blob: f16e553a192dfac4cb0302ea77aadfba45fea516 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_program.c
*
* This file contains the driver interface for compiling shaders.
*
* See iris_program_cache.c for the in-memory program cache where the
* compiled shaders are stored.
*/
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_atomic.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/compiler/brw_nir.h"
#include "iris_context.h"
static unsigned
get_new_program_id(struct iris_screen *screen)
{
return p_atomic_inc_return(&screen->program_id);
}
/**
* An uncompiled, API-facing shader. This is the Gallium CSO for shaders.
* It primarily contains the NIR for the shader.
*
* Each API-facing shader can be compiled into multiple shader variants,
* based on non-orthogonal state dependencies, recorded in the shader key.
*
* See iris_compiled_shader, which represents a compiled shader variant.
*/
struct iris_uncompiled_shader {
nir_shader *nir;
struct pipe_stream_output_info stream_output;
unsigned program_id;
/** Bitfield of (1 << IRIS_NOS_*) flags. */
unsigned nos;
};
// XXX: need unify_interfaces() at link time...
/**
* The pipe->create_[stage]_state() driver hooks.
*
* Performs basic NIR preprocessing, records any state dependencies, and
* returns an iris_uncompiled_shader as the Gallium CSO.
*
* Actual shader compilation to assembly happens later, at first use.
*/
static void *
iris_create_shader_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
//struct iris_context *ice = (struct iris_context *)ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
assert(state->type == PIPE_SHADER_IR_NIR);
nir_shader *nir = state->ir.nir;
struct iris_uncompiled_shader *ish =
calloc(1, sizeof(struct iris_uncompiled_shader));
if (!ish)
return NULL;
nir = brw_preprocess_nir(screen->compiler, nir);
ish->program_id = get_new_program_id(screen);
ish->nir = nir;
memcpy(&ish->stream_output, &state->stream_output,
sizeof(struct pipe_stream_output_info));
switch (nir->info.stage) {
case MESA_SHADER_VERTEX:
// XXX: NOS
break;
case MESA_SHADER_TESS_CTRL:
// XXX: NOS
break;
case MESA_SHADER_TESS_EVAL:
// XXX: NOS
break;
case MESA_SHADER_GEOMETRY:
// XXX: NOS
break;
case MESA_SHADER_FRAGMENT:
ish->nos |= IRIS_NOS_FRAMEBUFFER |
IRIS_NOS_DEPTH_STENCIL_ALPHA |
IRIS_NOS_RASTERIZER |
IRIS_NOS_BLEND;
/* The program key needs the VUE map if there are > 16 inputs */
if (util_bitcount64(ish->nir->info.inputs_read &
BRW_FS_VARYING_INPUT_MASK) > 16) {
ish->nos |= IRIS_NOS_LAST_VUE_MAP;
}
break;
case MESA_SHADER_COMPUTE:
// XXX: NOS
break;
default:
break;
}
// XXX: precompile!
return ish;
}
/**
* The pipe->delete_[stage]_state() driver hooks.
*
* Frees the iris_uncompiled_shader.
*/
static void
iris_delete_shader_state(struct pipe_context *ctx, void *state)
{
struct iris_uncompiled_shader *ish = state;
ralloc_free(ish->nir);
free(ish);
}
/**
* The pipe->bind_[stage]_state() driver hook.
*
* Binds an uncompiled shader as the current one for a particular stage.
* Updates dirty tracking to account for the shader's NOS.
*/
static void
bind_state(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
gl_shader_stage stage)
{
uint64_t dirty_bit = IRIS_DIRTY_UNCOMPILED_VS << stage;
const uint64_t nos = ish ? ish->nos : 0;
ice->shaders.uncompiled[stage] = ish;
ice->state.dirty |= dirty_bit;
/* Record that CSOs need to mark IRIS_DIRTY_UNCOMPILED_XS when they change
* (or that they no longer need to do so).
