blob: 79af4102e3f8b696030049ab1410a9a3027aa3cf [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <pthread.h>
#include <assert.h>
#include <stdint.h>
#include <i915_drm.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#else
#define VG(x)
#endif
#include "brw_device_info.h"
#include "util/macros.h"
#include "util/list.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
#define VK_USE_PLATFORM_XCB_KHR
#define VK_USE_PLATFORM_WAYLAND_KHR
#define VK_PROTOTYPES
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_intel.h>
#include "anv_entrypoints.h"
#include "anv_gen_macros.h"
#include "brw_context.h"
#include "isl.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MAX_VBS 32
#define MAX_SETS 8
#define MAX_RTS 8
#define MAX_VIEWPORTS 16
#define MAX_SCISSORS 16
#define MAX_PUSH_CONSTANTS_SIZE 128
#define MAX_DYNAMIC_BUFFERS 16
#define MAX_IMAGES 8
#define ICD_LOADER_MAGIC 0x01CDC0DE
typedef union _VK_LOADER_DATA {
uintptr_t loaderMagic;
void *loaderData;
} VK_LOADER_DATA;
#define anv_noreturn __attribute__((__noreturn__))
#define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
anv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
anv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX(n >> levels, 1);
}
static inline float
anv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
#define for_each_bit(b, dword) \
for (uint32_t __dword = (dword); \
(b) = __builtin_ffs(__dword) - 1, __dword; \
__dword &= ~(1 << (b)))
#define typed_memcpy(dest, src, count) ({ \
static_assert(sizeof(*src) == sizeof(*dest), ""); \
memcpy((dest), (src), (count) * sizeof(*(src))); \
})
#define zero(x) (memset(&(x), 0, sizeof(x)))
/* Define no kernel as 1, since that's an illegal offset for a kernel */
#define NO_KERNEL 1
struct anv_common {
VkStructureType sType;
const void* pNext;
};
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
#ifdef DEBUG
#define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
#define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
#else
#define vk_error(error) error
#define vk_errorf(error, format, ...) error
#endif
void __anv_finishme(const char *file, int line, const char *format, ...)
anv_printflike(3, 4);
void anv_loge(const char *format, ...) anv_printflike(1, 2);
void anv_loge_v(const char *format, va_list va);
/**
* Print a FINISHME message, including its source location.
*/
#define anv_finishme(format, ...) \
__anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
/* A non-fatal assert. Useful for debugging. */
#ifdef DEBUG
#define anv_assert(x) ({ \
if (unlikely(!(x))) \
fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
})
#else
#define anv_assert(x)
#endif
/**
* If a block of code is annotated with anv_validate, then the block runs only
* in debug builds.
*/
#ifdef DEBUG
#define anv_validate if (1)
#else
#define anv_validate if (0)
#endif
void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
void anv_abortfv(const char *format, va_list va) anv_noreturn;
#define stub_return(v) \
do { \
anv_finishme("stub %s", __func__); \
return (v); \
} while (0)
#define stub() \
do { \
anv_finishme("stub %s", __func__); \
return; \
} while (0)
/**
* A dynamically growable, circular buffer. Elements are added at head and
* removed from tail. head and tail are free-running uint32_t indices and we
* only compute the modulo with size when accessing the array. This way,
* number of bytes in the queue is always head - tail, even in case of
* wraparound.
*/
struct anv_vector {
uint32_t head;
uint32_t tail;
uint32_t element_size;
uint32_t size;
void *data;
};
int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
void *anv_vector_add(struct anv_vector *queue);
void *anv_vector_remove(struct anv_vector *queue);
static inline int
anv_vector_length(struct anv_vector *queue)
{
return (queue->head - queue->tail) / queue->element_size;
}
static inline void *
anv_vector_head(struct anv_vector *vector)
{
assert(vector->tail < vector->head);
return (void *)((char *)vector->data +
((vector->head - vector->element_size) &
(vector->size - 1)));
}
static inline void *
anv_vector_tail(struct anv_vector *vector)
{
return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
}
static inline void
anv_vector_finish(struct anv_vector *queue)
{
free(queue->data);
}
#define anv_vector_foreach(elem, queue) \
static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
for (uint32_t __anv_vector_offset = (queue)->tail; \
elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
__anv_vector_offset += (queue)->element_size)
struct anv_bo {
uint32_t gem_handle;
/* Index into the current validation list. This is used by the
* validation list building alrogithm to track which buffers are already
* in the validation list so that we can ensure uniqueness.
*/
uint32_t index;
/* Last known offset. This value is provided by the kernel when we
* execbuf and is used as the presumed offset for the next bunch of
* relocations.
