blob: be67392625ba9f26debd4a6b43f270e7029f377c [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "common/gen_l3_config.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "anv_nir.h"
#include "spirv/nir_spirv.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
const struct anv_device *device = pipeline->device;
const struct brw_compiler *compiler =
device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct nir_spirv_supported_extensions supported_ext = {
.float64 = device->instance->physicalDevice.info.gen >= 8,
.int64 = device->instance->physicalDevice.info.gen >= 8,
.tessellation = true,
.draw_parameters = true,
.image_write_without_format = true,
.multiview = true,
.variable_pointers = true,
};
nir_function *entry_point =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &supported_ext, nir_options);
nir_shader *nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
ralloc_steal(mem_ctx, nir);
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
if (stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
NIR_PASS_V(nir, nir_propagate_invariant);
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
entry_point->impl, true, false);
NIR_PASS_V(nir, nir_lower_system_values);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir = brw_preprocess_nir(compiler, nir);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
if (stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(nir, anv_nir_lower_input_attachments);
return nir;
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
vk_free2(&device->alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* Almost all multisampled textures are compressed. The only time when we
* don't compress a multisampled texture is for 16x MSAA with a surface
* width greater than 8k which is a bit of an edge case. Since the sampler
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
* to tell the compiler to always assume compression.
*/
key->compressed_multisample_layout_mask = ~0;
/* SkyLake added support for 16x MSAA. With this came a new message for
* reading from a 16x MSAA surface with compression. The new message was
* needed because now the MCS data is 64 bits instead of 32 or lower as is
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
* so we can just use it unconditionally. This may not be quite as
* efficient but it saves us from recompiling.
*/
if (devinfo->gen >= 9)
key->msaa_16 = ~0;
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *info,
struct brw_wm_prog_key *key)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* TODO: we could set this to 0 based on the information in nir_shader, but
* this function is called before spirv_to_nir. */
const struct brw_vue_map *vue_map =
&anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
key->input_slots_valid = vue_map->slots_valid;
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->nr_color_regions = pipeline->subpass->color_count;
key->replicate_alpha = key->nr_color_regions > 1 &&
info->pMultisampleState &&
info->pMultisampleState->alphaToCoverageEnable;
if (info->pMultisampleState) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (info->pMultisampleState->rasterizationSamples > 1) {
key->persample_interp =
(info->pMultisampleState->minSampleShading *
info->pMultisampleState->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
key->frag_coord_adds_sample_pos =
info->pMultisampleState->sampleShadingEnable;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
anv_pipeline_hash_shader(struct anv_pipeline *pipeline,
struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
const void *key, size_t key_size,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (stage != MESA_SHADER_COMPUTE) {
_mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
sizeof(pipeline->subpass->view_mask));
}
if (pipeline->layout) {
_mesa_sha1_update(&ctx, pipeline->layout->sha1,
sizeof(pipeline->layout->sha1));
}
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
_mesa_sha1_update(&ctx, &stage, sizeof(stage));
if (spec_info) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries));
_mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
}
_mesa_sha1_update(&ctx, key, key_size);
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
struct brw_stage_prog_data *prog_data,
struct anv_pipeline_bind_map *map)
{
nir_shader *nir = anv_shader_compile_to_nir(pipeline, mem_ctx,
module, entrypoint, stage,
spec_info);
if (nir == NULL)
return NULL;
NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, pipeline);
NIR_PASS_V(nir, anv_nir_lower_push_constants);
if (stage != MESA_SHADER_COMPUTE)
NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
if (stage == MESA_SHADER_COMPUTE) {
NIR_PASS_V(nir, brw_nir_lower_cs_shared);
prog_data->total_shared = nir->num_shared;
}
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
/* Figure out the number of parameters */
prog_data->nr_params = 0;
if (nir->num_uniforms > 0) {
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
}
if (nir->info.num_images > 0) {
prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
pipeline->needs_data_cache = true;
}
if (stage == MESA_SHADER_COMPUTE)
((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
prog_data->nr_params++; /* The CS Thread ID uniform */
if (nir->info.num_ssbos > 0)
pipeline->needs_data_cache = true;
if (prog_data->nr_params > 0) {
/* XXX: I think we're leaking this */
prog_data->param = malloc(prog_data->nr_params * sizeof(uint32_t));
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
if (nir->num_uniforms > 0) {
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
prog_data->param[i] = ANV_PARAM_PUSH(
(uintptr_t)&null_data->client_data[i * sizeof(float)]);
}
}
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (pipeline->layout)
anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
/* nir_lower_io will only handle the push constants; we need to set this
* to the full number of possible uniforms.
