blob: 3fc9e39484ad1ecd44ec149d0cc5f8cfcb0e35c5 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_visitor.cpp
*
* This file supports generating the FS LIR from the GLSL IR. The LIR
* makes it easier to do backend-specific optimizations than doing so
* in the GLSL IR or in the native code.
*/
extern "C" {
#include <sys/types.h>
#include "main/macros.h"
#include "main/shaderobj.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "util/register_allocate.h"
#include "program/sampler.h"
#include "program/hash_table.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
}
#include "brw_fs.h"
#include "main/uniforms.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
void
fs_visitor::visit(ir_variable *ir)
{
fs_reg *reg = NULL;
if (variable_storage(ir))
return;
if (ir->data.mode == ir_var_shader_in) {
if (!strcmp(ir->name, "gl_FragCoord")) {
reg = emit_fragcoord_interpolation(ir);
} else if (!strcmp(ir->name, "gl_FrontFacing")) {
reg = emit_frontfacing_interpolation();
} else {
reg = emit_general_interpolation(ir);
}
assert(reg);
hash_table_insert(this->variable_ht, reg, ir);
return;
} else if (ir->data.mode == ir_var_shader_out) {
reg = new(this->mem_ctx) fs_reg(this, ir->type);
if (ir->data.index > 0) {
assert(ir->data.location == FRAG_RESULT_DATA0);
assert(ir->data.index == 1);
this->dual_src_output = *reg;
this->do_dual_src = true;
} else if (ir->data.location == FRAG_RESULT_COLOR) {
/* Writing gl_FragColor outputs to all color regions. */
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
this->outputs[i] = *reg;
this->output_components[i] = 4;
}
} else if (ir->data.location == FRAG_RESULT_DEPTH) {
this->frag_depth = *reg;
} else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) {
this->sample_mask = *reg;
} else {
/* gl_FragData or a user-defined FS output */
assert(ir->data.location >= FRAG_RESULT_DATA0 &&
ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
int vector_elements =
ir->type->is_array() ? ir->type->fields.array->vector_elements
: ir->type->vector_elements;
/* General color output. */
for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
int output = ir->data.location - FRAG_RESULT_DATA0 + i;
this->outputs[output] = offset(*reg, vector_elements * i);
this->output_components[output] = vector_elements;
}
}
} else if (ir->data.mode == ir_var_uniform) {
int param_index = uniforms;
/* Thanks to the lower_ubo_reference pass, we will see only
* ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
* variables, so no need for them to be in variable_ht.
*
* Some uniforms, such as samplers and atomic counters, have no actual
* storage, so we should ignore them.
*/
if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
return;
if (dispatch_width == 16) {
if (!variable_storage(ir)) {
fail("Failed to find uniform '%s' in SIMD16\n", ir->name);
}
return;
}
param_size[param_index] = type_size(ir->type);
if (!strncmp(ir->name, "gl_", 3)) {
setup_builtin_uniform_values(ir);
} else {
setup_uniform_values(ir);
}
reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
reg->type = brw_type_for_base_type(ir->type);
} else if (ir->data.mode == ir_var_system_value) {
if (ir->data.location == SYSTEM_VALUE_SAMPLE_POS) {
reg = emit_samplepos_setup();
} else if (ir->data.location == SYSTEM_VALUE_SAMPLE_ID) {
reg = emit_sampleid_setup();
} else if (ir->data.location == SYSTEM_VALUE_SAMPLE_MASK_IN) {
assert(brw->gen >= 7);
reg = new(mem_ctx)
fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
BRW_REGISTER_TYPE_D));
}
}
if (!reg)
reg = new(this->mem_ctx) fs_reg(this, ir->type);
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::visit(ir_dereference_variable *ir)
{
fs_reg *reg = variable_storage(ir->var);
if (!reg) {
fail("Failed to find variable storage for %s\n", ir->var->name);
this->result = fs_reg(reg_null_d);
return;
}
this->result = *reg;
}
void
fs_visitor::visit(ir_dereference_record *ir)
{
const glsl_type *struct_type = ir->record->type;
ir->record->accept(this);
unsigned int off = 0;
for (unsigned int i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
off += type_size(struct_type->fields.structure[i].type);
}
this->result = offset(this->result, off);
this->result.type = brw_type_for_base_type(ir->type);
}
void
fs_visitor::visit(ir_dereference_array *ir)
{
ir_constant *constant_index;
fs_reg src;
int element_size = type_size(ir->type);
constant_index = ir->array_index->as_constant();
ir->array->accept(this);
src = this->result;
src.type = brw_type_for_base_type(ir->type);
if (constant_index) {
assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG);
src = offset(src, constant_index->value.i[0] * element_size);
} else {
/* Variable index array dereference. We attach the variable index
* component to the reg as a pointer to a register containing the
* offset. Currently only uniform arrays are supported in this patch,
* and that reladdr pointer is resolved by
* move_uniform_array_access_to_pull_constants(). All other array types
* are lowered by lower_variable_index_to_cond_assign().
