blob: 9452a0e86c084a5f38162b878a5423947303072f [file] [log] [blame]
/* $Id: dd.h,v 1.41 2000/11/14 17:40:13 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.5
*
* Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef DD_INCLUDED
#define DD_INCLUDED
/* THIS FILE ONLY INCLUDED BY types.h !!!!! */
struct gl_pixelstore_attrib;
struct vertex_buffer;
struct immediate;
struct gl_pipeline;
struct gl_pipeline_stage;
/*
* Device Driver (DD) interface
*
*
* All device driver functions are accessed through pointers in the
* dd_function_table struct (defined below) which is stored in the GLcontext
* struct. Since the device driver is strictly accessed trough a table of
* function pointers we can:
* 1. switch between a number of different device drivers at runtime.
* 2. use optimized functions dependant on current rendering state or
* frame buffer configuration.
*
* The function pointers in the dd_function_table struct are divided into
* two groups: mandatory and optional.
* Mandatory functions have to be implemented by every device driver.
* Optional functions may or may not be implemented by the device driver.
* The optional functions provide ways to take advantage of special hardware
* or optimized algorithms.
*
* The function pointers in the dd_function_table struct should first be
* initialized in the driver's "MakeCurrent" function. The "MakeCurrent"
* function is a little different in each device driver. See the X/Mesa,
* GLX, or OS/Mesa drivers for examples.
*
* Later, Mesa may call the dd_function_table's UpdateState() function.
* This function should initialize the dd_function_table's pointers again.
* The UpdateState() function is called whenever the core (GL) rendering
* state is changed in a way which may effect rasterization. For example,
* the TriangleFunc() pointer may have to point to different functions
* depending on whether smooth or flat shading is enabled.
*
* Note that the first argument to every device driver function is a
* GLcontext *. In turn, the GLcontext->DriverCtx pointer points to
* the driver-specific context struct. See the X/Mesa or OS/Mesa interface
* for an example.
*
* For more information about writing a device driver see the ddsample.c
* file and other device drivers (X/xmesa[1234].c, OSMesa/osmesa.c, etc)
* for examples.
*
*
* Look below in the dd_function_table struct definition for descriptions
* of each device driver function.
*
*
* In the future more function pointers may be added for glReadPixels
* glCopyPixels, etc.
*
*
* Notes:
* ------
* RGBA = red/green/blue/alpha
* CI = color index (color mapped mode)
* mono = all pixels have the same color or index
*
* The write_ functions all take an array of mask flags which indicate
* whether or not the pixel should be written. One special case exists
* in the write_color_span function: if the mask array is NULL, then
* draw all pixels. This is an optimization used for glDrawPixels().
*
* IN ALL CASES:
* X coordinates start at 0 at the left and increase to the right
* Y coordinates start at 0 at the bottom and increase upward
*
*/
/* Mask bits sent to the driver Clear() function */
#define DD_FRONT_LEFT_BIT FRONT_LEFT_BIT /* 1 */
#define DD_FRONT_RIGHT_BIT FRONT_RIGHT_BIT /* 2 */
#define DD_BACK_LEFT_BIT BACK_LEFT_BIT /* 4 */
#define DD_BACK_RIGHT_BIT BACK_RIGHT_BIT /* 8 */
#define DD_DEPTH_BIT GL_DEPTH_BUFFER_BIT /* 0x00000100 */
#define DD_STENCIL_BIT GL_STENCIL_BUFFER_BIT /* 0x00000400 */
#define DD_ACCUM_BIT GL_ACCUM_BUFFER_BIT /* 0x00000200 */
/*
* Device Driver function table.
*/
struct dd_function_table {
/**********************************************************************
*** Mandatory functions: these functions must be implemented by ***
*** every device driver. ***
**********************************************************************/
const GLubyte * (*GetString)( GLcontext *ctx, GLenum name );
/* Return a string as needed by glGetString().
* Only the GL_RENDERER token must be implemented. Otherwise,
* NULL can be returned.
*/
GLuint UpdateStateNotify;
/*
* Tell mesa exactly when to call UpdateState. This is a bitwise
* or of the _NEW_* flags defined in types.h.