*/
uint64_t offset;
uint64_t size;
void *map;
};
/* Represents a lock-free linked list of "free" things. This is used by
* both the block pool and the state pools. Unfortunately, in order to
* solve the ABA problem, we can't use a single uint32_t head.
*/
union anv_free_list {
struct {
int32_t offset;
/* A simple count that is incremented every time the head changes. */
uint32_t count;
};
uint64_t u64;
};
#define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
struct anv_block_state {
union {
struct {
uint32_t next;
uint32_t end;
};
uint64_t u64;
};
};
struct anv_block_pool {
struct anv_device *device;
struct anv_bo bo;
/* The offset from the start of the bo to the "center" of the block
* pool. Pointers to allocated blocks are given by
* bo.map + center_bo_offset + offsets.
*/
uint32_t center_bo_offset;
/* Current memory map of the block pool. This pointer may or may not
* point to the actual beginning of the block pool memory. If
* anv_block_pool_alloc_back has ever been called, then this pointer
* will point to the "center" position of the buffer and all offsets
* (negative or positive) given out by the block pool alloc functions
* will be valid relative to this pointer.
*
* In particular, map == bo.map + center_offset
*/
void *map;
int fd;
/**
* Array of mmaps and gem handles owned by the block pool, reclaimed when
* the block pool is destroyed.
*/
struct anv_vector mmap_cleanups;
uint32_t block_size;
union anv_free_list free_list;
struct anv_block_state state;
union anv_free_list back_free_list;
struct anv_block_state back_state;
};
/* Block pools are backed by a fixed-size 2GB memfd */
#define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
/* The center of the block pool is also the middle of the memfd. This may
* change in the future if we decide differently for some reason.
*/
#define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
static inline uint32_t
anv_block_pool_size(struct anv_block_pool *pool)
{
return pool->state.end + pool->back_state.end;
}
struct anv_state {
int32_t offset;
uint32_t alloc_size;
void *map;
};
struct anv_fixed_size_state_pool {
size_t state_size;
union anv_free_list free_list;
struct anv_block_state block;
};
#define ANV_MIN_STATE_SIZE_LOG2 6
#define ANV_MAX_STATE_SIZE_LOG2 10
#define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
struct anv_state_pool {
struct anv_block_pool *block_pool;
struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
};
struct anv_state_stream_block;
struct anv_state_stream {
struct anv_block_pool *block_pool;
/* The current working block */
struct anv_state_stream_block *block;
/* Offset at which the current block starts */
uint32_t start;
/* Offset at which to allocate the next state */
uint32_t next;
/* Offset at which the current block ends */
uint32_t end;
};
#define CACHELINE_SIZE 64
#define CACHELINE_MASK 63
static void inline
anv_state_clflush(struct anv_state state)
{
/* state.map may not be cacheline aligned, so round down the start pointer
* to a cacheline boundary so we flush all pages that contain the state.
*/
void *end = state.map + state.alloc_size;
void *p = (void *) (((uintptr_t) state.map) & ~CACHELINE_MASK);
__builtin_ia32_sfence();
while (p < end) {
__builtin_ia32_clflush(p);
p += CACHELINE_SIZE;
}
}
void anv_block_pool_init(struct anv_block_pool *pool,
struct anv_device *device, uint32_t block_size);
void anv_block_pool_finish(struct anv_block_pool *pool);
int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
void anv_state_pool_init(struct anv_state_pool *pool,
struct anv_block_pool *block_pool);
void anv_state_pool_finish(struct anv_state_pool *pool);
struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
size_t state_size, size_t alignment);
void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
void anv_state_stream_init(struct anv_state_stream *stream,
struct anv_block_pool *block_pool);
void anv_state_stream_finish(struct anv_state_stream *stream);
struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
uint32_t size, uint32_t alignment);
/**
* Implements a pool of re-usable BOs. The interface is identical to that
* of block_pool except that each block is its own BO.
