blob: daa9cb1ec119063c6cdfb784ccf7fb71ddd4d66b [file] [log] [blame]
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file builder_misc.cpp
*
* @brief Implementation for miscellaneous builder functions
*
* Notes:
*
******************************************************************************/
#include "builder.h"
#include "common/rdtsc_buckets.h"
#include <cstdarg>
namespace SwrJit
{
void __cdecl CallPrint(const char* fmt, ...);
//////////////////////////////////////////////////////////////////////////
/// @brief Convert an IEEE 754 32-bit single precision float to an
/// 16 bit float with 5 exponent bits and a variable
/// number of mantissa bits.
/// @param val - 32-bit float
/// @todo Maybe move this outside of this file into a header?
static uint16_t ConvertFloat32ToFloat16(float val)
{
uint32_t sign, exp, mant;
uint32_t roundBits;
// Extract the sign, exponent, and mantissa
uint32_t uf = *(uint32_t*)&val;
sign = (uf & 0x80000000) >> 31;
exp = (uf & 0x7F800000) >> 23;
mant = uf & 0x007FFFFF;
// Check for out of range
if (std::isnan(val))
{
exp = 0x1F;
mant = 0x200;
sign = 1; // set the sign bit for NANs
}
else if (std::isinf(val))
{
exp = 0x1f;
mant = 0x0;
}
else if (exp > (0x70 + 0x1E)) // Too big to represent -> max representable value
{
exp = 0x1E;
mant = 0x3FF;
}
else if ((exp <= 0x70) && (exp >= 0x66)) // It's a denorm
{
mant |= 0x00800000;
for (; exp <= 0x70; mant >>= 1, exp++)
;
exp = 0;
mant = mant >> 13;
}
else if (exp < 0x66) // Too small to represent -> Zero
{
exp = 0;
mant = 0;
}
else
{
// Saves bits that will be shifted off for rounding
roundBits = mant & 0x1FFFu;
// convert exponent and mantissa to 16 bit format
exp = exp - 0x70;
mant = mant >> 13;
// Essentially RTZ, but round up if off by only 1 lsb
if (roundBits == 0x1FFFu)
{
mant++;
// check for overflow
if ((mant & 0xC00u) != 0)
exp++;
// make sure only the needed bits are used
mant &= 0x3FF;
}
}
uint32_t tmpVal = (sign << 15) | (exp << 10) | mant;
return (uint16_t)tmpVal;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Convert an IEEE 754 16-bit float to an 32-bit single precision
/// float
/// @param val - 16-bit float
/// @todo Maybe move this outside of this file into a header?
static float ConvertFloat16ToFloat32(uint32_t val)
{
uint32_t result;
if ((val & 0x7fff) == 0)
{
result = ((uint32_t)(val & 0x8000)) << 16;
}
else if ((val & 0x7c00) == 0x7c00)
{
result = ((val & 0x3ff) == 0) ? 0x7f800000 : 0x7fc00000;
result |= ((uint32_t)val & 0x8000) << 16;
}
else
{
uint32_t sign = (val & 0x8000) << 16;
uint32_t mant = (val & 0x3ff) << 13;
uint32_t exp = (val >> 10) & 0x1f;
if ((exp == 0) && (mant != 0)) // Adjust exponent and mantissa for denormals
{
mant <<= 1;
while (mant < (0x400 << 13))
{
exp--;
mant <<= 1;
}
mant &= (0x3ff << 13);
}
exp = ((exp - 15 + 127) & 0xff) << 23;
result = sign | exp | mant;
}
return *(float*)&result;
}
Constant *Builder::C(bool i)
{
return ConstantInt::get(IRB()->getInt1Ty(), (i ? 1 : 0));
}
Constant *Builder::C(char i)
{
return ConstantInt::get(IRB()->getInt8Ty(), i);
}
Constant *Builder::C(uint8_t i)
{
return ConstantInt::get(IRB()->getInt8Ty(), i);
}
Constant *Builder::C(int i)
{
return ConstantInt::get(IRB()->getInt32Ty(), i);
}
Constant *Builder::C(int64_t i)
{
return ConstantInt::get(IRB()->getInt64Ty(), i);
}
Constant *Builder::C(uint16_t i)
{
return ConstantInt::get(mInt16Ty,i);
}
Constant *Builder::C(uint32_t i)
{
return ConstantInt::get(IRB()->getInt32Ty(), i);
}
Constant *Builder::C(float i)
{
return ConstantFP::get(IRB()->getFloatTy(), i);
}
Constant *Builder::PRED(bool pred)
{
return ConstantInt::get(IRB()->getInt1Ty(), (pred ? 1 : 0));
}
Value *Builder::VIMMED1(int i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VIMMED1(uint32_t i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VIMMED1(float i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantFP>(C(i)));
}
Value *Builder::VIMMED1(bool i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VUNDEF_IPTR()
{
return UndefValue::get(VectorType::get(mInt32PtrTy,mVWidth));
}
Value *Builder::VUNDEF_I()
{
return UndefValue::get(VectorType::get(mInt32Ty, mVWidth));
}
Value *Builder::VUNDEF(Type *ty, uint32_t size)
{
return UndefValue::get(VectorType::get(ty, size));
}
Value *Builder::VUNDEF_F()
{
return UndefValue::get(VectorType::get(mFP32Ty, mVWidth));
}
#if USE_SIMD16_BUILDER
Value *Builder::VUNDEF2_F()
{
return UndefValue::get(VectorType::get(mFP32Ty, mVWidth2));
}
#endif
Value *Builder::VUNDEF(Type* t)
{
return UndefValue::get(VectorType::get(t, mVWidth));
}
Value *Builder::VBROADCAST(Value *src)
{
// check if src is already a vector
if (src->getType()->isVectorTy())
{
return src;
}
return VECTOR_SPLAT(mVWidth, src);
}
uint32_t Builder::IMMED(Value* v)
{
SWR_ASSERT(isa<ConstantInt>(v));
ConstantInt *pValConst = cast<ConstantInt>(v);
return pValConst->getZExtValue();
}
int32_t Builder::S_IMMED(Value* v)
{
SWR_ASSERT(isa<ConstantInt>(v));
ConstantInt *pValConst = cast<ConstantInt>(v);
return pValConst->getSExtValue();