*/
for (int i = 0; i < IRIS_NOS_COUNT; i++) {
if (nos & (1 << i))
ice->state.dirty_for_nos[i] |= dirty_bit;
else
ice->state.dirty_for_nos[i] &= ~dirty_bit;
}
}
static void
iris_bind_vs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_VERTEX);
}
static void
iris_bind_tcs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_TESS_CTRL);
}
static void
iris_bind_tes_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_state((void *) ctx, state, MESA_SHADER_TESS_EVAL);
}
static void
iris_bind_gs_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_GEOMETRY])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_state((void *) ctx, state, MESA_SHADER_GEOMETRY);
}
static void
iris_bind_fs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_FRAGMENT);
}
/**
* Sets up the starting offsets for the groups of binding table entries
* common to all pipeline stages.
*
* Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
* unused but also make sure that addition of small offsets to them will
* trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
*/
static uint32_t
assign_common_binding_table_offsets(const struct gen_device_info *devinfo,
const struct nir_shader *nir,
struct brw_stage_prog_data *prog_data,
uint32_t next_binding_table_offset)
{
const struct shader_info *info = &nir->info;
if (info->num_textures) {
prog_data->binding_table.texture_start = next_binding_table_offset;
prog_data->binding_table.gather_texture_start = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
} else {
prog_data->binding_table.texture_start = 0xd0d0d0d0;
prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
}
int num_ubos = info->num_ubos + (nir->num_uniforms > 0 ? 1 : 0);
if (num_ubos) {
//assert(info->num_ubos <= BRW_MAX_UBO);
prog_data->binding_table.ubo_start = next_binding_table_offset;
next_binding_table_offset += num_ubos;
} else {
prog_data->binding_table.ubo_start = 0xd0d0d0d0;
}
if (info->num_ssbos || info->num_abos) {
//assert(info->num_abos <= BRW_MAX_ABO);
//assert(info->num_ssbos <= BRW_MAX_SSBO);
prog_data->binding_table.ssbo_start = next_binding_table_offset;
next_binding_table_offset += info->num_abos + info->num_ssbos;
} else {
prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
}
prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
if (info->num_images) {
prog_data->binding_table.image_start = next_binding_table_offset;
next_binding_table_offset += info->num_images;
} else {
prog_data->binding_table.image_start = 0xd0d0d0d0;
}
/* This may or may not be used depending on how the compile goes. */
prog_data->binding_table.pull_constants_start = next_binding_table_offset;
next_binding_table_offset++;
/* Plane 0 is just the regular texture section */
prog_data->binding_table.plane_start[0] = prog_data->binding_table.texture_start;
prog_data->binding_table.plane_start[1] = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
prog_data->binding_table.plane_start[2] = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
/* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
//assert(next_binding_table_offset <= BRW_MAX_SURFACES);
return next_binding_table_offset;
}
/**
* Associate NIR uniform variables with the prog_data->param[] mechanism
* used by the backend. Also, decide which UBOs we'd like to push in an
* ideal situation (though the backend can reduce this).
*/
static void
iris_setup_uniforms(const struct brw_compiler *compiler,
void *mem_ctx,
nir_shader *nir,
struct brw_stage_prog_data *prog_data)
{
prog_data->nr_params = nir->num_uniforms;
prog_data->param = rzalloc_array(mem_ctx, uint32_t, prog_data->nr_params);
nir_foreach_variable(var, &nir->uniforms) {
const unsigned components = glsl_get_components(var->type);
for (unsigned i = 0; i < components; i++) {
prog_data->param[var->data.driver_location] =
var->data.driver_location;
}
}
// XXX: vs clip planes?
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
}
/**
* If we still have regular uniforms as push constants after the backend
* compilation, set up a UBO range for them. This will be used to fill
* out the 3DSTATE_CONSTANT_* packets which cause the data to be pushed.
*/
static void
iris_setup_push_uniform_range(const struct brw_compiler *compiler,
struct brw_stage_prog_data *prog_data)
{
if (prog_data->nr_params) {
for (int i = 3; i > 0; i--)
prog_data->ubo_ranges[i] = prog_data->ubo_ranges[i - 1];
prog_data->ubo_ranges[0] = (struct brw_ubo_range) {
.block = 0,
.start = 0,
.length = DIV_ROUND_UP(prog_data->nr_params, 8),
};
}
}
/**
* Compile a vertex shader, and upload the assembly.