*/
struct anv_bo_pool {
struct anv_device *device;
uint32_t bo_size;
void *free_list;
};
void anv_bo_pool_init(struct anv_bo_pool *pool,
struct anv_device *device, uint32_t block_size);
void anv_bo_pool_finish(struct anv_bo_pool *pool);
VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo);
void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
void *anv_resolve_entrypoint(uint32_t index);
extern struct anv_dispatch_table dtable;
#define ANV_CALL(func) ({ \
if (dtable.func == NULL) { \
size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
} \
dtable.func; \
})
static inline void *
anv_alloc(const VkAllocationCallbacks *alloc,
size_t size, size_t align,
VkSystemAllocationScope scope)
{
return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
}
static inline void *
anv_realloc(const VkAllocationCallbacks *alloc,
void *ptr, size_t size, size_t align,
VkSystemAllocationScope scope)
{
return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
}
static inline void
anv_free(const VkAllocationCallbacks *alloc, void *data)
{
alloc->pfnFree(alloc->pUserData, data);
}
static inline void *
anv_alloc2(const VkAllocationCallbacks *parent_alloc,
const VkAllocationCallbacks *alloc,
size_t size, size_t align,
VkSystemAllocationScope scope)
{
if (alloc)
return anv_alloc(alloc, size, align, scope);
else
return anv_alloc(parent_alloc, size, align, scope);
}
static inline void
anv_free2(const VkAllocationCallbacks *parent_alloc,
const VkAllocationCallbacks *alloc,
void *data)
{
if (alloc)
anv_free(alloc, data);
else
anv_free(parent_alloc, data);
}
struct anv_physical_device {
VK_LOADER_DATA _loader_data;
struct anv_instance * instance;
uint32_t chipset_id;
const char * path;
const char * name;
const struct brw_device_info * info;
uint64_t aperture_size;
struct brw_compiler * compiler;
struct isl_device isl_dev;
};
struct anv_instance {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
uint32_t apiVersion;
int physicalDeviceCount;
struct anv_physical_device physicalDevice;
void * wayland_wsi;
};
VkResult anv_init_wsi(struct anv_instance *instance);
void anv_finish_wsi(struct anv_instance *instance);
struct anv_meta_state {
VkAllocationCallbacks alloc;
struct {
/**
* Pipeline N is used to clear color attachment N of the current
* subpass.
*
* HACK: We use one pipeline per color attachment to work around the
* compiler's inability to dynamically set the render target index of
* the render target write message.
*/
struct anv_pipeline *color_pipelines[MAX_RTS];
struct anv_pipeline *depth_only_pipeline;
struct anv_pipeline *stencil_only_pipeline;
struct anv_pipeline *depthstencil_pipeline;
} clear;
struct {
VkRenderPass render_pass;
/** Pipeline that blits from a 1D image. */
VkPipeline pipeline_1d_src;
/** Pipeline that blits from a 2D image. */
VkPipeline pipeline_2d_src;
/** Pipeline that blits from a 3D image. */
VkPipeline pipeline_3d_src;
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} blit;
};
struct anv_queue {
VK_LOADER_DATA _loader_data;
struct anv_device * device;
struct anv_state_pool * pool;
};
struct anv_pipeline_cache {
struct anv_device * device;
struct anv_state_stream program_stream;
pthread_mutex_t mutex;
};
void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
struct anv_device *device);
void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
struct anv_device {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
struct anv_instance * instance;
uint32_t chipset_id;
struct brw_device_info info;
struct isl_device isl_dev;
int context_id;
int fd;
struct anv_bo_pool batch_bo_pool;
struct anv_block_pool dynamic_state_block_pool;
struct anv_state_pool dynamic_state_pool;
struct anv_block_pool instruction_block_pool;
struct anv_pipeline_cache default_pipeline_cache;
struct anv_block_pool surface_state_block_pool;
struct anv_state_pool surface_state_pool;
struct anv_bo workaround_bo;
struct anv_meta_state meta_state;
struct anv_state border_colors;
struct anv_queue queue;
struct anv_block_pool scratch_block_pool;
pthread_mutex_t mutex;
};
void* anv_gem_mmap(struct anv_device *device,
uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
void anv_gem_munmap(void *p, uint64_t size);
uint32_t anv_gem_create(struct anv_device *device, size_t size);
void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
int anv_gem_execbuffer(struct anv_device *device,
struct drm_i915_gem_execbuffer2 *execbuf);
int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
uint32_t stride, uint32_t tiling);
int anv_gem_create_context(struct anv_device *device);
int anv_gem_destroy_context(struct anv_device *device, int context);
int anv_gem_get_param(int fd, uint32_t param);
bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
int anv_gem_get_aperture(int fd, uint64_t *size);
int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
uint32_t read_domains, uint32_t write_domain);
VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
struct anv_reloc_list {
size_t num_relocs;
size_t array_length;
struct drm_i915_gem_relocation_entry * relocs;
struct anv_bo ** reloc_bos;
};
VkResult anv_reloc_list_init(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
void anv_reloc_list_finish(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc,
uint32_t offset, struct anv_bo *target_bo,
uint32_t delta);
struct anv_batch_bo {
/* Link in the anv_cmd_buffer.owned_batch_bos list */
struct list_head link;
struct anv_bo bo;
/* Bytes actually consumed in this batch BO */
size_t length;
/* Last seen surface state block pool bo offset */
uint32_t last_ss_pool_bo_offset;
struct anv_reloc_list relocs;
};
struct anv_batch {
const VkAllocationCallbacks * alloc;
void * start;
void * end;
void * next;
struct anv_reloc_list * relocs;
/* This callback is called (with the associated user data) in the event
* that the batch runs out of space.
