being a global variable
1771 // address, due to canonicalization and constant folding.
1772 if (isa<AllocaInst>(LHS) &&
1773 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1774 uint64_t LHSSize, RHSSize;
1775 if (getObjectSize(LHS, LHSSize, TD, TLI) &&
1776 getObjectSize(RHS, RHSSize, TD, TLI)) {
1777 const APInt &LHSOffsetValue = LHSOffset->getValue();
1778 const APInt &RHSOffsetValue = RHSOffset->getValue();
1779 if (!LHSOffsetValue.isNegative() &&
1780 !RHSOffsetValue.isNegative() &&
1781 LHSOffsetValue.ult(LHSSize) &&
1782 RHSOffsetValue.ult(RHSSize)) {
1783 return ConstantInt::get(GetCompareTy(LHS),
1784 !CmpInst::isTrueWhenEqual(Pred));
1785 }
1786 }
1787
1788 // Repeat the above check but this time without depending on DataLayout
1789 // or being able to compute a precise size.
1790 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1791 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1792 LHSOffset->isNullValue() &&
1793 RHSOffset->isNullValue())
1794 return ConstantInt::get(GetCompareTy(LHS),
1795 !CmpInst::isTrueWhenEqual(Pred));
1796 }
1797 }
1798
1799 // Otherwise, fail.
1800 return 0;
Chandler Carruth58725a62012-03-25 21:28:14 +00001801}
Chris Lattner009e2652012-02-24 19:01:58 +00001802
Chris Lattner9dbb4292009-11-09 23:28:39 +00001803/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1804/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001805static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001806 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001807 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001808 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001809
Chris Lattnerd06094f2009-11-10 00:55:12 +00001810 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001811 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001812 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001813
1814 // If we have a constant, make sure it is on the RHS.
1815 std::swap(LHS, RHS);
1816 Pred = CmpInst::getSwappedPredicate(Pred);
1817 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001818
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001819 Type *ITy = GetCompareTy(LHS); // The return type.
1820 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001821
Chris Lattner210c5d42009-11-09 23:55:12 +00001822 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001823 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1824 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001825 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001826 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001827
Duncan Sands6dc91252011-01-13 08:56:29 +00001828 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001829 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001830 switch (Pred) {
1831 default: break;
1832 case ICmpInst::ICMP_EQ:
1833 // X == 1 -> X
1834 if (match(RHS, m_One()))
1835 return LHS;
1836 break;
1837 case ICmpInst::ICMP_NE:
1838 // X != 0 -> X
1839 if (match(RHS, m_Zero()))
1840 return LHS;
1841 break;
1842 case ICmpInst::ICMP_UGT:
1843 // X >u 0 -> X
1844 if (match(RHS, m_Zero()))
1845 return LHS;
1846 break;
1847 case ICmpInst::ICMP_UGE:
1848 // X >=u 1 -> X
1849 if (match(RHS, m_One()))
1850 return LHS;
1851 break;
1852 case ICmpInst::ICMP_SLT:
1853 // X <s 0 -> X
1854 if (match(RHS, m_Zero()))
1855 return LHS;
1856 break;
1857 case ICmpInst::ICMP_SLE:
1858 // X <=s -1 -> X
1859 if (match(RHS, m_One()))
1860 return LHS;
1861 break;
1862 }
1863 }
1864
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001865 // If we are comparing with zero then try hard since this is a common case.
1866 if (match(RHS, m_Zero())) {
1867 bool LHSKnownNonNegative, LHSKnownNegative;
1868 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001869 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001870 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001871 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001872 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001873 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001874 case ICmpInst::ICMP_EQ:
1875 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001876 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001877 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001878 break;
1879 case ICmpInst::ICMP_NE:
1880 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001881 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001882 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001883 break;
1884 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001885 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001886 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001887 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001888 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001889 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001890 break;
1891 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001892 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001893 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001894 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001895 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001896 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001897 break;
1898 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001899 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001900 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001901 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001902 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001903 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001904 break;
1905 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001906 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001907 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001908 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001909 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001910 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001911 break;
1912 }
1913 }
1914
1915 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001916 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001917 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1918 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1919 if (RHS_CR.isEmptySet())
1920 return ConstantInt::getFalse(CI->getContext());
1921 if (RHS_CR.isFullSet())
1922 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001923
Nick Lewycky3a73e342011-03-04 07:00:57 +00001924 // Many binary operators with constant RHS have easy to compute constant
1925 // range. Use them to check whether the comparison is a tautology.
1926 uint32_t Width = CI->getBitWidth();
1927 APInt Lower = APInt(Width, 0);
1928 APInt Upper = APInt(Width, 0);
1929 ConstantInt *CI2;
1930 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1931 // 'urem x, CI2' produces [0, CI2).
