| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file ir_constant_expression.cpp |
| * Evaluate and process constant valued expressions |
| * |
| * In GLSL, constant valued expressions are used in several places. These |
| * must be processed and evaluated very early in the compilation process. |
| * |
| * * Sizes of arrays |
| * * Initializers for uniforms |
| * * Initializers for \c const variables |
| */ |
| |
| #include <math.h> |
| #include "ir.h" |
| #include "ir_visitor.h" |
| #include "glsl_types.h" |
| |
| #define min(x,y) (x) < (y) ? (x) : (y) |
| #define max(x,y) (x) > (y) ? (x) : (y) |
| |
| ir_constant * |
| ir_expression::constant_expression_value() |
| { |
| ir_constant *op[2] = { NULL, NULL }; |
| ir_constant_data data; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { |
| op[operand] = this->operands[operand]->constant_expression_value(); |
| if (!op[operand]) |
| return NULL; |
| } |
| |
| if (op[1] != NULL) |
| assert(op[0]->type->base_type == op[1]->type->base_type); |
| |
| bool op0_scalar = op[0]->type->is_scalar(); |
| bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); |
| |
| /* When iterating over a vector or matrix's components, we want to increase |
| * the loop counter. However, for scalars, we want to stay at 0. |
| */ |
| unsigned c0_inc = op0_scalar ? 0 : 1; |
| unsigned c1_inc = op1_scalar ? 0 : 1; |
| unsigned components; |
| if (op1_scalar || !op[1]) { |
| components = op[0]->type->components(); |
| } else { |
| components = op[1]->type->components(); |
| } |
| |
| switch (this->operation) { |
| case ir_unop_logic_not: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) |
| data.b[c] = !op[0]->value.b[c]; |
| break; |
| |
| case ir_unop_f2i: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.i[c] = op[0]->value.f[c]; |
| } |
| break; |
| case ir_unop_i2f: |
| assert(op[0]->type->base_type == GLSL_TYPE_UINT || |
| op[0]->type->base_type == GLSL_TYPE_INT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| if (op[0]->type->base_type == GLSL_TYPE_INT) |
| data.f[c] = op[0]->value.i[c]; |
| else |
| data.f[c] = op[0]->value.u[c]; |
| } |
| break; |
| case ir_unop_b2f: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = op[0]->value.b[c] ? 1.0 : 0.0; |
| } |
| break; |
| case ir_unop_f2b: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.b[c] = bool(op[0]->value.f[c]); |
| } |
| break; |
| case ir_unop_b2i: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.u[c] = op[0]->value.b[c] ? 1 : 0; |
| } |
| break; |
| case ir_unop_i2b: |
| assert(op[0]->type->is_integer()); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.b[c] = bool(op[0]->value.u[c]); |
| } |
| break; |
| |
| case ir_unop_trunc: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = truncf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_ceil: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = ceilf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_floor: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = floorf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_fract: |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (this->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = 0; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = 0; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_unop_sin: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = sinf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_cos: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = cosf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_neg: |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (this->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = -op[0]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = -op[0]->value.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = -op[0]->value.f[c]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_unop_abs: |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (this->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c]; |
| if (data.i[c] < 0) |
| data.i[c] = -data.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = fabs(op[0]->value.f[c]); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_unop_sign: |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (this->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.i[c] > 0; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_unop_rcp: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (this->type->base_type) { |
| case GLSL_TYPE_UINT: |
| if (op[0]->value.u[c] != 0.0) |
| data.u[c] = 1 / op[0]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| if (op[0]->value.i[c] != 0.0) |
| data.i[c] = 1 / op[0]->value.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| if (op[0]->value.f[c] != 0.0) |
| data.f[c] = 1.0 / op[0]->value.f[c]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_unop_rsq: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = 1.0 / sqrtf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_sqrt: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = sqrtf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_exp: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = expf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_exp2: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = exp2f(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_log: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = logf(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_log2: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = log2f(op[0]->value.f[c]); |