*/
VkResult (*extend_cb)(struct anv_batch *, void *);
void * user_data;
};
void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
void *location, struct anv_bo *bo, uint32_t offset);
struct anv_address {
struct anv_bo *bo;
uint32_t offset;
};
#define __gen_address_type struct anv_address
#define __gen_user_data struct anv_batch
static inline uint64_t
__gen_combine_address(struct anv_batch *batch, void *location,
const struct anv_address address, uint32_t delta)
{
if (address.bo == NULL) {
return address.offset + delta;
} else {
assert(batch->start <= location && location < batch->end);
return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
}
}
/* Wrapper macros needed to work around preprocessor argument issues. In
* particular, arguments don't get pre-evaluated if they are concatenated.
* This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
* GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
* We can work around this easily enough with these helpers.
*/
#define __anv_cmd_length(cmd) cmd ## _length
#define __anv_cmd_length_bias(cmd) cmd ## _length_bias
#define __anv_cmd_header(cmd) cmd ## _header
#define __anv_cmd_pack(cmd) cmd ## _pack
#define anv_batch_emit(batch, cmd, ...) do { \
void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
struct cmd __template = { \
__anv_cmd_header(cmd), \
__VA_ARGS__ \
}; \
__anv_cmd_pack(cmd)(batch, __dst, &__template); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
} while (0)
#define anv_batch_emitn(batch, n, cmd, ...) ({ \
void *__dst = anv_batch_emit_dwords(batch, n); \
struct cmd __template = { \
__anv_cmd_header(cmd), \
.DwordLength = n - __anv_cmd_length_bias(cmd), \
__VA_ARGS__ \
}; \
__anv_cmd_pack(cmd)(batch, __dst, &__template); \
__dst; \
})
#define anv_batch_emit_merge(batch, dwords0, dwords1) \
do { \
uint32_t *dw; \
\
static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
dw[i] = (dwords0)[i] | (dwords1)[i]; \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
} while (0)
#define anv_state_pool_emit(pool, cmd, align, ...) ({ \
const uint32_t __size = __anv_cmd_length(cmd) * 4; \
struct anv_state __state = \
anv_state_pool_alloc((pool), __size, align); \
struct cmd __template = { \
__VA_ARGS__ \
}; \
__anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
if (!(pool)->block_pool->device->info.has_llc) \
anv_state_clflush(__state); \
__state; \
})
#define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
.GraphicsDataTypeGFDT = 0, \
.LLCCacheabilityControlLLCCC = 0, \
.L3CacheabilityControlL3CC = 1, \
}
#define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
.LLCeLLCCacheabilityControlLLCCC = 0, \
.L3CacheabilityControlL3CC = 1, \
}
#define GEN8_MOCS { \
.MemoryTypeLLCeLLCCacheabilityControl = WB, \
.TargetCache = L3DefertoPATforLLCeLLCselection, \
.AgeforQUADLRU = 0 \
}
/* Skylake: MOCS is now an index into an array of 62 different caching
* configurations programmed by the kernel.
*/
#define GEN9_MOCS { \
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
.IndextoMOCSTables = 2 \
}
#define GEN9_MOCS_PTE { \
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
.IndextoMOCSTables = 1 \
}
struct anv_device_memory {
struct anv_bo bo;
uint32_t type_index;
VkDeviceSize map_size;
void * map;
};
/**
* Header for Vertex URB Entry (VUE)
*/
struct anv_vue_header {
uint32_t Reserved;
uint32_t RTAIndex; /* RenderTargetArrayIndex */
uint32_t ViewportIndex;
float PointWidth;
};
struct anv_descriptor_set_binding_layout {
/* Number of array elements in this binding */
uint16_t array_size;
/* Index into the flattend descriptor set */
uint16_t descriptor_index;
/* Index into the dynamic state array for a dynamic buffer */
int16_t dynamic_offset_index;
/* Index into the descriptor set buffer views */
int16_t buffer_index;
struct {
/* Index into the binding table for the associated surface */
int16_t surface_index;
/* Index into the sampler table for the associated sampler */
int16_t sampler_index;
/* Index into the image table for the associated image */
int16_t image_index;
} stage[MESA_SHADER_STAGES];
/* Immutable samplers (or NULL if no immutable samplers) */
struct anv_sampler **immutable_samplers;
};
struct anv_descriptor_set_layout {
/* Number of bindings in this descriptor set */
uint16_t binding_count;
/* Total size of the descriptor set with room for all array entries */
uint16_t size;
/* Shader stages affected by this descriptor set */
uint16_t shader_stages;
/* Number of buffers in this descriptor set */
uint16_t buffer_count;
