blob: b516193458c8400361f8c4d85c52a3e4d9e12060 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
static void
gen8_cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
static const uint32_t push_constant_opcodes[] = {
[VK_SHADER_STAGE_VERTEX] = 21,
[VK_SHADER_STAGE_TESS_CONTROL] = 25, /* HS */
[VK_SHADER_STAGE_TESS_EVALUATION] = 26, /* DS */
[VK_SHADER_STAGE_GEOMETRY] = 22,
[VK_SHADER_STAGE_FRAGMENT] = 23,
[VK_SHADER_STAGE_COMPUTE] = 0,
};
VkShaderStage stage;
VkShaderStageFlags flushed = 0;
for_each_bit(stage, cmd_buffer->state.push_constants_dirty) {
struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
if (state.offset == 0)
continue;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_CONSTANT_VS,
._3DCommandSubOpcode = push_constant_opcodes[stage],
.ConstantBody = {
.PointerToConstantBuffer0 = { .offset = state.offset },
.ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
});
flushed |= 1 << stage;
}
cmd_buffer->state.push_constants_dirty &= ~flushed;
}
static void
gen8_cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t *p;
uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
if (cmd_buffer->state.current_pipeline != _3D) {
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
.PipelineSelection = _3D);
cmd_buffer->state.current_pipeline = _3D;
}
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GEN8_3DSTATE_VERTEX_BUFFERS);
uint32_t vb, i = 0;
for_each_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GEN8_VERTEX_BUFFER_STATE state = {
.VertexBufferIndex = vb,
.MemoryObjectControlState = GEN8_MOCS,
.AddressModifyEnable = true,
.BufferPitch = pipeline->binding_stride[vb],
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset
};
GEN8_VERTEX_BUFFER_STATE_pack(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
if (cmd_buffer->state.dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY) {
/* If somebody compiled a pipeline after starting a command buffer the
* scratch bo may have grown since we started this cmd buffer (and
* emitted STATE_BASE_ADDRESS). If we're binding that pipeline now,
* reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */
if (cmd_buffer->state.scratch_size < pipeline->total_scratch)
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
}
if (cmd_buffer->state.descriptors_dirty)
anv_flush_descriptor_sets(cmd_buffer);
if (cmd_buffer->state.push_constants_dirty)
gen8_cmd_buffer_flush_push_constants(cmd_buffer);
if (cmd_buffer->state.dirty & ANV_CMD_BUFFER_VP_DIRTY) {
struct anv_dynamic_vp_state *vp_state = cmd_buffer->state.vp_state;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SCISSOR_STATE_POINTERS,
.ScissorRectPointer = vp_state->scissor.offset);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
.CCViewportPointer = vp_state->cc_vp.offset);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
.SFClipViewportPointer = vp_state->sf_clip_vp.offset);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_RS_DIRTY)) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.rs_state->gen8.sf,
pipeline->gen8.sf);
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.rs_state->gen8.raster,
pipeline->gen8.raster);
}
if (cmd_buffer->state.ds_state &&
(cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_DS_DIRTY))) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.ds_state->gen8.wm_depth_stencil,
pipeline->gen8.wm_depth_stencil);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_CB_DIRTY |
ANV_CMD_BUFFER_DS_DIRTY)) {
struct anv_state state;
if (cmd_buffer->state.ds_state == NULL)
state = anv_cmd_buffer_emit_dynamic(cmd_buffer,
cmd_buffer->state.cb_state->color_calc_state,
GEN8_COLOR_CALC_STATE_length, 64);
else if (cmd_buffer->state.cb_state == NULL)
state = anv_cmd_buffer_emit_dynamic(cmd_buffer,
cmd_buffer->state.ds_state->gen8.color_calc_state,
GEN8_COLOR_CALC_STATE_length, 64);
else
