blob: 47ecc744ea9cead8b89d048d5e268161dfae82b4 [file] [log] [blame]
/*
* Copyright (C) 2017-2019 Alyssa Rosenzweig
* Copyright (C) 2017-2019 Connor Abbott
* Copyright (C) 2019 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <panfrost-job.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <stdbool.h>
#include <stdarg.h>
#include "decode.h"
#include "util/macros.h"
#include "util/u_math.h"
#include "pan_pretty_print.h"
#include "midgard/disassemble.h"
#include "bifrost/disassemble.h"
#include "pan_encoder.h"
int pandecode_jc(mali_ptr jc_gpu_va, bool bifrost);
#define MEMORY_PROP(obj, p) {\
if (obj->p) { \
char *a = pointer_as_memory_reference(obj->p); \
pandecode_prop("%s = %s", #p, a); \
free(a); \
} \
}
#define MEMORY_PROP_DIR(obj, p) {\
if (obj.p) { \
char *a = pointer_as_memory_reference(obj.p); \
pandecode_prop("%s = %s", #p, a); \
free(a); \
} \
}
/* Semantic logging type.
*
* Raw: for raw messages to be printed as is.
* Message: for helpful information to be commented out in replays.
* Property: for properties of a struct
*
* Use one of pandecode_log, pandecode_msg, or pandecode_prop as syntax sugar.
*/
enum pandecode_log_type {
PANDECODE_RAW,
PANDECODE_MESSAGE,
PANDECODE_PROPERTY
};
#define pandecode_log(...) pandecode_log_typed(PANDECODE_RAW, __VA_ARGS__)
#define pandecode_msg(...) pandecode_log_typed(PANDECODE_MESSAGE, __VA_ARGS__)
#define pandecode_prop(...) pandecode_log_typed(PANDECODE_PROPERTY, __VA_ARGS__)
unsigned pandecode_indent = 0;
static void
pandecode_make_indent(void)
{
for (unsigned i = 0; i < pandecode_indent; ++i)
printf(" ");
}
static void
pandecode_log_typed(enum pandecode_log_type type, const char *format, ...)
{
va_list ap;
pandecode_make_indent();
if (type == PANDECODE_MESSAGE)
printf("// ");
else if (type == PANDECODE_PROPERTY)
printf(".");
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
if (type == PANDECODE_PROPERTY)
printf(",\n");
}
static void
pandecode_log_cont(const char *format, ...)
{
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
}
/* To check for memory safety issues, validates that the given pointer in GPU
* memory is valid, containing at least sz bytes. The goal is to eliminate
* GPU-side memory bugs (NULL pointer dereferences, buffer overflows, or buffer
* overruns) by statically validating pointers.
*/
static void
pandecode_validate_buffer(mali_ptr addr, size_t sz)
{
if (!addr) {
pandecode_msg("XXX: null pointer deref");
return;
}
/* Find a BO */
struct pandecode_mapped_memory *bo =
pandecode_find_mapped_gpu_mem_containing(addr);
if (!bo) {
pandecode_msg("XXX: invalid memory dereference\n");
return;
}
/* Bounds check */
unsigned offset = addr - bo->gpu_va;
unsigned total = offset + sz;
if (total > bo->length) {
pandecode_msg("XXX: buffer overrun."
"Chunk of size %d at offset %d in buffer of size %d. "
"Overrun by %d bytes.",
sz, offset, bo->length, total - bo->length);
return;
}
}
struct pandecode_flag_info {
u64 flag;
const char *name;
};
static void
pandecode_log_decoded_flags(const struct pandecode_flag_info *flag_info,
u64 flags)
{
bool decodable_flags_found = false;
for (int i = 0; flag_info[i].name; i++) {
if ((flags & flag_info[i].flag) != flag_info[i].flag)
continue;
if (!decodable_flags_found) {
decodable_flags_found = true;
} else {
pandecode_log_cont(" | ");
}
pandecode_log_cont("%s", flag_info[i].name);
flags &= ~flag_info[i].flag;
}
if (decodable_flags_found) {
if (flags)
pandecode_log_cont(" | 0x%" PRIx64, flags);
} else {
pandecode_log_cont("0x%" PRIx64, flags);
}
}
#define FLAG_INFO(flag) { MALI_##flag, "MALI_" #flag }
static const struct pandecode_flag_info gl_enable_flag_info[] = {
FLAG_INFO(OCCLUSION_QUERY),
FLAG_INFO(OCCLUSION_PRECISE),
FLAG_INFO(FRONT_CCW_TOP),
FLAG_INFO(CULL_FACE_FRONT),
FLAG_INFO(CULL_FACE_BACK),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_CLEAR_##flag, "MALI_CLEAR_" #flag }
static const struct pandecode_flag_info clear_flag_info[] = {
FLAG_INFO(FAST),
FLAG_INFO(SLOW),
FLAG_INFO(SLOW_STENCIL),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_MASK_##flag, "MALI_MASK_" #flag }
static const struct pandecode_flag_info mask_flag_info[] = {
FLAG_INFO(R),
FLAG_INFO(G),
FLAG_INFO(B),
FLAG_INFO(A),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_##flag, "MALI_" #flag }
static const struct pandecode_flag_info u3_flag_info[] = {
FLAG_INFO(HAS_MSAA),
FLAG_INFO(CAN_DISCARD),
FLAG_INFO(HAS_BLEND_SHADER),
FLAG_INFO(DEPTH_TEST),
{}
};
static const struct pandecode_flag_info u4_flag_info[] = {
FLAG_INFO(NO_MSAA),
FLAG_INFO(NO_DITHER),
FLAG_INFO(DEPTH_RANGE_A),
FLAG_INFO(DEPTH_RANGE_B),
FLAG_INFO(STENCIL_TEST),
FLAG_INFO(SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_FRAMEBUFFER_##flag, "MALI_FRAMEBUFFER_" #flag }
static const struct pandecode_flag_info fb_fmt_flag_info[] = {
FLAG_INFO(MSAA_A),
FLAG_INFO(MSAA_B),
FLAG_INFO(MSAA_8),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_MFBD_FORMAT_##flag, "MALI_MFBD_FORMAT_" #flag }
static const struct pandecode_flag_info mfbd_fmt_flag_info[] = {
FLAG_INFO(MSAA),
FLAG_INFO(SRGB),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_EXTRA_##flag, "MALI_EXTRA_" #flag }
static const struct pandecode_flag_info mfbd_extra_flag_info[] = {
FLAG_INFO(PRESENT),
FLAG_INFO(AFBC),
FLAG_INFO(ZS),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_##flag, "MALI_" #flag }
static const struct pandecode_flag_info shader_midgard1_flag_info [] = {
FLAG_INFO(EARLY_Z),
FLAG_INFO(HELPER_INVOCATIONS),
FLAG_INFO(READS_TILEBUFFER),
FLAG_INFO(READS_ZS),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_MFBD_##flag, "MALI_MFBD_" #flag }
static const struct pandecode_flag_info mfbd_flag_info [] = {
FLAG_INFO(DEPTH_WRITE),
FLAG_INFO(EXTRA),
{}
};
#undef FLAG_INFO
#define FLAG_INFO(flag) { MALI_SAMP_##flag, "MALI_SAMP_" #flag }
static const struct pandecode_flag_info sampler_flag_info [] = {
FLAG_INFO(MAG_NEAREST),
FLAG_INFO(MIN_NEAREST),
FLAG_INFO(MIP_LINEAR_1),
FLAG_INFO(MIP_LINEAR_2),
FLAG_INFO(NORM_COORDS),
{}
};
#undef FLAG_INFO
extern char *replace_fragment;
extern char *replace_vertex;
static char *
pandecode_job_type(enum mali_job_type type)
{
#define DEFINE_CASE(name) case JOB_TYPE_ ## name: return "JOB_TYPE_" #name
switch (type) {
DEFINE_CASE(NULL);
DEFINE_CASE(SET_VALUE);
DEFINE_CASE(CACHE_FLUSH);
DEFINE_CASE(COMPUTE);
DEFINE_CASE(VERTEX);
DEFINE_CASE(TILER);
DEFINE_CASE(FUSED);
DEFINE_CASE(FRAGMENT);
case JOB_NOT_STARTED:
return "NOT_STARTED";
default:
pandecode_log("Warning! Unknown job type %x\n", type);
return "!?!?!?";
}
#undef DEFINE_CASE
}
static char *
pandecode_draw_mode(enum mali_draw_mode mode)
{
#define DEFINE_CASE(name) case MALI_ ## name: return "MALI_" #name
switch (mode) {
DEFINE_CASE(DRAW_NONE);
DEFINE_CASE(POINTS);
DEFINE_CASE(LINES);
DEFINE_CASE(TRIANGLES);
DEFINE_CASE(TRIANGLE_STRIP);
DEFINE_CASE(TRIANGLE_FAN);
DEFINE_CASE(LINE_STRIP);
DEFINE_CASE(LINE_LOOP);
DEFINE_CASE(POLYGON);
DEFINE_CASE(QUADS);
DEFINE_CASE(QUAD_STRIP);
default:
return "MALI_TRIANGLES /* XXX: Unknown GL mode, check dump */";
}
#undef DEFINE_CASE
}
#define DEFINE_CASE(name) case MALI_FUNC_ ## name: return "MALI_FUNC_" #name
static char *
pandecode_func(enum mali_func mode)
{
switch (mode) {
DEFINE_CASE(NEVER);
DEFINE_CASE(LESS);
DEFINE_CASE(EQUAL);
DEFINE_CASE(LEQUAL);
DEFINE_CASE(GREATER);
DEFINE_CASE(NOTEQUAL);
DEFINE_CASE(GEQUAL);
DEFINE_CASE(ALWAYS);
default:
return "MALI_FUNC_NEVER /* XXX: Unknown function, check dump */";
}
}
#undef DEFINE_CASE
/* Why is this duplicated? Who knows... */
#define DEFINE_CASE(name) case MALI_ALT_FUNC_ ## name: return "MALI_ALT_FUNC_" #name
static char *
pandecode_alt_func(enum mali_alt_func mode)
{
switch (mode) {
DEFINE_CASE(NEVER);
DEFINE_CASE(LESS);
DEFINE_CASE(EQUAL);
DEFINE_CASE(LEQUAL);
DEFINE_CASE(GREATER);
DEFINE_CASE(NOTEQUAL);
DEFINE_CASE(GEQUAL);
DEFINE_CASE(ALWAYS);
default:
return "MALI_FUNC_NEVER /* XXX: Unknown function, check dump */";
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_STENCIL_ ## name: return "MALI_STENCIL_" #name
static char *
pandecode_stencil_op(enum mali_stencil_op op)
{
switch (op) {
DEFINE_CASE(KEEP);
DEFINE_CASE(REPLACE);
DEFINE_CASE(ZERO);
DEFINE_CASE(INVERT);
DEFINE_CASE(INCR_WRAP);
DEFINE_CASE(DECR_WRAP);
DEFINE_CASE(INCR);
DEFINE_CASE(DECR);
default:
return "MALI_STENCIL_KEEP /* XXX: Unknown stencil op, check dump */";
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_ATTR_ ## name: return "MALI_ATTR_" #name
static char *pandecode_attr_mode(enum mali_attr_mode mode)
{
switch(mode) {
DEFINE_CASE(UNUSED);
DEFINE_CASE(LINEAR);
DEFINE_CASE(POT_DIVIDE);
DEFINE_CASE(MODULO);
