blob: 85402aaa45673db74e0e85e189845ab1a0f0a49d [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <errno.h>
#include "intel_batchbuffer.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
#include "brw_state.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
void
brw_blorp_surface_info_init(struct brw_context *brw,
struct brw_blorp_surface_info *info,
struct intel_mipmap_tree *mt,
unsigned int level, unsigned int layer,
mesa_format format, bool is_render_target)
{
/* Layer is a physical layer, so if this is a 2D multisample array texture
* using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
* be a multiple of num_samples.
*/
if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
assert(mt->num_samples <= 1 || layer % mt->num_samples == 0);
}
intel_miptree_check_level_layer(mt, level, layer);
info->mt = mt;
info->level = level;
info->layer = layer;
info->width = minify(mt->physical_width0, level - mt->first_level);
info->height = minify(mt->physical_height0, level - mt->first_level);
intel_miptree_get_image_offset(mt, level, layer,
&info->x_offset, &info->y_offset);
info->num_samples = mt->num_samples;
info->array_layout = mt->array_layout;
info->map_stencil_as_y_tiled = false;
info->msaa_layout = mt->msaa_layout;
info->swizzle = SWIZZLE_XYZW;
if (format == MESA_FORMAT_NONE)
format = mt->format;
switch (format) {
case MESA_FORMAT_S_UINT8:
/* The miptree is a W-tiled stencil buffer. Surface states can't be set
* up for W tiling, so we'll need to use Y tiling and have the WM
* program swizzle the coordinates.
*/
info->map_stencil_as_y_tiled = true;
info->brw_surfaceformat = brw->gen >= 8 ? BRW_SURFACEFORMAT_R8_UINT :
BRW_SURFACEFORMAT_R8_UNORM;
break;
case MESA_FORMAT_Z24_UNORM_X8_UINT:
/* It would make sense to use BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS
* here, but unfortunately it isn't supported as a render target, which
* would prevent us from blitting to 24-bit depth.
*
* The miptree consists of 32 bits per pixel, arranged as 24-bit depth
* values interleaved with 8 "don't care" bits. Since depth values don't
* require any blending, it doesn't matter how we interpret the bit
* pattern as long as we copy the right amount of data, so just map it
* as 8-bit BGRA.
*/
info->brw_surfaceformat = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
break;
case MESA_FORMAT_Z_FLOAT32:
info->brw_surfaceformat = BRW_SURFACEFORMAT_R32_FLOAT;
break;
case MESA_FORMAT_Z_UNORM16:
info->brw_surfaceformat = BRW_SURFACEFORMAT_R16_UNORM;
break;
default: {
if (is_render_target) {
assert(brw->format_supported_as_render_target[format]);
info->brw_surfaceformat = brw->render_target_format[format];
} else {
info->brw_surfaceformat = brw_format_for_mesa_format(format);
}
break;
}
}
}
/**
* Split x_offset and y_offset into a base offset (in bytes) and a remaining
* x/y offset (in pixels). Note: we can't do this by calling
* intel_renderbuffer_tile_offsets(), because the offsets may have been
* adjusted to account for Y vs. W tiling differences. So we compute it
* directly from the adjusted offsets.
*/
uint32_t
brw_blorp_compute_tile_offsets(const struct brw_blorp_surface_info *info,
uint32_t *tile_x, uint32_t *tile_y)
{
uint32_t mask_x, mask_y;
intel_get_tile_masks(info->mt->tiling, info->mt->tr_mode, info->mt->cpp,
info->map_stencil_as_y_tiled,
&mask_x, &mask_y);
*tile_x = info->x_offset & mask_x;
*tile_y = info->y_offset & mask_y;
return intel_miptree_get_aligned_offset(info->mt, info->x_offset & ~mask_x,
info->y_offset & ~mask_y,
info->map_stencil_as_y_tiled);
}
void
brw_blorp_params_init(struct brw_blorp_params *params)
{
memset(params, 0, sizeof(*params));
params->hiz_op = GEN6_HIZ_OP_NONE;
params->fast_clear_op = 0;
params->num_varyings = 0;
params->num_draw_buffers = 1;
params->num_layers = 1;
}
/**
* Perform a HiZ or depth resolve operation.
*
* For an overview of HiZ ops, see the following sections of the Sandy Bridge
* PRM, Volume 1, Part 2:
* - 7.5.3.1 Depth Buffer Clear
* - 7.5.3.2 Depth Buffer Resolve
* - 7.5.3.3 Hierarchical Depth Buffer Resolve
*/
void
intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
unsigned int level, unsigned int layer, enum gen6_hiz_op op)
{
const char *opname = NULL;
switch (op) {
case GEN6_HIZ_OP_DEPTH_RESOLVE:
opname = "depth resolve";
break;
case GEN6_HIZ_OP_HIZ_RESOLVE:
opname = "hiz ambiguate";
break;
case GEN6_HIZ_OP_DEPTH_CLEAR:
opname = "depth clear";
break;
case GEN6_HIZ_OP_NONE:
opname = "noop?";
break;
}
DBG("%s %s to mt %p level %d layer %d\n",
__func__, opname, mt, level, layer);
if (brw->gen >= 8) {
gen8_hiz_exec(brw, mt, level, layer, op);
} else {
gen6_blorp_hiz_exec(brw, mt, level, layer, op);
}
}
void
brw_blorp_exec(struct brw_context *brw, const struct brw_blorp_params *params)
{
struct gl_context *ctx = &brw->ctx;
const uint32_t estimated_max_batch_usage = brw->gen >= 8 ? 1800 : 1500;
bool check_aperture_failed_once = false;
/* Flush the sampler and render caches. We definitely need to flush the
* sampler cache so that we get updated contents from the render cache for
* the glBlitFramebuffer() source. Also, we are sometimes warned in the
* docs to flush the cache between reinterpretations of the same surface
* data with different formats, which blorp does for stencil and depth
* data.