1932 Upper = CI2->getValue();
1933 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1934 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1935 Upper = CI2->getValue().abs();
1936 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001937 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1938 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001939 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001940 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1941 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1942 APInt NegOne = APInt::getAllOnesValue(Width);
1943 if (!CI2->isZero())
1944 Upper = NegOne.udiv(CI2->getValue()) + 1;
1945 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1946 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1947 APInt IntMin = APInt::getSignedMinValue(Width);
1948 APInt IntMax = APInt::getSignedMaxValue(Width);
1949 APInt Val = CI2->getValue().abs();
1950 if (!Val.isMinValue()) {
1951 Lower = IntMin.sdiv(Val);
1952 Upper = IntMax.sdiv(Val) + 1;
1953 }
1954 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1955 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1956 APInt NegOne = APInt::getAllOnesValue(Width);
1957 if (CI2->getValue().ult(Width))
1958 Upper = NegOne.lshr(CI2->getValue()) + 1;
1959 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1960 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1961 APInt IntMin = APInt::getSignedMinValue(Width);
1962 APInt IntMax = APInt::getSignedMaxValue(Width);
1963 if (CI2->getValue().ult(Width)) {
1964 Lower = IntMin.ashr(CI2->getValue());
1965 Upper = IntMax.ashr(CI2->getValue()) + 1;
1966 }
1967 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1968 // 'or x, CI2' produces [CI2, UINT_MAX].
1969 Lower = CI2->getValue();
1970 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1971 // 'and x, CI2' produces [0, CI2].
1972 Upper = CI2->getValue() + 1;
1973 }
1974 if (Lower != Upper) {
1975 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1976 if (RHS_CR.contains(LHS_CR))
1977 return ConstantInt::getTrue(RHS->getContext());
1978 if (RHS_CR.inverse().contains(LHS_CR))
1979 return ConstantInt::getFalse(RHS->getContext());
1980 }
Duncan Sands6dc91252011-01-13 08:56:29 +00001981 }
1982
Duncan Sands9d32f602011-01-20 13:21:55 +00001983 // Compare of cast, for example (zext X) != 0 -> X != 0
1984 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1985 Instruction *LI = cast<CastInst>(LHS);
1986 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001987 Type *SrcTy = SrcOp->getType();
1988 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00001989
1990 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1991 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001992 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
Chandler Carruth426c2bf2012-11-01 09:14:31 +00001993 Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00001994 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1995 // Transfer the cast to the constant.
1996 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1997 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001998 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001999 return V;
2000 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2001 if (RI->getOperand(0)->getType() == SrcTy)
2002 // Compare without the cast.
2003 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002004 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002005 return V;
2006 }
2007 }
2008
2009 if (isa<ZExtInst>(LHS)) {
2010 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2011 // same type.
2012 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2013 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2014 // Compare X and Y. Note that signed predicates become unsigned.
2015 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002016 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00002017 MaxRecurse-1))
2018 return V;
2019 }
2020 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2021 // too. If not, then try to deduce the result of the comparison.
2022 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2023 // Compute the constant that would happen if we truncated to SrcTy then
2024 // reextended to DstTy.
2025 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2026 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2027
2028 // If the re-extended constant didn't change then this is effectively
2029 // also a case of comparing two zero-extended values.
2030 if (RExt == CI && MaxRecurse)
2031 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002032 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002033 return V;
2034
2035 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2036 // there. Use this to work out the result of the comparison.
2037 if (RExt != CI) {
2038 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002039 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002040 // LHS <u RHS.
2041 case ICmpInst::ICMP_EQ:
2042 case ICmpInst::ICMP_UGT:
2043 case ICmpInst::ICMP_UGE:
2044 return ConstantInt::getFalse(CI->getContext());
2045
2046 case ICmpInst::ICMP_NE:
2047 case ICmpInst::ICMP_ULT:
2048 case ICmpInst::ICMP_ULE:
2049 return ConstantInt::getTrue(CI->getContext());
2050
2051 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2052 // is non-negative then LHS <s RHS.
2053 case ICmpInst::ICMP_SGT:
2054 case ICmpInst::ICMP_SGE:
2055 return CI->getValue().isNegative() ?
2056 ConstantInt::getTrue(CI->getContext()) :
2057 ConstantInt::getFalse(CI->getContext());
2058
2059 case ICmpInst::ICMP_SLT:
2060 case ICmpInst::ICMP_SLE:
2061 return CI->getValue().isNegative() ?
2062 ConstantInt::getFalse(CI->getContext()) :
2063 ConstantInt::getTrue(CI->getContext());
2064 }
2065 }
2066 }
2067 }
2068
2069 if (isa<SExtInst>(LHS)) {
2070 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2071 // same type.
2072 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2073 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2074 // Compare X and Y. Note that the predicate does not change.
2075 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002076 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002077 return V;
2078 }
2079 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2080 // too. If not, then try to deduce the result of the comparison.
2081 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2082 // Compute the constant that would happen if we truncated to SrcTy then
2083 // reextended to DstTy.
2084 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2085 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2086
2087 // If the re-extended constant didn't change then this is effectively
2088 // also a case of comparing two sign-extended values.