/* Number of dynamic offsets used by this descriptor set */
uint16_t dynamic_offset_count;
/* Bindings in this descriptor set */
struct anv_descriptor_set_binding_layout binding[0];
};
struct anv_descriptor {
VkDescriptorType type;
union {
struct {
union {
struct anv_image_view *image_view;
};
struct anv_sampler *sampler;
};
struct anv_buffer_view *buffer_view;
};
};
struct anv_descriptor_set {
const struct anv_descriptor_set_layout *layout;
struct anv_buffer_view *buffer_views;
struct anv_descriptor descriptors[0];
};
VkResult
anv_descriptor_set_create(struct anv_device *device,
const struct anv_descriptor_set_layout *layout,
struct anv_descriptor_set **out_set);
void
anv_descriptor_set_destroy(struct anv_device *device,
struct anv_descriptor_set *set);
struct anv_pipeline_binding {
/* The descriptor set this surface corresponds to */
uint16_t set;
/* Offset into the descriptor set */
uint16_t offset;
};
struct anv_pipeline_layout {
struct {
struct anv_descriptor_set_layout *layout;
uint32_t dynamic_offset_start;
struct {
uint32_t surface_start;
uint32_t sampler_start;
uint32_t image_start;
} stage[MESA_SHADER_STAGES];
} set[MAX_SETS];
uint32_t num_sets;
struct {
bool has_dynamic_offsets;
uint32_t surface_count;
struct anv_pipeline_binding *surface_to_descriptor;
uint32_t sampler_count;
struct anv_pipeline_binding *sampler_to_descriptor;
uint32_t image_count;
} stage[MESA_SHADER_STAGES];
struct anv_pipeline_binding entries[0];
};
struct anv_buffer {
struct anv_device * device;
VkDeviceSize size;
VkBufferUsageFlags usage;
/* Set when bound */
struct anv_bo * bo;
VkDeviceSize offset;
};
enum anv_cmd_dirty_bits {
ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
ANV_CMD_DIRTY_PIPELINE = 1 << 9,
ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
};
typedef uint32_t anv_cmd_dirty_mask_t;
struct anv_vertex_binding {
struct anv_buffer * buffer;
VkDeviceSize offset;
};
struct anv_push_constants {
/* Current allocated size of this push constants data structure.
* Because a decent chunk of it may not be used (images on SKL, for
* instance), we won't actually allocate the entire structure up-front.
*/
uint32_t size;
/* Push constant data provided by the client through vkPushConstants */
uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
/* Our hardware only provides zero-based vertex and instance id so, in
* order to satisfy the vulkan requirements, we may have to push one or
* both of these into the shader.
*/
uint32_t base_vertex;
uint32_t base_instance;
/* Offsets and ranges for dynamically bound buffers */
struct {
uint32_t offset;
uint32_t range;
} dynamic[MAX_DYNAMIC_BUFFERS];
/* Image data for image_load_store on pre-SKL */
struct brw_image_param images[MAX_IMAGES];
};
struct anv_dynamic_state {
struct {
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
} viewport;
struct {
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
} scissor;
float line_width;
struct {
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct {
float min;
float max;
} depth_bounds;
struct {
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_reference;
};
extern const struct anv_dynamic_state default_dynamic_state;
void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
const struct anv_dynamic_state *src,
uint32_t copy_mask);
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct anv_attachment_state {
VkImageAspectFlags pending_clear_aspects;
VkClearValue clear_value;
};
/** State required while building cmd buffer */
struct anv_cmd_state {
/* PIPELINE_SELECT.PipelineSelection */
uint32_t current_pipeline;
uint32_t current_l3_config;
uint32_t vb_dirty;
anv_cmd_dirty_mask_t dirty;
anv_cmd_dirty_mask_t compute_dirty;
uint32_t num_workgroups_offset;
struct anv_bo *num_workgroups_bo;
VkShaderStageFlags descriptors_dirty;
VkShaderStageFlags push_constants_dirty;
uint32_t scratch_size;
struct anv_pipeline * pipeline;
struct anv_pipeline * compute_pipeline;
struct anv_framebuffer * framebuffer;
struct anv_render_pass * pass;
struct anv_subpass * subpass;
uint32_t restart_index;
struct anv_vertex_binding vertex_bindings[MAX_VBS];
struct anv_descriptor_set * descriptors[MAX_SETS];
struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
struct anv_state binding_tables[MESA_SHADER_STAGES];
struct anv_state samplers[MESA_SHADER_STAGES];
struct anv_dynamic_state dynamic;
bool need_query_wa;
/**
* Array length is anv_cmd_state::pass::attachment_count. Array content is
* valid only when recording a render pass instance.