}
Value *Builder::GEP(Value* ptr, const std::initializer_list<Value*> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(i);
return GEPA(ptr, indices);
}
Value *Builder::GEP(Value* ptr, const std::initializer_list<uint32_t> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(C(i));
return GEPA(ptr, indices);
}
Value *Builder::IN_BOUNDS_GEP(Value* ptr, const std::initializer_list<Value*> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(i);
return IN_BOUNDS_GEP(ptr, indices);
}
Value *Builder::IN_BOUNDS_GEP(Value* ptr, const std::initializer_list<uint32_t> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(C(i));
return IN_BOUNDS_GEP(ptr, indices);
}
LoadInst *Builder::LOAD(Value *basePtr, const std::initializer_list<uint32_t> &indices, const llvm::Twine& name)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(C(i));
return LOAD(GEPA(basePtr, valIndices), name);
}
LoadInst *Builder::LOADV(Value *basePtr, const std::initializer_list<Value*> &indices, const llvm::Twine& name)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(i);
return LOAD(GEPA(basePtr, valIndices), name);
}
StoreInst *Builder::STORE(Value *val, Value *basePtr, const std::initializer_list<uint32_t> &indices)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(C(i));
return STORE(val, GEPA(basePtr, valIndices));
}
StoreInst *Builder::STOREV(Value *val, Value *basePtr, const std::initializer_list<Value*> &indices)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(i);
return STORE(val, GEPA(basePtr, valIndices));
}
CallInst *Builder::CALL(Value *Callee, const std::initializer_list<Value*> &argsList)
{
std::vector<Value*> args;
for (auto arg : argsList)
args.push_back(arg);
return CALLA(Callee, args);
}
CallInst *Builder::CALL(Value *Callee, Value* arg)
{
std::vector<Value*> args;
args.push_back(arg);
return CALLA(Callee, args);
}
CallInst *Builder::CALL2(Value *Callee, Value* arg1, Value* arg2)
{
std::vector<Value*> args;
args.push_back(arg1);
args.push_back(arg2);
return CALLA(Callee, args);
}
CallInst *Builder::CALL3(Value *Callee, Value* arg1, Value* arg2, Value* arg3)
{
std::vector<Value*> args;
args.push_back(arg1);
args.push_back(arg2);
args.push_back(arg3);
return CALLA(Callee, args);
}
//////////////////////////////////////////////////////////////////////////
Value *Builder::DEBUGTRAP()
{
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::debugtrap);
return CALL(func);
}
Value *Builder::VRCP(Value *va)
{
return FDIV(VIMMED1(1.0f), va); // 1 / a
}
Value *Builder::VPLANEPS(Value* vA, Value* vB, Value* vC, Value* &vX, Value* &vY)
{
Value* vOut = FMADDPS(vA, vX, vC);
vOut = FMADDPS(vB, vY, vOut);
return vOut;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate an i32 masked load operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with float masked load
/// @param src - base address pointer for the load
/// @param vMask - SIMD wide mask that controls whether to access memory load 0
Value *Builder::MASKLOADD(Value* src,Value* mask)
{
Value* vResult;
// use avx2 gather instruction is available
if(JM()->mArch.AVX2())
{
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_maskload_d_256);
vResult = CALL(func,{src,mask});
}
else
{
// maskload intrinsic expects integer mask operand in llvm >= 3.8
#if (LLVM_VERSION_MAJOR > 3) || (LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 8)
mask = BITCAST(mask,VectorType::get(mInt32Ty,mVWidth));
#else
mask = BITCAST(mask,VectorType::get(mFP32Ty,mVWidth));
#endif
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule,Intrinsic::x86_avx_maskload_ps_256);
vResult = BITCAST(CALL(func,{src,mask}), VectorType::get(mInt32Ty,mVWidth));
}
return vResult;
}
//////////////////////////////////////////////////////////////////////////
/// @brief insert a JIT call to CallPrint
/// - outputs formatted string to both stdout and VS output window
/// - DEBUG builds only
/// Usage example:
/// PRINT("index %d = 0x%p\n",{C(lane), pIndex});
/// where C(lane) creates a constant value to print, and pIndex is the Value*
/// result from a GEP, printing out the pointer to memory
/// @param printStr - constant string to print, which includes format specifiers
/// @param printArgs - initializer list of Value*'s to print to std out
CallInst *Builder::PRINT(const std::string &printStr,const std::initializer_list<Value*> &printArgs)
{
// push the arguments to CallPrint into a vector
std::vector<Value*> printCallArgs;
// save room for the format string. we still need to modify it for vectors
printCallArgs.resize(1);
// search through the format string for special processing
size_t pos = 0;
std::string tempStr(printStr);
pos = tempStr.find('%', pos);
auto v = printArgs.begin();
while ((pos != std::string::npos) && (v != printArgs.end()))
{
Value* pArg = *v;
Type* pType = pArg->getType();
if (pType->isVectorTy())
{
Type* pContainedType = pType->getContainedType(0);
if (toupper(tempStr[pos + 1]) == 'X')
{
tempStr[pos] = '0';
tempStr[pos + 1] = 'x';
