| /* |
| * Mesa 3-D graphics library |
| * Version: 6.5.3 |
| * |
| * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
| * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| |
| #include "main/glheader.h" |
| #include "main/imports.h" |
| #include "main/macros.h" |
| #include "swrast/s_aaline.h" |
| #include "swrast/s_context.h" |
| #include "swrast/s_span.h" |
| #include "swrast/swrast.h" |
| #include "main/mtypes.h" |
| |
| |
| #define SUB_PIXEL 4 |
| |
| |
| /* |
| * Info about the AA line we're rendering |
| */ |
| struct LineInfo |
| { |
| GLfloat x0, y0; /* start */ |
| GLfloat x1, y1; /* end */ |
| GLfloat dx, dy; /* direction vector */ |
| GLfloat len; /* length */ |
| GLfloat halfWidth; /* half of line width */ |
| GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */ |
| /* for coverage computation */ |
| GLfloat qx0, qy0; /* quad vertices */ |
| GLfloat qx1, qy1; |
| GLfloat qx2, qy2; |
| GLfloat qx3, qy3; |
| GLfloat ex0, ey0; /* quad edge vectors */ |
| GLfloat ex1, ey1; |
| GLfloat ex2, ey2; |
| GLfloat ex3, ey3; |
| |
| /* DO_Z */ |
| GLfloat zPlane[4]; |
| /* DO_RGBA */ |
| GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; |
| /* DO_INDEX */ |
| GLfloat iPlane[4]; |
| /* DO_ATTRIBS */ |
| GLfloat wPlane[4]; |
| GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4]; |
| GLfloat lambda[FRAG_ATTRIB_MAX]; |
| GLfloat texWidth[FRAG_ATTRIB_MAX]; |
| GLfloat texHeight[FRAG_ATTRIB_MAX]; |
| |
| SWspan span; |
| }; |
| |
| |
| |
| /* |
| * Compute the equation of a plane used to interpolate line fragment data |
| * such as color, Z, texture coords, etc. |
| * Input: (x0, y0) and (x1,y1) are the endpoints of the line. |
| * z0, and z1 are the end point values to interpolate. |
| * Output: plane - the plane equation. |
| * |
| * Note: we don't really have enough parameters to specify a plane. |
| * We take the endpoints of the line and compute a plane such that |
| * the cross product of the line vector and the plane normal is |
| * parallel to the projection plane. |
| */ |
| static void |
| compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1, |
| GLfloat z0, GLfloat z1, GLfloat plane[4]) |
| { |
| #if 0 |
| /* original */ |
| const GLfloat px = x1 - x0; |
| const GLfloat py = y1 - y0; |
| const GLfloat pz = z1 - z0; |
| const GLfloat qx = -py; |
| const GLfloat qy = px; |
| const GLfloat qz = 0; |
| const GLfloat a = py * qz - pz * qy; |
| const GLfloat b = pz * qx - px * qz; |
| const GLfloat c = px * qy - py * qx; |
| const GLfloat d = -(a * x0 + b * y0 + c * z0); |
| plane[0] = a; |
| plane[1] = b; |
| plane[2] = c; |
| plane[3] = d; |
| #else |
| /* simplified */ |
| const GLfloat px = x1 - x0; |
| const GLfloat py = y1 - y0; |
| const GLfloat pz = z0 - z1; |
| const GLfloat a = pz * px; |
| const GLfloat b = pz * py; |
| const GLfloat c = px * px + py * py; |
| const GLfloat d = -(a * x0 + b * y0 + c * z0); |
| if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) { |
| plane[0] = 0.0; |
| plane[1] = 0.0; |
| plane[2] = 1.0; |
| plane[3] = 0.0; |
| } |
| else { |
| plane[0] = a; |
| plane[1] = b; |
| plane[2] = c; |
| plane[3] = d; |
| } |
| #endif |
| } |
| |
| |
| static INLINE void |
| constant_plane(GLfloat value, GLfloat plane[4]) |
| { |
| plane[0] = 0.0; |
| plane[1] = 0.0; |
| plane[2] = -1.0; |
| plane[3] = value; |
| } |
| |
| |
| static INLINE GLfloat |
| solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) |
| { |
| const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; |
| return z; |
| } |
| |
| #define SOLVE_PLANE(X, Y, PLANE) \ |
| ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) |
| |
| |
| /* |
| * Return 1 / solve_plane(). |
| */ |
| static INLINE GLfloat |
| solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) |
| { |
| const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; |
| if (denom == 0.0) |
| return 0.0; |
| else |
| return -plane[2] / denom; |
| } |
| |
| |
| /* |
| * Solve plane and return clamped GLchan value. |
| */ |
| static INLINE GLchan |
| solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) |
| { |
| const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; |
| #if CHAN_TYPE == GL_FLOAT |
| return CLAMP(z, 0.0F, CHAN_MAXF); |
| #else |
| if (z < 0) |
| return 0; |
| else if (z > CHAN_MAX) |
| return CHAN_MAX; |
| return (GLchan) IROUND_POS(z); |
| #endif |
| } |
| |
| |
| /* |
| * Compute mipmap level of detail. |
| */ |
| static INLINE GLfloat |
| compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], |
| GLfloat invQ, GLfloat width, GLfloat height) |
| { |
| GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; |
| GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; |
| GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; |
| GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; |
| GLfloat r1 = dudx * dudx + dudy * dudy; |
| GLfloat r2 = dvdx * dvdx + dvdy * dvdy; |
| GLfloat rho2 = r1 + r2; |
| /* return log base 2 of rho */ |
| if (rho2 == 0.0F) |
| return 0.0; |
| else |
| return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */ |
| } |
| |
| |
| |
| |
| /* |
| * Fill in the samples[] array with the (x,y) subpixel positions of |
| * xSamples * ySamples sample positions. |
| * Note that the four corner samples are put into the first four |
| * positions of the array. This allows us to optimize for the common |
| * case of all samples being inside the polygon. |
| */ |
| static void |
| make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2]) |
| { |
| const GLfloat dx = 1.0F / (GLfloat) xSamples; |
| const GLfloat dy = 1.0F / (GLfloat) ySamples; |
| GLint x, y; |
| GLint i; |
| |
| i = 4; |
| for (x = 0; x < xSamples; x++) { |
| for (y = 0; y < ySamples; y++) { |
| GLint j; |
| if (x == 0 && y == 0) { |
| /* lower left */ |
| j = 0; |
| } |
| else if (x == xSamples - 1 && y == 0) { |
| /* lower right */ |
| j = 1; |
| } |
| else if (x == 0 && y == ySamples - 1) { |
| /* upper left */ |
| j = 2; |
| } |
| else if (x == xSamples - 1 && y == ySamples - 1) { |
| /* upper right */ |
| j = 3; |
| } |
| else { |
| j = i++; |
| } |
| samples[j][0] = x * dx + 0.5F * dx; |
| samples[j][1] = y * dy + 0.5F * dy; |
| } |
| } |
| } |
| |
| |
| |
| /* |
| * Compute how much of the given pixel's area is inside the rectangle |
| * defined by vertices v0, v1, v2, v3. |
| * Vertices MUST be specified in counter-clockwise order. |
| * Return: coverage in [0, 1]. |
| */ |
| static GLfloat |
| compute_coveragef(const struct LineInfo *info, |
| GLint winx, GLint winy) |
| { |
| static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2]; |
| static GLboolean haveSamples = GL_FALSE; |
| const GLfloat x = (GLfloat) winx; |
| const GLfloat y = (GLfloat) winy; |
| GLint stop = 4, i; |
| GLfloat insideCount = SUB_PIXEL * SUB_PIXEL; |
| |