DEFINE_CASE(NPOT_DIVIDE);
DEFINE_CASE(IMAGE);
DEFINE_CASE(INTERNAL);
default:
return "MALI_ATTR_UNUSED /* XXX: Unknown stencil op, check dump */";
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_CHANNEL_## name: return "MALI_CHANNEL_" #name
static char *
pandecode_channel(enum mali_channel channel)
{
switch (channel) {
DEFINE_CASE(RED);
DEFINE_CASE(GREEN);
DEFINE_CASE(BLUE);
DEFINE_CASE(ALPHA);
DEFINE_CASE(ZERO);
DEFINE_CASE(ONE);
DEFINE_CASE(RESERVED_0);
DEFINE_CASE(RESERVED_1);
default:
return "MALI_CHANNEL_ZERO /* XXX: Unknown channel, check dump */";
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_WRAP_## name: return "MALI_WRAP_" #name
static char *
pandecode_wrap_mode(enum mali_wrap_mode op)
{
switch (op) {
DEFINE_CASE(REPEAT);
DEFINE_CASE(CLAMP_TO_EDGE);
DEFINE_CASE(CLAMP_TO_BORDER);
DEFINE_CASE(MIRRORED_REPEAT);
default:
return "MALI_WRAP_REPEAT /* XXX: Unknown wrap mode, check dump */";
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_TEX_## name: return "MALI_TEX_" #name
static char *
pandecode_texture_type(enum mali_texture_type type)
{
switch (type) {
DEFINE_CASE(1D);
DEFINE_CASE(2D);
DEFINE_CASE(3D);
DEFINE_CASE(CUBE);
default:
unreachable("Unknown case");
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_MFBD_BLOCK_## name: return "MALI_MFBD_BLOCK_" #name
static char *
pandecode_mfbd_block_format(enum mali_mfbd_block_format fmt)
{
switch (fmt) {
DEFINE_CASE(TILED);
DEFINE_CASE(UNKNOWN);
DEFINE_CASE(LINEAR);
DEFINE_CASE(AFBC);
default:
unreachable("Invalid case");
}
}
#undef DEFINE_CASE
#define DEFINE_CASE(name) case MALI_EXCEPTION_ACCESS_## name: return ""#name
static char *
pandecode_exception_access(enum mali_exception_access fmt)
{
switch (fmt) {
DEFINE_CASE(NONE);
DEFINE_CASE(EXECUTE);
DEFINE_CASE(READ);
DEFINE_CASE(WRITE);
default:
unreachable("Invalid case");
}
}
#undef DEFINE_CASE
/* Midgard's tiler descriptor is embedded within the
* larger FBD */
static void
pandecode_midgard_tiler_descriptor(
const struct midgard_tiler_descriptor *t,
unsigned width,
unsigned height,
bool is_fragment)
{
pandecode_log(".tiler = {\n");
pandecode_indent++;
if (t->hierarchy_mask == MALI_TILER_DISABLED)
pandecode_prop("hierarchy_mask = MALI_TILER_DISABLED");
else
pandecode_prop("hierarchy_mask = 0x%" PRIx16, t->hierarchy_mask);
/* We know this name from the kernel, but we never see it nonzero */
if (t->flags)
pandecode_prop("flags = 0x%" PRIx16 " /* XXX: unexpected */", t->flags);
MEMORY_PROP(t, polygon_list);
/* The body is offset from the base of the polygon list */
assert(t->polygon_list_body > t->polygon_list);
unsigned body_offset = t->polygon_list_body - t->polygon_list;
/* It needs to fit inside the reported size */
assert(t->polygon_list_size >= body_offset);
/* Check that we fit */
struct pandecode_mapped_memory *plist =
pandecode_find_mapped_gpu_mem_containing(t->polygon_list);
assert(t->polygon_list_size <= plist->length);
/* Now that we've sanity checked, we'll try to calculate the sizes
* ourselves for comparison */
unsigned ref_header = panfrost_tiler_header_size(width, height, t->hierarchy_mask);
unsigned ref_size = panfrost_tiler_full_size(width, height, t->hierarchy_mask);
if (!((ref_header == body_offset) && (ref_size == t->polygon_list_size))) {
pandecode_msg("XXX: bad polygon list size (expected %d / 0x%x)\n",
ref_header, ref_size);
pandecode_prop("polygon_list_size = 0x%x", t->polygon_list_size);
pandecode_msg("body offset %d\n", body_offset);
}
/* The tiler heap has a start and end specified -- it should be
* identical to what we have in the BO. The exception is if tiling is
* disabled. */
MEMORY_PROP(t, heap_start);
assert(t->heap_end >= t->heap_start);
struct pandecode_mapped_memory *heap =
pandecode_find_mapped_gpu_mem_containing(t->heap_start);
unsigned heap_size = t->heap_end - t->heap_start;
/* Tiling is enabled with a special flag */
unsigned hierarchy_mask = t->hierarchy_mask & MALI_HIERARCHY_MASK;
unsigned tiler_flags = t->hierarchy_mask ^ hierarchy_mask;
bool tiling_enabled = hierarchy_mask;
if (tiling_enabled) {
/* When tiling is enabled, the heap should be a tight fit */
unsigned heap_offset = t->heap_start - heap->gpu_va;
if ((heap_offset + heap_size) != heap->length) {
pandecode_msg("XXX: heap size %d (expected %d)\n",
heap_size, heap->length - heap_offset);
}
/* We should also have no other flags */
if (tiler_flags)
pandecode_msg("XXX: unexpected tiler %X\n", tiler_flags);
} else {
/* When tiling is disabled, we should have that flag and no others */
if (tiler_flags != MALI_TILER_DISABLED) {
pandecode_msg("XXX: unexpected tiler flag %X, expected MALI_TILER_DISABLED\n",
tiler_flags);
}
/* We should also have an empty heap */
if (heap_size) {
pandecode_msg("XXX: tiler heap size %d given, expected empty\n",
heap_size);
}
/* Disabled tiling is used only for clear-only jobs, which are
* purely FRAGMENT, so we should never see this for
* non-FRAGMENT descriptors. */
if (!is_fragment)
pandecode_msg("XXX: tiler disabled for non-FRAGMENT job\n");
}
/* We've never seen weights used in practice, but we know from the
* kernel these fields is there */
bool nonzero_weights = false;
for (unsigned w = 0; w < ARRAY_SIZE(t->weights); ++w) {
nonzero_weights |= t->weights[w] != 0x0;
}
if (nonzero_weights) {
pandecode_log(".weights = {");
for (unsigned w = 0; w < ARRAY_SIZE(t->weights); ++w) {
pandecode_log("%d, ", t->weights[w]);
}
pandecode_log("},");
}
pandecode_indent--;
pandecode_log("}\n");
}
static void
pandecode_sfbd(uint64_t gpu_va, int job_no, bool is_fragment)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct mali_single_framebuffer *PANDECODE_PTR_VAR(s, mem, (mali_ptr) gpu_va);
pandecode_log("struct mali_single_framebuffer framebuffer_%"PRIx64"_%d = {\n", gpu_va, job_no);
pandecode_indent++;
pandecode_prop("unknown1 = 0x%" PRIx32, s->unknown1);
pandecode_prop("unknown2 = 0x%" PRIx32, s->unknown2);
pandecode_log(".format = ");
pandecode_log_decoded_flags(fb_fmt_flag_info, s->format);
pandecode_log_cont(",\n");
pandecode_prop("width = MALI_POSITIVE(%" PRId16 ")", s->width + 1);
pandecode_prop("height = MALI_POSITIVE(%" PRId16 ")", s->height + 1);
MEMORY_PROP(s, framebuffer);
pandecode_prop("stride = %d", s->stride);
/* Earlier in the actual commandstream -- right before width -- but we
* delay to flow nicer */
pandecode_log(".clear_flags = ");
pandecode_log_decoded_flags(clear_flag_info, s->clear_flags);
pandecode_log_cont(",\n");
if (s->depth_buffer | s->depth_buffer_enable) {
MEMORY_PROP(s, depth_buffer);
pandecode_prop("depth_buffer_enable = %s", DS_ENABLE(s->depth_buffer_enable));
}
if (s->stencil_buffer | s->stencil_buffer_enable) {
MEMORY_PROP(s, stencil_buffer);
pandecode_prop("stencil_buffer_enable = %s", DS_ENABLE(s->stencil_buffer_enable));
}
if (s->clear_color_1 | s->clear_color_2 | s->clear_color_3 | s->clear_color_4) {
pandecode_prop("clear_color_1 = 0x%" PRIx32, s->clear_color_1);
pandecode_prop("clear_color_2 = 0x%" PRIx32, s->clear_color_2);
pandecode_prop("clear_color_3 = 0x%" PRIx32, s->clear_color_3);
pandecode_prop("clear_color_4 = 0x%" PRIx32, s->clear_color_4);
}
if (s->clear_depth_1 != 0 || s->clear_depth_2 != 0 || s->clear_depth_3 != 0 || s->clear_depth_4 != 0) {
pandecode_prop("clear_depth_1 = %f", s->clear_depth_1);
pandecode_prop("clear_depth_2 = %f", s->clear_depth_2);
pandecode_prop("clear_depth_3 = %f", s->clear_depth_3);
pandecode_prop("clear_depth_4 = %f", s->clear_depth_4);
}
if (s->clear_stencil) {
pandecode_prop("clear_stencil = 0x%x", s->clear_stencil);
}
MEMORY_PROP(s, unknown_address_0);
const struct midgard_tiler_descriptor t = s->tiler;
pandecode_midgard_tiler_descriptor(&t, s->width + 1, s->height + 1, is_fragment);
pandecode_indent--;
pandecode_log("};\n");
pandecode_prop("zero0 = 0x%" PRIx64, s->zero0);
pandecode_prop("zero1 = 0x%" PRIx64, s->zero1);
pandecode_prop("zero2 = 0x%" PRIx32, s->zero2);
pandecode_prop("zero4 = 0x%" PRIx32, s->zero4);
printf(".zero3 = {");
for (int i = 0; i < sizeof(s->zero3) / sizeof(s->zero3[0]); ++i)
printf("%X, ", s->zero3[i]);
printf("},\n");
printf(".zero6 = {");
for (int i = 0; i < sizeof(s->zero6) / sizeof(s->zero6[0]); ++i)
printf("%X, ", s->zero6[i]);
printf("},\n");
}
static void
pandecode_u32_slide(unsigned name, const u32 *slide, unsigned count)
{
pandecode_log(".unknown%d = {", name);
for (int i = 0; i < count; ++i)
printf("%X, ", slide[i]);
pandecode_log("},\n");
}
#define SHORT_SLIDE(num) \
pandecode_u32_slide(num, s->unknown ## num, ARRAY_SIZE(s->unknown ## num))
static void
pandecode_compute_fbd(uint64_t gpu_va, int job_no)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct mali_compute_fbd *PANDECODE_PTR_VAR(s, mem, (mali_ptr) gpu_va);