*/
struct anv_attachment_state * attachments;
struct {
struct anv_buffer * index_buffer;
uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
uint32_t index_offset;
} gen7;
};
struct anv_cmd_pool {
VkAllocationCallbacks alloc;
struct list_head cmd_buffers;
};
#define ANV_CMD_BUFFER_BATCH_SIZE 8192
enum anv_cmd_buffer_exec_mode {
ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
ANV_CMD_BUFFER_EXEC_MODE_EMIT,
ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
};
struct anv_cmd_buffer {
VK_LOADER_DATA _loader_data;
struct anv_device * device;
struct anv_cmd_pool * pool;
struct list_head pool_link;
struct anv_batch batch;
/* Fields required for the actual chain of anv_batch_bo's.
*
* These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
*/
struct list_head batch_bos;
enum anv_cmd_buffer_exec_mode exec_mode;
/* A vector of anv_batch_bo pointers for every batch or surface buffer
* referenced by this command buffer
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct anv_vector seen_bbos;
/* A vector of int32_t's for every block of binding tables.
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct anv_vector bt_blocks;
uint32_t bt_next;
struct anv_reloc_list surface_relocs;
/* Information needed for execbuf
*
* These fields are generated by anv_cmd_buffer_prepare_execbuf().
*/
struct {
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 * objects;
uint32_t bo_count;
struct anv_bo ** bos;
/* Allocated length of the 'objects' and 'bos' arrays */
uint32_t array_length;
bool need_reloc;
} execbuf2;
/* Serial for tracking buffer completion */
uint32_t serial;
/* Stream objects for storing temporary data */
struct anv_state_stream surface_state_stream;
struct anv_state_stream dynamic_state_stream;
VkCommandBufferUsageFlags usage_flags;
VkCommandBufferLevel level;
struct anv_cmd_state state;
};
VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
struct anv_cmd_buffer *secondary);
void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
unsigned stage, struct anv_state *bt_state);
VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
unsigned stage, struct anv_state *state);
uint32_t gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
void gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
uint32_t stages);
struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
const void *data, uint32_t size, uint32_t alignment);
struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t *b,
uint32_t dwords, uint32_t alignment);
struct anv_address
anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t entries, uint32_t *state_offset);
struct anv_state
anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
uint32_t size, uint32_t alignment);
VkResult
anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
void gen7_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
void gen75_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
void gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
void gen9_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
const VkRenderPassBeginInfo *info);
void gen7_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass);
void gen8_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass);
void gen9_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass);
void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass);
struct anv_state
anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage);
struct anv_state
anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
const struct anv_image_view *
anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
struct anv_fence {
struct anv_bo bo;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec2_objects[1];
bool ready;
};
struct anv_event {
uint32_t semaphore;
struct anv_state state;
};
struct nir_shader;
struct anv_shader_module {
struct nir_shader * nir;
uint32_t size;
char data[0];
};
static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
{
assert(__builtin_popcount(vk_stage) == 1);
return ffs(vk_stage) - 1;
}
static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
{
return (1 << mesa_stage);
}
#define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
#define anv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, \
__tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
stage = __builtin_ffs(__tmp) - 1, __tmp; \
__tmp &= ~(1 << (stage)))
struct anv_pipeline {
struct anv_device * device;
struct anv_batch batch;
uint32_t batch_data[512];
struct anv_reloc_list batch_relocs;
uint32_t dynamic_state_mask;
struct anv_dynamic_state dynamic_state;
struct anv_pipeline_layout * layout;
bool use_repclear;
struct brw_vs_prog_data vs_prog_data;
struct brw_wm_prog_data wm_prog_data;
struct brw_gs_prog_data gs_prog_data;
struct brw_cs_prog_data cs_prog_data;
bool writes_point_size;
struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
uint32_t scratch_start[MESA_SHADER_STAGES];
uint32_t total_scratch;
struct {
uint32_t vs_start;
uint32_t vs_size;
uint32_t nr_vs_entries;
uint32_t gs_start;
uint32_t gs_size;
uint32_t nr_gs_entries;
} urb;
VkShaderStageFlags active_stages;
struct anv_state blend_state;
uint32_t vs_simd8;
uint32_t vs_vec4;
uint32_t ps_simd8;
uint32_t ps_simd16;
uint32_t ps_ksp0;
uint32_t ps_ksp2;
uint32_t ps_grf_start0;
uint32_t ps_grf_start2;
uint32_t gs_kernel;
uint32_t gs_vertex_count;
uint32_t cs_simd;
uint32_t vb_used;
uint32_t binding_stride[MAX_VBS];
bool instancing_enable[MAX_VBS];
bool primitive_restart;
uint32_t topology;
uint32_t cs_thread_width_max;
uint32_t cs_right_mask;
struct {
uint32_t sf[7];
uint32_t depth_stencil_state[3];
} gen7;
struct {
uint32_t sf[4];
uint32_t raster[5];
uint32_t wm_depth_stencil[3];
} gen8;
struct {
uint32_t wm_depth_stencil[4];
} gen9;
};
struct anv_graphics_pipeline_create_info {
/**
* If non-negative, overrides the color attachment count of the pipeline's
* subpass.