2089 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002090 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002091 return V;
2092
2093 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2094 // bits there. Use this to work out the result of the comparison.
2095 if (RExt != CI) {
2096 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002097 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002098 case ICmpInst::ICMP_EQ:
2099 return ConstantInt::getFalse(CI->getContext());
2100 case ICmpInst::ICMP_NE:
2101 return ConstantInt::getTrue(CI->getContext());
2102
2103 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2104 // LHS >s RHS.
2105 case ICmpInst::ICMP_SGT:
2106 case ICmpInst::ICMP_SGE:
2107 return CI->getValue().isNegative() ?
2108 ConstantInt::getTrue(CI->getContext()) :
2109 ConstantInt::getFalse(CI->getContext());
2110 case ICmpInst::ICMP_SLT:
2111 case ICmpInst::ICMP_SLE:
2112 return CI->getValue().isNegative() ?
2113 ConstantInt::getFalse(CI->getContext()) :
2114 ConstantInt::getTrue(CI->getContext());
2115
2116 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2117 // LHS >u RHS.
2118 case ICmpInst::ICMP_UGT:
2119 case ICmpInst::ICMP_UGE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002120 // Comparison is true iff the LHS <s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002121 if (MaxRecurse)
2122 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2123 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002124 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002125 return V;
2126 break;
2127 case ICmpInst::ICMP_ULT:
2128 case ICmpInst::ICMP_ULE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002129 // Comparison is true iff the LHS >=s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002130 if (MaxRecurse)
2131 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2132 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002133 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002134 return V;
2135 break;
2136 }
2137 }
2138 }
2139 }
2140 }
2141
Duncan Sands52fb8462011-02-13 17:15:40 +00002142 // Special logic for binary operators.
2143 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2144 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2145 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00002146 // Analyze the case when either LHS or RHS is an add instruction.
2147 Value *A = 0, *B = 0, *C = 0, *D = 0;
2148 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2149 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2150 if (LBO && LBO->getOpcode() == Instruction::Add) {
2151 A = LBO->getOperand(0); B = LBO->getOperand(1);
2152 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2153 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2154 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2155 }
2156 if (RBO && RBO->getOpcode() == Instruction::Add) {
2157 C = RBO->getOperand(0); D = RBO->getOperand(1);
2158 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2159 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2160 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2161 }
2162
2163 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2164 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2165 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2166 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002167 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002168 return V;
2169
2170 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2171 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2172 if (Value *V = SimplifyICmpInst(Pred,
2173 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002174 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002175 return V;
2176
2177 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2178 if (A && C && (A == C || A == D || B == C || B == D) &&
2179 NoLHSWrapProblem && NoRHSWrapProblem) {
2180 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002181 Value *Y, *Z;
2182 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002183 // C + B == C + D -> B == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002184 Y = B;
2185 Z = D;
2186 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002187 // D + B == C + D -> B == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002188 Y = B;
2189 Z = C;
2190 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002191 // A + C == C + D -> A == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002192 Y = A;
2193 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002194 } else {
2195 assert(B == D);
2196 // A + D == C + D -> A == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002197 Y = A;
2198 Z = C;
2199 }
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002200 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002201 return V;
2202 }
2203 }
2204
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002205 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002206 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002207 switch (Pred) {
2208 default:
2209 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002210 case ICmpInst::ICMP_SGT:
2211 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002212 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002213 if (!KnownNonNegative)
2214 break;
2215 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002216 case ICmpInst::ICMP_EQ:
2217 case ICmpInst::ICMP_UGT:
2218 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002219 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002220 case ICmpInst::ICMP_SLT:
2221 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002222 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002223 if (!KnownNonNegative)
2224 break;
2225 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002226 case ICmpInst::ICMP_NE:
2227 case ICmpInst::ICMP_ULT:
2228 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002229 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002230 }
2231 }
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002232 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2233 bool KnownNonNegative, KnownNegative;
2234 switch (Pred) {
2235 default:
2236 break;
2237 case ICmpInst::ICMP_SGT:
2238 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002239 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002240 if (!KnownNonNegative)
2241 break;
2242 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002243 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002244 case ICmpInst::ICMP_UGT:
2245 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002246 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002247 case ICmpInst::ICMP_SLT:
2248 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002249 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002250 if (!KnownNonNegative)
2251 break;
2252 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002253 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002254 case ICmpInst::ICMP_ULT:
2255 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002256 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002257 }
2258 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002259
Duncan Sandsc65c7472011-10-28 18:17:44 +00002260 // x udiv y <=u x.