pandecode_log("struct mali_compute_fbd framebuffer_%"PRIx64"_%d = {\n", gpu_va, job_no);
pandecode_indent++;
SHORT_SLIDE(1);
pandecode_indent--;
printf("},\n");
}
static void
pandecode_swizzle(unsigned swizzle)
{
pandecode_prop("swizzle = %s | (%s << 3) | (%s << 6) | (%s << 9)",
pandecode_channel((swizzle >> 0) & 0x7),
pandecode_channel((swizzle >> 3) & 0x7),
pandecode_channel((swizzle >> 6) & 0x7),
pandecode_channel((swizzle >> 9) & 0x7));
}
static void
pandecode_rt_format(struct mali_rt_format format)
{
pandecode_log(".format = {\n");
pandecode_indent++;
pandecode_prop("unk1 = 0x%" PRIx32, format.unk1);
pandecode_prop("unk2 = 0x%" PRIx32, format.unk2);
pandecode_prop("unk3 = 0x%" PRIx32, format.unk3);
pandecode_prop("block = %s",
pandecode_mfbd_block_format(format.block));
pandecode_prop("nr_channels = MALI_POSITIVE(%d)",
MALI_NEGATIVE(format.nr_channels));
pandecode_log(".flags = ");
pandecode_log_decoded_flags(mfbd_fmt_flag_info, format.flags);
pandecode_log_cont(",\n");
pandecode_swizzle(format.swizzle);
pandecode_prop("no_preload = 0x%" PRIx32, format.no_preload);
if (format.zero)
pandecode_prop("zero = 0x%" PRIx32, format.zero);
pandecode_indent--;
pandecode_log("},\n");
}
static void
pandecode_render_target(uint64_t gpu_va, unsigned job_no, const struct bifrost_framebuffer *fb)
{
pandecode_log("struct bifrost_render_target rts_list_%"PRIx64"_%d[] = {\n", gpu_va, job_no);
pandecode_indent++;
for (int i = 0; i < MALI_NEGATIVE(fb->rt_count_1); i++) {
mali_ptr rt_va = gpu_va + i * sizeof(struct bifrost_render_target);
struct pandecode_mapped_memory *mem =
pandecode_find_mapped_gpu_mem_containing(rt_va);
const struct bifrost_render_target *PANDECODE_PTR_VAR(rt, mem, (mali_ptr) rt_va);
pandecode_log("{\n");
pandecode_indent++;
pandecode_rt_format(rt->format);
if (rt->format.block == MALI_MFBD_BLOCK_AFBC) {
pandecode_log(".afbc = {\n");
pandecode_indent++;
char *a = pointer_as_memory_reference(rt->afbc.metadata);
pandecode_prop("metadata = %s", a);
free(a);
pandecode_prop("stride = %d", rt->afbc.stride);
pandecode_prop("unk = 0x%" PRIx32, rt->afbc.unk);
pandecode_indent--;
pandecode_log("},\n");
} else {
pandecode_log(".chunknown = {\n");
pandecode_indent++;
pandecode_prop("unk = 0x%" PRIx64, rt->chunknown.unk);
char *a = pointer_as_memory_reference(rt->chunknown.pointer);
pandecode_prop("pointer = %s", a);
free(a);
pandecode_indent--;
pandecode_log("},\n");
}
MEMORY_PROP(rt, framebuffer);
pandecode_prop("framebuffer_stride = %d", rt->framebuffer_stride);
if (rt->clear_color_1 | rt->clear_color_2 | rt->clear_color_3 | rt->clear_color_4) {
pandecode_prop("clear_color_1 = 0x%" PRIx32, rt->clear_color_1);
pandecode_prop("clear_color_2 = 0x%" PRIx32, rt->clear_color_2);
pandecode_prop("clear_color_3 = 0x%" PRIx32, rt->clear_color_3);
pandecode_prop("clear_color_4 = 0x%" PRIx32, rt->clear_color_4);
}
if (rt->zero1 || rt->zero2 || rt->zero3) {
pandecode_msg("render target zeros tripped\n");
pandecode_prop("zero1 = 0x%" PRIx64, rt->zero1);
pandecode_prop("zero2 = 0x%" PRIx32, rt->zero2);
pandecode_prop("zero3 = 0x%" PRIx32, rt->zero3);
}
pandecode_indent--;
pandecode_log("},\n");
}
pandecode_indent--;
pandecode_log("};\n");
}
static unsigned
pandecode_mfbd_bfr(uint64_t gpu_va, int job_no, bool is_fragment)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct bifrost_framebuffer *PANDECODE_PTR_VAR(fb, mem, (mali_ptr) gpu_va);
if (fb->sample_locations) {
/* The blob stores all possible sample locations in a single buffer
* allocated on startup, and just switches the pointer when switching
* MSAA state. For now, we just put the data into the cmdstream, but we
* should do something like what the blob does with a real driver.
*
* There seem to be 32 slots for sample locations, followed by another
* 16. The second 16 is just the center location followed by 15 zeros
* in all the cases I've identified (maybe shader vs. depth/color
* samples?).
*/
struct pandecode_mapped_memory *smem = pandecode_find_mapped_gpu_mem_containing(fb->sample_locations);
const u16 *PANDECODE_PTR_VAR(samples, smem, fb->sample_locations);
pandecode_log("uint16_t sample_locations_%d[] = {\n", job_no);
pandecode_indent++;
for (int i = 0; i < 32 + 16; i++) {
pandecode_log("%d, %d,\n", samples[2 * i], samples[2 * i + 1]);
}
pandecode_indent--;
pandecode_log("};\n");
}
pandecode_log("struct bifrost_framebuffer framebuffer_%"PRIx64"_%d = {\n", gpu_va, job_no);
pandecode_indent++;
pandecode_prop("unk0 = 0x%x", fb->unk0);
if (fb->sample_locations)
pandecode_prop("sample_locations = sample_locations_%d", job_no);
/* Assume that unknown1 was emitted in the last job for
* now */
MEMORY_PROP(fb, unknown1);
pandecode_prop("width1 = MALI_POSITIVE(%d)", fb->width1 + 1);
pandecode_prop("height1 = MALI_POSITIVE(%d)", fb->height1 + 1);
pandecode_prop("width2 = MALI_POSITIVE(%d)", fb->width2 + 1);
pandecode_prop("height2 = MALI_POSITIVE(%d)", fb->height2 + 1);
pandecode_prop("unk1 = 0x%x", fb->unk1);
pandecode_prop("unk2 = 0x%x", fb->unk2);
pandecode_prop("rt_count_1 = MALI_POSITIVE(%d)", fb->rt_count_1 + 1);
pandecode_prop("rt_count_2 = %d", fb->rt_count_2);
pandecode_log(".mfbd_flags = ");
pandecode_log_decoded_flags(mfbd_flag_info, fb->mfbd_flags);
pandecode_log_cont(",\n");
pandecode_prop("clear_stencil = 0x%x", fb->clear_stencil);
pandecode_prop("clear_depth = %f", fb->clear_depth);
pandecode_prop("unknown2 = 0x%x", fb->unknown2);
MEMORY_PROP(fb, scratchpad);
const struct midgard_tiler_descriptor t = fb->tiler;
pandecode_midgard_tiler_descriptor(&t, fb->width1 + 1, fb->height1 + 1, is_fragment);
if (fb->zero3 || fb->zero4) {
pandecode_msg("framebuffer zeros tripped\n");
pandecode_prop("zero3 = 0x%" PRIx32, fb->zero3);
pandecode_prop("zero4 = 0x%" PRIx32, fb->zero4);
}
pandecode_indent--;
pandecode_log("};\n");
gpu_va += sizeof(struct bifrost_framebuffer);
if ((fb->mfbd_flags & MALI_MFBD_EXTRA) && is_fragment) {
mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct bifrost_fb_extra *PANDECODE_PTR_VAR(fbx, mem, (mali_ptr) gpu_va);
pandecode_log("struct bifrost_fb_extra fb_extra_%"PRIx64"_%d = {\n", gpu_va, job_no);
pandecode_indent++;
MEMORY_PROP(fbx, checksum);
if (fbx->checksum_stride)
pandecode_prop("checksum_stride = %d", fbx->checksum_stride);
pandecode_log(".flags = ");
pandecode_log_decoded_flags(mfbd_extra_flag_info, fbx->flags);
pandecode_log_cont(",\n");
if (fbx->flags & MALI_EXTRA_AFBC_ZS) {
pandecode_log(".ds_afbc = {\n");
pandecode_indent++;
MEMORY_PROP_DIR(fbx->ds_afbc, depth_stencil_afbc_metadata);
pandecode_prop("depth_stencil_afbc_stride = %d",
fbx->ds_afbc.depth_stencil_afbc_stride);
MEMORY_PROP_DIR(fbx->ds_afbc, depth_stencil);
if (fbx->ds_afbc.zero1 || fbx->ds_afbc.padding) {
pandecode_msg("Depth/stencil AFBC zeros tripped\n");
pandecode_prop("zero1 = 0x%" PRIx32,
fbx->ds_afbc.zero1);
pandecode_prop("padding = 0x%" PRIx64,
fbx->ds_afbc.padding);
}
pandecode_indent--;
pandecode_log("},\n");
} else {
pandecode_log(".ds_linear = {\n");
pandecode_indent++;
if (fbx->ds_linear.depth) {
MEMORY_PROP_DIR(fbx->ds_linear, depth);
pandecode_prop("depth_stride = %d",
fbx->ds_linear.depth_stride);
}
if (fbx->ds_linear.stencil) {
MEMORY_PROP_DIR(fbx->ds_linear, stencil);
pandecode_prop("stencil_stride = %d",
fbx->ds_linear.stencil_stride);
}
if (fbx->ds_linear.depth_stride_zero ||
fbx->ds_linear.stencil_stride_zero ||
fbx->ds_linear.zero1 || fbx->ds_linear.zero2) {
pandecode_msg("Depth/stencil zeros tripped\n");
pandecode_prop("depth_stride_zero = 0x%x",
fbx->ds_linear.depth_stride_zero);
pandecode_prop("stencil_stride_zero = 0x%x",
fbx->ds_linear.stencil_stride_zero);
pandecode_prop("zero1 = 0x%" PRIx32,
fbx->ds_linear.zero1);
pandecode_prop("zero2 = 0x%" PRIx32,
fbx->ds_linear.zero2);
}
pandecode_indent--;
pandecode_log("},\n");
}
if (fbx->zero3 || fbx->zero4) {
pandecode_msg("fb_extra zeros tripped\n");
pandecode_prop("zero3 = 0x%" PRIx64, fbx->zero3);
pandecode_prop("zero4 = 0x%" PRIx64, fbx->zero4);
}
pandecode_indent--;
pandecode_log("};\n");
gpu_va += sizeof(struct bifrost_fb_extra);
}
if (is_fragment)
pandecode_render_target(gpu_va, job_no, fb);
/* Passback the render target count */
return MALI_NEGATIVE(fb->rt_count_1);
}
/* Just add a comment decoding the shift/odd fields forming the padded vertices
* count */
static void
pandecode_padded_vertices(unsigned shift, unsigned k)
{
unsigned odd = 2*k + 1;
unsigned pot = 1 << shift;
pandecode_msg("padded_num_vertices = %d\n", odd * pot);
}
/* Given a magic divisor, recover what we were trying to divide by.