| } |
| break; |
| |
| case ir_unop_dFdx: |
| case ir_unop_dFdy: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = 0.0; |
| } |
| break; |
| |
| case ir_binop_pow: |
| assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); |
| } |
| break; |
| |
| case ir_binop_dot: |
| assert(op[0]->type->is_vector() && op[1]->type->is_vector()); |
| data.f[0] = 0; |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[0] += op[0]->value.u[c] * op[1]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[0] += op[0]->value.i[c] * op[1]->value.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[0] += op[0]->value.f[c] * op[1]->value.f[c]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| case ir_binop_min: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = min(op[0]->value.u[c0], op[1]->value.u[c1]); |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = min(op[0]->value.i[c0], op[1]->value.i[c1]); |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = min(op[0]->value.f[c0], op[1]->value.f[c1]); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| case ir_binop_max: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = max(op[0]->value.u[c0], op[1]->value.u[c1]); |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = max(op[0]->value.i[c0], op[1]->value.i[c1]); |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = max(op[0]->value.f[c0], op[1]->value.f[c1]); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| case ir_binop_cross: |
| assert(op[0]->type == glsl_type::vec3_type); |
| assert(op[1]->type == glsl_type::vec3_type); |
| data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] - |
| op[1]->value.f[1] * op[0]->value.f[2]); |
| data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] - |
| op[1]->value.f[2] * op[0]->value.f[0]); |
| data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] - |
| op[1]->value.f[0] * op[0]->value.f[1]); |
| break; |
| |
| case ir_binop_add: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| case ir_binop_sub: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| case ir_binop_mul: |
| /* Check for equal types, or unequal types involving scalars */ |
| if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) |
| || op0_scalar || op1_scalar) { |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| } else { |
| assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); |
| |
| /* Multiply an N-by-M matrix with an M-by-P matrix. Since either |
| * matrix can be a GLSL vector, either N or P can be 1. |
| * |
| * For vec*mat, the vector is treated as a row vector. This |
| * means the vector is a 1-row x M-column matrix. |
| * |
| * For mat*vec, the vector is treated as a column vector. Since |
| * matrix_columns is 1 for vectors, this just works. |
| */ |
| const unsigned n = op[0]->type->is_vector() |
| ? 1 : op[0]->type->vector_elements; |
| const unsigned m = op[1]->type->vector_elements; |
| const unsigned p = op[1]->type->matrix_columns; |
| for (unsigned j = 0; j < p; j++) { |
| for (unsigned i = 0; i < n; i++) { |
| for (unsigned k = 0; k < m; k++) { |
| data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; |
| } |
| } |
| } |
| } |
| |
| break; |
| case ir_binop_div: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| case ir_binop_mod: |
| assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); |
| for (unsigned c = 0, c0 = 0, c1 = 0; |
| c < components; |
| c0 += c0_inc, c1 += c1_inc, c++) { |
| |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; |
| break; |
| case GLSL_TYPE_INT: |
| data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| /* We don't use fmod because it rounds toward zero; GLSL specifies |
| * the use of floor. |
| */ |
| data.f[c] = (op[0]->value.f[c0] - op[1]->value.f[c1]) |
| * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| break; |
| |
| case ir_binop_logic_and: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) |
| data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; |
| break; |
| case ir_binop_logic_xor: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) |
| data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; |
| break; |
| case ir_binop_logic_or: |
| assert(op[0]->type->base_type == GLSL_TYPE_BOOL); |
| for (unsigned c = 0; c < op[0]->type->components(); c++) |
| data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; |
| break; |
| |
| case ir_binop_less: |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = op[0]->value.u[0] < op[1]->value.u[0]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = op[0]->value.i[0] < op[1]->value.i[0]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = op[0]->value.f[0] < op[1]->value.f[0]; |
| break; |
| default: |
| assert(0); |
| } |
| break; |