2261 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2262 // icmp pred (X /u Y), X
2263 if (Pred == ICmpInst::ICMP_UGT)
2264 return getFalse(ITy);
2265 if (Pred == ICmpInst::ICMP_ULE)
2266 return getTrue(ITy);
2267 }
2268
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002269 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2270 LBO->getOperand(1) == RBO->getOperand(1)) {
2271 switch (LBO->getOpcode()) {
2272 default: break;
2273 case Instruction::UDiv:
2274 case Instruction::LShr:
2275 if (ICmpInst::isSigned(Pred))
2276 break;
2277 // fall-through
2278 case Instruction::SDiv:
2279 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002280 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002281 break;
2282 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002283 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002284 return V;
2285 break;
2286 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002287 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002288 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2289 if (!NUW && !NSW)
2290 break;
2291 if (!NSW && ICmpInst::isSigned(Pred))
2292 break;
2293 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002294 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002295 return V;
2296 break;
2297 }
2298 }
2299 }
2300
Duncan Sandsad206812011-05-03 19:53:10 +00002301 // Simplify comparisons involving max/min.
2302 Value *A, *B;
2303 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002304 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
Duncan Sandsad206812011-05-03 19:53:10 +00002305
Duncan Sands8140ad32011-05-04 16:05:05 +00002306 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002307 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2308 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002309 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002310 // We analyze this as smax(A, B) pred A.
2311 P = Pred;
2312 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2313 (A == LHS || B == LHS)) {
2314 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002315 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002316 // We analyze this as smax(A, B) swapped-pred A.
2317 P = CmpInst::getSwappedPredicate(Pred);
2318 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2319 (A == RHS || B == RHS)) {
2320 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002321 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002322 // We analyze this as smax(-A, -B) swapped-pred -A.
2323 // Note that we do not need to actually form -A or -B thanks to EqP.
2324 P = CmpInst::getSwappedPredicate(Pred);
2325 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2326 (A == LHS || B == LHS)) {
2327 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002328 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002329 // We analyze this as smax(-A, -B) pred -A.
2330 // Note that we do not need to actually form -A or -B thanks to EqP.
2331 P = Pred;
2332 }
2333 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2334 // Cases correspond to "max(A, B) p A".
2335 switch (P) {
2336 default:
2337 break;
2338 case CmpInst::ICMP_EQ:
2339 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002340 // Equivalent to "A EqP B". This may be the same as the condition tested
2341 // in the max/min; if so, we can just return that.
2342 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2343 return V;
2344 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2345 return V;
2346 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002347 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002348 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002349 return V;
2350 break;
2351 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002352 case CmpInst::ICMP_SGT: {
2353 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2354 // Equivalent to "A InvEqP B". This may be the same as the condition
2355 // tested in the max/min; if so, we can just return that.
2356 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2357 return V;
2358 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2359 return V;
2360 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002361 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002362 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002363 return V;
2364 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002365 }
Duncan Sandsad206812011-05-03 19:53:10 +00002366 case CmpInst::ICMP_SGE:
2367 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002368 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002369 case CmpInst::ICMP_SLT:
2370 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002371 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002372 }
2373 }
2374
Duncan Sands8140ad32011-05-04 16:05:05 +00002375 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002376 P = CmpInst::BAD_ICMP_PREDICATE;
2377 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2378 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002379 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002380 // We analyze this as umax(A, B) pred A.
2381 P = Pred;
2382 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2383 (A == LHS || B == LHS)) {
2384 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002385 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002386 // We analyze this as umax(A, B) swapped-pred A.
2387 P = CmpInst::getSwappedPredicate(Pred);
2388 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2389 (A == RHS || B == RHS)) {
2390 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002391 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002392 // We analyze this as umax(-A, -B) swapped-pred -A.
2393 // Note that we do not need to actually form -A or -B thanks to EqP.
2394 P = CmpInst::getSwappedPredicate(Pred);
2395 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2396 (A == LHS || B == LHS)) {
2397 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002398 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002399 // We analyze this as umax(-A, -B) pred -A.
2400 // Note that we do not need to actually form -A or -B thanks to EqP.
2401 P = Pred;
2402 }
2403 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2404 // Cases correspond to "max(A, B) p A".
2405 switch (P) {
2406 default:
2407 break;
2408 case CmpInst::ICMP_EQ:
2409 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002410 // Equivalent to "A EqP B". This may be the same as the condition tested
2411 // in the max/min; if so, we can just return that.
2412 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2413 return V;
2414 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2415 return V;
2416 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002417 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002418 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002419 return V;
2420 break;
2421 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002422 case CmpInst::ICMP_UGT: {
2423 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2424 // Equivalent to "A InvEqP B". This may be the same as the condition
2425 // tested in the max/min; if so, we can just return that.
2426 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2427 return V;
2428 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2429 return V;
2430 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002431 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002432 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002433 return V;
2434 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002435 }
Duncan Sandsad206812011-05-03 19:53:10 +00002436 case CmpInst::ICMP_UGE:
2437 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002438 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002439 case CmpInst::ICMP_ULT:
2440 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002441 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002442 }
2443 }
2444
Duncan Sands8140ad32011-05-04 16:05:05 +00002445 // Variants on "max(x,y) >= min(x,z)".
2446 Value *C, *D;
2447 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2448 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2449 (A == C || A == D || B == C || B == D)) {
2450 // max(x, ?) pred min(x, ?).