*
* Let m represent the magic divisor. By definition, m is an element on Z, whre
* 0 <= m < 2^N, for N bits in m.
*
* Let q represent the number we would like to divide by.
*
* By definition of a magic divisor for N-bit unsigned integers (a number you
* multiply by to magically get division), m is a number such that:
*
* (m * x) & (2^N - 1) = floor(x/q).
* for all x on Z where 0 <= x < 2^N
*
* Ignore the case where any of the above values equals zero; it is irrelevant
* for our purposes (instanced arrays).
*
* Choose x = q. Then:
*
* (m * x) & (2^N - 1) = floor(x/q).
* (m * q) & (2^N - 1) = floor(q/q).
*
* floor(q/q) = floor(1) = 1, therefore:
*
* (m * q) & (2^N - 1) = 1
*
* Recall the identity that the bitwise AND of one less than a power-of-two
* equals the modulo with that power of two, i.e. for all x:
*
* x & (2^N - 1) = x % N
*
* Therefore:
*
* mq % (2^N) = 1
*
* By definition, a modular multiplicative inverse of a number m is the number
* q such that with respect to a modulos M:
*
* mq % M = 1
*
* Therefore, q is the modular multiplicative inverse of m with modulus 2^N.
*
*/
static void
pandecode_magic_divisor(uint32_t magic, unsigned shift, unsigned orig_divisor, unsigned extra)
{
#if 0
/* Compute the modular inverse of `magic` with respect to 2^(32 -
* shift) the most lame way possible... just repeatedly add.
* Asymptoptically slow but nobody cares in practice, unless you have
* massive numbers of vertices or high divisors. */
unsigned inverse = 0;
/* Magic implicitly has the highest bit set */
magic |= (1 << 31);
/* Depending on rounding direction */
if (extra)
magic++;
for (;;) {
uint32_t product = magic * inverse;
if (shift) {
product >>= shift;
}
if (product == 1)
break;
++inverse;
}
pandecode_msg("dividing by %d (maybe off by two)\n", inverse);
/* Recall we're supposed to divide by (gl_level_divisor *
* padded_num_vertices) */
unsigned padded_num_vertices = inverse / orig_divisor;
pandecode_msg("padded_num_vertices = %d\n", padded_num_vertices);
#endif
}
static void
pandecode_attributes(const struct pandecode_mapped_memory *mem,
mali_ptr addr, int job_no, char *suffix,
int count, bool varying)
{
char *prefix = varying ? "varyings" : "attributes";
if (!addr) {
pandecode_msg("no %s\n", prefix);
return;
}
union mali_attr *attr = pandecode_fetch_gpu_mem(mem, addr, sizeof(union mali_attr) * count);
char base[128];
snprintf(base, sizeof(base), "%s_data_%d%s", prefix, job_no, suffix);
for (int i = 0; i < count; ++i) {
enum mali_attr_mode mode = attr[i].elements & 7;
if (mode == MALI_ATTR_UNUSED)
continue;
mali_ptr raw_elements = attr[i].elements & ~7;
/* TODO: Do we maybe want to dump the attribute values
* themselves given the specified format? Or is that too hard?
* */
char *a = pointer_as_memory_reference(raw_elements);
pandecode_log("mali_ptr %s_%d_p = %s;\n", base, i, a);
free(a);
}
pandecode_log("union mali_attr %s_%d[] = {\n", prefix, job_no);
pandecode_indent++;
for (int i = 0; i < count; ++i) {
pandecode_log("{\n");
pandecode_indent++;
unsigned mode = attr[i].elements & 7;
pandecode_prop("elements = (%s_%d_p) | %s", base, i, pandecode_attr_mode(mode));
pandecode_prop("shift = %d", attr[i].shift);
pandecode_prop("extra_flags = %d", attr[i].extra_flags);
pandecode_prop("stride = 0x%" PRIx32, attr[i].stride);
pandecode_prop("size = 0x%" PRIx32, attr[i].size);
/* Decode further where possible */
if (mode == MALI_ATTR_MODULO) {
pandecode_padded_vertices(
attr[i].shift,
attr[i].extra_flags);
}
pandecode_indent--;
pandecode_log("}, \n");
if (mode == MALI_ATTR_NPOT_DIVIDE) {
i++;
pandecode_log("{\n");
pandecode_indent++;
pandecode_prop("unk = 0x%x", attr[i].unk);
pandecode_prop("magic_divisor = 0x%08x", attr[i].magic_divisor);
if (attr[i].zero != 0)
pandecode_prop("zero = 0x%x /* XXX zero tripped */", attr[i].zero);
pandecode_prop("divisor = %d", attr[i].divisor);
pandecode_magic_divisor(attr[i].magic_divisor, attr[i - 1].shift, attr[i].divisor, attr[i - 1].extra_flags);
pandecode_indent--;
pandecode_log("}, \n");
}
}
pandecode_indent--;
pandecode_log("};\n");
}
static mali_ptr
pandecode_shader_address(const char *name, mali_ptr ptr)
{
/* TODO: Decode flags */
mali_ptr shader_ptr = ptr & ~15;
char *a = pointer_as_memory_reference(shader_ptr);
pandecode_prop("%s = (%s) | %d", name, a, (int) (ptr & 15));
free(a);
return shader_ptr;
}
static bool
all_zero(unsigned *buffer, unsigned count)
{
for (unsigned i = 0; i < count; ++i) {
if (buffer[i])
return false;
}
return true;
}
static void
pandecode_stencil(const char *name, const struct mali_stencil_test *stencil)
{
if (all_zero((unsigned *) stencil, sizeof(stencil) / sizeof(unsigned)))
return;
const char *func = pandecode_func(stencil->func);
const char *sfail = pandecode_stencil_op(stencil->sfail);
const char *dpfail = pandecode_stencil_op(stencil->dpfail);
const char *dppass = pandecode_stencil_op(stencil->dppass);
if (stencil->zero)
pandecode_msg("Stencil zero tripped: %X\n", stencil->zero);
pandecode_log(".stencil_%s = {\n", name);
pandecode_indent++;
pandecode_prop("ref = %d", stencil->ref);
pandecode_prop("mask = 0x%02X", stencil->mask);
pandecode_prop("func = %s", func);
pandecode_prop("sfail = %s", sfail);
pandecode_prop("dpfail = %s", dpfail);
pandecode_prop("dppass = %s", dppass);
pandecode_indent--;
pandecode_log("},\n");
}
static void
pandecode_blend_equation(const struct mali_blend_equation *blend)
{
if (blend->zero1)
pandecode_msg("Blend zero tripped: %X\n", blend->zero1);
pandecode_log(".equation = {\n");
pandecode_indent++;
pandecode_prop("rgb_mode = 0x%X", blend->rgb_mode);
pandecode_prop("alpha_mode = 0x%X", blend->alpha_mode);
pandecode_log(".color_mask = ");
pandecode_log_decoded_flags(mask_flag_info, blend->color_mask);
pandecode_log_cont(",\n");
pandecode_indent--;
pandecode_log("},\n");
}
/* Decodes a Bifrost blend constant. See the notes in bifrost_blend_rt */
static unsigned
decode_bifrost_constant(u16 constant)
{
float lo = (float) (constant & 0xFF);
float hi = (float) (constant >> 8);
return (hi / 255.0) + (lo / 65535.0);
}
static mali_ptr
pandecode_bifrost_blend(void *descs, int job_no, int rt_no)
{
struct bifrost_blend_rt *b =
((struct bifrost_blend_rt *) descs) + rt_no;
pandecode_log("struct bifrost_blend_rt blend_rt_%d_%d = {\n", job_no, rt_no);
pandecode_indent++;
pandecode_prop("flags = 0x%" PRIx16, b->flags);
pandecode_prop("constant = 0x%" PRIx8 " /* %f */",
b->constant, decode_bifrost_constant(b->constant));
/* TODO figure out blend shader enable bit */
pandecode_blend_equation(&b->equation);
pandecode_prop("unk2 = 0x%" PRIx16, b->unk2);
pandecode_prop("index = 0x%" PRIx16, b->index);
pandecode_prop("shader = 0x%" PRIx32, b->shader);
pandecode_indent--;
pandecode_log("},\n");
return 0;
}
static mali_ptr
pandecode_midgard_blend(union midgard_blend *blend, bool is_shader)
{
if (all_zero((unsigned *) blend, sizeof(blend) / sizeof(unsigned)))
return 0;
pandecode_log(".blend = {\n");
pandecode_indent++;
if (is_shader) {
pandecode_shader_address("shader", blend->shader);
} else {
pandecode_blend_equation(&blend->equation);
pandecode_prop("constant = %f", blend->constant);
}
pandecode_indent--;
pandecode_log("},\n");
/* Return blend shader to disassemble if present */
return is_shader ? (blend->shader & ~0xF) : 0;
}
static mali_ptr
pandecode_midgard_blend_mrt(void *descs, int job_no, int rt_no)
{
struct midgard_blend_rt *b =
((struct midgard_blend_rt *) descs) + rt_no;
/* Flags determine presence of blend shader */
bool is_shader = (b->flags & 0xF) >= 0x2;
pandecode_log("struct midgard_blend_rt blend_rt_%d_%d = {\n", job_no, rt_no);
pandecode_indent++;
pandecode_prop("flags = 0x%" PRIx64, b->flags);
union midgard_blend blend = b->blend;
mali_ptr shader = pandecode_midgard_blend(&blend, is_shader);
pandecode_indent--;
pandecode_log("};\n");
return shader;
}
static int
pandecode_attribute_meta(int job_no, int count, const struct mali_vertex_tiler_postfix *v, bool varying, char *suffix)
{
char base[128];
char *prefix = varying ? "varying" : "attribute";
unsigned max_index = 0;
snprintf(base, sizeof(base), "%s_meta", prefix);
pandecode_log("struct mali_attr_meta %s_%d%s[] = {\n", base, job_no, suffix);
pandecode_indent++;
struct mali_attr_meta *attr_meta;
mali_ptr p = varying ? (v->varying_meta & ~0xF) : v->attribute_meta;
struct pandecode_mapped_memory *attr_mem = pandecode_find_mapped_gpu_mem_containing(p);
for (int i = 0; i < count; ++i, p += sizeof(struct mali_attr_meta)) {
attr_meta = pandecode_fetch_gpu_mem(attr_mem, p,
sizeof(*attr_mem));
pandecode_log("{\n");
pandecode_indent++;
pandecode_prop("index = %d", attr_meta->index);
if (attr_meta->index > max_index)
max_index = attr_meta->index;
pandecode_swizzle(attr_meta->swizzle);
pandecode_prop("format = %s", pandecode_format(attr_meta->format));
pandecode_prop("unknown1 = 0x%" PRIx64, (u64) attr_meta->unknown1);
pandecode_prop("unknown3 = 0x%" PRIx64, (u64) attr_meta->unknown3);
pandecode_prop("src_offset = %d", attr_meta->src_offset);
pandecode_indent--;
pandecode_log("},\n");
}
pandecode_indent--;
pandecode_log("};\n");
return count ? (max_index + 1) : 0;
}
static void
pandecode_indices(uintptr_t pindices, uint32_t index_count, int job_no)
{
struct pandecode_mapped_memory *imem = pandecode_find_mapped_gpu_mem_containing(pindices);
if (imem) {
/* Indices are literally just a u32 array :) */
uint32_t *PANDECODE_PTR_VAR(indices, imem, pindices);
pandecode_log("uint32_t indices_%d[] = {\n", job_no);
pandecode_indent++;
for (unsigned i = 0; i < (index_count + 1); i += 3)
pandecode_log("%d, %d, %d,\n",
indices[i],
indices[i + 1],
indices[i + 2]);
pandecode_indent--;
pandecode_log("};\n");
}
}
/* return bits [lo, hi) of word */
static u32
bits(u32 word, u32 lo, u32 hi)
{
if (hi - lo >= 32)
return word; // avoid undefined behavior with the shift
return (word >> lo) & ((1 << (hi - lo)) - 1);
}
static void
pandecode_vertex_tiler_prefix(struct mali_vertex_tiler_prefix *p, int job_no, bool noninstanced)
{
pandecode_log_cont("{\n");
pandecode_indent++;
/* Decode invocation_count. See the comment before the definition of
* invocation_count for an explanation.