*/
void (*UpdateState)( GLcontext *ctx );
/*
* UpdateState() is called whenver Mesa thinks the device driver should
* update its state and/or the other pointers (such as PointsFunc,
* LineFunc, or TriangleFunc).
*/
void (*ClearIndex)( GLcontext *ctx, GLuint index );
/*
* Called whenever glClearIndex() is called. Set the index for clearing
* the color buffer when in color index mode.
*/
void (*ClearColor)( GLcontext *ctx, GLchan red, GLchan green,
GLchan blue, GLchan alpha );
/*
* Called whenever glClearColor() is called. Set the color for clearing
* the color buffer when in RGBA mode.
*/
GLbitfield (*Clear)( GLcontext *ctx, GLbitfield mask, GLboolean all,
GLint x, GLint y, GLint width, GLint height );
/* Clear the color/depth/stencil/accum buffer(s).
* 'mask' is a bitmask of the DD_*_BIT values defined above that indicates
* which buffers need to be cleared. The driver should clear those
* buffers then return a new bitmask indicating which buffers should be
* cleared by software Mesa.
* If 'all' is true then the clear the whole buffer, else clear only the
* region defined by (x,y,width,height).
* This function must obey the glColorMask, glIndexMask and glStencilMask
* settings! Software Mesa can do masked clears if the device driver can't.
*/
GLboolean (*SetDrawBuffer)( GLcontext *ctx, GLenum buffer );
/*
* Specifies the current buffer for writing.
* The following values must be accepted when applicable:
* GL_FRONT_LEFT - this buffer always exists
* GL_BACK_LEFT - when double buffering
* GL_FRONT_RIGHT - when using stereo
* GL_BACK_RIGHT - when using stereo and double buffering
* The folowing values may optionally be accepted. Return GL_TRUE
* if accepted, GL_FALSE if not accepted. In practice, only drivers
* which can write to multiple color buffers at once should accept
* these values.
* GL_FRONT - write to front left and front right if it exists
* GL_BACK - write to back left and back right if it exists
* GL_LEFT - write to front left and back left if it exists
* GL_RIGHT - write to right left and back right if they exist
* GL_FRONT_AND_BACK - write to all four buffers if they exist
* GL_NONE - disable buffer write in device driver.
*/
void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
GLenum buffer );
/*
* Specifies the current buffer for reading.
* colorBuffer will be one of:
* GL_FRONT_LEFT - this buffer always exists
* GL_BACK_LEFT - when double buffering
* GL_FRONT_RIGHT - when using stereo
* GL_BACK_RIGHT - when using stereo and double buffering
*/
void (*GetBufferSize)( GLcontext *ctx, GLuint *width, GLuint *height );
/*
* Returns the width and height of the current color buffer.
*/
/***
*** Functions for writing pixels to the frame buffer:
***/
void (*WriteRGBASpan)( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgba[][4], const GLubyte mask[] );
void (*WriteRGBSpan)( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgb[][3], const GLubyte mask[] );
/* Write a horizontal run of RGBA or RGB pixels.
* If mask is NULL, draw all pixels.
* If mask is not null, only draw pixel [i] when mask [i] is true.
*/
void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLchan color[4], const GLubyte mask[] );
/* Write a horizontal run of RGBA pixels all with the same color.
*/
void (*WriteRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
CONST GLchan rgba[][4], const GLubyte mask[] );
/* Write array of RGBA pixels at random locations.
*/
void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLchan color[4], const GLubyte mask[] );
/* Write an array of mono-RGBA pixels at random locations.
*/
void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLuint index[], const GLubyte mask[] );
void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLubyte index[], const GLubyte mask[] );
/* Write a horizontal run of CI pixels. One function is for 32bpp
* indexes and the other for 8bpp pixels (the common case). You mus
* implement both for color index mode.
*/
void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
GLuint colorIndex, const GLubyte mask[] );
/* Write a horizontal run of color index pixels using the color index
* last specified by the Index() function.
*/
void (*WriteCI32Pixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLuint index[], const GLubyte mask[] );
/*
* Write a random array of CI pixels.
*/
void (*WriteMonoCIPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint colorIndex, const GLubyte mask[] );
/* Write a random array of color index pixels using the color index
* last specified by the Index() function.