tempStr.insert(pos + 2, "%08X ");
pos += 7;
printCallArgs.push_back(VEXTRACT(pArg, C(0)));
std::string vectorFormatStr;
for (uint32_t i = 1; i < pType->getVectorNumElements(); ++i)
{
vectorFormatStr += "0x%08X ";
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
tempStr.insert(pos, vectorFormatStr);
pos += vectorFormatStr.size();
}
else if ((tempStr[pos + 1] == 'f') && (pContainedType->isFloatTy()))
{
uint32_t i = 0;
for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
{
tempStr.insert(pos, std::string("%f "));
pos += 3;
printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
}
printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
}
else if ((tempStr[pos + 1] == 'd') && (pContainedType->isIntegerTy()))
{
uint32_t i = 0;
for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
{
tempStr.insert(pos, std::string("%d "));
pos += 3;
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
}
else
{
if (toupper(tempStr[pos + 1]) == 'X')
{
tempStr[pos] = '0';
tempStr.insert(pos + 1, "x%08");
printCallArgs.push_back(pArg);
pos += 3;
}
// for %f we need to cast float Values to doubles so that they print out correctly
else if ((tempStr[pos + 1] == 'f') && (pType->isFloatTy()))
{
printCallArgs.push_back(FP_EXT(pArg, Type::getDoubleTy(JM()->mContext)));
pos++;
}
else
{
printCallArgs.push_back(pArg);
}
}
// advance to the next arguement
v++;
pos = tempStr.find('%', ++pos);
}
// create global variable constant string
Constant *constString = ConstantDataArray::getString(JM()->mContext,tempStr,true);
GlobalVariable *gvPtr = new GlobalVariable(constString->getType(),true,GlobalValue::InternalLinkage,constString,"printStr");
JM()->mpCurrentModule->getGlobalList().push_back(gvPtr);
// get a pointer to the first character in the constant string array
std::vector<Constant*> geplist{C(0),C(0)};
Constant *strGEP = ConstantExpr::getGetElementPtr(nullptr, gvPtr,geplist,false);
// insert the pointer to the format string in the argument vector
printCallArgs[0] = strGEP;
// get pointer to CallPrint function and insert decl into the module if needed
std::vector<Type*> args;
args.push_back(PointerType::get(mInt8Ty,0));
FunctionType* callPrintTy = FunctionType::get(Type::getVoidTy(JM()->mContext),args,true);
Function *callPrintFn = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("CallPrint", callPrintTy));
// if we haven't yet added the symbol to the symbol table
if((sys::DynamicLibrary::SearchForAddressOfSymbol("CallPrint")) == nullptr)
{
sys::DynamicLibrary::AddSymbol("CallPrint", (void *)&CallPrint);
}
// insert a call to CallPrint
return CALLA(callPrintFn,printCallArgs);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Wrapper around PRINT with initializer list.
CallInst* Builder::PRINT(const std::string &printStr)
{
return PRINT(printStr, {});
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERPS(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
// force mask to <N x float>, required by vgather
vMask = BITCAST(vMask, mSimdFP32Ty);
vGather = VGATHERPS(vSrc,pBase,vIndices,vMask,scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = VUNDEF_F();
Value *vScaleVec = VBROADCAST(Z_EXT(scale,mInt32Ty));
Value *vOffsets = MUL(vIndices,vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets,C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase,offset);
loadAddress = BITCAST(loadAddress,PointerType::get(mFP32Ty,0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
Value *selMask = VEXTRACT(mask,C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress);
vGather = VINSERT(vGather,val,C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERDD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
vGather = VGATHERDD(vSrc, pBase, vIndices, vMask, scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = VUNDEF_I();
Value *vScaleVec = VBROADCAST(Z_EXT(scale, mInt32Ty));
Value *vOffsets = MUL(vIndices, vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets, C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase, offset);
loadAddress = BITCAST(loadAddress, PointerType::get(mInt32Ty, 0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr, {C(0), C(i)});
Value *selMask = VEXTRACT(mask, C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress, C(0));
vGather = VINSERT(vGather, val, C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERPD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
vGather = VGATHERPD(vSrc, pBase, vIndices, vMask, scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = UndefValue::get(VectorType::get(mDoubleTy, 4));
Value *vScaleVec = VECTOR_SPLAT(4, Z_EXT(scale,mInt32Ty));
Value *vOffsets = MUL(vIndices,vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth/2; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets,C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase,offset);
loadAddress = BITCAST(loadAddress,PointerType::get(mDoubleTy,0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
Value *selMask = VEXTRACT(mask,C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress);