*/
static bool
iris_compile_vs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_vs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_vs_prog_data *vs_prog_data =
rzalloc(mem_ctx, struct brw_vs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &vs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
nir_shader *nir = ish->nir;
// XXX: alt mode
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader);
char *error_str = NULL;
const unsigned *program =
brw_compile_vs(compiler, &ice->dbg, mem_ctx, key, vs_prog_data,
nir, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile vertex shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_setup_push_uniform_range(compiler, prog_data);
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_VS, key, program, prog_data,
so_decls);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current vertex shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_vs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_VERTEX];
struct brw_vs_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_vs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_VS, &key))
return;
UNUSED bool success = iris_compile_vs(ice, ish, &key);
}
/**
* Get the shader_info for a given stage, or NULL if the stage is disabled.
*/
const struct shader_info *
iris_get_shader_info(const struct iris_context *ice, gl_shader_stage stage)
{
const struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
if (!ish)
return NULL;
const nir_shader *nir = ish->nir;
return &nir->info;
}
/**
* Get the union of TCS output and TES input slots.
*
* TCS and TES need to agree on a common URB entry layout. In particular,
* the data for all patch vertices is stored in a single URB entry (unlike
* GS which has one entry per input vertex). This means that per-vertex
* array indexing needs a stride.
*
* SSO requires locations to match, but doesn't require the number of
* outputs/inputs to match (in fact, the TCS often has extra outputs).
* So, we need to take the extra step of unifying these on the fly.
*/
static void
get_unified_tess_slots(const struct iris_context *ice,
uint64_t *per_vertex_slots,
uint32_t *per_patch_slots)
{
const struct shader_info *tcs =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
const struct shader_info *tes =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
*per_vertex_slots = tes->inputs_read;
*per_patch_slots = tes->patch_inputs_read;
if (tcs) {
*per_vertex_slots |= tcs->inputs_read;
*per_patch_slots |= tcs->patch_inputs_read;
}
}
/**
* Compile a tessellation control shader, and upload the assembly.
*/
static bool
iris_compile_tcs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_tcs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_tcs_prog_data *tcs_prog_data =
rzalloc(mem_ctx, struct brw_tcs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
nir_shader *nir = ish->nir;
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data);
char *error_str = NULL;
const unsigned *program =
brw_compile_tcs(compiler, &ice->dbg, mem_ctx, key, tcs_prog_data, nir,
-1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile evaluation shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_setup_push_uniform_range(compiler, prog_data);
iris_upload_and_bind_shader(ice, IRIS_CACHE_TCS, key, program, prog_data,
NULL);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current tessellation control shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tcs(struct iris_context *ice)
{
struct iris_uncompiled_shader *tcs =
ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL];
struct iris_uncompiled_shader *tes =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
assert(!(tes && !tcs));
if (!tcs) {
iris_unbind_shader(ice, IRIS_CACHE_TCS);
return;
}
const struct shader_info *tes_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
struct brw_tcs_prog_key key = {
.program_string_id = tcs->program_id,
.tes_primitive_mode = tes_info->tess.primitive_mode,
};
get_unified_tess_slots(ice, &key.outputs_written,
&key.patch_outputs_written);
ice->vtbl.populate_tcs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_TCS, &key))
return;
UNUSED bool success = iris_compile_tcs(ice, tcs, &key);
}
/**
* Compile a tessellation evaluation shader, and upload the assembly.
