| /************************************************************************** |
| * |
| * Copyright 2008 VMware, Inc. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. |
| * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR |
| * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| |
| |
| /** |
| * Math utilities and approximations for common math functions. |
| * Reduced precision is usually acceptable in shaders... |
| * |
| * "fast" is used in the names of functions which are low-precision, |
| * or at least lower-precision than the normal C lib functions. |
| */ |
| |
| |
| #ifndef U_MATH_H |
| #define U_MATH_H |
| |
| |
| #include "pipe/p_compiler.h" |
| |
| #include "c99_math.h" |
| #include <assert.h> |
| #include <float.h> |
| #include <stdarg.h> |
| |
| #include "bitscan.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| |
| #ifndef M_SQRT2 |
| #define M_SQRT2 1.41421356237309504880 |
| #endif |
| |
| #define POW2_TABLE_SIZE_LOG2 9 |
| #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2) |
| #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2) |
| #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2)) |
| extern float pow2_table[POW2_TABLE_SIZE]; |
| |
| |
| /** |
| * Initialize math module. This should be called before using any |
| * other functions in this module. |
| */ |
| extern void |
| util_init_math(void); |
| |
| |
| union fi { |
| float f; |
| int32_t i; |
| uint32_t ui; |
| }; |
| |
| |
| union di { |
| double d; |
| int64_t i; |
| uint64_t ui; |
| }; |
| |
| |
| /** |
| * Extract the IEEE float32 exponent. |
| */ |
| static inline signed |
| util_get_float32_exponent(float x) |
| { |
| union fi f; |
| |
| f.f = x; |
| |
| return ((f.ui >> 23) & 0xff) - 127; |
| } |
| |
| |
| /** |
| * Fast version of 2^x |
| * Identity: exp2(a + b) = exp2(a) * exp2(b) |
| * Let ipart = int(x) |
| * Let fpart = x - ipart; |
| * So, exp2(x) = exp2(ipart) * exp2(fpart) |
| * Compute exp2(ipart) with i << ipart |
| * Compute exp2(fpart) with lookup table. |
| */ |
| static inline float |
| util_fast_exp2(float x) |
| { |
| int32_t ipart; |
| float fpart, mpart; |
| union fi epart; |
| |
| if(x > 129.00000f) |
| return 3.402823466e+38f; |
| |
| if (x < -126.99999f) |
| return 0.0f; |
| |
| ipart = (int32_t) x; |
| fpart = x - (float) ipart; |
| |
| /* same as |
| * epart.f = (float) (1 << ipart) |
| * but faster and without integer overflow for ipart > 31 |
| */ |
| epart.i = (ipart + 127 ) << 23; |
| |
| mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)]; |
| |
| return epart.f * mpart; |
| } |
| |
| |
| /** |
| * Fast approximation to exp(x). |
| */ |
| static inline float |
| util_fast_exp(float x) |
| { |
| const float k = 1.44269f; /* = log2(e) */ |
| return util_fast_exp2(k * x); |
| } |
| |
| |
| #define LOG2_TABLE_SIZE_LOG2 16 |
| #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2) |
| #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1) |
| extern float log2_table[LOG2_TABLE_SIZE]; |
| |
| |
| /** |
| * Fast approximation to log2(x). |
| */ |
| static inline float |
| util_fast_log2(float x) |
| { |
| union fi num; |
| float epart, mpart; |
| num.f = x; |
| epart = (float)(((num.i & 0x7f800000) >> 23) - 127); |
| /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */ |
| mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)]; |
| return epart + mpart; |
| } |
| |
| |
| /** |
| * Fast approximation to x^y. |
| */ |
| static inline float |
| util_fast_pow(float x, float y) |
| { |
| return util_fast_exp2(util_fast_log2(x) * y); |
| } |
| |
| |
| /** |
| * Floor(x), returned as int. |
| */ |
| static inline int |
| util_ifloor(float f) |
| { |
| int ai, bi; |
| double af, bf; |
| union fi u; |
| af = (3 << 22) + 0.5 + (double) f; |
| bf = (3 << 22) + 0.5 - (double) f; |
| u.f = (float) af; ai = u.i; |
| u.f = (float) bf; bi = u.i; |
| return (ai - bi) >> 1; |
| } |
| |
| |
| /** |
| * Round float to nearest int. |
| */ |
| static inline int |
| util_iround(float f) |
| { |
| #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) |