vGather = VINSERT(vGather,val,C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
#if USE_SIMD16_BUILDER
//////////////////////////////////////////////////////////////////////////
/// @brief
Value *Builder::EXTRACT(Value *a2, uint32_t imm)
{
const uint32_t i0 = (imm > 0) ? mVWidth : 0;
Value *result = VUNDEF_F();
for (uint32_t i = 0; i < mVWidth; i += 1)
{
Value *temp = VEXTRACT(a2, C(i0 + i));
result = VINSERT(result, temp, C(i));
}
return result;
}
//////////////////////////////////////////////////////////////////////////
/// @brief
Value *Builder::INSERT(Value *a2, Value * b, uint32_t imm)
{
const uint32_t i0 = (imm > 0) ? mVWidth : 0;
Value *result = BITCAST(a2, mSimd2FP32Ty);
for (uint32_t i = 0; i < mVWidth; i += 1)
{
#if 1
if (!b->getType()->getScalarType()->isFloatTy())
{
b = BITCAST(b, mSimdFP32Ty);
}
#endif
Value *temp = VEXTRACT(b, C(i));
result = VINSERT(result, temp, C(i0 + i));
}
return result;
}
#endif
//////////////////////////////////////////////////////////////////////////
/// @brief convert x86 <N x float> mask to llvm <N x i1> mask
Value* Builder::MASK(Value* vmask)
{
Value* src = BITCAST(vmask, mSimdInt32Ty);
return ICMP_SLT(src, VIMMED1(0));
}
//////////////////////////////////////////////////////////////////////////
/// @brief convert llvm <N x i1> mask to x86 <N x i32> mask
Value* Builder::VMASK(Value* mask)
{
return S_EXT(mask, mSimdInt32Ty);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation in LLVM IR. If not
/// supported on the underlying platform, emulate it
/// @param a - 256bit SIMD(32x8bit) of 8bit integer values
/// @param b - 256bit SIMD(32x8bit) of 8bit integer mask values
/// Byte masks in lower 128 lane of b selects 8 bit values from lower
/// 128bits of a, and vice versa for the upper lanes. If the mask
/// value is negative, '0' is inserted.
Value *Builder::PSHUFB(Value* a, Value* b)
{
Value* res;
// use avx2 pshufb instruction if available
if(JM()->mArch.AVX2())
{
res = VPSHUFB(a, b);
}
else
{
Constant* cB = dyn_cast<Constant>(b);
// number of 8 bit elements in b
uint32_t numElms = cast<VectorType>(cB->getType())->getNumElements();
// output vector
Value* vShuf = UndefValue::get(VectorType::get(mInt8Ty, numElms));
// insert an 8 bit value from the high and low lanes of a per loop iteration
numElms /= 2;
for(uint32_t i = 0; i < numElms; i++)
{
ConstantInt* cLow128b = cast<ConstantInt>(cB->getAggregateElement(i));
ConstantInt* cHigh128b = cast<ConstantInt>(cB->getAggregateElement(i + numElms));
// extract values from constant mask
char valLow128bLane = (char)(cLow128b->getSExtValue());
char valHigh128bLane = (char)(cHigh128b->getSExtValue());
Value* insertValLow128b;
Value* insertValHigh128b;
// if the mask value is negative, insert a '0' in the respective output position
// otherwise, lookup the value at mask position (bits 3..0 of the respective mask byte) in a and insert in output vector
insertValLow128b = (valLow128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valLow128bLane & 0xF)));
insertValHigh128b = (valHigh128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valHigh128bLane & 0xF) + numElms));
vShuf = VINSERT(vShuf, insertValLow128b, i);
vShuf = VINSERT(vShuf, insertValHigh128b, (i + numElms));
}
res = vShuf;
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation (sign extend 8 8bit values to 32
/// bits)in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(16x8bit) of 8bit integer values. Only
/// lower 8 values are used.
Value *Builder::PMOVSXBD(Value* a)
{
// VPMOVSXBD output type
Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
// Extract 8 values from 128bit lane and sign extend
return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation (sign extend 8 16bit values to 32
/// bits)in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of 16bit integer values.
Value *Builder::PMOVSXWD(Value* a)
{
// VPMOVSXWD output type
Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
// Extract 8 values from 128bit lane and sign extend
return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPERMD operation (shuffle 32 bit integer values
/// across 128 bit lanes) in LLVM IR. If not supported on the underlying
/// platform, emulate it
/// @param a - 256bit SIMD lane(8x32bit) of integer values.
/// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
Value *Builder::PERMD(Value* a, Value* idx)
{
Value* res;
// use avx2 permute instruction if available
if(JM()->mArch.AVX2())
{
res = VPERMD(a, idx);
}
else
{
if (isa<Constant>(idx))
{
res = VSHUFFLE(a, a, idx);
}
else
{
res = VUNDEF_I();
for (uint32_t l = 0; l < JM()->mVWidth; ++l)
{
Value* pIndex = VEXTRACT(idx, C(l));
Value* pVal = VEXTRACT(a, pIndex);
res = VINSERT(res, pVal, C(l));
}
}
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPERMPS operation (shuffle 32 bit float values
/// across 128 bit lanes) in LLVM IR. If not supported on the underlying
/// platform, emulate it
/// @param a - 256bit SIMD lane(8x32bit) of float values.
/// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
Value *Builder::PERMPS(Value* a, Value* idx)
{
Value* res;
// use avx2 permute instruction if available
if (JM()->mArch.AVX2())
{
// llvm 3.6.0 swapped the order of the args to vpermd
res = VPERMPS(idx, a);
}
else
{
if (isa<Constant>(idx))
{
res = VSHUFFLE(a, a, idx);
}
else
{
res = VUNDEF_F();
for (uint32_t l = 0; l < JM()->mVWidth; ++l)
{
Value* pIndex = VEXTRACT(idx, C(l));
Value* pVal = VEXTRACT(a, pIndex);
res = VINSERT(res, pVal, C(l));
}
}
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VCVTPH2PS operation (float16->float32 conversion)
/// in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
Value *Builder::CVTPH2PS(Value* a)
{
if (JM()->mArch.F16C())
{
return VCVTPH2PS(a);
}
else
{
FunctionType* pFuncTy = FunctionType::get(mFP32Ty, mInt16Ty);
Function* pCvtPh2Ps = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat16ToFloat32", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat16ToFloat32") == nullptr)
{
sys::DynamicLibrary::AddSymbol("ConvertFloat16ToFloat32", (void *)&ConvertFloat16ToFloat32);
}
Value* pResult = UndefValue::get(mSimdFP32Ty);
for (uint32_t i = 0; i < mVWidth; ++i)
{
Value* pSrc = VEXTRACT(a, C(i));
Value* pConv = CALL(pCvtPh2Ps, std::initializer_list<Value*>{pSrc});
pResult = VINSERT(pResult, pConv, C(i));
}
return pResult;
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VCVTPS2PH operation (float32->float16 conversion)
/// in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
Value *Builder::CVTPS2PH(Value* a, Value* rounding)
{
if (JM()->mArch.F16C())
{
return VCVTPS2PH(a, rounding);
}
else
{
// call scalar C function for now
FunctionType* pFuncTy = FunctionType::get(mInt16Ty, mFP32Ty);
Function* pCvtPs2Ph = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat32ToFloat16", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat32ToFloat16") == nullptr)
{
sys::DynamicLibrary::AddSymbol("ConvertFloat32ToFloat16", (void *)&ConvertFloat32ToFloat16);
}
Value* pResult = UndefValue::get(mSimdInt16Ty);
for (uint32_t i = 0; i < mVWidth; ++i)
{
Value* pSrc = VEXTRACT(a, C(i));
Value* pConv = CALL(pCvtPs2Ph, std::initializer_list<Value*>{pSrc});
pResult = VINSERT(pResult, pConv, C(i));
}
return pResult;
}
}
Value *Builder::PMAXSD(Value* a, Value* b)
{
Value* cmp = ICMP_SGT(a, b);
return SELECT(cmp, a, b);
}
Value *Builder::PMINSD(Value* a, Value* b)
{
Value* cmp = ICMP_SLT(a, b);
return SELECT(cmp, a, b);
}
void Builder::Gather4(const SWR_FORMAT format, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
const SWR_FORMAT_INFO &info = GetFormatInfo(format);
if(info.type[0] == SWR_TYPE_FLOAT && info.bpc[0] == 32)
{
// ensure our mask is the correct type
mask = BITCAST(mask, mSimdFP32Ty);
GATHER4PS(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
}
else
{
// ensure our mask is the correct type
mask = BITCAST(mask, mSimdInt32Ty);
GATHER4DD(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
}
}
void Builder::GATHER4PS(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
switch(info.bpp / info.numComps)
{
case 16:
{
Value* vGatherResult[2];
Value *vMask;
// TODO: vGatherMaskedVal
Value* vGatherMaskedVal = VIMMED1((float)0);
// always have at least one component out of x or y to fetch
// save mask as it is zero'd out after each gather
vMask = mask;
vGatherResult[0] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of first 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
//
// if we have at least one component out of x or y to fetch
if(info.numComps > 2)
{
// offset base to the next components(zw) in the vertex to gather
pSrcBase = GEP(pSrcBase, C((char)4));
vMask = mask;
vGatherResult[1] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of second 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
//
}
else
{
vGatherResult[1] = vGatherMaskedVal;
}
// Shuffle gathered components into place, each row is a component
Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 32:
{
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherComponents[i] = VIMMED1(*(float*)&info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// save mask as it is zero'd out after each gather
Value *vMask = mask;
// Gather a SIMD of components
vGatherComponents[swizzleIndex] = GATHERPS(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask, C((char)1));
// offset base to the next component to gather
pSrcBase = GEP(pSrcBase, C((char)4));
}
}
break;
default:
SWR_INVALID("Invalid float format");
break;
}
}
void Builder::GATHER4DD(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
switch (info.bpp / info.numComps)
{
case 8:
{
Value* vGatherMaskedVal = VIMMED1((int32_t)0);
Value* vGatherResult = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, mask, C((char)1));
// e.g. result of an 8x32bit integer gather for 8bit components
// 256i - 0 1 2 3 4 5 6 7
// xyzw xyzw xyzw xyzw xyzw xyzw xyzw xyzw
Shuffle8bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 16:
{
Value* vGatherResult[2];
Value *vMask;
// TODO: vGatherMaskedVal
Value* vGatherMaskedVal = VIMMED1((int32_t)0);
// always have at least one component out of x or y to fetch
// save mask as it is zero'd out after each gather
vMask = mask;
vGatherResult[0] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of first 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
//
// if we have at least one component out of x or y to fetch
if(info.numComps > 2)
{
// offset base to the next components(zw) in the vertex to gather
pSrcBase = GEP(pSrcBase, C((char)4));
vMask = mask;
vGatherResult[1] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of second 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
//
}
else
{
vGatherResult[1] = vGatherMaskedVal;
}
// Shuffle gathered components into place, each row is a component
Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 32:
{
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherComponents[i] = VIMMED1((int)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// save mask as it is zero'd out after each gather
Value *vMask = mask;
// Gather a SIMD of components
vGatherComponents[swizzleIndex] = GATHERDD(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask, C((char)1));
// offset base to the next component to gather
pSrcBase = GEP(pSrcBase, C((char)4));
}
}
break;
default:
SWR_INVALID("unsupported format");
