blob: f9b8ace11f391815f250d172a9cba90b23b80d68 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a limited form of tail duplication, intended to simplify
11// CFGs by removing some unconditional branches. This pass is necessary to
12// straighten out loops created by the C front-end, but also is capable of
13// making other code nicer. After this pass is run, the CFG simplify pass
14// should be run to clean up the mess.
15//
16// This pass could be enhanced in the future to use profile information to be
17// more aggressive.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "tailduplicate"
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Constant.h"
24#include "llvm/Function.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/Statistic.h"
Dan Gohman249ddbf2008-03-21 23:51:57 +000035#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036using namespace llvm;
37
38STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
39
40namespace {
41 cl::opt<unsigned>
42 Threshold("taildup-threshold", cl::desc("Max block size to tail duplicate"),
43 cl::init(6), cl::Hidden);
44 class VISIBILITY_HIDDEN TailDup : public FunctionPass {
45 bool runOnFunction(Function &F);
46 public:
47 static char ID; // Pass identification, replacement for typeid
48 TailDup() : FunctionPass((intptr_t)&ID) {}
49
50 private:
51 inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI);
52 inline void eliminateUnconditionalBranch(BranchInst *BI);
53 };
54 char TailDup::ID = 0;
55 RegisterPass<TailDup> X("tailduplicate", "Tail Duplication");
56}
57
58// Public interface to the Tail Duplication pass
59FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
60
61/// runOnFunction - Top level algorithm - Loop over each unconditional branch in
62/// the function, eliminating it if it looks attractive enough.
63///
64bool TailDup::runOnFunction(Function &F) {
65 bool Changed = false;
66 for (Function::iterator I = F.begin(), E = F.end(); I != E; )
67 if (shouldEliminateUnconditionalBranch(I->getTerminator())) {
68 eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
69 Changed = true;
70 } else {
71 ++I;
72 }
73 return Changed;
74}
75
76/// shouldEliminateUnconditionalBranch - Return true if this branch looks
77/// attractive to eliminate. We eliminate the branch if the destination basic
78/// block has <= 5 instructions in it, not counting PHI nodes. In practice,
79/// since one of these is a terminator instruction, this means that we will add
80/// up to 4 instructions to the new block.
81///
82/// We don't count PHI nodes in the count since they will be removed when the
83/// contents of the block are copied over.
84///
85bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) {
86 BranchInst *BI = dyn_cast<BranchInst>(TI);
87 if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
88
89 BasicBlock *Dest = BI->getSuccessor(0);
90 if (Dest == BI->getParent()) return false; // Do not loop infinitely!
91
92 // Do not inline a block if we will just get another branch to the same block!
93 TerminatorInst *DTI = Dest->getTerminator();
94 if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
95 if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
96 return false; // Do not loop infinitely!
97
98 // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
99 // because doing so would require breaking critical edges. This should be
100 // fixed eventually.
101 if (!DTI->use_empty())
102 return false;
103
104 // Do not bother working on dead blocks...
105 pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
106 if (PI == PE && Dest != Dest->getParent()->begin())
107 return false; // It's just a dead block, ignore it...
108
109 // Also, do not bother with blocks with only a single predecessor: simplify
110 // CFG will fold these two blocks together!
111 ++PI;
112 if (PI == PE) return false; // Exactly one predecessor!
113
114 BasicBlock::iterator I = Dest->begin();
115 while (isa<PHINode>(*I)) ++I;
116
117 for (unsigned Size = 0; I != Dest->end(); ++I) {
118 if (Size == Threshold) return false; // The block is too large.
Chris Lattner5fafff82007-11-04 06:37:55 +0000119
120 // Don't tail duplicate call instructions. They are very large compared to
121 // other instructions.
122 if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
123
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 // Only count instructions that are not debugger intrinsics.
125 if (!isa<DbgInfoIntrinsic>(I)) ++Size;
126 }
127
128 // Do not tail duplicate a block that has thousands of successors into a block
129 // with a single successor if the block has many other predecessors. This can
130 // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
131 // cases that have a large number of indirect gotos.