| int r; |
| __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); |
| return r; |
| #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86) |
| int r; |
| _asm { |
| fld f |
| fistp r |
| } |
| return r; |
| #else |
| if (f >= 0.0f) |
| return (int) (f + 0.5f); |
| else |
| return (int) (f - 0.5f); |
| #endif |
| } |
| |
| |
| /** |
| * Approximate floating point comparison |
| */ |
| static inline boolean |
| util_is_approx(float a, float b, float tol) |
| { |
| return fabsf(b - a) <= tol; |
| } |
| |
| |
| /** |
| * util_is_X_inf_or_nan = test if x is NaN or +/- Inf |
| * util_is_X_nan = test if x is NaN |
| * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf |
| * |
| * NaN can be checked with x != x, however this fails with the fast math flag |
| **/ |
| |
| |
| /** |
| * Single-float |
| */ |
| static inline boolean |
| util_is_inf_or_nan(float x) |
| { |
| union fi tmp; |
| tmp.f = x; |
| return (tmp.ui & 0x7f800000) == 0x7f800000; |
| } |
| |
| |
| static inline boolean |
| util_is_nan(float x) |
| { |
| union fi tmp; |
| tmp.f = x; |
| return (tmp.ui & 0x7fffffff) > 0x7f800000; |
| } |
| |
| |
| static inline int |
| util_inf_sign(float x) |
| { |
| union fi tmp; |
| tmp.f = x; |
| if ((tmp.ui & 0x7fffffff) != 0x7f800000) { |
| return 0; |
| } |
| |
| return (x < 0) ? -1 : 1; |
| } |
| |
| |
| /** |
| * Double-float |
| */ |
| static inline boolean |
| util_is_double_inf_or_nan(double x) |
| { |
| union di tmp; |
| tmp.d = x; |
| return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL; |
| } |
| |
| |
| static inline boolean |
| util_is_double_nan(double x) |
| { |
| union di tmp; |
| tmp.d = x; |
| return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL; |
| } |
| |
| |
| static inline int |
| util_double_inf_sign(double x) |
| { |
| union di tmp; |
| tmp.d = x; |
| if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) { |
| return 0; |
| } |
| |
| return (x < 0) ? -1 : 1; |
| } |
| |
| |
| /** |
| * Half-float |
| */ |
| static inline boolean |
| util_is_half_inf_or_nan(int16_t x) |
| { |
| return (x & 0x7c00) == 0x7c00; |
| } |
| |
| |
| static inline boolean |
| util_is_half_nan(int16_t x) |
| { |
| return (x & 0x7fff) > 0x7c00; |
| } |
| |
| |
| static inline int |
| util_half_inf_sign(int16_t x) |
| { |
| if ((x & 0x7fff) != 0x7c00) { |
| return 0; |
| } |
| |
| return (x < 0) ? -1 : 1; |
| } |
| |
| |
| /** |
| * Return float bits. |
| */ |
| static inline unsigned |
| fui( float f ) |
| { |
| union fi fi; |
| fi.f = f; |
| return fi.ui; |
| } |
| |
| static inline float |
| uif(uint32_t ui) |
| { |
| union fi fi; |
| fi.ui = ui; |
| return fi.f; |
| } |
| |
| |
| /** |
| * Convert ubyte to float in [0, 1]. |
| */ |
| static inline float |
| ubyte_to_float(ubyte ub) |
| { |
| return (float) ub * (1.0f / 255.0f); |
| } |
| |
| |
| /** |
| * Convert float in [0,1] to ubyte in [0,255] with clamping. |
| */ |
| static inline ubyte |
| float_to_ubyte(float f) |
| { |
| /* return 0 for NaN too */ |
| if (!(f > 0.0f)) { |
| return (ubyte) 0; |
| } |
| else if (f >= 1.0f) { |
| return (ubyte) 255; |
| } |
| else { |
| union fi tmp; |
| tmp.f = f; |
| tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f; |
| return (ubyte) tmp.i; |
| } |
| } |
| |
| /** |
| * Convert ushort to float in [0, 1]. |
| */ |
| static inline float |
| ushort_to_float(ushort us) |
| { |
| return (float) us * (1.0f / 65535.0f); |
| } |
| |
| |
| /** |
| * Convert float in [0,1] to ushort in [0,65535] with clamping. |
| */ |
| static inline ushort |
| float_to_ushort(float f) |
| { |
| /* return 0 for NaN too */ |
| if (!(f > 0.0f)) { |
| return (ushort) 0; |
| } |
| else if (f >= 1.0f) { |
| return (ushort) 65535; |
| } |
| else { |
| union fi tmp; |
| tmp.f = f; |
| tmp.f = tmp.f * (65535.0f/65536.0f) + 128.0f; |
| return (ushort) tmp.i; |
| } |
| } |
| |
| static inline float |
| byte_to_float_tex(int8_t b) |
| { |
| return (b == -128) ? -1.0F : b * 1.0F / 127.0F; |
| } |
| |
| static inline int8_t |
| float_to_byte_tex(float f) |
| { |
| return (int8_t) (127.0F * f); |
| } |