| case ir_binop_greater: |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = op[0]->value.u[0] > op[1]->value.u[0]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = op[0]->value.i[0] > op[1]->value.i[0]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = op[0]->value.f[0] > op[1]->value.f[0]; |
| break; |
| default: |
| assert(0); |
| } |
| break; |
| case ir_binop_lequal: |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0]; |
| break; |
| default: |
| assert(0); |
| } |
| break; |
| case ir_binop_gequal: |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0]; |
| break; |
| default: |
| assert(0); |
| } |
| break; |
| |
| case ir_binop_equal: |
| data.b[0] = true; |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = data.b[0] && op[0]->value.u[c] == op[1]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = data.b[0] && op[0]->value.i[c] == op[1]->value.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = data.b[0] && op[0]->value.f[c] == op[1]->value.f[c]; |
| break; |
| case GLSL_TYPE_BOOL: |
| data.b[0] = data.b[0] && op[0]->value.b[c] == op[1]->value.b[c]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| case ir_binop_nequal: |
| data.b[0] = false; |
| for (unsigned c = 0; c < op[0]->type->components(); c++) { |
| switch (op[0]->type->base_type) { |
| case GLSL_TYPE_UINT: |
| data.b[0] = data.b[0] || op[0]->value.u[c] != op[1]->value.u[c]; |
| break; |
| case GLSL_TYPE_INT: |
| data.b[0] = data.b[0] || op[0]->value.i[c] != op[1]->value.i[c]; |
| break; |
| case GLSL_TYPE_FLOAT: |
| data.b[0] = data.b[0] || op[0]->value.f[c] != op[1]->value.f[c]; |
| break; |
| case GLSL_TYPE_BOOL: |
| data.b[0] = data.b[0] || op[0]->value.b[c] != op[1]->value.b[c]; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| break; |
| |
| default: |
| /* FINISHME: Should handle all expression types. */ |
| return NULL; |
| } |
| |
| void *ctx = talloc_parent(this); |
| return new(ctx) ir_constant(this->type, &data); |
| } |
| |
| |
| ir_constant * |
| ir_texture::constant_expression_value() |
| { |
| /* texture lookups aren't constant expressions */ |
| return NULL; |
| } |
| |
| |
| ir_constant * |
| ir_swizzle::constant_expression_value() |
| { |
| ir_constant *v = this->val->constant_expression_value(); |
| |
| if (v != NULL) { |
| ir_constant_data data; |
| |
| const unsigned swiz_idx[4] = { |
| this->mask.x, this->mask.y, this->mask.z, this->mask.w |
| }; |
| |
| for (unsigned i = 0; i < this->mask.num_components; i++) { |
| switch (v->type->base_type) { |
| case GLSL_TYPE_UINT: |
| case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; |
| case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; |
| case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; |
| default: assert(!"Should not get here."); break; |
| } |
| } |
| |
| void *ctx = talloc_parent(this); |
| return new(ctx) ir_constant(this->type, &data); |
| } |
| return NULL; |
| } |
| |
| |
| ir_constant * |
| ir_dereference_variable::constant_expression_value() |
| { |
| return var->constant_value ? var->constant_value->clone(NULL) : NULL; |
| } |
| |
| |
| ir_constant * |
| ir_dereference_array::constant_expression_value() |
| { |
| void *ctx = talloc_parent(this); |
| ir_constant *array = this->array->constant_expression_value(); |
| ir_constant *idx = this->array_index->constant_expression_value(); |
| |
| if ((array != NULL) && (idx != NULL)) { |
| if (array->type->is_matrix()) { |
| /* Array access of a matrix results in a vector. |
| */ |
| const unsigned column = idx->value.u[0]; |
| |
| const glsl_type *const column_type = array->type->column_type(); |
| |
| /* Offset in the constant matrix to the first element of the column |
| * to be extracted. |
| */ |
| const unsigned mat_idx = column * column_type->vector_elements; |
| |
| ir_constant_data data; |
| |
| switch (column_type->base_type) { |
| case GLSL_TYPE_UINT: |
| case GLSL_TYPE_INT: |
| for (unsigned i = 0; i < column_type->vector_elements; i++) |
| data.u[i] = array->value.u[mat_idx + i]; |
| |
| break; |
| |
| case GLSL_TYPE_FLOAT: |
| for (unsigned i = 0; i < column_type->vector_elements; i++) |
| data.f[i] = array->value.f[mat_idx + i]; |
| |
| break; |
| |
| default: |
| assert(!"Should not get here."); |
| break; |
| } |
| |
| return new(ctx) ir_constant(column_type, &data); |
| } else if (array->type->is_vector()) { |
| const unsigned component = idx->value.u[0]; |
| |
| return new(ctx) ir_constant(array, component); |
| } else { |
| /* FINISHME: Handle access of constant arrays. */ |
| } |
| } |
| return NULL; |
| } |
| |
| |
| ir_constant * |
| ir_dereference_record::constant_expression_value() |
| { |
| ir_constant *v = this->record->constant_expression_value(); |
| |
| return (v != NULL) ? v->get_record_field(this->field) : NULL; |
| } |
| |
| |
| ir_constant * |
| ir_assignment::constant_expression_value() |
| { |
| /* FINISHME: Handle CEs involving assignment (return RHS) */ |
| return NULL; |
| } |
| |
| |
| ir_constant * |
| ir_constant::constant_expression_value() |
| { |
| return this; |
| } |
| |
| |
| ir_constant * |
| ir_call::constant_expression_value() |
| { |
| /* FINISHME: Handle CEs involving builtin function calls. */ |
| return NULL; |
| } |
| |