| if (!haveSamples) { |
| make_sample_table(SUB_PIXEL, SUB_PIXEL, samples); |
| haveSamples = GL_TRUE; |
| } |
| |
| #if 0 /*DEBUG*/ |
| { |
| const GLfloat area = dx0 * dy1 - dx1 * dy0; |
| assert(area >= 0.0); |
| } |
| #endif |
| |
| for (i = 0; i < stop; i++) { |
| const GLfloat sx = x + samples[i][0]; |
| const GLfloat sy = y + samples[i][1]; |
| const GLfloat fx0 = sx - info->qx0; |
| const GLfloat fy0 = sy - info->qy0; |
| const GLfloat fx1 = sx - info->qx1; |
| const GLfloat fy1 = sy - info->qy1; |
| const GLfloat fx2 = sx - info->qx2; |
| const GLfloat fy2 = sy - info->qy2; |
| const GLfloat fx3 = sx - info->qx3; |
| const GLfloat fy3 = sy - info->qy3; |
| /* cross product determines if sample is inside or outside each edge */ |
| GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0); |
| GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1); |
| GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2); |
| GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3); |
| /* Check if the sample is exactly on an edge. If so, let cross be a |
| * positive or negative value depending on the direction of the edge. |
| */ |
| if (cross0 == 0.0F) |
| cross0 = info->ex0 + info->ey0; |
| if (cross1 == 0.0F) |
| cross1 = info->ex1 + info->ey1; |
| if (cross2 == 0.0F) |
| cross2 = info->ex2 + info->ey2; |
| if (cross3 == 0.0F) |
| cross3 = info->ex3 + info->ey3; |
| if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) { |
| /* point is outside quadrilateral */ |
| insideCount -= 1.0F; |
| stop = SUB_PIXEL * SUB_PIXEL; |
| } |
| } |
| if (stop == 4) |
| return 1.0F; |
| else |
| return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL)); |
| } |
| |
| |
| /** |
| * Compute coverage value for color index mode. |
| * XXX this may not be quite correct. |
| * \return coverage in [0,15]. |
| */ |
| static GLfloat |
| compute_coveragei(const struct LineInfo *info, |
| GLint winx, GLint winy) |
| { |
| return compute_coveragef(info, winx, winy) * 15.0F; |
| } |
| |
| |
| |
| typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line, |
| int ix, int iy); |
| |
| |
| |
| /* |
| * Draw an AA line segment (called many times per line when stippling) |
| */ |
| static void |
| segment(GLcontext *ctx, |
| struct LineInfo *line, |
| plot_func plot, |
| GLfloat t0, GLfloat t1) |
| { |
| const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx; |
| const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy; |
| /* compute the actual segment's endpoints */ |
| const GLfloat x0 = line->x0 + t0 * line->dx; |
| const GLfloat y0 = line->y0 + t0 * line->dy; |
| const GLfloat x1 = line->x0 + t1 * line->dx; |
| const GLfloat y1 = line->y0 + t1 * line->dy; |
| |
| /* compute vertices of the line-aligned quadrilateral */ |
| line->qx0 = x0 - line->yAdj; |
| line->qy0 = y0 + line->xAdj; |
| line->qx1 = x0 + line->yAdj; |
| line->qy1 = y0 - line->xAdj; |
| line->qx2 = x1 + line->yAdj; |
| line->qy2 = y1 - line->xAdj; |
| line->qx3 = x1 - line->yAdj; |
| line->qy3 = y1 + line->xAdj; |
| /* compute the quad's edge vectors (for coverage calc) */ |
| line->ex0 = line->qx1 - line->qx0; |
| line->ey0 = line->qy1 - line->qy0; |
| line->ex1 = line->qx2 - line->qx1; |
| line->ey1 = line->qy2 - line->qy1; |
| line->ex2 = line->qx3 - line->qx2; |
| line->ey2 = line->qy3 - line->qy2; |
| line->ex3 = line->qx0 - line->qx3; |
| line->ey3 = line->qy0 - line->qy3; |
| |