break;
}
}
void Builder::Shuffle16bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput[2], Value* vGatherOutput[4], bool bPackedOutput)
{
// cast types
Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4); // vwidth is units of 32 bits
// input could either be float or int vector; do shuffle work in int
vGatherInput[0] = BITCAST(vGatherInput[0], mSimdInt32Ty);
vGatherInput[1] = BITCAST(vGatherInput[1], mSimdInt32Ty);
if(bPackedOutput)
{
Type* v128bitTy = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
// shuffle mask
Value* vConstMask = C<char>({0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15,
0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15});
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[0], v32x8Ty), vConstMask), vGatherTy);
// after pshufb: group components together in each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx yyyy yyyy xxxx xxxx yyyy yyyy
Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
// after PERMD: move and pack xy components into each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx xxxx xxxx yyyy yyyy yyyy yyyy
// do the same for zw components
Value* vi128ZW = nullptr;
if(info.numComps > 2)
{
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[1], v32x8Ty), vConstMask), vGatherTy);
vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
}
for(uint32_t i = 0; i < 4; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// todo: fixed for packed
Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
if(i >= info.numComps)
{
// set the default component val
vGatherOutput[swizzleIndex] = vGatherMaskedVal;
continue;
}
// if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
// extract packed component 128 bit lanes
vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
}
}
else
{
// pshufb masks for each component
Value* vConstMask[2];
// x/z shuffle mask
vConstMask[0] = C<char>({0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1,
0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1, });
// y/w shuffle mask
vConstMask[1] = C<char>({2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1,
2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1});
// shuffle enabled components into lower word of each 32bit lane, 0 extending to 32 bits
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// select correct constMask for x/z or y/w pshufb
uint32_t selectedMask = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
uint32_t selectedGather = (i < 2) ? 0 : 1;
vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput[selectedGather], v32x8Ty), vConstMask[selectedMask]), vGatherTy);
// after pshufb mask for x channel; z uses the same shuffle from the second gather
// 256i - 0 1 2 3 4 5 6 7
// xx00 xx00 xx00 xx00 xx00 xx00 xx00 xx00
}
}
}
void Builder::Shuffle8bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput, Value* vGatherOutput[], bool bPackedOutput)
{
// cast types
Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4 ); // vwidth is units of 32 bits
if(bPackedOutput)
{
Type* v128Ty = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
// shuffle mask
Value* vConstMask = C<char>({0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15,
0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15});
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
// after pshufb: group components together in each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx yyyy zzzz wwww xxxx yyyy zzzz wwww
Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 4, 0, 0, 1, 5, 0, 0})), v128Ty);
// after PERMD: move and pack xy and zw components in low 64 bits of each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx dcdc dcdc yyyy yyyy dcdc dcdc (dc - don't care)
// do the same for zw components
Value* vi128ZW = nullptr;
if(info.numComps > 2)
{
vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({2, 6, 0, 0, 3, 7, 0, 0})), v128Ty);
}
// sign extend all enabled components. If we have a fill vVertexElements, output to current simdvertex
for(uint32_t i = 0; i < 4; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// todo: fix for packed
Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
if(i >= info.numComps)
{
// set the default component val
vGatherOutput[swizzleIndex] = vGatherMaskedVal;
continue;
}
// if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
// sign extend
vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
}
}
// else zero extend
else{
// shuffle enabled components into lower byte of each 32bit lane, 0 extending to 32 bits
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++){
uint32_t swizzleIndex = info.swizzle[i];
// pshufb masks for each component
Value* vConstMask;
switch(i)
{
case 0:
// x shuffle mask
vConstMask = C<char>({0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1,
0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1});
break;
case 1:
// y shuffle mask
vConstMask = C<char>({1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1,
1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1});
break;
case 2:
// z shuffle mask
vConstMask = C<char>({2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1,
2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1});
break;
case 3:
// w shuffle mask
vConstMask = C<char>({3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1,
3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1});
break;
default:
vConstMask = nullptr;
break;
}
vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
// after pshufb for x channel
// 256i - 0 1 2 3 4 5 6 7
// x000 x000 x000 x000 x000 x000 x000 x000
}
}
}
// Helper function to create alloca in entry block of function
Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType)
{
auto saveIP = IRB()->saveIP();
IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
pFunc->getEntryBlock().begin());
Value* pAlloca = ALLOCA(pType);
if (saveIP.isSet()) IRB()->restoreIP(saveIP);
return pAlloca;
}
Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType, Value* pArraySize)
{
auto saveIP = IRB()->saveIP();
IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
pFunc->getEntryBlock().begin());
Value* pAlloca = ALLOCA(pType, pArraySize);
if (saveIP.isSet()) IRB()->restoreIP(saveIP);
return pAlloca;
}
//////////////////////////////////////////////////////////////////////////
/// @brief emulates a scatter operation.
