blob: ffffc0a838c38ef14492a4eb760e9df4cda6c97d [file] [log] [blame]
/*
* lat-sched by Davide Libenzi ( linux kernel scheduler latency tester )
* Version 0.21 - Copyright (C) 2001 Davide Libenzi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Davide Libenzi <davidel@xmailserver.org>
*
*
* The purpose of this tool is to measure the scheduler latency over a given
* runqueue length. The major difference with lat_ctx is that during the test
* time the runqueue is exactly NRTASK, while with lat_ctx ( that uses pipes )
* processes are typically sleeping on the pipe read.
* Build:
*
* gcc -O0 -o lat-sched lat-sched.c
*
* Use:
*
* lat-sched [--ntasks n] [--ttime s] [--size b] [--stksize b] [--stkalign b]
* [--max-eck k] [--verbose] [--help]
*
* --ntask = Set the number of tasks ( runqueue length )
* --ttime = Set thetest measure time in seconds
* --size = Set the cache drain size in Kb
* --stksize = Set the stack size for tasks
* --stkalign = Set the shift each task stack will have over stksize
* --max-eck = Set the maximum correction factor above which the measure is invalid
* --verbose = Activate verbose mode
* --help = Print help screen
*
*
* Output: NRTASK MSRUN CSSEC LATSCH AVGWRK THRZ CHISQR
*
* NRTASK = Number of test tasks
* MSRUN = Number of milliseconds the test is ran
* CSSEC = Number of context switches / sec
* LATSCH = Number of seconds for a context switch
* AVGWRK = Number of context switches / NRTASK
* THRZ = Number of task with zero context switch
* CHISQR = Context switches chi-square over tasks
*
* In case the measure will result invalid ( according to eck ) the output line
* will begin with a '*' character.
* Messages are printed on <stderr> while results are printed on <stdout>
*
* IMPORTANT: To make this test work with a number of tasks that is less or equal
* to the number of CPUs the sys_sched_yield() optimization must be removed from
* the kernel sources in <kernel/sched.c>.
* This is a working sys_sched_yield() for kernel 2.4.10 :
*
* asmlinkage long sys_sched_yield(void) {
* if (current->policy == SCHED_OTHER)
* current->policy |= SCHED_YIELD;
* current->need_resched = 1;
* return 0;
* }
*
*/
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <sched.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <time.h>
#include <string.h>
#include <asm/atomic.h>
#define CACHELINE_SIZE 32
#define SSUMTIME 1
#define MAXTASKS 2048
#define MEASURE_TIME 4
#define STK_SIZE 512
char *stacks;
int *data;
int datasize = 0, stksize = STK_SIZE, stkalign = 0;
pid_t thr[MAXTASKS];
int nbtasks = 2;
int measure_time = MEASURE_TIME;
double eck = 0.9;
volatile atomic_t actthreads = ATOMIC_INIT(0);
long long int totalwork[MAXTASKS];
volatile int stop = 0, start = 0, count = 0;
int verbose = 0;
/*
* cacheload() code comes from Larry McVoy LMBench
* Bring howmuch data into the cache, assuming that the smallest cache
* line is 16/32 bytes.
*/
int cacheload(int howmuch) {
int done, sum = 0;
register int *d = data;
#if CACHELINE_SIZE == 16
#define ASUM sum+=d[0]+d[4]+d[8]+d[12]+d[16]+d[20]+d[24]+d[28]+\
d[32]+d[36]+d[40]+d[44]+d[48]+d[52]+d[56]+d[60]+\
d[64]+d[68]+d[72]+d[76]+d[80]+d[84]+d[88]+d[92]+\
d[96]+d[100]+d[104]+d[108]+d[112]+d[116]+d[120]+d[124];\
d+=128; /* ints; bytes == 512 */
#elif CACHELINE_SIZE == 32
#define ASUM sum+=d[0]+d[8]+d[16]+d[24]+d[32]+d[40]+d[48]+d[56]+\
d[64]+d[72]+d[80]+d[88]+d[96]+d[104]+d[112]+d[120];\
d+=128; /* ints; bytes == 512 */
#else
#define ASUM sum+=d[0]+d[1]+d[2]+d[3]+d[4]+d[5]+d[6]+d[7]+d[8]+d[9]+\
d[10]+d[11]+d[12]+d[13]+d[14]+d[15]+d[16]+d[17]+d[18]+d[19]+\
d[20]+d[21]+d[22]+d[23]+d[24]+d[25]+d[26]+d[27]+d[28]+d[29]+\
d[30]+d[31]+d[32]+d[33]+d[34]+d[35]+d[36]+d[37]+d[38]+d[39]+\
d[40]+d[41]+d[42]+d[43]+d[44]+d[45]+d[46]+d[47]+d[48]+d[49]+\
d[50]+d[51]+d[52]+d[53]+d[54]+d[55]+d[56]+d[57]+d[58]+d[59]+\
d[60]+d[61]+d[62]+d[63]+d[64]+d[65]+d[66]+d[67]+d[68]+d[69]+\
d[70]+d[71]+d[72]+d[73]+d[74]+d[75]+d[76]+d[77]+d[78]+d[79]+\
d[80]+d[81]+d[82]+d[83]+d[84]+d[85]+d[86]+d[87]+d[88]+d[89]+\
d[90]+d[91]+d[92]+d[93]+d[94]+d[95]+d[96]+d[97]+d[98]+d[99]+\
d[100]+d[101]+d[102]+d[103]+d[104]+\
d[105]+d[106]+d[107]+d[108]+d[109]+\
d[110]+d[111]+d[112]+d[113]+d[114]+\