132 unsigned NumSuccs = DTI->getNumSuccessors();
133 if (NumSuccs > 8) {
134 unsigned TooMany = 128;
135 if (NumSuccs >= TooMany) return false;
136 TooMany = TooMany/NumSuccs;
137 for (; PI != PE; ++PI)
138 if (TooMany-- == 0) return false;
139 }
140
141 // Finally, if this unconditional branch is a fall-through, be careful about
142 // tail duplicating it. In particular, we don't want to taildup it if the
143 // original block will still be there after taildup is completed: doing so
144 // would eliminate the fall-through, requiring unconditional branches.
145 Function::iterator DestI = Dest;
146 if (&*--DestI == BI->getParent()) {
147 // The uncond branch is a fall-through. Tail duplication of the block is
148 // will eliminate the fall-through-ness and end up cloning the terminator
149 // at the end of the Dest block. Since the original Dest block will
150 // continue to exist, this means that one or the other will not be able to
151 // fall through. One typical example that this helps with is code like:
152 // if (a)
153 // foo();
154 // if (b)
155 // foo();
156 // Cloning the 'if b' block into the end of the first foo block is messy.
157
158 // The messy case is when the fall-through block falls through to other
159 // blocks. This is what we would be preventing if we cloned the block.
160 DestI = Dest;
161 if (++DestI != Dest->getParent()->end()) {
162 BasicBlock *DestSucc = DestI;
163 // If any of Dest's successors are fall-throughs, don't do this xform.
164 for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
165 SI != SE; ++SI)
166 if (*SI == DestSucc)
167 return false;
168 }
169 }
170
171 return true;
172}
173
174/// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
175/// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
176/// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
177/// DstBlock, return it.
178static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
179 BasicBlock *DstBlock) {
180 // SrcBlock must have a single predecessor.
181 pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
182 if (PI == PE || ++PI != PE) return 0;
183
184 BasicBlock *SrcPred = *pred_begin(SrcBlock);
185
186 // Look at the predecessors of DstBlock. One of them will be SrcBlock. If
187 // there is only one other pred, get it, otherwise we can't handle it.
188 PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
189 BasicBlock *DstOtherPred = 0;
190 if (*PI == SrcBlock) {
191 if (++PI == PE) return 0;
192 DstOtherPred = *PI;
193 if (++PI != PE) return 0;
194 } else {
195 DstOtherPred = *PI;
196 if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
197 }
198
199 // We can handle two situations here: "if then" and "if then else" blocks. An
200 // 'if then' situation is just where DstOtherPred == SrcPred.
201 if (DstOtherPred == SrcPred)
202 return SrcPred;
203
204 // Check to see if we have an "if then else" situation, which means that
205 // DstOtherPred will have a single predecessor and it will be SrcPred.
206 PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
207 if (PI != PE && *PI == SrcPred) {
208 if (++PI != PE) return 0; // Not a single pred.
209 return SrcPred; // Otherwise, it's an "if then" situation. Return the if.
210 }
211
212 // Otherwise, this is something we can't handle.
213 return 0;
214}
215
216
217/// eliminateUnconditionalBranch - Clone the instructions from the destination
218/// block into the source block, eliminating the specified unconditional branch.
219/// If the destination block defines values used by successors of the dest
220/// block, we may need to insert PHI nodes.
221///
222void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
223 BasicBlock *SourceBlock = Branch->getParent();
224 BasicBlock *DestBlock = Branch->getSuccessor(0);
225 assert(SourceBlock != DestBlock && "Our predicate is broken!");
226
227 DOUT << "TailDuplication[" << SourceBlock->getParent()->getName()
228 << "]: Eliminating branch: " << *Branch;
229
230 // See if we can avoid duplicating code by moving it up to a dominator of both
231 // blocks.