*/
/***
*** Functions to read pixels from frame buffer:
***/
void (*ReadCI32Span)( const GLcontext *ctx,
GLuint n, GLint x, GLint y, GLuint index[] );
/* Read a horizontal run of color index pixels.
*/
void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
GLchan rgba[][4] );
/* Read a horizontal run of RGBA pixels.
*/
void (*ReadCI32Pixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint indx[], const GLubyte mask[] );
/* Read a random array of CI pixels.
*/
void (*ReadRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLchan rgba[][4], const GLubyte mask[] );
/* Read a random array of RGBA pixels.
*/
/**********************************************************************
*** Optional functions: these functions may or may not be ***
*** implemented by the device driver. If the device driver ***
*** doesn't implement them it should never touch these pointers ***
*** since Mesa will either set them to NULL or point them at a ***
*** fall-back function. ***
**********************************************************************/
void (*Finish)( GLcontext *ctx );
/*
* This is called whenever glFinish() is called.
*/
void (*Flush)( GLcontext *ctx );
/*
* This is called whenever glFlush() is called.
*/
void (*Error)( GLcontext *ctx );
/*
* Called whenever an error is generated. ctx->ErrorValue contains
* the error value.
*/
void (*NearFar)( GLcontext *ctx, GLfloat nearVal, GLfloat farVal );
/*
* Called from glFrustum and glOrtho to tell device driver the
* near and far clipping plane Z values. The 3Dfx driver, for example,
* uses this.
*/
/***
*** For supporting hardware Z buffers:
*** Either ALL or NONE of these functions must be implemented!
*** NOTE that Each depth value is a 32-bit GLuint. If the depth
*** buffer is less than 32 bits deep then the extra upperbits are zero.
***/
void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLdepth depth[], const GLubyte mask[] );
/* Write a horizontal span of values into the depth buffer. Only write
* depth[i] value if mask[i] is nonzero.
*/
void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
GLdepth depth[] );
/* Read a horizontal span of values from the depth buffer.
*/
void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
const GLdepth depth[], const GLubyte mask[] );
/* Write an array of randomly positioned depth values into the
* depth buffer. Only write depth[i] value if mask[i] is nonzero.
*/
void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
GLdepth depth[] );
/* Read an array of randomly positioned depth values from the depth buffer.
*/
/***
*** For supporting hardware stencil buffers:
*** Either ALL or NONE of these functions must be implemented!
***/
void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLstencil stencil[], const GLubyte mask[] );
/* Write a horizontal span of stencil values into the stencil buffer.
* If mask is NULL, write all stencil values.
* Else, only write stencil[i] if mask[i] is non-zero.
*/
void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
GLstencil stencil[] );
/* Read a horizontal span of stencil values from the stencil buffer.
*/
void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
const GLstencil stencil[],
const GLubyte mask[] );
/* Write an array of stencil values into the stencil buffer.
* If mask is NULL, write all stencil values.
* Else, only write stencil[i] if mask[i] is non-zero.
*/
void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
GLstencil stencil[] );
/* Read an array of stencil values from the stencil buffer.
*/
/***
*** glDraw/Read/CopyPixels and glBitmap functions:
***/
GLboolean (*DrawPixels)( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const GLvoid *pixels );
/* This is called by glDrawPixels.
* 'unpack' describes how to unpack the source image data.
* Return GL_TRUE if the driver succeeds, return GL_FALSE if core Mesa
* must do the job.
*/
GLboolean (*ReadPixels)( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
GLvoid *dest );
/* Called by glReadPixels.
* Return GL_TRUE if operation completed, else return GL_FALSE.
* This function must respect all glPixelTransfer settings.
*/
GLboolean (*CopyPixels)( GLcontext *ctx,
GLint srcx, GLint srcy,
GLsizei width, GLsizei height,
GLint dstx, GLint dsty, GLenum type );
/* Do a glCopyPixels. Return GL_TRUE if operation completed, else
* return GL_FALSE. This function must respect all rasterization
* state, glPixelTransfer, glPixelZoom, etc.
*/
GLboolean (*Bitmap)( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap );
/* This is called by glBitmap. Works the same as DrawPixels, above.
