blob: 314db0bb0f772a5beb8e492cc580a1f44b9a3503 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file linker.cpp
* GLSL linker implementation
*
* Given a set of shaders that are to be linked to generate a final program,
* there are three distinct stages.
*
* In the first stage shaders are partitioned into groups based on the shader
* type. All shaders of a particular type (e.g., vertex shaders) are linked
* together.
*
* - Undefined references in each shader are resolve to definitions in
* another shader.
* - Types and qualifiers of uniforms, outputs, and global variables defined
* in multiple shaders with the same name are verified to be the same.
* - Initializers for uniforms and global variables defined
* in multiple shaders with the same name are verified to be the same.
*
* The result, in the terminology of the GLSL spec, is a set of shader
* executables for each processing unit.
*
* After the first stage is complete, a series of semantic checks are performed
* on each of the shader executables.
*
* - Each shader executable must define a \c main function.
* - Each vertex shader executable must write to \c gl_Position.
* - Each fragment shader executable must write to either \c gl_FragData or
* \c gl_FragColor.
*
* In the final stage individual shader executables are linked to create a
* complete exectuable.
*
* - Types of uniforms defined in multiple shader stages with the same name
* are verified to be the same.
* - Initializers for uniforms defined in multiple shader stages with the
* same name are verified to be the same.
* - Types and qualifiers of outputs defined in one stage are verified to
* be the same as the types and qualifiers of inputs defined with the same
* name in a later stage.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
#include <cstdlib>
#include <cstdio>
#include "main/mtypes.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ir.h"
#include "ir_optimization.h"
#include "program.h"
#include "hash_table.h"
/**
* Visitor that determines whether or not a variable is ever written.
*/
class find_assignment_visitor : public ir_hierarchical_visitor {
public:
find_assignment_visitor(const char *name)
: name(name), found(false)
{
/* empty */
}
virtual ir_visitor_status visit_enter(ir_assignment *ir)
{
ir_variable *const var = ir->lhs->variable_referenced();
if (strcmp(name, var->name) == 0) {
found = true;
return visit_stop;
}
return visit_continue_with_parent;
}
bool variable_found()
{
return found;
}
private:
const char *name; /**< Find writes to a variable with this name. */
bool found; /**< Was a write to the variable found? */
};
void
invalidate_variable_locations(glsl_shader *sh, enum ir_variable_mode mode,
int generic_base)
{
foreach_list(node, &sh->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != (unsigned) mode))
continue;
/* Only assign locations for generic attributes / varyings / etc.
*/
if (var->location >= generic_base)
var->location = -1;
}
}
/**
* Verify that a vertex shader executable meets all semantic requirements
*
* \param shader Vertex shader executable to be verified
*/
bool
validate_vertex_shader_executable(struct glsl_shader *shader)
{
if (shader == NULL)
return true;
if (!shader->symbols->get_function("main")) {
printf("error: vertex shader lacks `main'\n");
return false;
}
find_assignment_visitor find("gl_Position");
find.run(&shader->ir);
if (!find.variable_found()) {
printf("error: vertex shader does not write to `gl_Position'\n");
return false;
}
return true;
}
/**
* Verify that a fragment shader executable meets all semantic requirements
*
* \param shader Fragment shader executable to be verified
*/
bool
validate_fragment_shader_executable(struct glsl_shader *shader)
{
if (shader == NULL)
return true;
if (!shader->symbols->get_function("main")) {
printf("error: fragment shader lacks `main'\n");
return false;
}
find_assignment_visitor frag_color("gl_FragColor");
find_assignment_visitor frag_data("gl_FragData");
frag_color.run(&shader->ir);
frag_data.run(&shader->ir);
if (!frag_color.variable_found() && !frag_data.variable_found()) {
printf("error: fragment shader does not write to `gl_FragColor' or "
"`gl_FragData'\n");
return false;
}
if (frag_color.variable_found() && frag_data.variable_found()) {
printf("error: fragment shader write to both `gl_FragColor' and "
"`gl_FragData'\n");
return false;
}
return true;
}
/**
* Perform validation of uniforms used across multiple shader stages
*/
bool
cross_validate_uniforms(struct glsl_shader **shaders, unsigned num_shaders)
{
/* Examine all of the uniforms in all of the shaders and cross validate
* them.
*/
glsl_symbol_table uniforms;
for (unsigned i = 0; i < num_shaders; i++) {
foreach_list(node, &shaders[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform))
continue;
/* If a uniform with this name has already been seen, verify that the
* new instance has the same type. In addition, if the uniforms have
* initializers, the values of the initializers must be the same.