state = anv_cmd_buffer_merge_dynamic(cmd_buffer,
cmd_buffer->state.ds_state->gen8.color_calc_state,
cmd_buffer->state.cb_state->color_calc_state,
GEN8_COLOR_CALC_STATE_length, 64);
anv_batch_emit(&cmd_buffer->batch,
GEN8_3DSTATE_CC_STATE_POINTERS,
.ColorCalcStatePointer = state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY |
ANV_CMD_BUFFER_INDEX_BUFFER_DIRTY)) {
anv_batch_emit_merge(&cmd_buffer->batch,
cmd_buffer->state.state_vf, pipeline->gen8.vf);
}
cmd_buffer->state.vb_dirty &= ~vb_emit;
cmd_buffer->state.dirty = 0;
}
void gen8_CmdDraw(
VkCmdBuffer cmdBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
gen8_cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.VertexAccessType = SEQUENTIAL,
.VertexCountPerInstance = vertexCount,
.StartVertexLocation = firstVertex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = 0);
}
void gen8_CmdDrawIndexed(
VkCmdBuffer cmdBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
gen8_cmd_buffer_flush_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.VertexAccessType = RANDOM,
.VertexCountPerInstance = indexCount,
.StartVertexLocation = firstIndex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = vertexOffset);
}
static void
emit_lrm(struct anv_batch *batch,
uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
}
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_IMM,
.RegisterOffset = reg,
.DataDWord = imm);
}
/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET 0x2420
#define GEN7_3DPRIM_START_VERTEX 0x2430
#define GEN7_3DPRIM_VERTEX_COUNT 0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
void gen8_CmdDrawIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
gen8_cmd_buffer_flush_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.IndirectParameterEnable = true,
.VertexAccessType = SEQUENTIAL);
}
void gen8_CmdBindIndexBuffer(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
static const uint32_t vk_to_gen_index_type[] = {
[VK_INDEX_TYPE_UINT16] = INDEX_WORD,
[VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
};
struct GEN8_3DSTATE_VF vf = {
GEN8_3DSTATE_VF_header,
.CutIndex = (indexType == VK_INDEX_TYPE_UINT16) ? UINT16_MAX : UINT32_MAX,
};
GEN8_3DSTATE_VF_pack(NULL, cmd_buffer->state.state_vf, &vf);
cmd_buffer->state.dirty |= ANV_CMD_BUFFER_INDEX_BUFFER_DIRTY;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_INDEX_BUFFER,
.IndexFormat = vk_to_gen_index_type[indexType],
.MemoryObjectControlState = GEN8_MOCS,
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset);
}
static VkResult
gen8_flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = anv_cmd_buffer_emit_samplers(cmd_buffer,
VK_SHADER_STAGE_COMPUTE, &samplers);
if (result != VK_SUCCESS)
return result;
result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
VK_SHADER_STAGE_COMPUTE, &surfaces);
if (result != VK_SUCCESS)
return result;
struct GEN8_INTERFACE_DESCRIPTOR_DATA desc = {
.KernelStartPointer = pipeline->cs_simd,
.KernelStartPointerHigh = 0,
.BindingTablePointer = surfaces.offset,
.BindingTableEntryCount = 0,
.SamplerStatePointer = samplers.offset,
.SamplerCount = 0,
.NumberofThreadsinGPGPUThreadGroup = 0 /* FIXME: Really? */
};
uint32_t size = GEN8_INTERFACE_DESCRIPTOR_DATA_length * sizeof(uint32_t);
struct anv_state state =
anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);
GEN8_INTERFACE_DESCRIPTOR_DATA_pack(NULL, state.map, &desc);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
.InterfaceDescriptorTotalLength = size,
.InterfaceDescriptorDataStartAddress = state.offset);
return VK_SUCCESS;
}
static void
gen8_cmd_buffer_flush_compute_state(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
VkResult result;
assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
if (cmd_buffer->state.current_pipeline != GPGPU) {
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
.PipelineSelection = GPGPU);