*/
GLboolean (*Accum)( GLcontext *ctx, GLenum op,
GLfloat value, GLint xpos, GLint ypos,
GLint width, GLint height );
/* Hardware accum buffer.
*/
/***
*** Texture mapping functions:
***/
GLboolean (*TexImage1D)( GLcontext *ctx, GLenum target, GLint level,
GLenum format, GLenum type, const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy );
GLboolean (*TexImage2D)( GLcontext *ctx, GLenum target, GLint level,
GLenum format, GLenum type, const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy );
GLboolean (*TexImage3D)( GLcontext *ctx, GLenum target, GLint level,
GLenum format, GLenum type, const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy );
/* Called by glTexImage1/2/3D.
* Will not be called if any glPixelTransfer operations are enabled.
* Arguments:
* <target>, <level>, <format>, <type> and <pixels> are user specified.
* <packing> indicates the image packing of pixels.
* <texObj> is the target texture object.
* <texImage> is the target texture image. It will have the texture
* width, height, depth, border and internalFormat information.
* <retainInternalCopy> is returned by this function and indicates whether
* core Mesa should keep an internal copy of the texture image.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job. If GL_FALSE is returned, this function will be
* called a second time after the texture image has been unpacked into
* GLubytes. It may be easier for the driver to handle then.
*/
GLboolean (*TexSubImage1D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLsizei width,
GLenum format, GLenum type,
const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
GLboolean (*TexSubImage2D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
GLboolean (*TexSubImage3D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLint depth,
GLenum format, GLenum type,
const GLvoid *pixels,
const struct gl_pixelstore_attrib *packing,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
/* Called by glTexSubImage1/2/3D.
* Will not be called if any glPixelTransfer operations are enabled.
* Arguments:
* <target>, <level>, <xoffset>, <yoffset>, <zoffset>, <width>, <height>,
* <depth>, <format>, <type> and <pixels> are user specified.
* <packing> indicates the image packing of pixels.
* <texObj> is the target texture object.
* <texImage> is the target texture image. It will have the texture
* width, height, border and internalFormat information.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job. If GL_FALSE is returned, then TexImage1/2/3D will
* be called with the complete texture image.
*/
GLboolean (*CopyTexImage1D)( GLcontext *ctx, GLenum target, GLint level,
GLenum internalFormat, GLint x, GLint y,
GLsizei width, GLint border );
GLboolean (*CopyTexImage2D)( GLcontext *ctx, GLenum target, GLint level,
GLenum internalFormat, GLint x, GLint y,
GLsizei width, GLsizei height, GLint border );
/* Called by glCopyTexImage1D and glCopyTexImage2D.
* Will not be called if any glPixelTransfer operations are enabled.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job.
*/
GLboolean (*CopyTexSubImage1D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset,
GLint x, GLint y, GLsizei width );
GLboolean (*CopyTexSubImage2D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y,
GLsizei width, GLsizei height );
GLboolean (*CopyTexSubImage3D)( GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y,
GLsizei width, GLsizei height );
/* Called by glCopyTexSubImage1/2/3D.
* Will not be called if any glPixelTransfer operations are enabled.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job.
*/
GLvoid *(*GetTexImage)( GLcontext *ctx, GLenum target, GLint level,
const struct gl_texture_object *texObj,
GLenum *formatOut, GLenum *typeOut,
GLboolean *freeImageOut );
/* Called by glGetTexImage or by core Mesa when a texture image
* is needed for software fallback rendering.
* Return the address of the texture image or NULL if failure.
* The image must be tightly packed (i.e. row stride = image width)
* Return the image's format and type in formatOut and typeOut.
* The format and type must be values which are accepted by glTexImage.
* Set the freeImageOut flag if the returned image should be deallocated
* with FREE() when finished.
* The size of the image can be deduced from the target and level.
* Core Mesa will perform any image format/type conversions that are needed.
*/
GLboolean (*TestProxyTexImage)(GLcontext *ctx, GLenum target,
GLint level, GLint internalFormat,
GLenum format, GLenum type,
GLint width, GLint height,
GLint depth, GLint border);
/* Called by glTexImage[123]D when user specifies a proxy texture
* target. Return GL_TRUE if the proxy test passes, return GL_FALSE
* if the test fails.