*/
static bool
iris_compile_tes(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_tes_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_tes_prog_data *tes_prog_data =
rzalloc(mem_ctx, struct brw_tes_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tes_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
nir_shader *nir = ish->nir;
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data);
struct brw_vue_map input_vue_map;
brw_compute_tess_vue_map(&input_vue_map, key->inputs_read,
key->patch_inputs_read);
char *error_str = NULL;
const unsigned *program =
brw_compile_tes(compiler, &ice->dbg, mem_ctx, key, &input_vue_map,
tes_prog_data, nir, NULL, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile evaluation shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_setup_push_uniform_range(compiler, prog_data);
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_TES, key, program, prog_data,
so_decls);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current tessellation evaluation shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tes(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
if (!ish) {
iris_unbind_shader(ice, IRIS_CACHE_TES);
return;
}
struct brw_tes_prog_key key = { .program_string_id = ish->program_id };
get_unified_tess_slots(ice, &key.inputs_read, &key.patch_inputs_read);
ice->vtbl.populate_tes_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_TES, &key))
return;
UNUSED bool success = iris_compile_tes(ice, ish, &key);
}
/**
* Compile a geometry shader, and upload the assembly.
*/
static bool
iris_compile_gs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_gs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_gs_prog_data *gs_prog_data =
rzalloc(mem_ctx, struct brw_gs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &gs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
nir_shader *nir = ish->nir;
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader);
char *error_str = NULL;
const unsigned *program =
brw_compile_gs(compiler, &ice->dbg, mem_ctx, key, gs_prog_data, nir,
NULL, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile geometry shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_setup_push_uniform_range(compiler, prog_data);
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_GS, key, program, prog_data,
so_decls);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current geometry shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_gs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_GEOMETRY];
if (!ish) {
iris_unbind_shader(ice, IRIS_CACHE_GS);
return;
}
struct brw_gs_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_gs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_GS, &key))
return;
UNUSED bool success = iris_compile_gs(ice, ish, &key);
}
/**
* Compile a fragment (pixel) shader, and upload the assembly.
*/
static bool
iris_compile_fs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_wm_prog_key *key,
struct brw_vue_map *vue_map)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_wm_prog_data *fs_prog_data =
rzalloc(mem_ctx, struct brw_wm_prog_data);
struct brw_stage_prog_data *prog_data = &fs_prog_data->base;
nir_shader *nir = ish->nir;
// XXX: alt mode
assign_common_binding_table_offsets(devinfo, nir, prog_data,
MAX2(key->nr_color_regions, 1));
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data);
char *error_str = NULL;
const unsigned *program =
brw_compile_fs(compiler, &ice->dbg, mem_ctx, key, fs_prog_data,
nir, NULL, -1, -1, -1, true, false, vue_map, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile fragment shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
//brw_alloc_stage_scratch(brw, &brw->wm.base, prog_data.base.total_scratch);
iris_setup_push_uniform_range(compiler, prog_data);
iris_upload_and_bind_shader(ice, IRIS_CACHE_FS, key, program, prog_data,
NULL);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current fragment shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_fs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
struct brw_wm_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_fs_key(ice, &key);
if (ish->nos & IRIS_NOS_LAST_VUE_MAP)
key.input_slots_valid = ice->shaders.last_vue_map->slots_valid;
if (iris_bind_cached_shader(ice, IRIS_CACHE_FS, &key))
return;
UNUSED bool success =
iris_compile_fs(ice, ish, &key, ice->shaders.last_vue_map);
}
/**
* Get the compiled shader for the last enabled geometry stage.
*
* This stage is the one which will feed stream output and the rasterizer.
*/
static struct iris_compiled_shader *
last_vue_shader(struct iris_context *ice)
{
if (ice->shaders.prog[MESA_SHADER_GEOMETRY])
return ice->shaders.prog[MESA_SHADER_GEOMETRY];
if (ice->shaders.prog[MESA_SHADER_TESS_EVAL])
return ice->shaders.prog[MESA_SHADER_TESS_EVAL];
return ice->shaders.prog[MESA_SHADER_VERTEX];
}
/**
* Update the last enabled stage's VUE map.
*
* When the shader feeding the rasterizer's output interface changes, we
* need to re-emit various packets.
