blob: 9c6a897299cb7123852748ea4ba88901fcb31837 [file] [log] [blame]
/******************************************************************************
*
* Copyright © International Business Machines Corp., 2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* NAME
* pthread_cond_many.c
*
* DESCRIPTION
* Measure pthread_cond_t latencies , but in presence of many processes.
*
* USAGE:
* Use run_auto.sh script in current directory to build and run test.
*
* AUTHOR
* Paul E. McKenney <paulmck@us.ibm.com>
*
* HISTORY
* librttest parsing, threading, and mutex initialization - Darren Hart
*
*
* This line has to be added to avoid a stupid CVS problem
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <sys/time.h>
#include <sched.h>
#include <string.h>
#include <sys/poll.h>
#include <sys/types.h>
#include <unistd.h>
#include <librttest.h>
#include <libstats.h>
#define PASS_US 100
pthread_mutex_t child_mutex;
volatile int *child_waiting = NULL;
double endtime;
pthread_cond_t *condlist = NULL;
int iterations = 0;
int nthreads = 0;
int realtime = 0;
int broadcast_flag = 0;
unsigned long latency = 0;
int fail = 0;
/*
* Return time as a floating-point number rather than struct timeval.
*/
double d_gettimeofday(void)
{
int retval;
struct timeval tv;
retval = gettimeofday(&tv, NULL);
if (retval != 0) {
perror("gettimeofday");
exit(-1);
}
return (tv.tv_sec + ((double)tv.tv_usec) / 1000000.);
}
void *childfunc(void *arg)
{
int myid = (intptr_t) arg;
pthread_cond_t *cp;
volatile int *cw;
cp = &condlist[myid];
cw = &child_waiting[myid];
while (*cw == 0) {
pthread_mutex_lock(&child_mutex);
*cw = 1;
if (pthread_cond_wait(cp, &child_mutex) != 0) {
perror("pthread_cond_wait");
exit(-1);
}
endtime = d_gettimeofday();
*cw = 2;
pthread_mutex_unlock(&child_mutex);
while (*cw == 2) {
poll(NULL, 0, 10);
}
}
pthread_exit(NULL);
}
pthread_t create_thread_(int itsid)
{
pthread_attr_t attr;
pthread_t childid;
int prio;
struct sched_param schparm;
if (pthread_attr_init(&attr) != 0) {
perror("pthread_attr_init");
exit(-1);
}
if (realtime) {
prio = sched_get_priority_max(SCHED_FIFO);
if (prio == -1) {
perror("sched_get_priority_max");
exit(-1);
}
schparm.sched_priority = prio;
if (sched_setscheduler(getpid(), SCHED_FIFO, &schparm) != 0) {
perror("sched_setscheduler");
exit(-1);
}
if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0) {
perror("pthread_attr_setschedpolicy");
exit(-1);
}
if (pthread_attr_setschedparam(&attr, &schparm) != 0) {
perror("pthread_attr_setschedparam");
exit(-1);
}
}
if (pthread_attr_setstacksize(&attr, (size_t) (32 * 1024)) != 0) {
perror("pthread_attr_setstacksize");
exit(-1);
}
if (pthread_cond_init(&condlist[itsid], NULL) != 0) {
perror("pthread_cond_init");
exit(-1);
}
if (pthread_create(&childid, &attr, childfunc, (void *)(intptr_t) itsid)
!= 0) {
perror("pthread_create");
exit(-1);
}
return (childid);
}
void wake_child(int itsid, int broadcast_flag)
{
double starttime;
pthread_mutex_lock(&child_mutex);
while (child_waiting[itsid] == 0) {
pthread_mutex_unlock(&child_mutex);
sched_yield();
pthread_mutex_lock(&child_mutex);
}
pthread_mutex_unlock(&child_mutex);
if (broadcast_flag) {
starttime = d_gettimeofday();
if (pthread_cond_broadcast(&condlist[itsid]) != 0) {
perror("pthread_cond_broadcast");
exit(-1);
}
} else {