cmd_buffer->state.current_pipeline = GPGPU;
}
if (cmd_buffer->state.compute_dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
(cmd_buffer->state.compute_dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)) {
result = gen8_flush_compute_descriptor_set(cmd_buffer);
assert(result == VK_SUCCESS);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE;
}
cmd_buffer->state.compute_dirty = 0;
}
void gen8_CmdDrawIndexedIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t count,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
gen8_cmd_buffer_flush_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
.IndirectParameterEnable = true,
.VertexAccessType = RANDOM);
}
void gen8_CmdDispatch(
VkCmdBuffer cmdBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
gen8_cmd_buffer_flush_compute_state(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GEN8_GPGPU_WALKER,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max,
.ThreadGroupIDXDimension = x,
.ThreadGroupIDYDimension = y,
.ThreadGroupIDZDimension = z,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_STATE_FLUSH);
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
void gen8_CmdDispatchIndirect(
VkCmdBuffer cmdBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
gen8_cmd_buffer_flush_compute_state(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
anv_batch_emit(&cmd_buffer->batch, GEN8_GPGPU_WALKER,
.IndirectParameterEnable = true,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GEN8_MEDIA_STATE_FLUSH);
}
static void
gen8_cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct anv_image_view *iview =
anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
const struct anv_image *image = iview ? iview->image : NULL;
const bool has_depth = iview && iview->format->depth_format;
const bool has_stencil = iview && iview->format->has_stencil;
/* FIXME: Implement the PMA stall W/A */
/* FIXME: Width and Height are wrong */
/* Emit 3DSTATE_DEPTH_BUFFER */
if (has_depth) {
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DEPTH_BUFFER,
.SurfaceType = SURFTYPE_2D,
.DepthWriteEnable = iview->format->depth_format,
.StencilWriteEnable = has_stencil,
.HierarchicalDepthBufferEnable = false,
.SurfaceFormat = iview->format->depth_format,
.SurfacePitch = image->depth_surface.stride - 1,
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->depth_surface.offset,
},
.Height = fb->height - 1,
.Width = fb->width - 1,
.LOD = 0,
.Depth = 1 - 1,
.MinimumArrayElement = 0,
.DepthBufferObjectControlState = GEN8_MOCS,
.RenderTargetViewExtent = 1 - 1,
.SurfaceQPitch = image->depth_surface.qpitch >> 2);
} else {
/* Even when no depth buffer is present, the hardware requires that
* 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
*
* If a null depth buffer is bound, the driver must instead bind depth as:
* 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
* 3DSTATE_DEPTH.Width = 1
* 3DSTATE_DEPTH.Height = 1
* 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
* 3DSTATE_DEPTH.SurfaceBaseAddress = 0
* 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
*
* The PRM is wrong, though. The width and height must be programmed to
* actual framebuffer's width and height, even when neither depth buffer
* nor stencil buffer is present.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DEPTH_BUFFER,
.SurfaceType = SURFTYPE_2D,
.SurfaceFormat = D16_UNORM,
.Width = fb->width - 1,
.Height = fb->height - 1,
.StencilWriteEnable = has_stencil);
}
/* Emit 3DSTATE_STENCIL_BUFFER */
if (has_stencil) {
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STENCIL_BUFFER,
.StencilBufferEnable = true,
.StencilBufferObjectControlState = GEN8_MOCS,
/* Stencil buffers have strange pitch. The PRM says:
*
* The pitch must be set to 2x the value computed based on width,
* as the stencil buffer is stored with two rows interleaved.