232 if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
233 DOUT << "Found shared dominator: " << DomBlock->getName() << "\n";
234
235 // If there are non-phi instructions in DestBlock that have no operands
236 // defined in DestBlock, and if the instruction has no side effects, we can
237 // move the instruction to DomBlock instead of duplicating it.
238 BasicBlock::iterator BBI = DestBlock->begin();
239 while (isa<PHINode>(BBI)) ++BBI;
240 while (!isa<TerminatorInst>(BBI)) {
241 Instruction *I = BBI++;
242
243 bool CanHoist = !I->isTrapping() && !I->mayWriteToMemory();
244 if (CanHoist) {
245 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
246 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
247 if (OpI->getParent() == DestBlock ||
248 (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
249 CanHoist = false;
250 break;
251 }
252 if (CanHoist) {
253 // Remove from DestBlock, move right before the term in DomBlock.
254 DestBlock->getInstList().remove(I);
255 DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
256 DOUT << "Hoisted: " << *I;
257 }
258 }
259 }
260 }
261
262 // Tail duplication can not update SSA properties correctly if the values
263 // defined in the duplicated tail are used outside of the tail itself. For
264 // this reason, we spill all values that are used outside of the tail to the
265 // stack.
266 for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
Chris Lattnerfe86ab22008-04-20 22:18:22 +0000267 if (I->isUsedOutsideOfBlock(DestBlock)) {
268 // We found a use outside of the tail. Create a new stack slot to
269 // break this inter-block usage pattern.
270 DemoteRegToStack(*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 }
272
273 // We are going to have to map operands from the original block B to the new
274 // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
275 // nodes also define part of this mapping. Loop over these PHI nodes, adding
276 // them to our mapping.
277 //
278 std::map<Value*, Value*> ValueMapping;
279
280 BasicBlock::iterator BI = DestBlock->begin();
281 bool HadPHINodes = isa<PHINode>(BI);
282 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
283 ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
284
285 // Clone the non-phi instructions of the dest block into the source block,
286 // keeping track of the mapping...
287 //
288 for (; BI != DestBlock->end(); ++BI) {
289 Instruction *New = BI->clone();
Owen Andersonab567f82008-04-14 17:38:21 +0000290 New->setName(BI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 SourceBlock->getInstList().push_back(New);
292 ValueMapping[BI] = New;
293 }
294
295 // Now that we have built the mapping information and cloned all of the
296 // instructions (giving us a new terminator, among other things), walk the new
297 // instructions, rewriting references of old instructions to use new
298 // instructions.
299 //
300 BI = Branch; ++BI; // Get an iterator to the first new instruction
301 for (; BI != SourceBlock->end(); ++BI)
302 for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
303 if (Value *Remapped = ValueMapping[BI->getOperand(i)])
304 BI->setOperand(i, Remapped);
305
306 // Next we check to see if any of the successors of DestBlock had PHI nodes.
307 // If so, we need to add entries to the PHI nodes for SourceBlock now.
308 for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
309 SI != SE; ++SI) {
310 BasicBlock *Succ = *SI;
311 for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
312 PHINode *PN = cast<PHINode>(PNI);
313 // Ok, we have a PHI node. Figure out what the incoming value was for the
314 // DestBlock.
315 Value *IV = PN->getIncomingValueForBlock(DestBlock);
316
317 // Remap the value if necessary...
318 if (Value *MappedIV = ValueMapping[IV])
319 IV = MappedIV;
320 PN->addIncoming(IV, SourceBlock);
321 }
322 }
323
324 // Next, remove the old branch instruction, and any PHI node entries that we
325 // had.
326 BI = Branch; ++BI; // Get an iterator to the first new instruction
327 DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
328 SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
329
330 // Final step: now that we have finished everything up, walk the cloned
331 // instructions one last time, constant propagating and DCE'ing them, because
332 // they may not be needed anymore.
333 //
334 if (HadPHINodes)
335 while (BI != SourceBlock->end())
336 if (!dceInstruction(BI) && !doConstantPropagation(BI))
337 ++BI;
338
339 ++NumEliminated; // We just killed a branch!
340}