| |
| /** |
| * Calc log base 2 |
| */ |
| static inline unsigned |
| util_logbase2(unsigned n) |
| { |
| #if defined(HAVE___BUILTIN_CLZ) |
| return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1)); |
| #else |
| unsigned pos = 0; |
| if (n >= 1<<16) { n >>= 16; pos += 16; } |
| if (n >= 1<< 8) { n >>= 8; pos += 8; } |
| if (n >= 1<< 4) { n >>= 4; pos += 4; } |
| if (n >= 1<< 2) { n >>= 2; pos += 2; } |
| if (n >= 1<< 1) { pos += 1; } |
| return pos; |
| #endif |
| } |
| |
| static inline uint64_t |
| util_logbase2_64(uint64_t n) |
| { |
| #if defined(HAVE___BUILTIN_CLZLL) |
| return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1)); |
| #else |
| uint64_t pos = 0ull; |
| if (n >= 1ull<<32) { n >>= 32; pos += 32; } |
| if (n >= 1ull<<16) { n >>= 16; pos += 16; } |
| if (n >= 1ull<< 8) { n >>= 8; pos += 8; } |
| if (n >= 1ull<< 4) { n >>= 4; pos += 4; } |
| if (n >= 1ull<< 2) { n >>= 2; pos += 2; } |
| if (n >= 1ull<< 1) { pos += 1; } |
| return pos; |
| #endif |
| } |
| |
| /** |
| * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently, |
| * returns the smallest x such that n <= 2**x. |
| */ |
| static inline unsigned |
| util_logbase2_ceil(unsigned n) |
| { |
| if (n <= 1) |
| return 0; |
| |
| return 1 + util_logbase2(n - 1); |
| } |
| |
| static inline uint64_t |
| util_logbase2_ceil64(uint64_t n) |
| { |
| if (n <= 1) |
| return 0; |
| |
| return 1ull + util_logbase2_64(n - 1); |
| } |
| |
| /** |
| * Returns the smallest power of two >= x |
| */ |
| static inline unsigned |
| util_next_power_of_two(unsigned x) |
| { |
| #if defined(HAVE___BUILTIN_CLZ) |
| if (x <= 1) |
| return 1; |
| |
| return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1))); |
| #else |
| unsigned val = x; |
| |
| if (x <= 1) |
| return 1; |
| |
| if (util_is_power_of_two_or_zero(x)) |
| return x; |
| |
| val--; |
| val = (val >> 1) | val; |
| val = (val >> 2) | val; |
| val = (val >> 4) | val; |
| val = (val >> 8) | val; |
| val = (val >> 16) | val; |
| val++; |
| return val; |
| #endif |
| } |
| |
| static inline uint64_t |
| util_next_power_of_two64(uint64_t x) |
| { |
| #if defined(HAVE___BUILTIN_CLZLL) |
| if (x <= 1) |
| return 1; |
| |
| return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1))); |
| #else |
| uint64_t val = x; |
| |
| if (x <= 1) |
| return 1; |
| |
| if (util_is_power_of_two_or_zero64(x)) |
| return x; |
| |
| val--; |
| val = (val >> 1) | val; |
| val = (val >> 2) | val; |
| val = (val >> 4) | val; |
| val = (val >> 8) | val; |
| val = (val >> 16) | val; |
| val = (val >> 32) | val; |
| val++; |
| return val; |
| #endif |
| } |
| |
| |
| /** |
| * Return number of bits set in n. |
| */ |
| static inline unsigned |
| util_bitcount(unsigned n) |
| { |
| #if defined(HAVE___BUILTIN_POPCOUNT) |
| return __builtin_popcount(n); |
| #else |
| /* K&R classic bitcount. |
| * |
| * For each iteration, clear the LSB from the bitfield. |
| * Requires only one iteration per set bit, instead of |
| * one iteration per bit less than highest set bit. |
| */ |
| unsigned bits; |
| for (bits = 0; n; bits++) { |
| n &= n - 1; |
| } |
| return bits; |
| #endif |
| } |
| |
| |
| static inline unsigned |
| util_bitcount64(uint64_t n) |
| { |
| #ifdef HAVE___BUILTIN_POPCOUNTLL |
| return __builtin_popcountll(n); |
| #else |
| return util_bitcount(n) + util_bitcount(n >> 32); |
| #endif |
| } |
| |
| |
| /** |
| * Reverse bits in n |
| * Algorithm taken from: |
| * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer |
| */ |
| static inline unsigned |
| util_bitreverse(unsigned n) |
| { |
| n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1); |
| n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2); |
| n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4); |
| n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8); |
| n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16); |
| return n; |
| } |
| |
| /** |
| * Convert from little endian to CPU byte order. |
| */ |
| |
| #ifdef PIPE_ARCH_BIG_ENDIAN |
| #define util_le64_to_cpu(x) util_bswap64(x) |