*/
.SurfacePitch = 2 * image->stencil_surface.stride - 1,
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->offset + image->stencil_surface.offset,
},
.SurfaceQPitch = image->stencil_surface.stride >> 2);
} else {
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STENCIL_BUFFER);
}
/* Disable hierarchial depth buffers. */
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_HIER_DEPTH_BUFFER);
/* Clear the clear params. */
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_CLEAR_PARAMS);
}
void
gen8_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
gen8_cmd_buffer_emit_depth_stencil(cmd_buffer);
}
void gen8_CmdBeginRenderPass(
VkCmdBuffer cmdBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkRenderPassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
const VkRect2D *render_area = &pRenderPassBegin->renderArea;
anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DRAWING_RECTANGLE,
.ClippedDrawingRectangleYMin = render_area->offset.y,
.ClippedDrawingRectangleXMin = render_area->offset.x,
.ClippedDrawingRectangleYMax =
render_area->offset.y + render_area->extent.height - 1,
.ClippedDrawingRectangleXMax =
render_area->offset.x + render_area->extent.width - 1,
.DrawingRectangleOriginY = 0,
.DrawingRectangleOriginX = 0);
anv_cmd_buffer_clear_attachments(cmd_buffer, pass,
pRenderPassBegin->pClearValues);
gen8_cmd_buffer_begin_subpass(cmd_buffer, pass->subpasses);
}
void gen8_CmdNextSubpass(
VkCmdBuffer cmdBuffer,
VkRenderPassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
assert(cmd_buffer->level == VK_CMD_BUFFER_LEVEL_PRIMARY);
gen8_cmd_buffer_begin_subpass(cmd_buffer, cmd_buffer->state.subpass + 1);
}
void gen8_CmdEndRenderPass(
VkCmdBuffer cmdBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
/* Emit a flushing pipe control at the end of a pass. This is kind of a
* hack but it ensures that render targets always actually get written.
* Eventually, we should do flushing based on image format transitions
* or something of that nature.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.PostSyncOperation = NoWrite,
.RenderTargetCacheFlushEnable = true,
.InstructionCacheInvalidateEnable = true,
.DepthCacheFlushEnable = true,
.VFCacheInvalidationEnable = true,
.TextureCacheInvalidationEnable = true,
.CommandStreamerStallEnable = true);
}
static void
emit_ps_depth_count(struct anv_batch *batch,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GEN8_PIPE_CONTROL,
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WritePSDepthCount,
.Address = { bo, offset }); /* FIXME: This is only lower 32 bits */
}
void gen8_CmdBeginQuery(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t slot,
VkQueryControlFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
slot * sizeof(struct anv_query_pool_slot));
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
void gen8_CmdEndQuery(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t slot)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
slot * sizeof(struct anv_query_pool_slot) + 8);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
#define TIMESTAMP 0x2358
void gen8_CmdWriteTimestamp(
VkCmdBuffer cmdBuffer,
VkTimestampType timestampType,
VkBuffer destBuffer,
VkDeviceSize destOffset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
struct anv_bo *bo = buffer->bo;
switch (timestampType) {
case VK_TIMESTAMP_TYPE_TOP:
anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
.RegisterAddress = TIMESTAMP,
.MemoryAddress = { bo, buffer->offset + destOffset });
anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
.RegisterAddress = TIMESTAMP + 4,
.MemoryAddress = { bo, buffer->offset + destOffset + 4 });
break;
case VK_TIMESTAMP_TYPE_BOTTOM:
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteTimestamp,
.Address = /* FIXME: This is only lower 32 bits */
{ bo, buffer->offset + destOffset });
break;
default:
break;
}
}
#define alu_opcode(v) __gen_field((v), 20, 31)