| if (absDx > absDy) { |
| /* X-major line */ |
| GLfloat dydx = line->dy / line->dx; |
| GLfloat xLeft, xRight, yBot, yTop; |
| GLint ix, ixRight; |
| if (x0 < x1) { |
| xLeft = x0 - line->halfWidth; |
| xRight = x1 + line->halfWidth; |
| if (line->dy >= 0.0) { |
| yBot = y0 - 3.0F * line->halfWidth; |
| yTop = y0 + line->halfWidth; |
| } |
| else { |
| yBot = y0 - line->halfWidth; |
| yTop = y0 + 3.0F * line->halfWidth; |
| } |
| } |
| else { |
| xLeft = x1 - line->halfWidth; |
| xRight = x0 + line->halfWidth; |
| if (line->dy <= 0.0) { |
| yBot = y1 - 3.0F * line->halfWidth; |
| yTop = y1 + line->halfWidth; |
| } |
| else { |
| yBot = y1 - line->halfWidth; |
| yTop = y1 + 3.0F * line->halfWidth; |
| } |
| } |
| |
| /* scan along the line, left-to-right */ |
| ixRight = (GLint) (xRight + 1.0F); |
| |
| /*printf("avg span height: %g\n", yTop - yBot);*/ |
| for (ix = (GLint) xLeft; ix < ixRight; ix++) { |
| const GLint iyBot = (GLint) yBot; |
| const GLint iyTop = (GLint) (yTop + 1.0F); |
| GLint iy; |
| /* scan across the line, bottom-to-top */ |
| for (iy = iyBot; iy < iyTop; iy++) { |
| (*plot)(ctx, line, ix, iy); |
| } |
| yBot += dydx; |
| yTop += dydx; |
| } |
| } |
| else { |
| /* Y-major line */ |
| GLfloat dxdy = line->dx / line->dy; |
| GLfloat yBot, yTop, xLeft, xRight; |
| GLint iy, iyTop; |
| if (y0 < y1) { |
| yBot = y0 - line->halfWidth; |
| yTop = y1 + line->halfWidth; |
| if (line->dx >= 0.0) { |
| xLeft = x0 - 3.0F * line->halfWidth; |
| xRight = x0 + line->halfWidth; |
| } |
| else { |
| xLeft = x0 - line->halfWidth; |
| xRight = x0 + 3.0F * line->halfWidth; |
| } |
| } |
| else { |
| yBot = y1 - line->halfWidth; |
| yTop = y0 + line->halfWidth; |
| if (line->dx <= 0.0) { |
| xLeft = x1 - 3.0F * line->halfWidth; |
| xRight = x1 + line->halfWidth; |
| } |
| else { |
| xLeft = x1 - line->halfWidth; |
| xRight = x1 + 3.0F * line->halfWidth; |
| } |
| } |
| |
| /* scan along the line, bottom-to-top */ |
| iyTop = (GLint) (yTop + 1.0F); |
| |
| /*printf("avg span width: %g\n", xRight - xLeft);*/ |
| for (iy = (GLint) yBot; iy < iyTop; iy++) { |
| const GLint ixLeft = (GLint) xLeft; |
| const GLint ixRight = (GLint) (xRight + 1.0F); |
| GLint ix; |
| /* scan across the line, left-to-right */ |
| for (ix = ixLeft; ix < ixRight; ix++) { |
| (*plot)(ctx, line, ix, iy); |
| } |
| xLeft += dxdy; |
| xRight += dxdy; |
| } |
| } |
| } |
| |
| |
| #define NAME(x) aa_ci_##x |
| #define DO_Z |
| #define DO_ATTRIBS /* for fog */ |
| #define DO_INDEX |
| #include "s_aalinetemp.h" |
| |
| |
| #define NAME(x) aa_rgba_##x |
| #define DO_Z |
| #define DO_RGBA |
| #include "s_aalinetemp.h" |
| |
| |
| #define NAME(x) aa_general_rgba_##x |
| #define DO_Z |
| #define DO_RGBA |
| #define DO_ATTRIBS |
| #include "s_aalinetemp.h" |
| |
| |
| |
| void |
| _swrast_choose_aa_line_function(GLcontext *ctx) |
| { |
| SWcontext *swrast = SWRAST_CONTEXT(ctx); |
| |
| ASSERT(ctx->Line.SmoothFlag); |
| |
| if (ctx->Visual.rgbMode) { |
| /* RGBA */ |
| if (ctx->Texture._EnabledCoordUnits != 0 |
| || ctx->FragmentProgram._Current |
| || (ctx->Light.Enabled && |
| ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) |
| || ctx->Fog.ColorSumEnabled |
| || swrast->_FogEnabled) { |
| swrast->Line = aa_general_rgba_line; |
| } |
| else { |
| swrast->Line = aa_rgba_line; |
| } |
| } |
| else { |
| /* Color Index */ |
| swrast->Line = aa_ci_line; |
| } |
| } |