*/
nir->num_uniforms = prog_data->nr_params * 4;
return nir;
}
static void
anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
{
prog_data->binding_table.size_bytes = 0;
prog_data->binding_table.texture_start = bias;
prog_data->binding_table.gather_texture_start = bias;
prog_data->binding_table.ubo_start = bias;
prog_data->binding_table.ssbo_start = bias;
prog_data->binding_table.image_start = bias;
}
static struct anv_shader_bin *
anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct anv_pipeline_bind_map *bind_map)
{
if (cache) {
return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
bind_map);
} else {
return anv_shader_bin_create(pipeline->device, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
prog_data->param, bind_map);
}
}
static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
gl_shader_stage stage,
struct anv_shader_bin *shader)
{
pipeline->shaders[stage] = shader;
pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
}
static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_vs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_vs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_pipeline_hash_shader(pipeline, module, entrypoint,
MESA_SHADER_VERTEX, spec_info,
&key, sizeof(key), sha1);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_vs_prog_data prog_data = {};
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map map = {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
void *mem_ctx = ralloc_context(NULL);
nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx,
module, entrypoint,
MESA_SHADER_VERTEX, spec_info,
&prog_data.base.base, &map);
if (nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_fill_binding_table(&prog_data.base.base, 0);
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
false, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
return VK_SUCCESS;
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static VkResult
anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *tcs_module,
const char *tcs_entrypoint,
const VkSpecializationInfo *tcs_spec_info,
struct anv_shader_module *tes_module,
const char *tes_entrypoint,
const VkSpecializationInfo *tes_spec_info)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_tcs_prog_key tcs_key = {};
struct brw_tes_prog_key tes_key = {};
struct anv_shader_bin *tcs_bin = NULL;
struct anv_shader_bin *tes_bin = NULL;
unsigned char tcs_sha1[40];
unsigned char tes_sha1[40];
populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
tcs_key.input_vertices = info->pTessellationState->patchControlPoints;
if (cache) {
anv_pipeline_hash_shader(pipeline, tcs_module, tcs_entrypoint,
MESA_SHADER_TESS_CTRL, tcs_spec_info,
&tcs_key, sizeof(tcs_key), tcs_sha1);
anv_pipeline_hash_shader(pipeline, tes_module, tes_entrypoint,
MESA_SHADER_TESS_EVAL, tes_spec_info,
&tes_key, sizeof(tes_key), tes_sha1);
memcpy(&tcs_sha1[20], tes_sha1, 20);
memcpy(&tes_sha1[20], tcs_sha1, 20);
tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
}
if (tcs_bin == NULL || tes_bin == NULL) {
struct brw_tcs_prog_data tcs_prog_data = {};
struct brw_tes_prog_data tes_prog_data = {};
struct anv_pipeline_binding tcs_surface_to_descriptor[256];
struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
struct anv_pipeline_binding tes_surface_to_descriptor[256];
struct anv_pipeline_binding tes_sampler_to_descriptor[256];
struct anv_pipeline_bind_map tcs_map = {
.surface_to_descriptor = tcs_surface_to_descriptor,
.sampler_to_descriptor = tcs_sampler_to_descriptor
};
struct anv_pipeline_bind_map tes_map = {
.surface_to_descriptor = tes_surface_to_descriptor,
.sampler_to_descriptor = tes_sampler_to_descriptor
};
void *mem_ctx = ralloc_context(NULL);
nir_shader *tcs_nir =
anv_pipeline_compile(pipeline, mem_ctx, tcs_module, tcs_entrypoint,
MESA_SHADER_TESS_CTRL, tcs_spec_info,
&tcs_prog_data.base.base, &tcs_map);
nir_shader *tes_nir =
anv_pipeline_compile(pipeline, mem_ctx, tes_module, tes_entrypoint,
MESA_SHADER_TESS_EVAL, tes_spec_info,
&tes_prog_data.base.base, &tes_map);
if (tcs_nir == NULL || tes_nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
nir_lower_tes_patch_vertices(tes_nir,
tcs_nir->info.tess.tcs_vertices_out);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_nir->info, &tcs_nir->info);
anv_fill_binding_table(&tcs_prog_data.base.base, 0);
anv_fill_binding_table(&tes_prog_data.base.base, 0);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_key.tes_primitive_mode = tes_nir->info.tess.primitive_mode;
tcs_key.outputs_written = tcs_nir->info.outputs_written;
tcs_key.patch_outputs_written = tcs_nir->info.patch_outputs_written;
tcs_key.quads_workaround =
devinfo->gen < 9 &&
tes_nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
tes_nir->info.tess.spacing == TESS_SPACING_EQUAL;
tes_key.inputs_read = tcs_key.outputs_written;
tes_key.patch_inputs_read = tcs_key.patch_outputs_written;
unsigned code_size;
const int shader_time_index = -1;
const unsigned *shader_code;
shader_code =
brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
tcs_nir, shader_time_index, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
tcs_sha1, sizeof(tcs_sha1),
shader_code, code_size,
&tcs_prog_data.base.base,
sizeof(tcs_prog_data),
&tcs_map);
if (!tcs_bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
shader_code =
brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
&tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
NULL, shader_time_index, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
tes_sha1, sizeof(tes_sha1),
shader_code, code_size,
&tes_prog_data.base.base,
sizeof(tes_prog_data),
&tes_map);
if (!tes_bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_gs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_gs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_pipeline_hash_shader(pipeline, module, entrypoint,