*/
unsigned size_x = bits(p->invocation_count, 0, p->size_y_shift) + 1;
unsigned size_y = bits(p->invocation_count, p->size_y_shift, p->size_z_shift) + 1;
unsigned size_z = bits(p->invocation_count, p->size_z_shift, p->workgroups_x_shift) + 1;
unsigned groups_x = bits(p->invocation_count, p->workgroups_x_shift, p->workgroups_y_shift) + 1;
unsigned groups_y = bits(p->invocation_count, p->workgroups_y_shift, p->workgroups_z_shift) + 1;
unsigned groups_z = bits(p->invocation_count, p->workgroups_z_shift, 32) + 1;
/* Even though we have this decoded, we want to ensure that the
* representation is "unique" so we don't lose anything by printing only
* the final result. More specifically, we need to check that we were
* passed something in canonical form, since the definition per the
* hardware is inherently not unique. How? Well, take the resulting
* decode and pack it ourselves! If it is bit exact with what we
* decoded, we're good to go. */
struct mali_vertex_tiler_prefix ref;
panfrost_pack_work_groups_compute(&ref, groups_x, groups_y, groups_z, size_x, size_y, size_z, noninstanced);
bool canonical =
(p->invocation_count == ref.invocation_count) &&
(p->size_y_shift == ref.size_y_shift) &&
(p->size_z_shift == ref.size_z_shift) &&
(p->workgroups_x_shift == ref.workgroups_x_shift) &&
(p->workgroups_y_shift == ref.workgroups_y_shift) &&
(p->workgroups_z_shift == ref.workgroups_z_shift) &&
(p->workgroups_x_shift_2 == ref.workgroups_x_shift_2);
if (!canonical) {
pandecode_msg("XXX: non-canonical workgroups packing\n");
pandecode_msg("expected: %X, %d, %d, %d, %d, %d\n",
ref.invocation_count,
ref.size_y_shift,
ref.size_z_shift,
ref.workgroups_x_shift,
ref.workgroups_y_shift,
ref.workgroups_z_shift,
ref.workgroups_x_shift_2);
pandecode_prop("invocation_count = 0x%" PRIx32, p->invocation_count);
pandecode_prop("size_y_shift = %d", p->size_y_shift);
pandecode_prop("size_z_shift = %d", p->size_z_shift);
pandecode_prop("workgroups_x_shift = %d", p->workgroups_x_shift);
pandecode_prop("workgroups_y_shift = %d", p->workgroups_y_shift);
pandecode_prop("workgroups_z_shift = %d", p->workgroups_z_shift);
pandecode_prop("workgroups_x_shift_2 = %d", p->workgroups_x_shift_2);
}
/* Regardless, print the decode */
pandecode_msg("size (%d, %d, %d), count (%d, %d, %d)\n",
size_x, size_y, size_z,
groups_x, groups_y, groups_z);
/* TODO: Decode */
if (p->unknown_draw)
pandecode_prop("unknown_draw = 0x%" PRIx32, p->unknown_draw);
pandecode_prop("workgroups_x_shift_3 = 0x%" PRIx32, p->workgroups_x_shift_3);
if (p->draw_mode != MALI_DRAW_NONE)
pandecode_prop("draw_mode = %s", pandecode_draw_mode(p->draw_mode));
/* Index count only exists for tiler jobs anyway */
if (p->index_count)
pandecode_prop("index_count = MALI_POSITIVE(%" PRId32 ")", p->index_count + 1);
if (p->offset_bias_correction)
pandecode_prop("offset_bias_correction = %d", p->offset_bias_correction);
if (p->zero1) {
pandecode_msg("Zero tripped\n");
pandecode_prop("zero1 = 0x%" PRIx32, p->zero1);
}
pandecode_indent--;
pandecode_log("},\n");
}
static void
pandecode_uniform_buffers(mali_ptr pubufs, int ubufs_count, int job_no)
{
struct pandecode_mapped_memory *umem = pandecode_find_mapped_gpu_mem_containing(pubufs);
struct mali_uniform_buffer_meta *PANDECODE_PTR_VAR(ubufs, umem, pubufs);
for (int i = 0; i < ubufs_count; i++) {
mali_ptr ptr = ubufs[i].ptr << 2;
struct pandecode_mapped_memory *umem2 = pandecode_find_mapped_gpu_mem_containing(ptr);
uint32_t *PANDECODE_PTR_VAR(ubuf, umem2, ptr);
char name[50];
snprintf(name, sizeof(name), "ubuf_%d", i);
/* The blob uses ubuf 0 to upload internal stuff and
* uniforms that won't fit/are accessed indirectly, so
* it puts it in the batchbuffer.
*/
pandecode_log("uint32_t %s_%d[] = {\n", name, job_no);
pandecode_indent++;
for (int j = 0; j <= ubufs[i].size; j++) {
for (int k = 0; k < 4; k++) {
if (k == 0)
pandecode_log("0x%"PRIx32", ", ubuf[4 * j + k]);
else
pandecode_log_cont("0x%"PRIx32", ", ubuf[4 * j + k]);
}
pandecode_log_cont("\n");
}
pandecode_indent--;
pandecode_log("};\n");
}
pandecode_log("struct mali_uniform_buffer_meta uniform_buffers_%"PRIx64"_%d[] = {\n",
pubufs, job_no);
pandecode_indent++;
for (int i = 0; i < ubufs_count; i++) {
pandecode_log("{\n");
pandecode_indent++;
pandecode_prop("size = MALI_POSITIVE(%d)", ubufs[i].size + 1);
pandecode_prop("ptr = ubuf_%d_%d_p >> 2", i, job_no);
pandecode_indent--;
pandecode_log("},\n");
}
pandecode_indent--;
pandecode_log("};\n");
}
static void
pandecode_scratchpad(uintptr_t pscratchpad, int job_no, char *suffix)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(pscratchpad);
struct bifrost_scratchpad *PANDECODE_PTR_VAR(scratchpad, mem, pscratchpad);
if (scratchpad->zero)
pandecode_msg("XXX scratchpad zero tripped");
pandecode_log("struct bifrost_scratchpad scratchpad_%"PRIx64"_%d%s = {\n", pscratchpad, job_no, suffix);
pandecode_indent++;
pandecode_prop("flags = 0x%x", scratchpad->flags);
MEMORY_PROP(scratchpad, gpu_scratchpad);
pandecode_indent--;
pandecode_log("};\n");
}
static unsigned shader_id = 0;
static void
pandecode_shader_disassemble(mali_ptr shader_ptr, int shader_no, int type,
bool is_bifrost, unsigned nr_regs)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(shader_ptr);
uint8_t *PANDECODE_PTR_VAR(code, mem, shader_ptr);
/* Compute maximum possible size */
size_t sz = mem->length - (shader_ptr - mem->gpu_va);
/* Print some boilerplate to clearly denote the assembly (which doesn't
* obey indentation rules), and actually do the disassembly! */
printf("\n\n");
char prefix[512];
snprintf(prefix, sizeof(prefix) - 1, "shader%d - %s shader: ",
shader_id++,
(type == JOB_TYPE_TILER) ? "FRAGMENT" : "VERTEX");
if (is_bifrost) {
disassemble_bifrost(code, sz, false);
} else {
disassemble_midgard(code, sz, true, nr_regs, prefix);
}
printf("\n\n");
}
static void
pandecode_vertex_tiler_postfix_pre(const struct mali_vertex_tiler_postfix *p,
int job_no, enum mali_job_type job_type,
char *suffix, bool is_bifrost)
{
mali_ptr shader_meta_ptr = (u64) (uintptr_t) (p->_shader_upper << 4);
struct pandecode_mapped_memory *attr_mem;
unsigned rt_count = 1;
/* On Bifrost, since the tiler heap (for tiler jobs) and the scratchpad
* are the only things actually needed from the FBD, vertex/tiler jobs
* no longer reference the FBD -- instead, this field points to some
* info about the scratchpad.