*/
ir->array_index->accept(this);
fs_reg index_reg;
index_reg = fs_reg(this, glsl_type::int_type);
emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
if (src.reladdr) {
emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
}
src.reladdr = ralloc(mem_ctx, fs_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
this->result = src;
}
void
fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y,
const fs_reg &a)
{
if (brw->gen < 6 ||
!x.is_valid_3src() ||
!y.is_valid_3src() ||
!a.is_valid_3src()) {
/* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
emit(MUL(y_times_a, y, a));
fs_reg negative_a = a;
negative_a.negate = !a.negate;
emit(ADD(one_minus_a, negative_a, fs_reg(1.0f)));
emit(MUL(x_times_one_minus_a, x, one_minus_a));
emit(ADD(dst, x_times_one_minus_a, y_times_a));
} else {
/* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
* we need to reorder the operands.
*/
emit(LRP(dst, a, y, x));
}
}
void
fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1)
{
fs_inst *inst;
if (brw->gen >= 6) {
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->conditional_mod = conditionalmod;
} else {
emit(CMP(reg_null_d, src0, src1, conditionalmod));
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->predicate = BRW_PREDICATE_NORMAL;
}
}
bool
fs_visitor::try_emit_saturate(ir_expression *ir)
{
if (ir->operation != ir_unop_saturate)
return false;
ir_rvalue *sat_val = ir->operands[0];
fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
sat_val->accept(this);
fs_reg src = this->result;
fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
/* If the last instruction from our accept() generated our
* src, just set the saturate flag instead of emmitting a separate mov.
*/
fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
if (modify && modify->regs_written == modify->dst.width / 8 &&
modify->can_do_saturate()) {
modify->saturate = true;
this->result = src;
return true;
}
return false;
}
bool
fs_visitor::try_emit_mad(ir_expression *ir)
{
/* 3-src instructions were introduced in gen6. */
if (brw->gen < 6)
return false;
/* MAD can only handle floating-point data. */
if (ir->type != glsl_type::float_type)
return false;
ir_rvalue *nonmul = ir->operands[1];
ir_expression *mul = ir->operands[0]->as_expression();
if (!mul || mul->operation != ir_binop_mul) {
nonmul = ir->operands[0];
mul = ir->operands[1]->as_expression();
if (!mul || mul->operation != ir_binop_mul)
return false;
}
if (nonmul->as_constant() ||
mul->operands[0]->as_constant() ||
mul->operands[1]->as_constant())
return false;
nonmul->accept(this);
fs_reg src0 = this->result;
mul->operands[0]->accept(this);
fs_reg src1 = this->result;
mul->operands[1]->accept(this);
fs_reg src2 = this->result;
this->result = fs_reg(this, ir->type);
emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
return true;
}
static int
pack_pixel_offset(float x)
{
/* Clamp upper end of the range to +7/16. See explanation in non-constant
* offset case below. */
int n = MIN2((int)(x * 16), 7);
return n & 0xf;
}
void
fs_visitor::emit_interpolate_expression(ir_expression *ir)
{
/* in SIMD16 mode, the pixel interpolator returns coords interleaved
* 8 channels at a time, same as the barycentric coords presented in
* the FS payload. this requires a bit of extra work to support.