| #define util_le32_to_cpu(x) util_bswap32(x) |
| #define util_le16_to_cpu(x) util_bswap16(x) |
| #else |
| #define util_le64_to_cpu(x) (x) |
| #define util_le32_to_cpu(x) (x) |
| #define util_le16_to_cpu(x) (x) |
| #endif |
| |
| #define util_cpu_to_le64(x) util_le64_to_cpu(x) |
| #define util_cpu_to_le32(x) util_le32_to_cpu(x) |
| #define util_cpu_to_le16(x) util_le16_to_cpu(x) |
| |
| /** |
| * Reverse byte order of a 32 bit word. |
| */ |
| static inline uint32_t |
| util_bswap32(uint32_t n) |
| { |
| #if defined(HAVE___BUILTIN_BSWAP32) |
| return __builtin_bswap32(n); |
| #else |
| return (n >> 24) | |
| ((n >> 8) & 0x0000ff00) | |
| ((n << 8) & 0x00ff0000) | |
| (n << 24); |
| #endif |
| } |
| |
| /** |
| * Reverse byte order of a 64bit word. |
| */ |
| static inline uint64_t |
| util_bswap64(uint64_t n) |
| { |
| #if defined(HAVE___BUILTIN_BSWAP64) |
| return __builtin_bswap64(n); |
| #else |
| return ((uint64_t)util_bswap32((uint32_t)n) << 32) | |
| util_bswap32((n >> 32)); |
| #endif |
| } |
| |
| |
| /** |
| * Reverse byte order of a 16 bit word. |
| */ |
| static inline uint16_t |
| util_bswap16(uint16_t n) |
| { |
| return (n >> 8) | |
| (n << 8); |
| } |
| |
| static inline void* |
| util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n) |
| { |
| #ifdef PIPE_ARCH_BIG_ENDIAN |
| size_t i, e; |
| assert(n % 4 == 0); |
| |
| for (i = 0, e = n / 4; i < e; i++) { |
| uint32_t * restrict d = (uint32_t* restrict)dest; |
| const uint32_t * restrict s = (const uint32_t* restrict)src; |
| d[i] = util_bswap32(s[i]); |
| } |
| return dest; |
| #else |
| return memcpy(dest, src, n); |
| #endif |
| } |
| |
| /** |
| * Clamp X to [MIN, MAX]. |
| * This is a macro to allow float, int, uint, etc. types. |
| * We arbitrarily turn NaN into MIN. |
| */ |
| #define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) ) |
| |
| #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) ) |
| #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) ) |
| |
| #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C)) |
| #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C)) |
| |
| #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D)) |
| #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D)) |
| |
| |
| /** |
| * Align a value, only works pot alignemnts. |
| */ |
| static inline int |
| align(int value, int alignment) |
| { |
| return (value + alignment - 1) & ~(alignment - 1); |
| } |
| |
| static inline uint64_t |
| align64(uint64_t value, unsigned alignment) |
| { |
| return (value + alignment - 1) & ~((uint64_t)alignment - 1); |
| } |
| |
| /** |
| * Works like align but on npot alignments. |
| */ |
| static inline size_t |
| util_align_npot(size_t value, size_t alignment) |
| { |
| if (value % alignment) |
| return value + (alignment - (value % alignment)); |
| return value; |
| } |
| |
| static inline unsigned |
| u_minify(unsigned value, unsigned levels) |
| { |
| return MAX2(1, value >> levels); |
| } |
| |
| #ifndef COPY_4V |
| #define COPY_4V( DST, SRC ) \ |
| do { \ |
| (DST)[0] = (SRC)[0]; \ |
| (DST)[1] = (SRC)[1]; \ |
| (DST)[2] = (SRC)[2]; \ |
| (DST)[3] = (SRC)[3]; \ |
| } while (0) |
| #endif |
| |
| |
| #ifndef COPY_4FV |
| #define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC) |
| #endif |
| |
| |
| #ifndef ASSIGN_4V |
| #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \ |
| do { \ |
| (DST)[0] = (V0); \ |
| (DST)[1] = (V1); \ |
| (DST)[2] = (V2); \ |
| (DST)[3] = (V3); \ |
| } while (0) |
| #endif |
| |
| |
| static inline uint32_t |
| util_unsigned_fixed(float value, unsigned frac_bits) |
| { |
| return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits)); |
| } |
| |
| static inline int32_t |
| util_signed_fixed(float value, unsigned frac_bits) |
| { |
| return (int32_t)(value * (1<<frac_bits)); |
| } |
| |
| unsigned |
| util_fpstate_get(void); |
| unsigned |
| util_fpstate_set_denorms_to_zero(unsigned current_fpstate); |
| void |
| util_fpstate_set(unsigned fpstate); |
| |
| |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* U_MATH_H */ |