2451 if (Pred == CmpInst::ICMP_SGE)
2452 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002453 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002454 if (Pred == CmpInst::ICMP_SLT)
2455 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002456 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002457 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2458 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2459 (A == C || A == D || B == C || B == D)) {
2460 // min(x, ?) pred max(x, ?).
2461 if (Pred == CmpInst::ICMP_SLE)
2462 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002463 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002464 if (Pred == CmpInst::ICMP_SGT)
2465 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002466 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002467 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2468 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2469 (A == C || A == D || B == C || B == D)) {
2470 // max(x, ?) pred min(x, ?).
2471 if (Pred == CmpInst::ICMP_UGE)
2472 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002473 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002474 if (Pred == CmpInst::ICMP_ULT)
2475 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002476 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002477 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2478 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2479 (A == C || A == D || B == C || B == D)) {
2480 // min(x, ?) pred max(x, ?).
2481 if (Pred == CmpInst::ICMP_ULE)
2482 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002483 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002484 if (Pred == CmpInst::ICMP_UGT)
2485 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002486 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002487 }
2488
Chandler Carruth58725a62012-03-25 21:28:14 +00002489 // Simplify comparisons of related pointers using a powerful, recursive
2490 // GEP-walk when we have target data available..
Dan Gohman3e3de562013-01-31 02:50:36 +00002491 if (LHS->getType()->isPointerTy())
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00002492 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
Chandler Carruth58725a62012-03-25 21:28:14 +00002493 return C;
2494
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002495 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2496 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2497 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2498 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2499 (ICmpInst::isEquality(Pred) ||
2500 (GLHS->isInBounds() && GRHS->isInBounds() &&
2501 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2502 // The bases are equal and the indices are constant. Build a constant
2503 // expression GEP with the same indices and a null base pointer to see
2504 // what constant folding can make out of it.
2505 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2506 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2507 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2508
2509 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2510 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2511 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2512 }
2513 }
2514 }
2515
Duncan Sands1ac7c992010-11-07 16:12:23 +00002516 // If the comparison is with the result of a select instruction, check whether
2517 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002518 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002519 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002520 return V;
2521
2522 // If the comparison is with the result of a phi instruction, check whether
2523 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002524 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002525 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002526 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002527
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002528 return 0;
2529}
2530
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002531Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002532 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002533 const TargetLibraryInfo *TLI,
2534 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002535 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2536 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002537}
2538
Chris Lattner9dbb4292009-11-09 23:28:39 +00002539/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2540/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002541static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002542 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002543 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2544 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2545
Chris Lattnerd06094f2009-11-10 00:55:12 +00002546 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002547 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002548 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002549
Chris Lattnerd06094f2009-11-10 00:55:12 +00002550 // If we have a constant, make sure it is on the RHS.
2551 std::swap(LHS, RHS);
2552 Pred = CmpInst::getSwappedPredicate(Pred);
2553 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002554
Chris Lattner210c5d42009-11-09 23:55:12 +00002555 // Fold trivial predicates.
2556 if (Pred == FCmpInst::FCMP_FALSE)
2557 return ConstantInt::get(GetCompareTy(LHS), 0);
2558 if (Pred == FCmpInst::FCMP_TRUE)
2559 return ConstantInt::get(GetCompareTy(LHS), 1);
2560
Chris Lattner210c5d42009-11-09 23:55:12 +00002561 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2562 return UndefValue::get(GetCompareTy(LHS));
2563
2564 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002565 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002566 if (CmpInst::isTrueWhenEqual(Pred))
2567 return ConstantInt::get(GetCompareTy(LHS), 1);
2568 if (CmpInst::isFalseWhenEqual(Pred))
2569 return ConstantInt::get(GetCompareTy(LHS), 0);
2570 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002571
Chris Lattner210c5d42009-11-09 23:55:12 +00002572 // Handle fcmp with constant RHS
2573 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2574 // If the constant is a nan, see if we can fold the comparison based on it.
2575 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2576 if (CFP->getValueAPF().isNaN()) {
2577 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2578 return ConstantInt::getFalse(CFP->getContext());
2579 assert(FCmpInst::isUnordered(Pred) &&
2580 "Comparison must be either ordered or unordered!");
2581 // True if unordered.
2582 return ConstantInt::getTrue(CFP->getContext());
2583 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002584 // Check whether the constant is an infinity.
2585 if (CFP->getValueAPF().isInfinity()) {
2586 if (CFP->getValueAPF().isNegative()) {
2587 switch (Pred) {
2588 case FCmpInst::FCMP_OLT:
2589 // No value is ordered and less than negative infinity.
2590 return ConstantInt::getFalse(CFP->getContext());
2591 case FCmpInst::FCMP_UGE:
2592 // All values are unordered with or at least negative infinity.
2593 return ConstantInt::getTrue(CFP->getContext());
2594 default:
2595 break;
2596 }
2597 } else {
2598 switch (Pred) {
2599 case FCmpInst::FCMP_OGT:
2600 // No value is ordered and greater than infinity.