*/
static void
update_last_vue_map(struct iris_context *ice,
struct brw_stage_prog_data *prog_data)
{
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
struct brw_vue_map *old_map = ice->shaders.last_vue_map;
const uint64_t changed_slots =
(old_map ? old_map->slots_valid : 0ull) ^ vue_map->slots_valid;
if (changed_slots & VARYING_BIT_VIEWPORT) {
// XXX: could use ctx->Const.MaxViewports for old API efficiency
ice->state.num_viewports =
(vue_map->slots_valid & VARYING_BIT_VIEWPORT) ? IRIS_MAX_VIEWPORTS : 1;
ice->state.dirty |= IRIS_DIRTY_CLIP |
IRIS_DIRTY_SF_CL_VIEWPORT |
IRIS_DIRTY_SCISSOR_RECT |
IRIS_DIRTY_UNCOMPILED_FS |
ice->state.dirty_for_nos[IRIS_NOS_LAST_VUE_MAP];
// XXX: CC_VIEWPORT?
}
if (changed_slots || (old_map && old_map->separate != vue_map->separate)) {
ice->state.dirty |= IRIS_DIRTY_SBE;
}
ice->shaders.last_vue_map = &vue_prog_data->vue_map;
}
/**
* Get the prog_data for a given stage, or NULL if the stage is disabled.
*/
static struct brw_vue_prog_data *
get_vue_prog_data(struct iris_context *ice, gl_shader_stage stage)
{
if (!ice->shaders.prog[stage])
return NULL;
return (void *) ice->shaders.prog[stage]->prog_data;
}
/**
* Update the current shader variants for the given state.
*
* This should be called on every draw call to ensure that the correct
* shaders are bound. It will also flag any dirty state triggered by
* swapping out those shaders.
*/
void
iris_update_compiled_shaders(struct iris_context *ice)
{
const uint64_t dirty = ice->state.dirty;
struct brw_vue_prog_data *old_prog_datas[4];
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++)
old_prog_datas[i] = get_vue_prog_data(ice, i);
}
if (dirty & IRIS_DIRTY_UNCOMPILED_VS)
iris_update_compiled_vs(ice);
if (dirty & IRIS_DIRTY_UNCOMPILED_TCS)
iris_update_compiled_tcs(ice);
if (dirty & IRIS_DIRTY_UNCOMPILED_TES)
iris_update_compiled_tes(ice);
if (dirty & IRIS_DIRTY_UNCOMPILED_GS)
iris_update_compiled_gs(ice);
struct iris_compiled_shader *shader = last_vue_shader(ice);
update_last_vue_map(ice, shader->prog_data);
if (ice->state.streamout != shader->streamout) {
ice->state.streamout = shader->streamout;
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST | IRIS_DIRTY_STREAMOUT;
}
if (dirty & IRIS_DIRTY_UNCOMPILED_FS)
iris_update_compiled_fs(ice);
// ...
/* Changing shader interfaces may require a URB configuration. */
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
struct brw_vue_prog_data *old = old_prog_datas[i];
struct brw_vue_prog_data *new = get_vue_prog_data(ice, i);
if (!!old != !!new ||
(new && new->urb_entry_size != old->urb_entry_size)) {
ice->state.dirty |= IRIS_DIRTY_URB;
break;
}
}
}
}
void
iris_init_program_functions(struct pipe_context *ctx)
{
ctx->create_vs_state = iris_create_shader_state;
ctx->create_tcs_state = iris_create_shader_state;
ctx->create_tes_state = iris_create_shader_state;
ctx->create_gs_state = iris_create_shader_state;
ctx->create_fs_state = iris_create_shader_state;
ctx->delete_vs_state = iris_delete_shader_state;
ctx->delete_tcs_state = iris_delete_shader_state;
ctx->delete_tes_state = iris_delete_shader_state;
ctx->delete_gs_state = iris_delete_shader_state;
ctx->delete_fs_state = iris_delete_shader_state;
ctx->bind_vs_state = iris_bind_vs_state;
ctx->bind_tcs_state = iris_bind_tcs_state;
ctx->bind_tes_state = iris_bind_tes_state;
ctx->bind_gs_state = iris_bind_gs_state;
ctx->bind_fs_state = iris_bind_fs_state;
}