*/
GLboolean (*CompressedTexImage1D)( GLcontext *ctx, GLenum target,
GLint level, GLsizei imageSize,
const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy);
GLboolean (*CompressedTexImage2D)( GLcontext *ctx, GLenum target,
GLint level, GLsizei imageSize,
const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy);
GLboolean (*CompressedTexImage3D)( GLcontext *ctx, GLenum target,
GLint level, GLsizei imageSize,
const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage,
GLboolean *retainInternalCopy);
/* Called by glCompressedTexImage1/2/3D.
* Arguments:
* <target>, <level>, <internalFormat>, <data> are user specified.
* <texObj> is the target texture object.
* <texImage> is the target texture image. It will have the texture
* width, height, depth, border and internalFormat information.
* <retainInternalCopy> is returned by this function and indicates whether
* core Mesa should keep an internal copy of the texture image.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job.
*/
GLboolean (*CompressedTexSubImage1D)( GLcontext *ctx, GLenum target,
GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
GLboolean (*CompressedTexSubImage2D)( GLcontext *ctx, GLenum target,
GLint level, GLint xoffset,
GLint yoffset, GLsizei width,
GLint height, GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
GLboolean (*CompressedTexSubImage3D)( GLcontext *ctx, GLenum target,
GLint level, GLint xoffset,
GLint yoffset, GLint zoffset,
GLsizei width, GLint height,
GLint depth, GLenum format,
GLsizei imageSize, const GLvoid *data,
struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
/* Called by glCompressedTexSubImage1/2/3D.
* Arguments:
* <target>, <level>, <x/z/zoffset>, <width>, <height>, <depth>,
* <imageSize>, and <data> are user specified.
* <texObj> is the target texture object.
* <texImage> is the target texture image. It will have the texture
* width, height, depth, border and internalFormat information.
* Return GL_TRUE if operation completed, return GL_FALSE if core Mesa
* should do the job.
*/
GLint (*BaseCompressedTexFormat)(GLcontext *ctx,
GLint internalFormat);
/* Called to compute the base format for a specific compressed
* format. Return -1 if the internalFormat is not a specific
* compressed format that the driver recognizes. Note the
* return value differences between this function and
* SpecificCompressedTexFormat below.
*/
GLint (*SpecificCompressedTexFormat)(GLcontext *ctx,
GLint internalFormat,
GLint numDimensions,
GLint *levelp,
GLsizei *widthp,
GLsizei *heightp,
GLsizei *depthp,
GLint *borderp,
GLenum *formatp,
GLenum *typep);
/* Called to turn a generic texture format into a specific
* texture format. For example, if a driver implements
* GL_3DFX_texture_compression_FXT1, this would map
* GL_COMPRESSED_RGBA_ARB to GL_COMPRESSED_RGBA_FXT1_3DFX.
*
* If the driver does not know how to handle the compressed
* format, then just return the generic format, and Mesa will
* do the right thing with it.
*/
GLboolean (*IsCompressedFormat)(GLcontext *ctx, GLint internalFormat);
/* Called to tell if a format is a compressed format.
*/
GLsizei (*CompressedImageSize)(GLcontext *ctx,
GLenum internalFormat,
GLuint numDimensions,
GLuint width,
GLuint height,
GLuint depth);
/* Calculate the size of a compressed image, given the image's
* format and dimensions.
*/
void (*GetCompressedTexImage)( GLcontext *ctx, GLenum target,
GLint lod, void *image,
const struct gl_texture_object *texObj,
struct gl_texture_image *texImage );
/* Called by glGetCompressedTexImageARB.
* <target>, <lod>, <image> are specified by user.
* <texObj> is the source texture object.
* <texImage> is the source texture image.
*/
void (*TexEnv)( GLcontext *ctx, GLenum target, GLenum pname,
const GLfloat *param );
/* Called by glTexEnv*().
*/
void (*TexParameter)( GLcontext *ctx, GLenum target,
struct gl_texture_object *texObj,
GLenum pname, const GLfloat *params );
/* Called by glTexParameter*().