/// @param pDst - pointer to destination
/// @param vSrc - vector of src data to scatter
/// @param vOffsets - vector of byte offsets from pDst
/// @param vMask - mask of valid lanes
void Builder::SCATTERPS(Value* pDst, Value* vSrc, Value* vOffsets, Value* vMask)
{
/* Scatter algorithm
while(Index = BitScanForward(mask))
srcElem = srcVector[Index]
offsetElem = offsetVector[Index]
*(pDst + offsetElem) = srcElem
Update mask (&= ~(1<<Index)
*/
BasicBlock* pCurBB = IRB()->GetInsertBlock();
Function* pFunc = pCurBB->getParent();
Type* pSrcTy = vSrc->getType()->getVectorElementType();
// Store vectors on stack
if (pScatterStackSrc == nullptr)
{
// Save off stack allocations and reuse per scatter. Significantly reduces stack
// requirements for shaders with a lot of scatters.
pScatterStackSrc = CreateEntryAlloca(pFunc, mSimdInt64Ty);
pScatterStackOffsets = CreateEntryAlloca(pFunc, mSimdInt32Ty);
}
Value* pSrcArrayPtr = BITCAST(pScatterStackSrc, PointerType::get(vSrc->getType(), 0));
Value* pOffsetsArrayPtr = pScatterStackOffsets;
STORE(vSrc, pSrcArrayPtr);
STORE(vOffsets, pOffsetsArrayPtr);
// Cast to pointers for random access
pSrcArrayPtr = POINTER_CAST(pSrcArrayPtr, PointerType::get(pSrcTy, 0));
pOffsetsArrayPtr = POINTER_CAST(pOffsetsArrayPtr, PointerType::get(mInt32Ty, 0));
Value* pMask = VMOVMSKPS(BITCAST(vMask, mSimdFP32Ty));
// Get cttz function
Function* pfnCttz = Intrinsic::getDeclaration(mpJitMgr->mpCurrentModule, Intrinsic::cttz, { mInt32Ty });
// Setup loop basic block
BasicBlock* pLoop = BasicBlock::Create(mpJitMgr->mContext, "Scatter Loop", pFunc);
// compute first set bit
Value* pIndex = CALL(pfnCttz, { pMask, C(false) });
Value* pIsUndef = ICMP_EQ(pIndex, C(32));
// Split current block
BasicBlock* pPostLoop = pCurBB->splitBasicBlock(cast<Instruction>(pIsUndef)->getNextNode());
// Remove unconditional jump created by splitBasicBlock
pCurBB->getTerminator()->eraseFromParent();
// Add terminator to end of original block
IRB()->SetInsertPoint(pCurBB);
// Add conditional branch
COND_BR(pIsUndef, pPostLoop, pLoop);
// Add loop basic block contents
IRB()->SetInsertPoint(pLoop);
PHINode* pIndexPhi = PHI(mInt32Ty, 2);
PHINode* pMaskPhi = PHI(mInt32Ty, 2);
pIndexPhi->addIncoming(pIndex, pCurBB);
pMaskPhi->addIncoming(pMask, pCurBB);
// Extract elements for this index
Value* pSrcElem = LOADV(pSrcArrayPtr, { pIndexPhi });
Value* pOffsetElem = LOADV(pOffsetsArrayPtr, { pIndexPhi });
// GEP to this offset in dst
Value* pCurDst = GEP(pDst, pOffsetElem);
pCurDst = POINTER_CAST(pCurDst, PointerType::get(pSrcTy, 0));
STORE(pSrcElem, pCurDst);
// Update the mask
Value* pNewMask = AND(pMaskPhi, NOT(SHL(C(1), pIndexPhi)));
// Terminator
Value* pNewIndex = CALL(pfnCttz, { pNewMask, C(false) });
pIsUndef = ICMP_EQ(pNewIndex, C(32));
COND_BR(pIsUndef, pPostLoop, pLoop);
// Update phi edges
pIndexPhi->addIncoming(pNewIndex, pLoop);
pMaskPhi->addIncoming(pNewMask, pLoop);
// Move builder to beginning of post loop
IRB()->SetInsertPoint(pPostLoop, pPostLoop->begin());
}
Value* Builder::VABSPS(Value* a)
{
Value* asInt = BITCAST(a, mSimdInt32Ty);
Value* result = BITCAST(AND(asInt, VIMMED1(0x7fffffff)), mSimdFP32Ty);
return result;
}
Value *Builder::ICLAMP(Value* src, Value* low, Value* high)
{
Value *lowCmp = ICMP_SLT(src, low);
Value *ret = SELECT(lowCmp, low, src);
Value *highCmp = ICMP_SGT(ret, high);
ret = SELECT(highCmp, high, ret);
return ret;
}
Value *Builder::FCLAMP(Value* src, Value* low, Value* high)
{
Value *lowCmp = FCMP_OLT(src, low);
Value *ret = SELECT(lowCmp, low, src);
Value *highCmp = FCMP_OGT(ret, high);
ret = SELECT(highCmp, high, ret);
return ret;
}
Value *Builder::FCLAMP(Value* src, float low, float high)
{
Value* result = VMAXPS(src, VIMMED1(low));
result = VMINPS(result, VIMMED1(high));
return result;
}
//////////////////////////////////////////////////////////////////////////
/// @brief save/restore stack, providing ability to push/pop the stack and