*/
int8_t color_attachment_count;
bool use_repclear;
bool disable_viewport;
bool disable_scissor;
bool disable_vs;
bool use_rectlist;
};
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc);
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info);
VkResult
anv_graphics_pipeline_create(VkDevice device,
VkPipelineCache cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen7_graphics_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen75_graphics_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen8_graphics_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen9_graphics_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen7_compute_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen75_compute_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen8_compute_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
VkResult
gen9_compute_pipeline_create(VkDevice _device,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
struct anv_format_swizzle {
unsigned r:2;
unsigned g:2;
unsigned b:2;
unsigned a:2;
};
struct anv_format {
const VkFormat vk_format;
const char *name;
enum isl_format surface_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
const struct isl_format_layout *isl_layout;
uint16_t depth_format; /**< 3DSTATE_DEPTH_BUFFER.SurfaceFormat */
struct anv_format_swizzle swizzle;
bool has_stencil;
};
const struct anv_format *
anv_format_for_vk_format(VkFormat format);
enum isl_format
anv_get_isl_format(VkFormat format, VkImageAspectFlags aspect,
VkImageTiling tiling, struct anv_format_swizzle *swizzle);
static inline bool
anv_format_is_color(const struct anv_format *format)
{
return !format->depth_format && !format->has_stencil;
}
static inline bool
anv_format_is_depth_or_stencil(const struct anv_format *format)
{
return format->depth_format || format->has_stencil;
}
/**
* Subsurface of an anv_image.
*/
struct anv_surface {
struct isl_surf isl;
/**
* Offset from VkImage's base address, as bound by vkBindImageMemory().
*/
uint32_t offset;
};
struct anv_image {
VkImageType type;
/* The original VkFormat provided by the client. This may not match any
* of the actual surface formats.
*/
VkFormat vk_format;
const struct anv_format *format;
VkExtent3D extent;
uint32_t levels;
uint32_t array_size;
uint32_t samples; /**< VkImageCreateInfo::samples */
VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
VkImageTiling tiling; /** VkImageCreateInfo::tiling */
VkDeviceSize size;
uint32_t alignment;
/* Set when bound */
struct anv_bo *bo;
VkDeviceSize offset;
bool needs_nonrt_surface_state:1;
bool needs_color_rt_surface_state:1;
bool needs_storage_surface_state:1;
/**
* Image subsurfaces
*
* For each foo, anv_image::foo_surface is valid if and only if
* anv_image::format has a foo aspect.
*
* The hardware requires that the depth buffer and stencil buffer be
* separate surfaces. From Vulkan's perspective, though, depth and stencil
* reside in the same VkImage. To satisfy both the hardware and Vulkan, we
* allocate the depth and stencil buffers as separate surfaces in the same
* bo.