*/
ir_variable *const existing = uniforms.get_variable(var->name);
if (existing != NULL) {
if (var->type != existing->type) {
printf("error: uniform `%s' declared as type `%s' and "
"type `%s'\n",
var->name, var->type->name, existing->type->name);
return false;
}
if (var->constant_value != NULL) {
if (existing->constant_value != NULL) {
if (!var->constant_value->has_value(existing->constant_value)) {
printf("error: initializers for uniform `%s' have "
"differing values\n",
var->name);
return false;
}
} else
/* If the first-seen instance of a particular uniform did not
* have an initializer but a later instance does, copy the
* initializer to the version stored in the symbol table.
*/
existing->constant_value = var->constant_value->clone();
}
} else
uniforms.add_variable(var->name, var);
}
}
return true;
}
/**
* Validate that outputs from one stage match inputs of another
*/
bool
cross_validate_outputs_to_inputs(glsl_shader *producer, glsl_shader *consumer)
{
glsl_symbol_table parameters;
/* FINISHME: Figure these out dynamically. */
const char *const producer_stage = "vertex";
const char *const consumer_stage = "fragment";
/* Find all shader outputs in the "producer" stage.
*/
foreach_list(node, &producer->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
/* FINISHME: For geometry shaders, this should also look for inout
* FINISHME: variables.
*/
if ((var == NULL) || (var->mode != ir_var_out))
continue;
parameters.add_variable(var->name, var);
}
/* Find all shader inputs in the "consumer" stage. Any variables that have
* matching outputs already in the symbol table must have the same type and
* qualifiers.
*/
foreach_list(node, &consumer->ir) {
ir_variable *const input = ((ir_instruction *) node)->as_variable();
/* FINISHME: For geometry shaders, this should also look for inout
* FINISHME: variables.
*/
if ((input == NULL) || (input->mode != ir_var_in))
continue;
ir_variable *const output = parameters.get_variable(input->name);
if (output != NULL) {
/* Check that the types match between stages.
*/
if (input->type != output->type) {
printf("error: %s shader output `%s' delcared as type `%s', but "
"%s shader input declared as type `%s'\n",
producer_stage, output->name, output->type->name,
consumer_stage, input->type->name);
return false;
}
/* Check that all of the qualifiers match between stages.
*/
if (input->centroid != output->centroid) {
printf("error: %s shader output `%s' %s centroid qualifier, but "
"%s shader input %s centroid qualifier\n",
producer_stage,
output->name,
(output->centroid) ? "has" : "lacks",
consumer_stage,
(input->centroid) ? "has" : "lacks");
return false;
}
if (input->invariant != output->invariant) {
printf("error: %s shader output `%s' %s invariant qualifier, but "
"%s shader input %s invariant qualifier\n",
producer_stage,
output->name,
(output->invariant) ? "has" : "lacks",
consumer_stage,
(input->invariant) ? "has" : "lacks");
return false;
}
if (input->interpolation != output->interpolation) {
printf("error: %s shader output `%s' specifies %s interpolation "
"qualifier, "
"but %s shader input specifies %s interpolation "
"qualifier\n",
producer_stage,
output->name,
output->interpolation_string(),
consumer_stage,
input->interpolation_string());
return false;
}
}
}
return true;
}
struct uniform_node {
exec_node link;
struct gl_uniform *u;
unsigned slots;
};
void
assign_uniform_locations(struct glsl_program *prog)
{
/* */
exec_list uniforms;
unsigned total_uniforms = 0;
hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
hash_table_string_compare);
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
unsigned next_position = 0;
foreach_list(node, &prog->_LinkedShaders[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform))
continue;
const unsigned vec4_slots = (var->component_slots() + 3) / 4;
assert(vec4_slots != 0);
uniform_node *n = (uniform_node *) hash_table_find(ht, var->name);
if (n == NULL) {
n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
n->u = (gl_uniform *) calloc(vec4_slots, sizeof(struct gl_uniform));
n->slots = vec4_slots;
n->u[0].Name = strdup(var->name);
for (unsigned j = 1; j < vec4_slots; j++)
n->u[j].Name = n->u[0].Name;
hash_table_insert(ht, n, n->u[0].Name);
uniforms.push_tail(& n->link);
total_uniforms += vec4_slots;
}
if (var->constant_value != NULL)
for (unsigned j = 0; j < vec4_slots; j++)
n->u[j].Initialized = true;
var->location = next_position;
for (unsigned j = 0; j < vec4_slots; j++) {
switch (prog->_LinkedShaders[i]->Type) {
case GL_VERTEX_SHADER:
n->u[j].VertPos = next_position;
break;
case GL_FRAGMENT_SHADER:
n->u[j].FragPos = next_position;
break;
case GL_GEOMETRY_SHADER:
/* FINISHME: Support geometry shaders. */
assert(prog->_LinkedShaders[i]->Type != GL_GEOMETRY_SHADER);
break;
}
next_position++;
}
}
}
gl_uniform_list *ul = (gl_uniform_list *)
calloc(1, sizeof(gl_uniform_list));
ul->Size = total_uniforms;
ul->NumUniforms = total_uniforms;
ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
unsigned idx = 0;
uniform_node *next;
for (uniform_node *node = (uniform_node *) uniforms.head
; node->link.next != NULL
; node = next) {
next = (uniform_node *) node->link.next;
node->link.remove();
memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform) * node->slots);
idx += node->slots;
free(node->u);
free(node);
}
hash_table_dtor(ht);
prog->Uniforms = ul;
}
void
assign_attribute_locations(glsl_shader *sh,
struct gl_program_parameter_list *attrib)
{
unsigned used_locations = 0;
assert(sh->Type == GL_VERTEX_SHADER);
/* Operate in a total of three passes.