*/
if (is_bifrost)
pandecode_scratchpad(p->framebuffer & ~FBD_TYPE, job_no, suffix);
else if (p->framebuffer & MALI_MFBD)
rt_count = pandecode_mfbd_bfr((u64) ((uintptr_t) p->framebuffer) & FBD_MASK, job_no, false);
else if (job_type == JOB_TYPE_COMPUTE)
pandecode_compute_fbd((u64) (uintptr_t) p->framebuffer, job_no);
else
pandecode_sfbd((u64) (uintptr_t) p->framebuffer, job_no, false);
int varying_count = 0, attribute_count = 0, uniform_count = 0, uniform_buffer_count = 0;
int texture_count = 0, sampler_count = 0;
if (shader_meta_ptr) {
struct pandecode_mapped_memory *smem = pandecode_find_mapped_gpu_mem_containing(shader_meta_ptr);
struct mali_shader_meta *PANDECODE_PTR_VAR(s, smem, shader_meta_ptr);
pandecode_log("struct mali_shader_meta shader_meta_%"PRIx64"_%d%s = {\n", shader_meta_ptr, job_no, suffix);
pandecode_indent++;
/* Save for dumps */
attribute_count = s->attribute_count;
varying_count = s->varying_count;
texture_count = s->texture_count;
sampler_count = s->sampler_count;
if (is_bifrost) {
uniform_count = s->bifrost2.uniform_count;
uniform_buffer_count = s->bifrost1.uniform_buffer_count;
} else {
uniform_count = s->midgard1.uniform_count;
uniform_buffer_count = s->midgard1.uniform_buffer_count;
}
mali_ptr shader_ptr = pandecode_shader_address("shader", s->shader);
pandecode_prop("texture_count = %" PRId16, s->texture_count);
pandecode_prop("sampler_count = %" PRId16, s->sampler_count);
pandecode_prop("attribute_count = %" PRId16, s->attribute_count);
pandecode_prop("varying_count = %" PRId16, s->varying_count);
unsigned nr_registers = 0;
if (is_bifrost) {
pandecode_log(".bifrost1 = {\n");
pandecode_indent++;
pandecode_prop("uniform_buffer_count = %" PRId32, s->bifrost1.uniform_buffer_count);
pandecode_prop("unk1 = 0x%" PRIx32, s->bifrost1.unk1);
pandecode_indent--;
pandecode_log("},\n");
} else {
pandecode_log(".midgard1 = {\n");
pandecode_indent++;
pandecode_prop("uniform_count = %" PRId16, s->midgard1.uniform_count);
pandecode_prop("uniform_buffer_count = %" PRId16, s->midgard1.uniform_buffer_count);
pandecode_prop("work_count = %" PRId16, s->midgard1.work_count);
nr_registers = s->midgard1.work_count;
pandecode_log(".flags = ");
pandecode_log_decoded_flags(shader_midgard1_flag_info, s->midgard1.flags);
pandecode_log_cont(",\n");
pandecode_prop("unknown2 = 0x%" PRIx32, s->midgard1.unknown2);
pandecode_indent--;
pandecode_log("},\n");
}
if (s->depth_units || s->depth_factor) {
pandecode_prop("depth_factor = %f", s->depth_factor);
pandecode_prop("depth_units = %f", s->depth_units);
}
if (s->alpha_coverage) {
bool invert_alpha_coverage = s->alpha_coverage & 0xFFF0;
uint16_t inverted_coverage = invert_alpha_coverage ? ~s->alpha_coverage : s->alpha_coverage;
pandecode_prop("alpha_coverage = %sMALI_ALPHA_COVERAGE(%f)",
invert_alpha_coverage ? "~" : "",
MALI_GET_ALPHA_COVERAGE(inverted_coverage));
}
if (s->unknown2_3 || s->unknown2_4) {
pandecode_log(".unknown2_3 = ");
int unknown2_3 = s->unknown2_3;
int unknown2_4 = s->unknown2_4;
/* We're not quite sure what these flags mean without the depth test, if anything */
if (unknown2_3 & (MALI_DEPTH_TEST | MALI_DEPTH_FUNC_MASK)) {
const char *func = pandecode_func(MALI_GET_DEPTH_FUNC(unknown2_3));
unknown2_3 &= ~MALI_DEPTH_FUNC_MASK;
pandecode_log_cont("MALI_DEPTH_FUNC(%s) | ", func);
}
pandecode_log_decoded_flags(u3_flag_info, unknown2_3);
pandecode_log_cont(",\n");
pandecode_log(".unknown2_4 = ");
pandecode_log_decoded_flags(u4_flag_info, unknown2_4);
pandecode_log_cont(",\n");
}
if (s->stencil_mask_front || s->stencil_mask_back) {
pandecode_prop("stencil_mask_front = 0x%02X", s->stencil_mask_front);
pandecode_prop("stencil_mask_back = 0x%02X", s->stencil_mask_back);
}
pandecode_stencil("front", &s->stencil_front);
pandecode_stencil("back", &s->stencil_back);
if (is_bifrost) {
pandecode_log(".bifrost2 = {\n");
pandecode_indent++;
pandecode_prop("unk3 = 0x%" PRIx32, s->bifrost2.unk3);
pandecode_prop("preload_regs = 0x%" PRIx32, s->bifrost2.preload_regs);
pandecode_prop("uniform_count = %" PRId32, s->bifrost2.uniform_count);
pandecode_prop("unk4 = 0x%" PRIx32, s->bifrost2.unk4);
pandecode_indent--;
pandecode_log("},\n");
} else if (s->midgard2.unknown2_7) {
pandecode_log(".midgard2 = {\n");
pandecode_indent++;
pandecode_prop("unknown2_7 = 0x%" PRIx32, s->midgard2.unknown2_7);
pandecode_indent--;
pandecode_log("},\n");
}
if (s->unknown2_8)
pandecode_prop("unknown2_8 = 0x%" PRIx32, s->unknown2_8);
if (!is_bifrost) {
/* TODO: Blend shaders routing/disasm */
union midgard_blend blend = s->blend;
pandecode_midgard_blend(&blend, false);
}
pandecode_indent--;
pandecode_log("};\n");
/* MRT blend fields are used whenever MFBD is used, with
* per-RT descriptors */
if (job_type == JOB_TYPE_TILER) {
void* blend_base = (void *) (s + 1);
for (unsigned i = 0; i < rt_count; i++) {
mali_ptr shader = 0;
if (is_bifrost)
shader = pandecode_bifrost_blend(blend_base, job_no, i);
else
shader = pandecode_midgard_blend_mrt(blend_base, job_no, i);
if (shader & ~0xF)
pandecode_shader_disassemble(shader, job_no, job_type, false, 0);
}
}
if (shader_ptr & ~0xF)
pandecode_shader_disassemble(shader_ptr, job_no, job_type, is_bifrost, nr_registers);
} else
pandecode_msg("<no shader>\n");
if (p->viewport) {
struct pandecode_mapped_memory *fmem = pandecode_find_mapped_gpu_mem_containing(p->viewport);
struct mali_viewport *PANDECODE_PTR_VAR(f, fmem, p->viewport);
pandecode_log("struct mali_viewport viewport_%"PRIx64"_%d%s = {\n", p->viewport, job_no, suffix);
pandecode_indent++;
pandecode_prop("clip_minx = %f", f->clip_minx);
pandecode_prop("clip_miny = %f", f->clip_miny);
pandecode_prop("clip_minz = %f", f->clip_minz);
pandecode_prop("clip_maxx = %f", f->clip_maxx);
pandecode_prop("clip_maxy = %f", f->clip_maxy);
pandecode_prop("clip_maxz = %f", f->clip_maxz);
/* Only the higher coordinates are MALI_POSITIVE scaled */
pandecode_prop("viewport0 = { %d, %d }",
f->viewport0[0], f->viewport0[1]);
pandecode_prop("viewport1 = { MALI_POSITIVE(%d), MALI_POSITIVE(%d) }",
f->viewport1[0] + 1, f->viewport1[1] + 1);
pandecode_indent--;
pandecode_log("};\n");
}
if (p->attribute_meta) {
unsigned max_attr_index = pandecode_attribute_meta(job_no, attribute_count, p, false, suffix);
attr_mem = pandecode_find_mapped_gpu_mem_containing(p->attributes);
pandecode_attributes(attr_mem, p->attributes, job_no, suffix, max_attr_index, false);
}
/* Varyings are encoded like attributes but not actually sent; we just
* pass a zero buffer with the right stride/size set, (or whatever)
* since the GPU will write to it itself */
if (p->varying_meta) {
varying_count = pandecode_attribute_meta(job_no, varying_count, p, true, suffix);
}
if (p->varyings) {
attr_mem = pandecode_find_mapped_gpu_mem_containing(p->varyings);
/* Number of descriptors depends on whether there are
* non-internal varyings */
pandecode_attributes(attr_mem, p->varyings, job_no, suffix, varying_count, true);
}
bool is_compute = job_type == JOB_TYPE_COMPUTE;
if (p->uniforms && !is_compute) {
int rows = uniform_count, width = 4;
size_t sz = rows * width * sizeof(float);
struct pandecode_mapped_memory *uniform_mem = pandecode_find_mapped_gpu_mem_containing(p->uniforms);
pandecode_fetch_gpu_mem(uniform_mem, p->uniforms, sz);
u32 *PANDECODE_PTR_VAR(uniforms, uniform_mem, p->uniforms);
pandecode_log("u32 uniforms_%d%s[] = {\n", job_no, suffix);
pandecode_indent++;
for (int row = 0; row < rows; row++) {
for (int i = 0; i < width; i++) {
u32 v = uniforms[i];
float f;
memcpy(&f, &v, sizeof(v));
pandecode_log_cont("%X /* %f */, ", v, f);
}
pandecode_log_cont("\n");
uniforms += width;
}
pandecode_indent--;
pandecode_log("};\n");
} else if (p->uniforms) {
int rows = uniform_count * 2;
size_t sz = rows * sizeof(mali_ptr);
struct pandecode_mapped_memory *uniform_mem = pandecode_find_mapped_gpu_mem_containing(p->uniforms);
pandecode_fetch_gpu_mem(uniform_mem, p->uniforms, sz);
mali_ptr *PANDECODE_PTR_VAR(uniforms, uniform_mem, p->uniforms);
pandecode_log("mali_ptr uniforms_%d%s[] = {\n", job_no, suffix);
pandecode_indent++;
for (int row = 0; row < rows; row++) {
char *a = pointer_as_memory_reference(uniforms[row]);
pandecode_log("%s,\n", a);
free(a);
}
pandecode_indent--;
pandecode_log("};\n");
}
if (p->uniform_buffers) {
pandecode_uniform_buffers(p->uniform_buffers, uniform_buffer_count, job_no);
}
if (p->texture_trampoline) {
struct pandecode_mapped_memory *mmem = pandecode_find_mapped_gpu_mem_containing(p->texture_trampoline);
if (mmem) {
mali_ptr *PANDECODE_PTR_VAR(u, mmem, p->texture_trampoline);
pandecode_log("uint64_t texture_trampoline_%"PRIx64"_%d[] = {\n", p->texture_trampoline, job_no);
pandecode_indent++;
for (int tex = 0; tex < texture_count; ++tex) {
mali_ptr *PANDECODE_PTR_VAR(u, mmem, p->texture_trampoline + tex * sizeof(mali_ptr));
char *a = pointer_as_memory_reference(*u);
pandecode_log("%s,\n", a);
free(a);
}
pandecode_indent--;
pandecode_log("};\n");
/* Now, finally, descend down into the texture descriptor */
for (int tex = 0; tex < texture_count; ++tex) {
mali_ptr *PANDECODE_PTR_VAR(u, mmem, p->texture_trampoline + tex * sizeof(mali_ptr));
struct pandecode_mapped_memory *tmem = pandecode_find_mapped_gpu_mem_containing(*u);
if (tmem) {
struct mali_texture_descriptor *PANDECODE_PTR_VAR(t, tmem, *u);
pandecode_log("struct mali_texture_descriptor texture_descriptor_%"PRIx64"_%d_%d = {\n", *u, job_no, tex);
pandecode_indent++;
pandecode_prop("width = MALI_POSITIVE(%" PRId16 ")", t->width + 1);
pandecode_prop("height = MALI_POSITIVE(%" PRId16 ")", t->height + 1);
pandecode_prop("depth = MALI_POSITIVE(%" PRId16 ")", t->depth + 1);
pandecode_prop("array_size = MALI_POSITIVE(%" PRId16 ")", t->array_size + 1);
pandecode_prop("unknown3 = %" PRId16, t->unknown3);
pandecode_prop("unknown3A = %" PRId8, t->unknown3A);
pandecode_prop("nr_mipmap_levels = %" PRId8, t->nr_mipmap_levels);
struct mali_texture_format f = t->format;
pandecode_log(".format = {\n");
pandecode_indent++;
pandecode_swizzle(f.swizzle);
pandecode_prop("format = %s", pandecode_format(f.format));
pandecode_prop("type = %s", pandecode_texture_type(f.type));
pandecode_prop("srgb = %" PRId32, f.srgb);
pandecode_prop("unknown1 = %" PRId32, f.unknown1);
pandecode_prop("usage2 = 0x%" PRIx32, f.usage2);
pandecode_indent--;
pandecode_log("},\n");
pandecode_swizzle(t->swizzle);
if (t->swizzle_zero) {
/* Shouldn't happen */
pandecode_msg("Swizzle zero tripped but replay will be fine anyway");
pandecode_prop("swizzle_zero = %d", t->swizzle_zero);
}
pandecode_prop("unknown3 = 0x%" PRIx32, t->unknown3);
pandecode_prop("unknown5 = 0x%" PRIx32, t->unknown5);
pandecode_prop("unknown6 = 0x%" PRIx32, t->unknown6);
pandecode_prop("unknown7 = 0x%" PRIx32, t->unknown7);
pandecode_log(".payload = {\n");
pandecode_indent++;
/* A bunch of bitmap pointers follow.