*/
union {
struct anv_surface color_surface;
struct {
struct anv_surface depth_surface;
struct anv_surface stencil_surface;
};
};
};
struct anv_image_view {
const struct anv_image *image; /**< VkImageViewCreateInfo::image */
struct anv_bo *bo;
uint32_t offset; /**< Offset into bo. */
VkImageAspectFlags aspect_mask;
VkFormat vk_format;
VkComponentMapping swizzle;
enum isl_format format;
uint32_t base_layer;
uint32_t base_mip;
VkExtent3D level_0_extent; /**< Extent of ::image's level 0 adjusted for ::vk_format. */
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
/** RENDER_SURFACE_STATE when using image as a color render target. */
struct anv_state color_rt_surface_state;
/** RENDER_SURFACE_STATE when using image as a non render target. */
struct anv_state nonrt_surface_state;
/** RENDER_SURFACE_STATE when using image as a storage image. */
struct anv_state storage_surface_state;
};
struct anv_image_create_info {
const VkImageCreateInfo *vk_info;
isl_tiling_flags_t isl_tiling_flags;
uint32_t stride;
};
VkResult anv_image_create(VkDevice _device,
const struct anv_image_create_info *info,
const VkAllocationCallbacks* alloc,
VkImage *pImage);
struct anv_surface *
anv_image_get_surface_for_aspect_mask(struct anv_image *image,
VkImageAspectFlags aspect_mask);
void anv_image_view_init(struct anv_image_view *view,
struct anv_device *device,
const VkImageViewCreateInfo* pCreateInfo,
struct anv_cmd_buffer *cmd_buffer);
void
anv_fill_image_surface_state(struct anv_device *device, struct anv_state state,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
VkImageUsageFlagBits usage);
void
gen7_fill_image_surface_state(struct anv_device *device, void *state_map,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
VkImageUsageFlagBits usage);
void
gen75_fill_image_surface_state(struct anv_device *device, void *state_map,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
VkImageUsageFlagBits usage);
void
gen8_fill_image_surface_state(struct anv_device *device, void *state_map,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
VkImageUsageFlagBits usage);
void
gen9_fill_image_surface_state(struct anv_device *device, void *state_map,
struct anv_image_view *iview,
const VkImageViewCreateInfo *pCreateInfo,
VkImageUsageFlagBits usage);
struct anv_buffer_view {
enum isl_format format; /**< VkBufferViewCreateInfo::format */
struct anv_bo *bo;
uint32_t offset; /**< Offset into bo. */
uint64_t range; /**< VkBufferViewCreateInfo::range */
struct anv_state surface_state;
struct anv_state storage_surface_state;
};
const struct anv_format *
anv_format_for_descriptor_type(VkDescriptorType type);
void anv_fill_buffer_surface_state(struct anv_device *device,
struct anv_state state,
enum isl_format format,
uint32_t offset, uint32_t range,
uint32_t stride);
void gen7_fill_buffer_surface_state(void *state, enum isl_format format,
uint32_t offset, uint32_t range,
uint32_t stride);
void gen75_fill_buffer_surface_state(void *state, enum isl_format format,
uint32_t offset, uint32_t range,
uint32_t stride);
void gen8_fill_buffer_surface_state(void *state, enum isl_format format,
uint32_t offset, uint32_t range,
uint32_t stride);
void gen9_fill_buffer_surface_state(void *state, enum isl_format format,
uint32_t offset, uint32_t range,
uint32_t stride);
void anv_image_view_fill_image_param(struct anv_device *device,
struct anv_image_view *view,
struct brw_image_param *param);
void anv_buffer_view_fill_image_param(struct anv_device *device,
struct anv_buffer_view *view,
struct brw_image_param *param);
struct anv_sampler {
uint32_t state[4];
};
struct anv_framebuffer {
uint32_t width;
uint32_t height;
uint32_t layers;
uint32_t attachment_count;
const struct anv_image_view * attachments[0];
};
struct anv_subpass {
uint32_t input_count;
uint32_t * input_attachments;
uint32_t color_count;
uint32_t * color_attachments;
uint32_t * resolve_attachments;
uint32_t depth_stencil_attachment;
};
struct anv_render_pass_attachment {
const struct anv_format *format;
uint32_t samples;
VkAttachmentLoadOp load_op;
VkAttachmentLoadOp stencil_load_op;
};
struct anv_render_pass {
uint32_t attachment_count;
uint32_t subpass_count;
uint32_t * subpass_attachments;
struct anv_render_pass_attachment * attachments;
struct anv_subpass subpasses[0];
};
extern struct anv_render_pass anv_meta_dummy_renderpass;
struct anv_query_pool_slot {
uint64_t begin;
uint64_t end;
uint64_t available;
};
struct anv_query_pool {
VkQueryType type;
uint32_t slots;
struct anv_bo bo;
};
VkResult anv_device_init_meta(struct anv_device *device);
void anv_device_finish_meta(struct anv_device *device);
void *anv_lookup_entrypoint(const char *name);
void anv_dump_image_to_ppm(struct anv_device *device,
struct anv_image *image, unsigned miplevel,
unsigned array_layer, const char *filename);
#define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
\
static inline struct __anv_type * \
__anv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __anv_type *) _handle; \
} \
\
static inline __VkType \
__anv_type ## _to_handle(struct __anv_type *_obj) \
{ \
return (__VkType) _obj; \
}
#define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
\
static inline struct __anv_type * \
__anv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __anv_type *)(uintptr_t) _handle; \
} \
\
static inline __VkType \
__anv_type ## _to_handle(struct __anv_type *_obj) \
{ \
return (__VkType)(uintptr_t) _obj; \
}
#define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
struct __anv_type *__name = __anv_type ## _from_handle(__handle)
ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
#define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
\
static inline const __VkType * \
__anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
{ \
return (const __VkType *) __anv_obj; \
}
#define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
#ifdef __cplusplus
}
#endif