d[115]+d[116]+d[117]+d[118]+d[119]+\
d[120]+d[121]+d[122]+d[123]+d[124]+d[125]+d[126]+d[127];\
d+=128; /* ints; bytes == 512 */
#endif
#define ONEKB ASUM ASUM
for (done = 0; done < howmuch; done += 1024) {
ONEKB
}
return sum;
}
void taskproc(unsigned int thr) {
long long int counter = 0;
while (!start)
usleep(100000);
atomic_inc((atomic_t *) &actthreads);
while (!stop) {
if (count) {
++counter;
cacheload(datasize);
}
syscall(158); /* sys_sched_yield() */
}
totalwork[thr] = counter;
atomic_dec((atomic_t *) &actthreads);
exit(0);
}
unsigned long long getmstics(void) {
struct timeval tv;
if (gettimeofday(&tv, NULL) != 0)
return (0);
return 1000 * (unsigned long long) tv.tv_sec + (unsigned long long) tv.tv_usec / 1000;
}
void usage(char *prg) {
fprintf(stderr,
"use: %s [--ntasks n {%d}] [--ttime s {%d}] [--size b {%d}] [--stksize b {%d}]\n"
"\t[--stkalign b {%d}] [--max-eck k {%lf}] [--verbose] [--help]\n",
prg, nbtasks, measure_time, datasize, stksize, stkalign, eck);
}
main(int argc, char **argv) {
int i, status, avgwork, thrzero = 0, stkrsiz;
long long int value = 0, avgvalue;
double sqrdev;
unsigned long long ts, te, sts, ste, ttime, sits, is, tcorr;
char const *ustr = "";
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "--ntasks") == 0) {
if (++i < argc)
nbtasks = atoi(argv[i]);
continue;
}
if (strcmp(argv[i], "--ttime") == 0) {
if (++i < argc)
measure_time = atoi(argv[i]);
continue;
}
if (strcmp(argv[i], "--stksize") == 0) {
if (++i < argc)
stksize = atoi(argv[i]), stksize &= ~(CACHELINE_SIZE - 1);
continue;
}
if (strcmp(argv[i], "--size") == 0) {
if (++i < argc)
datasize = atoi(argv[i]) * 1024;
continue;
}
if (strcmp(argv[i], "--max-eck") == 0) {
if (++i < argc)
eck = atof(argv[i]);
continue;
}
if (strcmp(argv[i], "--stkalign") == 0) {
if (++i < argc)
stkalign = atoi(argv[i]), stkalign &= ~(CACHELINE_SIZE - 1);
continue;
}
if (strcmp(argv[i], "--verbose") == 0) {
verbose = 1;
continue;
}
if (strcmp(argv[i], "--help") == 0) {
usage(argv[0]);
exit(9);
}
}
if (nbtasks > MAXTASKS)
nbtasks = MAXTASKS;
if (datasize)
data = (int *) malloc(datasize);
stkrsiz = stkalign + stksize;
if (!(stacks = (char *) malloc((nbtasks + 1) * stkrsiz))) {
perror("stack alloc");
exit(1);
}
if (verbose) fprintf(stderr, "\ncreating %d tasks ...", nbtasks);
for (i = 0; i < nbtasks; i++) {
thr[i] = __clone((void *) &taskproc, stacks + (i + 1) * stkrsiz,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *) i);
if (thr[i] == -1) {
perror("clone");
exit(2);
}
}
for (i = 0; i < nbtasks; i++)
totalwork[i] = 0;
if (verbose) fprintf(stderr, " ok\nwaiting for all tasks to start ...");
start = 1;
while (atomic_read(&actthreads) != nbtasks)
usleep(100000);
if (verbose) fprintf(stderr, " ok\nrunning test ...");
count = 1;
ts = getmstics();
sleep(measure_time);
count = 0;
stop = 1;
te = getmstics();
if (verbose) fprintf(stderr, " ok\nwaiting completion ...");
while (atomic_read(&actthreads) > 0)
usleep(100000);
for (i = 0; i < nbtasks; i++)
wait(&status);
if (verbose) fprintf(stderr, " ok\n");
for (i = 0; i < nbtasks; i++) {
value += totalwork[i];
if (totalwork[i] == 0)
++thrzero;
}
if (verbose) fprintf(stderr, "compensation loop ...");
is = (value * 1000 * SSUMTIME) / (te - ts);
do {
sits = is;
sts = getmstics();
for (; is; is--)
cacheload(datasize);
ste = getmstics();
is = 3 * (sits * 1000 * SSUMTIME) / (2 * (ste - sts));
} while ((ste - sts) < 1000 * SSUMTIME);
tcorr = ((ste - sts) * value) / sits;
if (verbose) fprintf(stderr, " sits=%llu comptime=%llu corr=%llu value=%llu citt=%e\n",
sits, ste - sts, tcorr, value, (double) (ste - sts) / ((double) sits * 1000.0));
if ((double) tcorr > eck * (te - ts)) {
if (verbose) fprintf(stderr, "measure unstable: corr{%llu} > (eck{%lf} * ttime{%llu})\n",
tcorr, eck, te - ts);
ustr = "*";
}
ttime = (te - ts) - tcorr;
avgvalue = value / nbtasks;
value *= 1000;
value /= ttime;
avgwork = (int) (value / nbtasks);
for (i = 0, sqrdev = 0; i < nbtasks; i++) {
double difvv = (double) (totalwork[i] - avgvalue);
sqrdev += (difvv * difvv) / (double) avgvalue;
}
fprintf(stdout, "%s%d\t%lu\t%lld\t%e\t%d\t%d\t%.0f\n",
ustr, nbtasks, (unsigned long) (te - ts), value, 1.0 / (double) value, avgwork, thrzero, sqrdev);
exit(0);
}