2601 return ConstantInt::getFalse(CFP->getContext());
2602 case FCmpInst::FCMP_ULE:
2603 // All values are unordered with and at most infinity.
2604 return ConstantInt::getTrue(CFP->getContext());
2605 default:
2606 break;
2607 }
2608 }
2609 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002610 }
2611 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002612
Duncan Sands92826de2010-11-07 16:46:25 +00002613 // If the comparison is with the result of a select instruction, check whether
2614 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002615 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002616 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002617 return V;
2618
2619 // If the comparison is with the result of a phi instruction, check whether
2620 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002621 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002622 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002623 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002624
Chris Lattner9dbb4292009-11-09 23:28:39 +00002625 return 0;
2626}
2627
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002628Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002629 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002630 const TargetLibraryInfo *TLI,
2631 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002632 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2633 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002634}
2635
Chris Lattner04754262010-04-20 05:32:14 +00002636/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2637/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002638static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2639 Value *FalseVal, const Query &Q,
2640 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002641 // select true, X, Y -> X
2642 // select false, X, Y -> Y
2643 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2644 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002645
Chris Lattner04754262010-04-20 05:32:14 +00002646 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002647 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002648 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002649
Chris Lattner04754262010-04-20 05:32:14 +00002650 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2651 if (isa<Constant>(TrueVal))
2652 return TrueVal;
2653 return FalseVal;
2654 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002655 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2656 return FalseVal;
2657 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2658 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002659
Chris Lattner04754262010-04-20 05:32:14 +00002660 return 0;
2661}
2662
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002663Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
Micah Villmow3574eca2012-10-08 16:38:25 +00002664 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002665 const TargetLibraryInfo *TLI,
2666 const DominatorTree *DT) {
2667 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2668 RecursionLimit);
2669}
2670
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002671/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2672/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002673static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002674 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002675 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2676 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2677 if (!PtrTy)
2678 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002679
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002680 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002681 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002682 return Ops[0];
2683
Duncan Sands85bbff62010-11-22 13:42:49 +00002684 if (isa<UndefValue>(Ops[0])) {
2685 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002686 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002687 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002688 return UndefValue::get(GEPTy);
2689 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002690
Jay Foadb9b54eb2011-07-19 15:07:52 +00002691 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002692 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002693 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2694 if (C->isZero())
2695 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002696 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002697 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002698 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002699 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002700 return Ops[0];
2701 }
2702 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002703
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002704 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002705 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002706 if (!isa<Constant>(Ops[i]))
2707 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002708
Jay Foaddab3d292011-07-21 14:31:17 +00002709 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002710}
2711
Micah Villmow3574eca2012-10-08 16:38:25 +00002712Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002713 const TargetLibraryInfo *TLI,
2714 const DominatorTree *DT) {
2715 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2716}
2717
Duncan Sandsdabc2802011-09-05 06:52:48 +00002718/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2719/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002720static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2721 ArrayRef<unsigned> Idxs, const Query &Q,
2722 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002723 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2724 if (Constant *CVal = dyn_cast<Constant>(Val))
2725 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2726
2727 // insertvalue x, undef, n -> x
2728 if (match(Val, m_Undef()))
2729 return Agg;
2730
2731 // insertvalue x, (extractvalue y, n), n
2732 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002733 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2734 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002735 // insertvalue undef, (extractvalue y, n), n -> y
2736 if (match(Agg, m_Undef()))
2737 return EV->getAggregateOperand();
2738
2739 // insertvalue y, (extractvalue y, n), n -> y
2740 if (Agg == EV->getAggregateOperand())
2741 return Agg;
2742 }
2743
2744 return 0;
2745}
2746
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002747Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2748 ArrayRef<unsigned> Idxs,
Micah Villmow3574eca2012-10-08 16:38:25 +00002749 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002750 const TargetLibraryInfo *TLI,
2751 const DominatorTree *DT) {
2752 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2753 RecursionLimit);
2754}
2755
Duncan Sandsff103412010-11-17 04:30:22 +00002756/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002757static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002758 // If all of the PHI's incoming values are the same then replace the PHI node
2759 // with the common value.
2760 Value *CommonValue = 0;
2761 bool HasUndefInput = false;
2762 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2763 Value *Incoming = PN->getIncomingValue(i);
2764 // If the incoming value is the phi node itself, it can safely be skipped.
2765 if (Incoming == PN) continue;
2766 if (isa<UndefValue>(Incoming)) {
2767 // Remember that we saw an undef value, but otherwise ignore them.
2768 HasUndefInput = true;
2769 continue;
2770 }
2771 if (CommonValue && Incoming != CommonValue)
2772 return 0; // Not the same, bail out.
2773 CommonValue = Incoming;
2774 }
2775
2776 // If CommonValue is null then all of the incoming values were either undef or
2777 // equal to the phi node itself.
2778 if (!CommonValue)
2779 return UndefValue::get(PN->getType());
2780
2781 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2782 // instruction, we cannot return X as the result of the PHI node unless it
2783 // dominates the PHI block.
