blob: ff1800ce785c0dabc05392ead1b88771a73a977b [file] [log] [blame]
/*
* Copyright 2013-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <libsync.h>
#include "util/os_time.h"
#include "util/u_memory.h"
#include "util/u_queue.h"
#include "util/u_upload_mgr.h"
#include "si_pipe.h"
#include "radeon/r600_cs.h"
struct si_fine_fence {
struct r600_resource *buf;
unsigned offset;
};
struct si_multi_fence {
struct pipe_reference reference;
struct pipe_fence_handle *gfx;
struct pipe_fence_handle *sdma;
struct tc_unflushed_batch_token *tc_token;
struct util_queue_fence ready;
/* If the context wasn't flushed at fence creation, this is non-NULL. */
struct {
struct r600_common_context *ctx;
unsigned ib_index;
} gfx_unflushed;
struct si_fine_fence fine;
};
static void si_add_fence_dependency(struct r600_common_context *rctx,
struct pipe_fence_handle *fence)
{
struct radeon_winsys *ws = rctx->ws;
if (rctx->dma.cs)
ws->cs_add_fence_dependency(rctx->dma.cs, fence);
ws->cs_add_fence_dependency(rctx->gfx.cs, fence);
}
static void si_fence_reference(struct pipe_screen *screen,
struct pipe_fence_handle **dst,
struct pipe_fence_handle *src)
{
struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
struct si_multi_fence **rdst = (struct si_multi_fence **)dst;
struct si_multi_fence *rsrc = (struct si_multi_fence *)src;
if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
ws->fence_reference(&(*rdst)->gfx, NULL);
ws->fence_reference(&(*rdst)->sdma, NULL);
tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL);
r600_resource_reference(&(*rdst)->fine.buf, NULL);
FREE(*rdst);
}
*rdst = rsrc;
}
static struct si_multi_fence *si_create_multi_fence()
{
struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
if (!fence)
return NULL;
pipe_reference_init(&fence->reference, 1);
util_queue_fence_init(&fence->ready);
return fence;
}
struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
struct tc_unflushed_batch_token *tc_token)
{
struct si_multi_fence *fence = si_create_multi_fence();
if (!fence)
return NULL;
util_queue_fence_reset(&fence->ready);
tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
return (struct pipe_fence_handle *)fence;
}
static void si_fence_server_sync(struct pipe_context *ctx,
struct pipe_fence_handle *fence)
{
struct r600_common_context *rctx = (struct r600_common_context *)ctx;
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
util_queue_fence_wait(&rfence->ready);
/* Unflushed fences from the same context are no-ops. */
if (rfence->gfx_unflushed.ctx &&
rfence->gfx_unflushed.ctx == rctx)
return;
/* All unflushed commands will not start execution before
* this fence dependency is signalled.
*
* Should we flush the context to allow more GPU parallelism?
*/
if (rfence->sdma)
si_add_fence_dependency(rctx, rfence->sdma);
if (rfence->gfx)
si_add_fence_dependency(rctx, rfence->gfx);
}
static bool si_fine_fence_signaled(struct radeon_winsys *rws,
const struct si_fine_fence *fine)
{
char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
PIPE_TRANSFER_UNSYNCHRONIZED);
if (!map)
return false;
uint32_t *fence = (uint32_t*)(map + fine->offset);
return *fence != 0;
}
static void si_fine_fence_set(struct si_context *ctx,
struct si_fine_fence *fine,
unsigned flags)
{
uint32_t *fence_ptr;
assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
/* Use uncached system memory for the fence. */
u_upload_alloc(ctx->b.b.stream_uploader, 0, 4, 4,
&fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
if (!fine->buf)
return;
*fence_ptr = 0;
uint64_t fence_va = fine->buf->gpu_address + fine->offset;
radeon_add_to_buffer_list(&ctx->b, &ctx->b.gfx, fine->buf,
RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
struct radeon_winsys_cs *cs = ctx->b.gfx.cs;
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
S_370_WR_CONFIRM(1) |
S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, fence_va);
radeon_emit(cs, fence_va >> 32);
radeon_emit(cs, 0x80000000);
} else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
si_gfx_write_event_eop(&ctx->b, V_028A90_BOTTOM_OF_PIPE_TS, 0,
EOP_DATA_SEL_VALUE_32BIT,
NULL, fence_va, 0x80000000,
PIPE_QUERY_GPU_FINISHED);
} else {
assert(false);
}
}
static boolean si_fence_finish(struct pipe_screen *screen,
struct pipe_context *ctx,
struct pipe_fence_handle *fence,
uint64_t timeout)
{
struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
struct r600_common_context *rctx;
int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
ctx = threaded_context_unwrap_sync(ctx);
rctx = ctx ? (struct r600_common_context*)ctx : NULL;
if (!util_queue_fence_is_signalled(&rfence->ready)) {
if (!timeout)
return false;
if (rfence->tc_token) {
/* Ensure that si_flush_from_st will be called for
* this fence, but only if we're in the API thread
* where the context is current.