*/
brw_emit_mi_flush(brw);
brw_select_pipeline(brw, BRW_RENDER_PIPELINE);
retry:
intel_batchbuffer_require_space(brw, estimated_max_batch_usage, RENDER_RING);
intel_batchbuffer_save_state(brw);
drm_intel_bo *saved_bo = brw->batch.bo;
uint32_t saved_used = USED_BATCH(brw->batch);
uint32_t saved_state_batch_offset = brw->batch.state_batch_offset;
switch (brw->gen) {
case 6:
gen6_blorp_exec(brw, params);
break;
case 7:
gen7_blorp_exec(brw, params);
break;
case 8:
case 9:
gen8_blorp_exec(brw, params);
break;
default:
/* BLORP is not supported before Gen6. */
unreachable("not reached");
}
/* Make sure we didn't wrap the batch unintentionally, and make sure we
* reserved enough space that a wrap will never happen.
*/
assert(brw->batch.bo == saved_bo);
assert((USED_BATCH(brw->batch) - saved_used) * 4 +
(saved_state_batch_offset - brw->batch.state_batch_offset) <
estimated_max_batch_usage);
/* Shut up compiler warnings on release build */
(void)saved_bo;
(void)saved_used;
(void)saved_state_batch_offset;
/* Check if the blorp op we just did would make our batch likely to fail to
* map all the BOs into the GPU at batch exec time later. If so, flush the
* batch and try again with nothing else in the batch.
*/
if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
if (!check_aperture_failed_once) {
check_aperture_failed_once = true;
intel_batchbuffer_reset_to_saved(brw);
intel_batchbuffer_flush(brw);
goto retry;
} else {
int ret = intel_batchbuffer_flush(brw);
WARN_ONCE(ret == -ENOSPC,
"i965: blorp emit exceeded available aperture space\n");
}
}
if (unlikely(brw->always_flush_batch))
intel_batchbuffer_flush(brw);
/* We've smashed all state compared to what the normal 3D pipeline
* rendering tracks for GL.
*/
brw->ctx.NewDriverState |= BRW_NEW_BLORP;
brw->no_depth_or_stencil = false;
brw->ib.type = -1;
/* Flush the sampler cache so any texturing from the destination is
* coherent.
*/
brw_emit_mi_flush(brw);
}
void
gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
unsigned int level, unsigned int layer, enum gen6_hiz_op op)
{
struct brw_blorp_params params;
brw_blorp_params_init(&params);
params.hiz_op = op;
brw_blorp_surface_info_init(brw, &params.depth, mt, level, layer,
mt->format, true);
/* Align the rectangle primitive to 8x4 pixels.
*
* During fast depth clears, the emitted rectangle primitive must be
* aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
* 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge
* PRM):
* If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
* aligned to an 8x4 pixel block relative to the upper left corner
* of the depth buffer [...]
*
* For hiz resolves, the rectangle must also be 8x4 aligned. Item
* WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
* Ivybridge simulator require the alignment.
*
* To be safe, let's just align the rect for all hiz operations and all
* hardware generations.
*
* However, for some miptree slices of a Z24 texture, emitting an 8x4
* aligned rectangle that covers the slice may clobber adjacent slices if
* we strictly adhered to the texture alignments specified in the PRM. The
* Ivybridge PRM, Section "Alignment Unit Size", states that
* SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces,
* not 8. But commit 1f112cc increased the alignment from 4 to 8, which
* prevents the clobbering.
*/
params.dst.num_samples = mt->num_samples;
if (params.dst.num_samples > 1) {
params.depth.width = ALIGN(mt->logical_width0, 8);
params.depth.height = ALIGN(mt->logical_height0, 4);
} else {
params.depth.width = ALIGN(params.depth.width, 8);
params.depth.height = ALIGN(params.depth.height, 4);
}
params.x1 = params.depth.width;
params.y1 = params.depth.height;
assert(intel_miptree_level_has_hiz(mt, level));
switch (mt->format) {
case MESA_FORMAT_Z_UNORM16:
params.depth_format = BRW_DEPTHFORMAT_D16_UNORM;
break;
case MESA_FORMAT_Z_FLOAT32:
params.depth_format = BRW_DEPTHFORMAT_D32_FLOAT;
break;
case MESA_FORMAT_Z24_UNORM_X8_UINT:
params.depth_format = BRW_DEPTHFORMAT_D24_UNORM_X8_UINT;
break;
default:
unreachable("not reached");
}
brw_blorp_exec(brw, &params);
}