2784 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002785 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002786
2787 return CommonValue;
2788}
2789
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002790static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2791 if (Constant *C = dyn_cast<Constant>(Op))
2792 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2793
2794 return 0;
2795}
2796
Micah Villmow3574eca2012-10-08 16:38:25 +00002797Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002798 const TargetLibraryInfo *TLI,
2799 const DominatorTree *DT) {
2800 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2801}
2802
Chris Lattnerd06094f2009-11-10 00:55:12 +00002803//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002804
Chris Lattnerd06094f2009-11-10 00:55:12 +00002805/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2806/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002807static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002808 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002809 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002810 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002811 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002812 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002813 case Instruction::FAdd:
2814 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2815
Chris Lattner81a0dc92011-02-09 17:15:04 +00002816 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002817 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002818 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002819 case Instruction::FSub:
2820 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2821
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002822 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002823 case Instruction::FMul:
2824 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002825 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2826 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2827 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2828 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2829 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2830 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002831 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002832 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002833 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002834 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002835 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002836 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002837 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2838 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2839 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2840 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002841 default:
2842 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2843 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2844 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002845 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2846 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002847 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002848
Duncan Sands566edb02010-12-21 08:49:00 +00002849 // If the operation is associative, try some generic simplifications.
2850 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002851 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002852 return V;
2853
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002854 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002855 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002856 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002857 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002858 return V;
2859
2860 // If the operation is with the result of a phi instruction, check whether
2861 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002862 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002863 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002864 return V;
2865
Chris Lattnerd06094f2009-11-10 00:55:12 +00002866 return 0;
2867 }
2868}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002869
Duncan Sands12a86f52010-11-14 11:23:23 +00002870Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002871 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002872 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002873 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002874}
2875
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002876/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2877/// fold the result.
2878static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002879 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002880 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002881 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2882 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002883}
2884
2885Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002886 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002887 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002888 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2889 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002890}
Chris Lattnere3453782009-11-10 01:08:51 +00002891
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002892template <typename IterTy>
Chandler Carruthe949aa12012-12-28 14:23:29 +00002893static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002894 const Query &Q, unsigned MaxRecurse) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002895 Type *Ty = V->getType();
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002896 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2897 Ty = PTy->getElementType();
2898 FunctionType *FTy = cast<FunctionType>(Ty);
2899
Dan Gohman71d05032011-11-04 18:32:42 +00002900 // call undef -> undef
Chandler Carruthe949aa12012-12-28 14:23:29 +00002901 if (isa<UndefValue>(V))
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002902 return UndefValue::get(FTy->getReturnType());
Dan Gohman71d05032011-11-04 18:32:42 +00002903
Chandler Carruthe949aa12012-12-28 14:23:29 +00002904 Function *F = dyn_cast<Function>(V);
2905 if (!F)
2906 return 0;
2907
2908 if (!canConstantFoldCallTo(F))
2909 return 0;
2910
2911 SmallVector<Constant *, 4> ConstantArgs;
2912 ConstantArgs.reserve(ArgEnd - ArgBegin);
2913 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2914 Constant *C = dyn_cast<Constant>(*I);
2915 if (!C)
2916 return 0;
2917 ConstantArgs.push_back(C);
2918 }
2919
2920 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
Dan Gohman71d05032011-11-04 18:32:42 +00002921}
2922
Chandler Carruthe949aa12012-12-28 14:23:29 +00002923Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002924 User::op_iterator ArgEnd, const DataLayout *TD,
2925 const TargetLibraryInfo *TLI,
2926 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002927 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002928 RecursionLimit);
2929}
2930
Chandler Carruthe949aa12012-12-28 14:23:29 +00002931Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002932 const DataLayout *TD, const TargetLibraryInfo *TLI,
2933 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002934 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002935 RecursionLimit);
2936}
2937
Chris Lattnere3453782009-11-10 01:08:51 +00002938/// SimplifyInstruction - See if we can compute a simplified version of this
2939/// instruction. If not, this returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00002940Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002941 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00002942 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00002943 Value *Result;
2944
Chris Lattnere3453782009-11-10 01:08:51 +00002945 switch (I->getOpcode()) {
2946 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00002947 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002948 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00002949 case Instruction::FAdd:
2950 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
2951 I->getFastMathFlags(), TD, TLI, DT);
2952 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00002953 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002954 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2955 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2956 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002957 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002958 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00002959 case Instruction::FSub:
2960 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
2961 I->getFastMathFlags(), TD, TLI, DT);
2962 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00002963 case Instruction::Sub:
2964 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2965 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2966 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002967 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00002968 break;
Michael Ilsemaneb61c922012-11-27 00:46:26 +00002969 case Instruction::FMul:
2970 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
2971 I->getFastMathFlags(), TD, TLI, DT);
2972 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00002973 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00002974 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00002975 break;
Duncan Sands593faa52011-01-28 16:51:11 +00002976 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002977 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002978 break;
2979 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002980 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002981 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002982 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002983 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002984 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00002985 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002986 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002987 break;
2988 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002989 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002990 break;
2991 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002992 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002993 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00002994 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002995 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2996 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2997 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002998 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002999 break;
3000 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003001 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3002 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003003 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003004 break;
3005 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003006 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3007 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003008 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003009 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003010 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00003011 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003012 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003013 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00003014 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003015 break;
Duncan Sands2b749872010-11-17 18:52:15 +00003016 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00003017 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00003018 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003019 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003020 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003021 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003022 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003023 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003024 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003025 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003026 break;
Chris Lattner04754262010-04-20 05:32:14 +00003027 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003028 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003029 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003030 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003031 case Instruction::GetElementPtr: {
3032 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003033 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003034 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003035 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00003036 case Instruction::InsertValue: {
3037 InsertValueInst *IV = cast<InsertValueInst>(I);
3038 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3039 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003040 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00003041 break;
3042 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00003043 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003044 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00003045 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003046 case Instruction::Call: {
3047 CallSite CS(cast<CallInst>(I));
3048 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3049 TD, TLI, DT);
Dan Gohman71d05032011-11-04 18:32:42 +00003050 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003051 }
Duncan Sandsbd0fe562012-03-13 14:07:05 +00003052 case Instruction::Trunc:
3053 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3054 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003055 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00003056
3057 /// If called on unreachable code, the above logic may report that the
3058 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00003059 /// detecting that case here, returning a safe value instead.