* We work out the correct number,
* based on the mipmap/cubemap
* properties, but dump extra
* possibilities to futureproof */
int bitmap_count = MALI_NEGATIVE(t->nr_mipmap_levels);
bool manual_stride = f.usage2 & MALI_TEX_MANUAL_STRIDE;
/* Miptree for each face */
if (f.type == MALI_TEX_CUBE)
bitmap_count *= 6;
/* Array of textures */
bitmap_count *= MALI_NEGATIVE(t->array_size);
/* Stride for each element */
if (manual_stride)
bitmap_count *= 2;
/* Sanity check the size */
int max_count = sizeof(t->payload) / sizeof(t->payload[0]);
assert (bitmap_count <= max_count);
for (int i = 0; i < bitmap_count; ++i) {
/* How we dump depends if this is a stride or a pointer */
if ((f.usage2 & MALI_TEX_MANUAL_STRIDE) && (i & 1)) {
/* signed 32-bit snuck in as a 64-bit pointer */
uint64_t stride_set = t->payload[i];
uint32_t clamped_stride = stride_set;
int32_t stride = clamped_stride;
assert(stride_set == clamped_stride);
pandecode_log("(mali_ptr) %d /* stride */, \n", stride);
} else {
char *a = pointer_as_memory_reference(t->payload[i]);
pandecode_log("%s, \n", a);
free(a);
}
}
pandecode_indent--;
pandecode_log("},\n");
pandecode_indent--;
pandecode_log("};\n");
}
}
}
}
if (p->sampler_descriptor) {
struct pandecode_mapped_memory *smem = pandecode_find_mapped_gpu_mem_containing(p->sampler_descriptor);
if (smem) {
struct mali_sampler_descriptor *s;
mali_ptr d = p->sampler_descriptor;
for (int i = 0; i < sampler_count; ++i) {
s = pandecode_fetch_gpu_mem(smem, d + sizeof(*s) * i, sizeof(*s));
pandecode_log("struct mali_sampler_descriptor sampler_descriptor_%"PRIx64"_%d_%d = {\n", d + sizeof(*s) * i, job_no, i);
pandecode_indent++;
pandecode_log(".filter_mode = ");
pandecode_log_decoded_flags(sampler_flag_info, s->filter_mode);
pandecode_log_cont(",\n");
pandecode_prop("min_lod = FIXED_16(%f)", DECODE_FIXED_16(s->min_lod));
pandecode_prop("max_lod = FIXED_16(%f)", DECODE_FIXED_16(s->max_lod));
pandecode_prop("wrap_s = %s", pandecode_wrap_mode(s->wrap_s));
pandecode_prop("wrap_t = %s", pandecode_wrap_mode(s->wrap_t));
pandecode_prop("wrap_r = %s", pandecode_wrap_mode(s->wrap_r));
pandecode_prop("compare_func = %s", pandecode_alt_func(s->compare_func));
if (s->zero || s->zero2) {
pandecode_msg("Zero tripped\n");
pandecode_prop("zero = 0x%X, 0x%X\n", s->zero, s->zero2);
}
pandecode_prop("seamless_cube_map = %d", s->seamless_cube_map);
pandecode_prop("border_color = { %f, %f, %f, %f }",
s->border_color[0],
s->border_color[1],
s->border_color[2],
s->border_color[3]);
pandecode_indent--;
pandecode_log("};\n");
}
}
}
}
static void
pandecode_vertex_tiler_postfix(const struct mali_vertex_tiler_postfix *p, int job_no, bool is_bifrost)
{
if (!(p->position_varying || p->occlusion_counter || p->flags))
return;
pandecode_log(".postfix = {\n");
pandecode_indent++;
MEMORY_PROP(p, position_varying);
MEMORY_PROP(p, occlusion_counter);
if (p->flags)
pandecode_prop("flags = %d", p->flags);
pandecode_indent--;
pandecode_log("},\n");
}
static void
pandecode_vertex_only_bfr(struct bifrost_vertex_only *v)
{
pandecode_log_cont("{\n");
pandecode_indent++;
pandecode_prop("unk2 = 0x%x", v->unk2);
if (v->zero0 || v->zero1) {
pandecode_msg("vertex only zero tripped");
pandecode_prop("zero0 = 0x%" PRIx32, v->zero0);
pandecode_prop("zero1 = 0x%" PRIx64, v->zero1);
}
pandecode_indent--;
pandecode_log("}\n");
}
static void
pandecode_tiler_heap_meta(mali_ptr gpu_va, int job_no)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct bifrost_tiler_heap_meta *PANDECODE_PTR_VAR(h, mem, gpu_va);
pandecode_log("struct mali_tiler_heap_meta tiler_heap_meta_%d = {\n", job_no);
pandecode_indent++;
if (h->zero) {
pandecode_msg("tiler heap zero tripped\n");
pandecode_prop("zero = 0x%x", h->zero);
}
for (int i = 0; i < 12; i++) {
if (h->zeros[i] != 0) {
pandecode_msg("tiler heap zero %d tripped, value %x\n",
i, h->zeros[i]);
}
}
pandecode_prop("heap_size = 0x%x", h->heap_size);
MEMORY_PROP(h, tiler_heap_start);
MEMORY_PROP(h, tiler_heap_free);
/* this might point to the beginning of another buffer, when it's
* really the end of the tiler heap buffer, so we have to be careful
* here. but for zero length, we need the same pointer.
*/
if (h->tiler_heap_end == h->tiler_heap_start) {
MEMORY_PROP(h, tiler_heap_start);
} else {
char *a = pointer_as_memory_reference(h->tiler_heap_end - 1);
pandecode_prop("tiler_heap_end = %s + 1", a);
free(a);
}
pandecode_indent--;
pandecode_log("};\n");
}
static void
pandecode_tiler_meta(mali_ptr gpu_va, int job_no)
{
struct pandecode_mapped_memory *mem = pandecode_find_mapped_gpu_mem_containing(gpu_va);
const struct bifrost_tiler_meta *PANDECODE_PTR_VAR(t, mem, gpu_va);
pandecode_tiler_heap_meta(t->tiler_heap_meta, job_no);
pandecode_log("struct bifrost_tiler_meta tiler_meta_%d = {\n", job_no);
pandecode_indent++;
if (t->zero0 || t->zero1) {
pandecode_msg("tiler meta zero tripped");
pandecode_prop("zero0 = 0x%" PRIx64, t->zero0);
pandecode_prop("zero1 = 0x%" PRIx64, t->zero1);
}
pandecode_prop("hierarchy_mask = 0x%" PRIx16, t->hierarchy_mask);
pandecode_prop("flags = 0x%" PRIx16, t->flags);
pandecode_prop("width = MALI_POSITIVE(%d)", t->width + 1);
pandecode_prop("height = MALI_POSITIVE(%d)", t->height + 1);
for (int i = 0; i < 12; i++) {
if (t->zeros[i] != 0) {
pandecode_msg("tiler heap zero %d tripped, value %" PRIx64 "\n",
i, t->zeros[i]);
}
}
pandecode_indent--;
pandecode_log("};\n");
}
static void
pandecode_gl_enables(uint32_t gl_enables, int job_type)
{
pandecode_log(".gl_enables = ");
pandecode_log_decoded_flags(gl_enable_flag_info, gl_enables);
pandecode_log_cont(",\n");
}
static void
pandecode_primitive_size(union midgard_primitive_size u, bool constant)
{
if (u.pointer == 0x0)
return;
pandecode_log(".primitive_size = {\n");
pandecode_indent++;
if (constant) {
pandecode_prop("constant = %f", u.constant);
} else {
MEMORY_PROP((&u), pointer);
}
pandecode_indent--;
pandecode_log("},\n");
}
static void
pandecode_tiler_only_bfr(const struct bifrost_tiler_only *t, int job_no)
{
pandecode_log_cont("{\n");
pandecode_indent++;
/* TODO: gl_PointSize on Bifrost */
pandecode_primitive_size(t->primitive_size, true);
pandecode_gl_enables(t->gl_enables, JOB_TYPE_TILER);
if (t->zero1 || t->zero2 || t->zero3 || t->zero4 || t->zero5
|| t->zero6 || t->zero7 || t->zero8) {
pandecode_msg("tiler only zero tripped");
pandecode_prop("zero1 = 0x%" PRIx64, t->zero1);
pandecode_prop("zero2 = 0x%" PRIx64, t->zero2);
pandecode_prop("zero3 = 0x%" PRIx64, t->zero3);
pandecode_prop("zero4 = 0x%" PRIx64, t->zero4);
pandecode_prop("zero5 = 0x%" PRIx64, t->zero5);
pandecode_prop("zero6 = 0x%" PRIx64, t->zero6);
pandecode_prop("zero7 = 0x%" PRIx32, t->zero7);
pandecode_prop("zero8 = 0x%" PRIx64, t->zero8);
}
pandecode_indent--;
pandecode_log("},\n");
}
static int
pandecode_vertex_job_bfr(const struct mali_job_descriptor_header *h,
const struct pandecode_mapped_memory *mem,
mali_ptr payload, int job_no)
{
struct bifrost_payload_vertex *PANDECODE_PTR_VAR(v, mem, payload);
pandecode_vertex_tiler_postfix_pre(&v->postfix, job_no, h->job_type, "", true);
pandecode_log("struct bifrost_payload_vertex payload_%d = {\n", job_no);
pandecode_indent++;
pandecode_log(".prefix = ");
pandecode_vertex_tiler_prefix(&v->prefix, job_no, false);
pandecode_log(".vertex = ");
pandecode_vertex_only_bfr(&v->vertex);
pandecode_vertex_tiler_postfix(&v->postfix, job_no, true);
pandecode_indent--;
pandecode_log("};\n");
return sizeof(*v);
}
static int
pandecode_tiler_job_bfr(const struct mali_job_descriptor_header *h,
const struct pandecode_mapped_memory *mem,
mali_ptr payload, int job_no)
{
struct bifrost_payload_tiler *PANDECODE_PTR_VAR(t, mem, payload);
pandecode_vertex_tiler_postfix_pre(&t->postfix, job_no, h->job_type, "", true);
pandecode_indices(t->prefix.indices, t->prefix.index_count, job_no);
pandecode_tiler_meta(t->tiler.tiler_meta, job_no);
pandecode_log("struct bifrost_payload_tiler payload_%d = {\n", job_no);
pandecode_indent++;