starttime = d_gettimeofday();
if (pthread_cond_signal(&condlist[itsid]) != 0) {
perror("pthread_cond_signal");
exit(-1);
}
}
for (;;) {
pthread_mutex_lock(&child_mutex);
if (child_waiting[itsid] == 2) {
break;
}
pthread_mutex_unlock(&child_mutex);
poll(NULL, 0, 10);
}
latency = (unsigned long)((endtime - starttime) * 1000000.);
pthread_mutex_unlock(&child_mutex);
}
void test_signal(long iter, long nthreads)
{
int i;
int j;
int k;
pthread_t *pt;
unsigned long max = 0;
unsigned long min = 0;
stats_container_t dat;
stats_record_t rec;
stats_container_init(&dat, iter * nthreads);
pt = malloc(sizeof(*pt) * nthreads);
if (pt == NULL) {
fprintf(stderr, "Out of memory\n");
exit(-1);
}
for (j = 0; j < nthreads; j++) {
child_waiting[j] = 0;
pt[j] = create_thread_(j);
}
for (i = 0; i < (iter - 1) * nthreads; i += nthreads) {
for (j = 0, k = i; j < nthreads; j++, k++) {
wake_child(j, broadcast_flag);
rec.x = k;
rec.y = latency;
stats_container_append(&dat, rec);
pthread_mutex_lock(&child_mutex);
child_waiting[j] = 0;
pthread_mutex_unlock(&child_mutex);
}
}
for (j = 0; j < nthreads; j++) {
wake_child(j, broadcast_flag);
pthread_mutex_lock(&child_mutex);
child_waiting[j] = 3;
pthread_mutex_unlock(&child_mutex);
if (pthread_join(pt[j], NULL) != 0) {
fprintf(stderr, "%d: ", j);
perror("pthread_join");
exit(-1);
}
}
min = (unsigned long)-1;
for (i = 0; i < iter * nthreads; i++) {
latency = dat.records[i].y;
if (latency > PASS_US)
fail = 1;
min = MIN(min, latency);
max = MAX(max, latency);
}
printf("Recording statistics...\n");
printf("Minimum: %lu us\n", min);
printf("Maximum: %lu us\n", max);
printf("Average: %f us\n", stats_avg(&dat));
printf("Standard Deviation: %f\n", stats_stddev(&dat));
}
void usage(void)
{
rt_help();
printf("pthread_cond_many specific options:\n");
printf(" -r,--realtime run with realtime priority\n");
printf(" -b,--broadcast use cond_broadcast instead of cond_signal\n");
printf(" -iITERATIONS iterations (required)\n");
printf(" -nNTHREADS number of threads (required)\n");
printf("deprecated unnamed arguments:\n");
printf(" pthread_cond_many [options] iterations nthreads\n");
}
int parse_args(int c, char *v)
{
int handled = 1;
switch (c) {
case 'h':
usage();
exit(0);
case 'a':
broadcast_flag = 1;
break;
case 'i':
iterations = atoi(v);
break;
case 'n':
nthreads = atoi(v);
break;
case 'r':
realtime = 1;
break;
default:
handled = 0;
break;
}
return handled;
}
int main(int argc, char *argv[])
{
struct option longopts[] = {
{"broadcast", 0, NULL, 'a'},
{"realtime", 0, NULL, 'r'},
{NULL, 0, NULL, 0},
};
setup();
init_pi_mutex(&child_mutex);
rt_init_long("ahi:n:r", longopts, parse_args, argc, argv);
/* Legacy command line arguments support, overrides getopt args. */
if (optind < argc)
iterations = strtol(argv[optind++], NULL, 0);
if (optind < argc)
nthreads = strtol(argv[optind++], NULL, 0);
/* Ensure we have the required arguments. */
if (iterations == 0 || nthreads == 0) {
usage();
exit(1);
}
child_waiting = malloc(sizeof(*child_waiting) * nthreads);
condlist = malloc(sizeof(*condlist) * nthreads);
if ((child_waiting == NULL) || (condlist == NULL)) {
fprintf(stderr, "Out of memory\n");
exit(-1);
}
test_signal(iterations, nthreads);
printf("\nCriteria: latencies < %d us\n", PASS_US);
printf("Result: %s\n", fail ? "FAIL" : "PASS");
return 0;
}