* <target> is user specified
* <texObj> the texture object to modify
* <pname> is one of GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,
* GL_TEXTURE_WRAP_[STR], or GL_TEXTURE_BORDER_COLOR.
* <params> is user specified.
*/
void (*BindTexture)( GLcontext *ctx, GLenum target,
struct gl_texture_object *tObj );
/* Called by glBindTexture().
*/
void (*DeleteTexture)( GLcontext *ctx, struct gl_texture_object *tObj );
/* Called when a texture object is about to be deallocated. Driver
* should free anything attached to the DriverData pointers.
*/
GLboolean (*IsTextureResident)( GLcontext *ctx,
struct gl_texture_object *t );
/* Called by glAreTextureResident().
*/
void (*PrioritizeTexture)( GLcontext *ctx, struct gl_texture_object *t,
GLclampf priority );
/* Called by glPrioritizeTextures().
*/
void (*ActiveTexture)( GLcontext *ctx, GLuint texUnitNumber );
/* Called by glActiveTextureARB to set current texture unit.
*/
void (*UpdateTexturePalette)( GLcontext *ctx,
struct gl_texture_object *tObj );
/* Called when the texture's color lookup table is changed.
* If tObj is NULL then the shared texture palette ctx->Texture.Palette
* is to be updated.
*/
/***
*** Accelerated point, line, polygon, quad and rect functions:
***/
points_func PointsFunc;
line_func LineFunc;
triangle_func TriangleFunc;
quad_func QuadFunc;
rect_func RectFunc;
/***
*** Transformation/Rendering functions
***/
void (*RenderStart)( GLcontext *ctx );
void (*RenderFinish)( GLcontext *ctx );
/* KW: These replace Begin and End, and have more relaxed semantics.
* They are called prior-to and after one or more vb flush, and are
* thus decoupled from the gl_begin/gl_end pairs, which are possibly
* more frequent. If a begin/end pair covers >1 vertex buffer, these
* are called at most once for the pair. (a bit broken at present)
*/
void (*RasterSetup)( struct vertex_buffer *VB, GLuint start, GLuint end );
/* This function, if not NULL, is called whenever new window coordinates
* are put in the vertex buffer. The vertices in question are those n
* such that start <= n < end.
* The device driver can convert the window coords to its own specialized
* format. The 3Dfx driver uses this.
*
* Note: Deprecated in favour of RegisterPipelineStages, below.
*/
render_func *RenderVBClippedTab;
render_func *RenderVBCulledTab;
render_func *RenderVBRawTab;
/* These function tables allow the device driver to rasterize an
* entire begin/end group of primitives at once. See the
* gl_render_vb() function in vbrender.c for more details.
*/
GLboolean (*MultipassFunc)( struct vertex_buffer *VB, GLuint passno );
/* Driver may request additional render passes by returning GL_TRUE
* when this function is called. This function will be called
* after the first pass, and passes will be made until the function
* returns GL_FALSE. If no function is registered, only one pass
* is made.
*
* This function will be first invoked with passno == 1.
*/
/***
*** NEW in Mesa 3.x
***/
void (*LightingSpaceChange)( GLcontext *ctx );
/* Notify driver that the special derived value _NeedEyeCoords has
* changed.
*/
void (*RegisterVB)( struct vertex_buffer *VB );
void (*UnregisterVB)( struct vertex_buffer *VB );
/* When Mesa creates a new vertex buffer it calls Driver.RegisterVB()
* so the device driver can allocate its own vertex buffer data and
* hook it to the VB->driver_data pointer.
* When Mesa destroys a vertex buffer it calls Driver.UnegisterVB()
* so the driver can deallocate its own data attached to VB->driver_data.
*/
void (*ResetVB)( struct vertex_buffer *VB );
void (*ResetCvaVB)( struct vertex_buffer *VB, GLuint stages );
/* Do any reset operations necessary to the driver data associated
* with these vertex buffers.
*/
GLuint RenderVectorFlags;
/* What do the render tables require of the vectors they deal
* with?
*/
GLuint (*RegisterPipelineStages)( struct gl_pipeline_stage *out,
const struct gl_pipeline_stage *in,
GLuint nr );
/* Register new pipeline stages, or modify existing ones. See also
* the OptimizePipeline() functions.