3060 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00003061}
3062
Chandler Carruth6b980542012-03-24 21:11:24 +00003063/// \brief Implementation of recursive simplification through an instructions
3064/// uses.
Chris Lattner40d8c282009-11-10 22:26:15 +00003065///
Chandler Carruth6b980542012-03-24 21:11:24 +00003066/// This is the common implementation of the recursive simplification routines.
3067/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3068/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3069/// instructions to process and attempt to simplify it using
3070/// InstructionSimplify.
3071///
3072/// This routine returns 'true' only when *it* simplifies something. The passed
3073/// in simplified value does not count toward this.
3074static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003075 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003076 const TargetLibraryInfo *TLI,
3077 const DominatorTree *DT) {
3078 bool Simplified = false;
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003079 SmallSetVector<Instruction *, 8> Worklist;
Duncan Sands12a86f52010-11-14 11:23:23 +00003080
Chandler Carruth6b980542012-03-24 21:11:24 +00003081 // If we have an explicit value to collapse to, do that round of the
3082 // simplification loop by hand initially.
3083 if (SimpleV) {
3084 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3085 ++UI)
Chandler Carruthc5b785b2012-03-24 22:34:23 +00003086 if (*UI != I)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003087 Worklist.insert(cast<Instruction>(*UI));
Duncan Sands12a86f52010-11-14 11:23:23 +00003088
Chandler Carruth6b980542012-03-24 21:11:24 +00003089 // Replace the instruction with its simplified value.
3090 I->replaceAllUsesWith(SimpleV);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00003091
Chandler Carruth6b980542012-03-24 21:11:24 +00003092 // Gracefully handle edge cases where the instruction is not wired into any
3093 // parent block.
3094 if (I->getParent())
3095 I->eraseFromParent();
3096 } else {
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003097 Worklist.insert(I);
Chris Lattner40d8c282009-11-10 22:26:15 +00003098 }
Duncan Sands12a86f52010-11-14 11:23:23 +00003099
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003100 // Note that we must test the size on each iteration, the worklist can grow.
3101 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3102 I = Worklist[Idx];
Duncan Sands12a86f52010-11-14 11:23:23 +00003103
Chandler Carruth6b980542012-03-24 21:11:24 +00003104 // See if this instruction simplifies.
3105 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3106 if (!SimpleV)
3107 continue;
3108
3109 Simplified = true;
3110
3111 // Stash away all the uses of the old instruction so we can check them for
3112 // recursive simplifications after a RAUW. This is cheaper than checking all
3113 // uses of To on the recursive step in most cases.
3114 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3115 ++UI)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003116 Worklist.insert(cast<Instruction>(*UI));
Chandler Carruth6b980542012-03-24 21:11:24 +00003117
3118 // Replace the instruction with its simplified value.
3119 I->replaceAllUsesWith(SimpleV);
3120
3121 // Gracefully handle edge cases where the instruction is not wired into any
3122 // parent block.
3123 if (I->getParent())
3124 I->eraseFromParent();
3125 }
3126 return Simplified;
3127}
3128
3129bool llvm::recursivelySimplifyInstruction(Instruction *I,
Micah Villmow3574eca2012-10-08 16:38:25 +00003130 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003131 const TargetLibraryInfo *TLI,
3132 const DominatorTree *DT) {
3133 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3134}
3135
3136bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003137 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003138 const TargetLibraryInfo *TLI,
3139 const DominatorTree *DT) {
3140 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3141 assert(SimpleV && "Must provide a simplified value.");
3142 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
Chris Lattner40d8c282009-11-10 22:26:15 +00003143}