pandecode_log(".prefix = ");
pandecode_vertex_tiler_prefix(&t->prefix, job_no, false);
pandecode_log(".tiler = ");
pandecode_tiler_only_bfr(&t->tiler, job_no);
pandecode_vertex_tiler_postfix(&t->postfix, job_no, true);
pandecode_indent--;
pandecode_log("};\n");
return sizeof(*t);
}
static int
pandecode_vertex_or_tiler_job_mdg(const struct mali_job_descriptor_header *h,
const struct pandecode_mapped_memory *mem,
mali_ptr payload, int job_no)
{
struct midgard_payload_vertex_tiler *PANDECODE_PTR_VAR(v, mem, payload);
pandecode_vertex_tiler_postfix_pre(&v->postfix, job_no, h->job_type, "", false);
pandecode_indices(v->prefix.indices, v->prefix.index_count, job_no);
pandecode_log("struct midgard_payload_vertex_tiler payload_%d = {\n", job_no);
pandecode_indent++;
bool has_primitive_pointer = v->prefix.unknown_draw & MALI_DRAW_VARYING_SIZE;
pandecode_primitive_size(v->primitive_size, !has_primitive_pointer);
bool instanced = v->instance_shift || v->instance_odd;
bool is_graphics = (h->job_type == JOB_TYPE_VERTEX) || (h->job_type == JOB_TYPE_TILER);
pandecode_log(".prefix = ");
pandecode_vertex_tiler_prefix(&v->prefix, job_no, !instanced && is_graphics);
pandecode_gl_enables(v->gl_enables, h->job_type);
if (v->instance_shift || v->instance_odd) {
pandecode_prop("instance_shift = 0x%d /* %d */",
v->instance_shift, 1 << v->instance_shift);
pandecode_prop("instance_odd = 0x%X /* %d */",
v->instance_odd, (2 * v->instance_odd) + 1);
pandecode_padded_vertices(v->instance_shift, v->instance_odd);
}
if (v->offset_start)
pandecode_prop("offset_start = %d", v->offset_start);
if (v->zero5) {
pandecode_msg("Zero tripped\n");
pandecode_prop("zero5 = 0x%" PRIx64, v->zero5);
}
pandecode_vertex_tiler_postfix(&v->postfix, job_no, false);
pandecode_indent--;
pandecode_log("};\n");
return sizeof(*v);
}
static int
pandecode_fragment_job(const struct pandecode_mapped_memory *mem,
mali_ptr payload, int job_no,
bool is_bifrost)
{
const struct mali_payload_fragment *PANDECODE_PTR_VAR(s, mem, payload);
bool fbd_dumped = false;
if (!is_bifrost && (s->framebuffer & FBD_TYPE) == MALI_SFBD) {
/* Only SFBDs are understood, not MFBDs. We're speculating,
* based on the versioning, kernel code, etc, that the
* difference is between Single FrameBuffer Descriptor and
* Multiple FrmaeBuffer Descriptor; the change apparently lines
* up with multi-framebuffer support being added (T7xx onwards,
* including Gxx). In any event, there's some field shuffling
* that we haven't looked into yet. */
pandecode_sfbd(s->framebuffer & FBD_MASK, job_no, true);
fbd_dumped = true;
} else if ((s->framebuffer & FBD_TYPE) == MALI_MFBD) {
/* We don't know if Bifrost supports SFBD's at all, since the
* driver never uses them. And the format is different from
* Midgard anyways, due to the tiler heap and scratchpad being
* moved out into separate structures, so it's not clear what a
* Bifrost SFBD would even look like without getting an actual
* trace, which appears impossible.
*/
pandecode_mfbd_bfr(s->framebuffer & FBD_MASK, job_no, true);
fbd_dumped = true;
}
uintptr_t p = (uintptr_t) s->framebuffer & FBD_MASK;
pandecode_log("struct mali_payload_fragment payload_%"PRIx64"_%d = {\n", payload, job_no);
pandecode_indent++;
/* See the comments by the macro definitions for mathematical context
* on why this is so weird */
if (MALI_TILE_COORD_FLAGS(s->max_tile_coord) || MALI_TILE_COORD_FLAGS(s->min_tile_coord))
pandecode_msg("Tile coordinate flag missed, replay wrong\n");
pandecode_prop("min_tile_coord = MALI_COORDINATE_TO_TILE_MIN(%d, %d)",
MALI_TILE_COORD_X(s->min_tile_coord) << MALI_TILE_SHIFT,
MALI_TILE_COORD_Y(s->min_tile_coord) << MALI_TILE_SHIFT);
pandecode_prop("max_tile_coord = MALI_COORDINATE_TO_TILE_MAX(%d, %d)",
(MALI_TILE_COORD_X(s->max_tile_coord) + 1) << MALI_TILE_SHIFT,
(MALI_TILE_COORD_Y(s->max_tile_coord) + 1) << MALI_TILE_SHIFT);
/* If the FBD was just decoded, we can refer to it by pointer. If not,
* we have to fallback on offsets. */
const char *fbd_type = s->framebuffer & MALI_MFBD ? "MALI_MFBD" : "MALI_SFBD";
/* TODO: Decode */
unsigned extra_flags = (s->framebuffer & ~FBD_MASK) & ~MALI_MFBD;
if (fbd_dumped)
pandecode_prop("framebuffer = framebuffer_%d_p | %s | 0x%X", job_no,
fbd_type, extra_flags);
else
pandecode_prop("framebuffer = %s | %s | 0x%X", pointer_as_memory_reference(p),
fbd_type, extra_flags);
pandecode_indent--;
pandecode_log("};\n");
return sizeof(*s);
}
static int job_descriptor_number = 0;
int
pandecode_jc(mali_ptr jc_gpu_va, bool bifrost)
{
struct mali_job_descriptor_header *h;
int start_number = 0;
bool first = true;
bool last_size;
do {
struct pandecode_mapped_memory *mem =
pandecode_find_mapped_gpu_mem_containing(jc_gpu_va);
void *payload;
h = PANDECODE_PTR(mem, jc_gpu_va, struct mali_job_descriptor_header);
/* On Midgard, for 32-bit jobs except for fragment jobs, the
* high 32-bits of the 64-bit pointer are reused to store
* something else.
*/
int offset = h->job_descriptor_size == MALI_JOB_32 &&
h->job_type != JOB_TYPE_FRAGMENT ? 4 : 0;
mali_ptr payload_ptr = jc_gpu_va + sizeof(*h) - offset;
payload = pandecode_fetch_gpu_mem(mem, payload_ptr,
MALI_PAYLOAD_SIZE);
int job_no = job_descriptor_number++;
if (first)
start_number = job_no;
pandecode_log("struct mali_job_descriptor_header job_%"PRIx64"_%d = {\n", jc_gpu_va, job_no);
pandecode_indent++;
pandecode_prop("job_type = %s", pandecode_job_type(h->job_type));
/* Save for next job fixing */
last_size = h->job_descriptor_size;
if (h->job_descriptor_size)
pandecode_prop("job_descriptor_size = %d", h->job_descriptor_size);
if (h->exception_status && h->exception_status != 0x1)
pandecode_prop("exception_status = %x (source ID: 0x%x access: %s exception: 0x%x)",
h->exception_status,
(h->exception_status >> 16) & 0xFFFF,
pandecode_exception_access((h->exception_status >> 8) & 0x3),
h->exception_status & 0xFF);
if (h->first_incomplete_task)
pandecode_prop("first_incomplete_task = %d", h->first_incomplete_task);
if (h->fault_pointer)
pandecode_prop("fault_pointer = 0x%" PRIx64, h->fault_pointer);
if (h->job_barrier)
pandecode_prop("job_barrier = %d", h->job_barrier);
pandecode_prop("job_index = %d", h->job_index);
if (h->unknown_flags)
pandecode_prop("unknown_flags = %d", h->unknown_flags);
if (h->job_dependency_index_1)
pandecode_prop("job_dependency_index_1 = %d", h->job_dependency_index_1);
if (h->job_dependency_index_2)
pandecode_prop("job_dependency_index_2 = %d", h->job_dependency_index_2);
pandecode_indent--;
pandecode_log("};\n");
/* Do not touch the field yet -- decode the payload first, and
* don't touch that either. This is essential for the uploads
* to occur in sequence and therefore be dynamically allocated
* correctly. Do note the size, however, for that related
* reason. */
switch (h->job_type) {
case JOB_TYPE_SET_VALUE: {
struct mali_payload_set_value *s = payload;
pandecode_log("struct mali_payload_set_value payload_%"PRIx64"_%d = {\n", payload_ptr, job_no);
pandecode_indent++;
MEMORY_PROP(s, out);
pandecode_prop("unknown = 0x%" PRIX64, s->unknown);
pandecode_indent--;
pandecode_log("};\n");
break;
}
case JOB_TYPE_TILER:
case JOB_TYPE_VERTEX:
case JOB_TYPE_COMPUTE:
if (bifrost) {
if (h->job_type == JOB_TYPE_TILER)
pandecode_tiler_job_bfr(h, mem, payload_ptr, job_no);
else
pandecode_vertex_job_bfr(h, mem, payload_ptr, job_no);
} else
pandecode_vertex_or_tiler_job_mdg(h, mem, payload_ptr, job_no);
break;
case JOB_TYPE_FRAGMENT:
pandecode_fragment_job(mem, payload_ptr, job_no, bifrost);
break;
default:
break;
}
/* Handle linkage */
if (!first) {
pandecode_log("((struct mali_job_descriptor_header *) (uintptr_t) job_%d_p)->", job_no - 1);
if (last_size)
pandecode_log_cont("next_job_64 = job_%d_p;\n\n", job_no);
else
pandecode_log_cont("next_job_32 = (u32) (uintptr_t) job_%d_p;\n\n", job_no);
}
first = false;
} while ((jc_gpu_va = h->job_descriptor_size ? h->next_job_64 : h->next_job_32));
return start_number;
}