*
* 1. Invalidate the location assignments for all vertex shader inputs.
*
* 2. Assign locations for inputs that have user-defined (via
* glBindVertexAttribLocation) locatoins.
*
* 3. Assign locations to any inputs without assigned locations.
*/
invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
if (attrib != NULL) {
for (unsigned i = 0; i < attrib->NumParameters; i++) {
ir_variable *const var =
sh->symbols->get_variable(attrib->Parameters[i].Name);
if (var == NULL)
continue;
const int attr = attrib->Parameters[i].StateIndexes[0];
var->location = VERT_ATTRIB_GENERIC0 + attr;
used_locations |= (1 << attr);
}
}
foreach_list(node, &sh->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_in))
continue;
/* The location was explicitly assigned, nothing to do here.
*/
if (var->location != -1)
continue;
/* Find an unused bit in used_locations and assign that as the
* attribute location.
*/
for (unsigned i = 0; i < (8 * sizeof(used_locations)); i++) {
if ((used_locations & (1 << i)) == 0) {
var->location = VERT_ATTRIB_GENERIC0 + i;
used_locations |= (1 << i);
break;
}
}
}
}
void
link_shaders(struct glsl_program *prog)
{
prog->LinkStatus = false;
prog->Validated = false;
prog->_Used = false;
/* Separate the shaders into groups based on their type.
*/
struct glsl_shader **vert_shader_list;
unsigned num_vert_shaders = 0;
struct glsl_shader **frag_shader_list;
unsigned num_frag_shaders = 0;
vert_shader_list = (struct glsl_shader **)
calloc(2 * prog->NumShaders, sizeof(struct glsl_shader *));
frag_shader_list = &vert_shader_list[prog->NumShaders];
for (unsigned i = 0; i < prog->NumShaders; i++) {
switch (prog->Shaders[i]->Type) {
case GL_VERTEX_SHADER:
vert_shader_list[num_vert_shaders] = prog->Shaders[i];
num_vert_shaders++;
break;
case GL_FRAGMENT_SHADER:
frag_shader_list[num_frag_shaders] = prog->Shaders[i];
num_frag_shaders++;
break;
case GL_GEOMETRY_SHADER:
/* FINISHME: Support geometry shaders. */
assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
break;
}
}
/* FINISHME: Implement intra-stage linking. */
assert(num_vert_shaders <= 1);
assert(num_frag_shaders <= 1);
/* Verify that each of the per-target executables is valid.
*/
if (!validate_vertex_shader_executable(vert_shader_list[0])
|| !validate_fragment_shader_executable(frag_shader_list[0]))
goto done;
/* FINISHME: Perform inter-stage linking. */
prog->_LinkedShaders = (struct glsl_shader **)
calloc(2, sizeof(struct glsl_shader *));
prog->_NumLinkedShaders = 0;
if (num_vert_shaders > 0) {
prog->_LinkedShaders[prog->_NumLinkedShaders] = vert_shader_list[0];
prog->_NumLinkedShaders++;
}
if (num_frag_shaders > 0) {
prog->_LinkedShaders[prog->_NumLinkedShaders] = frag_shader_list[0];
prog->_NumLinkedShaders++;
}
if (cross_validate_uniforms(prog->_LinkedShaders, prog->_NumLinkedShaders)) {
/* Validate the inputs of each stage with the output of the preceeding
* stage.
*/
for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) {
if (!cross_validate_outputs_to_inputs(prog->_LinkedShaders[i - 1],
prog->_LinkedShaders[i]))
goto done;
}
prog->LinkStatus = true;
}
/* FINISHME: Perform whole-program optimization here. */
assign_uniform_locations(prog);
if (prog->_LinkedShaders[0]->Type == GL_VERTEX_SHADER)
assign_attribute_locations(prog->_LinkedShaders[0],
prog->Attributes);
/* FINISHME: Assign vertex shader output / fragment shader input
* FINISHME: locations.
*/
/* FINISHME: Assign fragment shader output locations. */
/* FINISHME: Generate code here. */
done:
free(vert_shader_list);
}