*/
GLboolean (*BuildPrecalcPipeline)( GLcontext *ctx );
GLboolean (*BuildEltPipeline)( GLcontext *ctx );
/* Perform the full pipeline build, or return false.
*/
void (*OptimizePrecalcPipeline)( GLcontext *ctx, struct gl_pipeline *pipe );
void (*OptimizeImmediatePipeline)( GLcontext *ctx, struct gl_pipeline *pipe);
/* Check to see if a fast path exists for this combination of stages
* in the precalc and immediate (elt) pipelines.
*/
/*
* State-changing functions (drawing functions are above)
*
* These functions are called by their corresponding OpenGL API functions.
* They're ALSO called by the gl_PopAttrib() function!!!
* May add more functions like these to the device driver in the future.
* This should reduce the amount of state checking that
* the driver's UpdateState() function must do.
*/
void (*AlphaFunc)(GLcontext *ctx, GLenum func, GLclampf ref);
void (*BlendEquation)(GLcontext *ctx, GLenum mode);
void (*BlendFunc)(GLcontext *ctx, GLenum sfactor, GLenum dfactor);
void (*BlendFuncSeparate)( GLcontext *ctx, GLenum sfactorRGB,
GLenum dfactorRGB, GLenum sfactorA,
GLenum dfactorA );
void (*ClearDepth)(GLcontext *ctx, GLclampd d);
void (*ColorMask)(GLcontext *ctx, GLboolean rmask, GLboolean gmask,
GLboolean bmask, GLboolean amask );
void (*CullFace)(GLcontext *ctx, GLenum mode);
void (*FrontFace)(GLcontext *ctx, GLenum mode);
void (*DepthFunc)(GLcontext *ctx, GLenum func);
void (*DepthMask)(GLcontext *ctx, GLboolean flag);
void (*DepthRange)(GLcontext *ctx, GLclampd nearval, GLclampd farval);
void (*Enable)(GLcontext* ctx, GLenum cap, GLboolean state);
void (*Fogfv)(GLcontext *ctx, GLenum pname, const GLfloat *params);
void (*Hint)(GLcontext *ctx, GLenum target, GLenum mode);
void (*IndexMask)(GLcontext *ctx, GLuint mask);
void (*Lightfv)(GLcontext *ctx, GLenum light,
GLenum pname, const GLfloat *params );
void (*LightModelfv)(GLcontext *ctx, GLenum pname, const GLfloat *params);
void (*LineStipple)(GLcontext *ctx, GLint factor, GLushort pattern );
void (*LineWidth)(GLcontext *ctx, GLfloat width);
void (*LogicOpcode)(GLcontext *ctx, GLenum opcode);
void (*PolygonMode)(GLcontext *ctx, GLenum face, GLenum mode);
void (*PolygonStipple)(GLcontext *ctx, const GLubyte *mask );
void (*Scissor)(GLcontext *ctx, GLint x, GLint y, GLsizei w, GLsizei h);
void (*ShadeModel)(GLcontext *ctx, GLenum mode);
void (*ClearStencil)(GLcontext *ctx, GLint s);
void (*StencilFunc)(GLcontext *ctx, GLenum func, GLint ref, GLuint mask);
void (*StencilMask)(GLcontext *ctx, GLuint mask);
void (*StencilOp)(GLcontext *ctx, GLenum fail, GLenum zfail, GLenum zpass);
void (*Viewport)(GLcontext *ctx, GLint x, GLint y, GLsizei w, GLsizei h);
/* State-query functions
*
* Return GL_TRUE if query was completed, GL_FALSE otherwise.
*/
GLboolean (*GetBooleanv)(GLcontext *ctx, GLenum pname, GLboolean *result);
GLboolean (*GetDoublev)(GLcontext *ctx, GLenum pname, GLdouble *result);
GLboolean (*GetFloatv)(GLcontext *ctx, GLenum pname, GLfloat *result);
GLboolean (*GetIntegerv)(GLcontext *ctx, GLenum pname, GLint *result);
GLboolean (*GetPointerv)(GLcontext *ctx, GLenum pname, GLvoid **result);
};
#endif