#define alu_operand1(v) __gen_field((v), 10, 19)
#define alu_operand2(v) __gen_field((v), 0, 9)
#define alu(opcode, operand1, operand2) \
alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
#define OPCODE_NOOP 0x000
#define OPCODE_LOAD 0x080
#define OPCODE_LOADINV 0x480
#define OPCODE_LOAD0 0x081
#define OPCODE_LOAD1 0x481
#define OPCODE_ADD 0x100
#define OPCODE_SUB 0x101
#define OPCODE_AND 0x102
#define OPCODE_OR 0x103
#define OPCODE_XOR 0x104
#define OPCODE_STORE 0x180
#define OPCODE_STOREINV 0x580
#define OPERAND_R0 0x00
#define OPERAND_R1 0x01
#define OPERAND_R2 0x02
#define OPERAND_R3 0x03
#define OPERAND_R4 0x04
#define OPERAND_SRCA 0x20
#define OPERAND_SRCB 0x21
#define OPERAND_ACCU 0x31
#define OPERAND_ZF 0x32
#define OPERAND_CF 0x33
#define CS_GPR(n) (0x2600 + (n) * 8)
static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
.RegisterAddress = reg + 4,
.MemoryAddress = { bo, offset + 4 });
}
void gen8_CmdCopyQueryPoolResults(
VkCmdBuffer cmdBuffer,
VkQueryPool queryPool,
uint32_t startQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset, dst_offset;
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
/* Where is the availabilty info supposed to go? */
anv_finishme("VK_QUERY_RESULT_WITH_AVAILABILITY_BIT");
return;
}
assert(pool->type == VK_QUERY_TYPE_OCCLUSION);
/* FIXME: If we're not waiting, should we just do this on the CPU? */
if (flags & VK_QUERY_RESULT_WAIT_BIT)
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.CommandStreamerStallEnable = true,
.StallAtPixelScoreboard = true);
dst_offset = buffer->offset + destOffset;
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (startQuery + i) * sizeof(struct anv_query_pool_slot);
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), &pool->bo, slot_offset);
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(1), &pool->bo, slot_offset + 8);
/* FIXME: We need to clamp the result for 32 bit. */
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GEN8_MI_MATH);
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
dw[3] = alu(OPCODE_SUB, 0, 0);
dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
.RegisterAddress = CS_GPR(2),
/* FIXME: This is only lower 32 bits */
.MemoryAddress = { buffer->bo, dst_offset });
if (flags & VK_QUERY_RESULT_64_BIT)
anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
.RegisterAddress = CS_GPR(2) + 4,
/* FIXME: This is only lower 32 bits */
.MemoryAddress = { buffer->bo, dst_offset + 4 });
dst_offset += destStride;
}
}
void
gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_bo *scratch_bo = NULL;
cmd_buffer->state.scratch_size =
anv_block_pool_size(&device->scratch_block_pool);
if (cmd_buffer->state.scratch_size > 0)
scratch_bo = &device->scratch_block_pool.bo;
/* Emit a render target cache flush.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base adress. Without
* this, we get GPU hangs when using multi-level command buffers which
* clear depth, reset state base address, and then go render stuff.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.RenderTargetCacheFlushEnable = true);
anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_BASE_ADDRESS,
.GeneralStateBaseAddress = { scratch_bo, 0 },
.GeneralStateMemoryObjectControlState = GEN8_MOCS,
.GeneralStateBaseAddressModifyEnable = true,
.GeneralStateBufferSize = 0xfffff,
.GeneralStateBufferSizeModifyEnable = true,
.SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer),
.SurfaceStateMemoryObjectControlState = GEN8_MOCS,
.SurfaceStateBaseAddressModifyEnable = true,
.DynamicStateBaseAddress = { &device->dynamic_state_block_pool.bo, 0 },
.DynamicStateMemoryObjectControlState = GEN8_MOCS,
.DynamicStateBaseAddressModifyEnable = true,
.DynamicStateBufferSize = 0xfffff,
.DynamicStateBufferSizeModifyEnable = true,
.IndirectObjectBaseAddress = { NULL, 0 },
.IndirectObjectMemoryObjectControlState = GEN8_MOCS,
.IndirectObjectBaseAddressModifyEnable = true,