*
* Note that the batch containing the flush may already
* be in flight in the driver thread, so the fence
* may not be ready yet when this call returns.
*/
threaded_context_flush(ctx, rfence->tc_token);
}
if (timeout == PIPE_TIMEOUT_INFINITE) {
util_queue_fence_wait(&rfence->ready);
} else {
if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout))
return false;
}
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (rfence->sdma) {
if (!rws->fence_wait(rws, rfence->sdma, timeout))
return false;
/* Recompute the timeout after waiting. */
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (!rfence->gfx)
return true;
if (rfence->fine.buf &&
si_fine_fence_signaled(rws, &rfence->fine)) {
rws->fence_reference(&rfence->gfx, NULL);
r600_resource_reference(&rfence->fine.buf, NULL);
return true;
}
/* Flush the gfx IB if it hasn't been flushed yet. */
if (rctx &&
rfence->gfx_unflushed.ctx == rctx &&
rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
/* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
* spec says:
*
* "If the sync object being blocked upon will not be
* signaled in finite time (for example, by an associated
* fence command issued previously, but not yet flushed to
* the graphics pipeline), then ClientWaitSync may hang
* forever. To help prevent this behavior, if
* ClientWaitSync is called and all of the following are
* true:
*
* * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
* * sync is unsignaled when ClientWaitSync is called,
* * and the calls to ClientWaitSync and FenceSync were
* issued from the same context,
*
* then the GL will behave as if the equivalent of Flush
* were inserted immediately after the creation of sync."
*
* This means we need to flush for such fences even when we're
* not going to wait.
*/
rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
rfence->gfx_unflushed.ctx = NULL;
if (!timeout)
return false;
/* Recompute the timeout after all that. */
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
int64_t time = os_time_get_nano();
timeout = abs_timeout > time ? abs_timeout - time : 0;
}
}
if (rws->fence_wait(rws, rfence->gfx, timeout))
return true;
/* Re-check in case the GPU is slow or hangs, but the commands before
* the fine-grained fence have completed. */
if (rfence->fine.buf &&
si_fine_fence_signaled(rws, &rfence->fine))
return true;
return false;
}
static void si_create_fence_fd(struct pipe_context *ctx,
struct pipe_fence_handle **pfence, int fd)
{
struct r600_common_screen *rscreen = (struct r600_common_screen*)ctx->screen;
struct radeon_winsys *ws = rscreen->ws;
struct si_multi_fence *rfence;
*pfence = NULL;
if (!rscreen->info.has_sync_file)
return;
rfence = si_create_multi_fence();
if (!rfence)
return;
rfence->gfx = ws->fence_import_sync_file(ws, fd);
if (!rfence->gfx) {
FREE(rfence);
return;
}
*pfence = (struct pipe_fence_handle*)rfence;
}
static int si_fence_get_fd(struct pipe_screen *screen,
struct pipe_fence_handle *fence)
{
struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
struct radeon_winsys *ws = rscreen->ws;
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
int gfx_fd = -1, sdma_fd = -1;
if (!rscreen->info.has_sync_file)
return -1;
util_queue_fence_wait(&rfence->ready);
/* Deferred fences aren't supported. */
assert(!rfence->gfx_unflushed.ctx);
if (rfence->gfx_unflushed.ctx)
return -1;
if (rfence->sdma) {
sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma);
if (sdma_fd == -1)
return -1;
}
if (rfence->gfx) {
gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx);
if (gfx_fd == -1) {
if (sdma_fd != -1)
close(sdma_fd);
return -1;
}
}
/* If we don't have FDs at this point, it means we don't have fences
* either. */
if (sdma_fd == -1)
return gfx_fd;
if (gfx_fd == -1)
return sdma_fd;
/* Get a fence that will be a combination of both fences. */
sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
close(sdma_fd);
return gfx_fd;
}
static void si_flush_from_st(struct pipe_context *ctx,
struct pipe_fence_handle **fence,
unsigned flags)
{
struct pipe_screen *screen = ctx->screen;
struct r600_common_context *rctx = (struct r600_common_context *)ctx;
struct radeon_winsys *ws = rctx->ws;
struct pipe_fence_handle *gfx_fence = NULL;
struct pipe_fence_handle *sdma_fence = NULL;
bool deferred_fence = false;
struct si_fine_fence fine = {};
unsigned rflags = RADEON_FLUSH_ASYNC;
if (flags & PIPE_FLUSH_END_OF_FRAME)
rflags |= RADEON_FLUSH_END_OF_FRAME;
if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
assert(flags & PIPE_FLUSH_DEFERRED);
assert(fence);
si_fine_fence_set((struct si_context *)rctx, &fine, flags);
}
/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
if (rctx->dma.cs)
rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
if (fence)
ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
if (!(flags & PIPE_FLUSH_DEFERRED))
ws->cs_sync_flush(rctx->gfx.cs);
} else {
/* Instead of flushing, create a deferred fence. Constraints:
* - The state tracker must allow a deferred flush.
* - The state tracker must request a fence.
* - fence_get_fd is not allowed.
* Thread safety in fence_finish must be ensured by the state tracker.
*/
if (flags & PIPE_FLUSH_DEFERRED &&
!(flags & PIPE_FLUSH_FENCE_FD) &&
fence) {
gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
deferred_fence = true;
} else {
rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
}
}
/* Both engines can signal out of order, so we need to keep both fences. */
if (fence) {
struct si_multi_fence *multi_fence;
if (flags & TC_FLUSH_ASYNC) {
multi_fence = (struct si_multi_fence *)*fence;
assert(multi_fence);
} else {
multi_fence = si_create_multi_fence();
if (!multi_fence) {
ws->fence_reference(&sdma_fence, NULL);
ws->fence_reference(&gfx_fence, NULL);
goto finish;
}
screen->fence_reference(screen, fence, NULL);
*fence = (struct pipe_fence_handle*)multi_fence;
}
/* If both fences are NULL, fence_finish will always return true. */
multi_fence->gfx = gfx_fence;
multi_fence->sdma = sdma_fence;
if (deferred_fence) {
multi_fence->gfx_unflushed.ctx = rctx;
multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
}
multi_fence->fine = fine;
if (flags & TC_FLUSH_ASYNC) {
util_queue_fence_signal(&multi_fence->ready);
tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
}
}
finish:
if (!(flags & PIPE_FLUSH_DEFERRED)) {
if (rctx->dma.cs)
ws->cs_sync_flush(rctx->dma.cs);
ws->cs_sync_flush(rctx->gfx.cs);
}
}
void si_init_fence_functions(struct si_context *ctx)
{
ctx->b.b.flush = si_flush_from_st;
ctx->b.b.create_fence_fd = si_create_fence_fd;
ctx->b.b.fence_server_sync = si_fence_server_sync;
}
void si_init_screen_fence_functions(struct si_screen *screen)
{
screen->b.b.fence_finish = si_fence_finish;
screen->b.b.fence_reference = si_fence_reference;
screen->b.b.fence_get_fd = si_fence_get_fd;
}