MESA_SHADER_GEOMETRY, spec_info,
&key, sizeof(key), sha1);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_gs_prog_data prog_data = {};
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map map = {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
void *mem_ctx = ralloc_context(NULL);
nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx,
module, entrypoint,
MESA_SHADER_GEOMETRY, spec_info,
&prog_data.base.base, &map);
if (nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_fill_binding_table(&prog_data.base.base, 0);
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* TODO: SIMD8 GS */
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_wm_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_wm_prog_key(pipeline, info, &key);
if (cache) {
anv_pipeline_hash_shader(pipeline, module, entrypoint,
MESA_SHADER_FRAGMENT, spec_info,
&key, sizeof(key), sha1);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_wm_prog_data prog_data = {};
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map map = {
.surface_to_descriptor = surface_to_descriptor + 8,
.sampler_to_descriptor = sampler_to_descriptor
};
void *mem_ctx = ralloc_context(NULL);
nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx,
module, entrypoint,
MESA_SHADER_FRAGMENT, spec_info,
&prog_data.base, &map);
if (nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
unsigned num_rts = 0;
struct anv_pipeline_binding rt_bindings[8];
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_foreach_variable_safe(var, &nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= key.nr_color_regions) {
/* Out-of-bounds, throw it away */
var->data.mode = nir_var_local;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
continue;
}
/* Give it a new, compacted, location */
var->data.location = FRAG_RESULT_DATA0 + num_rts;
unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(num_rts + array_len <= 8);
for (unsigned i = 0; i < array_len; i++) {
rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = rt + i,
};
}
num_rts += array_len;
}
if (num_rts == 0) {
/* If we have no render targets, we need a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT32_MAX,
};
num_rts = 1;
}
assert(num_rts <= 8);
map.surface_to_descriptor -= num_rts;
map.surface_count += num_rts;
assert(map.surface_count <= 256);
memcpy(map.surface_to_descriptor, rt_bindings,
num_rts * sizeof(*rt_bindings));
anv_fill_binding_table(&prog_data.base, num_rts);
unsigned code_size;
const unsigned *shader_code =
brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, -1, true, false, NULL, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
return VK_SUCCESS;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct brw_cs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_cs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_pipeline_hash_shader(pipeline, module, entrypoint,
MESA_SHADER_COMPUTE, spec_info,
&key, sizeof(key), sha1);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_cs_prog_data prog_data = {};
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map map = {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
void *mem_ctx = ralloc_context(NULL);
nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx,
module, entrypoint,
MESA_SHADER_COMPUTE, spec_info,
&prog_data.base, &map);
if (nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_fill_binding_table(&prog_data.base, 1);
unsigned code_size;
const unsigned *shader_code =
brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
-1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
return VK_SUCCESS;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
struct anv_subpass *subpass = pipeline->subpass;
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
#ifdef DEBUG
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
#endif
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct gen_l3_weights w =
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
pipeline->urb.total_size =
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_pipeline_validate_create_info(pCreateInfo);
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
assert(pCreateInfo->subpass < render_pass->subpass_count);
pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
pCreateInfo->pRasterizationState->depthClampEnable;
pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->sampleShadingEnable;
pipeline->needs_data_cache = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
pipeline->active_stages = 0;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = {};
struct anv_shader_module *modules[MESA_SHADER_STAGES] = {};
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
}
if (modules[MESA_SHADER_VERTEX]) {
result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_VERTEX],
pStages[MESA_SHADER_VERTEX]->pName,
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_TESS_EVAL]) {
anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_TESS_CTRL],
pStages[MESA_SHADER_TESS_CTRL]->pName,
pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
modules[MESA_SHADER_TESS_EVAL],
pStages[MESA_SHADER_TESS_EVAL]->pName,
pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
}
if (modules[MESA_SHADER_GEOMETRY]) {
result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_GEOMETRY],
pStages[MESA_SHADER_GEOMETRY]->pName,
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_FRAGMENT]) {
result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_FRAGMENT],
pStages[MESA_SHADER_FRAGMENT]->pName,
pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
anv_pipeline_setup_l3_config(pipeline, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo *tess_info =
pCreateInfo->pTessellationState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
else
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
compile_fail:
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
return result;
}