.IndirectObjectBufferSize = 0xfffff,
.IndirectObjectBufferSizeModifyEnable = true,
.InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
.InstructionMemoryObjectControlState = GEN8_MOCS,
.InstructionBaseAddressModifyEnable = true,
.InstructionBufferSize = 0xfffff,
.InstructionBuffersizeModifyEnable = true);
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
.TextureCacheInvalidationEnable = true);
}
void gen8_CmdPipelineBarrier(
VkCmdBuffer cmdBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
VkBool32 byRegion,
uint32_t memBarrierCount,
const void* const* ppMemBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
uint32_t b, *dw;
struct GEN8_PIPE_CONTROL cmd = {
GEN8_PIPE_CONTROL_header,
.PostSyncOperation = NoWrite,
};
/* XXX: I think waitEvent is a no-op on our HW. We should verify that. */
if (anv_clear_mask(&srcStageMask, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT)) {
/* This is just what PIPE_CONTROL does */
}
if (anv_clear_mask(&srcStageMask,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_TESS_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESS_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT)) {
cmd.StallAtPixelScoreboard = true;
}
if (anv_clear_mask(&srcStageMask,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_TRANSITION_BIT)) {
cmd.CommandStreamerStallEnable = true;
}
if (anv_clear_mask(&srcStageMask, VK_PIPELINE_STAGE_HOST_BIT)) {
anv_finishme("VK_PIPE_EVENT_CPU_SIGNAL_BIT");
}
/* On our hardware, all stages will wait for execution as needed. */
(void)destStageMask;
/* We checked all known VkPipeEventFlags. */
anv_assert(srcStageMask == 0);
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better
* but right now that's all the hardware allows for in most areas.
*/
VkMemoryOutputFlags out_flags = 0;
VkMemoryInputFlags in_flags = 0;
for (uint32_t i = 0; i < memBarrierCount; i++) {
const struct anv_common *common = ppMemBarriers[i];
switch (common->sType) {
case VK_STRUCTURE_TYPE_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
case VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkBufferMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
case VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER: {
ANV_COMMON_TO_STRUCT(VkImageMemoryBarrier, barrier, common);
out_flags |= barrier->outputMask;
in_flags |= barrier->inputMask;
break;
}
default:
unreachable("Invalid memory barrier type");
}
}
for_each_bit(b, out_flags) {
switch ((VkMemoryOutputFlags)(1 << b)) {
case VK_MEMORY_OUTPUT_HOST_WRITE_BIT:
break; /* FIXME: Little-core systems */
case VK_MEMORY_OUTPUT_SHADER_WRITE_BIT:
cmd.DCFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT:
cmd.RenderTargetCacheFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT:
cmd.DepthCacheFlushEnable = true;
break;
case VK_MEMORY_OUTPUT_TRANSFER_BIT:
cmd.RenderTargetCacheFlushEnable = true;
cmd.DepthCacheFlushEnable = true;
break;
default:
unreachable("Invalid memory output flag");
}
}
for_each_bit(b, out_flags) {
switch ((VkMemoryInputFlags)(1 << b)) {
case VK_MEMORY_INPUT_HOST_READ_BIT:
break; /* FIXME: Little-core systems */
case VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT:
case VK_MEMORY_INPUT_INDEX_FETCH_BIT:
case VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT:
cmd.VFCacheInvalidationEnable = true;
break;
case VK_MEMORY_INPUT_UNIFORM_READ_BIT:
cmd.ConstantCacheInvalidationEnable = true;
/* fallthrough */
case VK_MEMORY_INPUT_SHADER_READ_BIT:
cmd.DCFlushEnable = true;
cmd.TextureCacheInvalidationEnable = true;
break;
case VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT:
case VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT:
break; /* XXX: Hunh? */
case VK_MEMORY_INPUT_TRANSFER_BIT:
cmd.TextureCacheInvalidationEnable = true;
break;
}
}
dw = anv_batch_emit_dwords(&cmd_buffer->batch, GEN8_PIPE_CONTROL_length);
GEN8_PIPE_CONTROL_pack(&cmd_buffer->batch, dw, &cmd);
}