/// reduce overall stack requirements for temporary stack use
Value* Builder::STACKSAVE()
{
Function* pfnStackSave = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stacksave);
return CALLA(pfnStackSave);
}
void Builder::STACKRESTORE(Value* pSaved)
{
Function* pfnStackRestore = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stackrestore);
CALL(pfnStackRestore, std::initializer_list<Value*>{pSaved});
}
Value *Builder::FMADDPS(Value* a, Value* b, Value* c)
{
Value* vOut;
// use FMADs if available
if(JM()->mArch.AVX2())
{
vOut = VFMADDPS(a, b, c);
}
else
{
vOut = FADD(FMUL(a, b), c);
}
return vOut;
}
Value* Builder::POPCNT(Value* a)
{
Function* pCtPop = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::ctpop, { a->getType() });
return CALL(pCtPop, std::initializer_list<Value*>{a});
}
//////////////////////////////////////////////////////////////////////////
/// @brief C functions called by LLVM IR
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/// @brief called in JIT code, inserted by PRINT
/// output to both stdout and visual studio debug console
void __cdecl CallPrint(const char* fmt, ...)
{
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
#if defined( _WIN32 )
char strBuf[1024];
vsnprintf_s(strBuf, _TRUNCATE, fmt, args);
OutputDebugStringA(strBuf);
#endif
va_end(args);
}
Value *Builder::VEXTRACTI128(Value* a, Constant* imm8)
{
bool flag = !imm8->isZeroValue();
SmallVector<Constant*,8> idx;
for (unsigned i = 0; i < mVWidth / 2; i++) {
idx.push_back(C(flag ? i + mVWidth / 2 : i));
}
return VSHUFFLE(a, VUNDEF_I(), ConstantVector::get(idx));
}
Value *Builder::VINSERTI128(Value* a, Value* b, Constant* imm8)
{
bool flag = !imm8->isZeroValue();
SmallVector<Constant*,8> idx;
for (unsigned i = 0; i < mVWidth; i++) {
idx.push_back(C(i));
}
Value *inter = VSHUFFLE(b, VUNDEF_I(), ConstantVector::get(idx));
SmallVector<Constant*,8> idx2;
for (unsigned i = 0; i < mVWidth / 2; i++) {
idx2.push_back(C(flag ? i : i + mVWidth));
}
for (unsigned i = mVWidth / 2; i < mVWidth; i++) {
idx2.push_back(C(flag ? i + mVWidth / 2 : i));
}
return VSHUFFLE(a, inter, ConstantVector::get(idx2));
}
// rdtsc buckets macros
void Builder::RDTSC_START(Value* pBucketMgr, Value* pId)
{
// @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
// buckets framework when single threaded
if (KNOB_SINGLE_THREADED)
{
std::vector<Type*> args{
PointerType::get(mInt32Ty, 0), // pBucketMgr
mInt32Ty // id
};
FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StartBucket", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StartBucket") == nullptr)
{
sys::DynamicLibrary::AddSymbol("BucketManager_StartBucket", (void*)&BucketManager_StartBucket);
}
CALL(pFunc, { pBucketMgr, pId });
}
}
void Builder::RDTSC_STOP(Value* pBucketMgr, Value* pId)
{
// @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
// buckets framework when single threaded
if (KNOB_SINGLE_THREADED)
{
std::vector<Type*> args{
PointerType::get(mInt32Ty, 0), // pBucketMgr
mInt32Ty // id
};
FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StopBucket", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StopBucket") == nullptr)
{
sys::DynamicLibrary::AddSymbol("BucketManager_StopBucket", (void*)&BucketManager_StopBucket);
}
CALL(pFunc, { pBucketMgr, pId });
}
}
uint32_t Builder::GetTypeSize(Type* pType)
{
if (pType->isStructTy())
{
uint32_t numElems = pType->getStructNumElements();
Type* pElemTy = pType->getStructElementType(0);
return numElems * GetTypeSize(pElemTy);
}
if (pType->isArrayTy())
{
uint32_t numElems = pType->getArrayNumElements();
Type* pElemTy = pType->getArrayElementType();
return numElems * GetTypeSize(pElemTy);
}
if (pType->isIntegerTy())
{
uint32_t bitSize = pType->getIntegerBitWidth();
return bitSize / 8;
}
if (pType->isFloatTy())
{
return 4;
}
if (pType->isHalfTy())
{
return 2;
}
if (pType->isDoubleTy())
{
return 8;
}
SWR_ASSERT(false, "Unimplemented type.");
return 0;
}
}