*/
no16("interpolate_at_* not yet supported in SIMD16 mode.");
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
ir_dereference * deref = ir->operands[0]->as_dereference();
ir_swizzle * swiz = NULL;
if (!deref) {
/* the api does not allow a swizzle here, but the varying packing code
* may have pushed one into here.
*/
swiz = ir->operands[0]->as_swizzle();
assert(swiz);
deref = swiz->val->as_dereference();
}
assert(deref);
ir_variable * var = deref->variable_referenced();
assert(var);
/* 1. collect interpolation factors */
fs_reg dst_x = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 2, 1));
fs_reg dst_y = offset(dst_x, 1);
/* for most messages, we need one reg of ignored data; the hardware requires mlen==1
* even when there is no payload. in the per-slot offset case, we'll replace this with
* the proper source data. */
fs_reg src = fs_reg(this, glsl_type::float_type);
int mlen = 1; /* one reg unless overriden */
int reg_width = dispatch_width / 8;
fs_inst *inst;
switch (ir->operation) {
case ir_unop_interpolate_at_centroid:
inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
break;
case ir_binop_interpolate_at_sample: {
ir_constant *sample_num = ir->operands[1]->as_constant();
assert(sample_num || !"nonconstant sample number should have been lowered.");
unsigned msg_data = sample_num->value.i[0] << 4;
inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src, fs_reg(msg_data));
break;
}
case ir_binop_interpolate_at_offset: {
ir_constant *const_offset = ir->operands[1]->as_constant();
if (const_offset) {
unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) |
(pack_pixel_offset(const_offset->value.f[1]) << 4);
inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
fs_reg(msg_data));
} else {
/* pack the operands: hw wants offsets as 4 bit signed ints */
ir->operands[1]->accept(this);
src = fs_reg(this, glsl_type::ivec2_type);
fs_reg src2 = src;
for (int i = 0; i < 2; i++) {
fs_reg temp = fs_reg(this, glsl_type::float_type);
emit(MUL(temp, this->result, fs_reg(16.0f)));
emit(MOV(src2, temp)); /* float to int */
/* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires
* that we support a maximum offset of +0.5, which isn't representable
* in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16,
* which is the opposite of what the shader author wanted.
*
* This is legal due to ARB_gpu_shader5's quantization rules:
*
* "Not all values of <offset> may be supported; x and y offsets may
* be rounded to fixed-point values with the number of fraction bits
* given by the implementation-dependent constant
* FRAGMENT_INTERPOLATION_OFFSET_BITS"
*/
fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7));
inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
src2 = offset(src2, 1);
this->result = offset(this->result, 1);
}
mlen = 2 * reg_width;
inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
fs_reg(0u));
}
break;
}
default:
unreachable("not reached");
}
inst->mlen = mlen;
inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */
inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) ==
INTERP_QUALIFIER_NOPERSPECTIVE;
/* 2. emit linterp */
fs_reg res(this, ir->type);
this->result = res;
for (int i = 0; i < ir->type->vector_elements; i++) {
int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i;
emit(FS_OPCODE_LINTERP, res,
dst_x, dst_y,
fs_reg(interp_reg(var->data.location, ch)));
res = offset(res, 1);
}
}
void
fs_visitor::visit(ir_expression *ir)
{
unsigned int operand;
fs_reg op[3], temp;
fs_inst *inst;
assert(ir->get_num_operands() <= 3);
if (try_emit_saturate(ir))
return;
/* Deal with the real oddball stuff first */
switch (ir->operation) {
case ir_binop_add:
if (try_emit_mad(ir))
return;
break;
case ir_triop_csel:
ir->operands[1]->accept(this);
op[1] = this->result;
ir->operands[2]->accept(this);
op[2] = this->result;
emit_bool_to_cond_code(ir->operands[0]);
this->result = fs_reg(this, ir->type);
inst = emit(SEL(this->result, op[1], op[2]));
inst->predicate = BRW_PREDICATE_NORMAL;
return;
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample:
emit_interpolate_expression(ir);
return;
default:
break;
}
for (operand = 0; operand < ir->get_num_operands(); operand++) {
ir->operands[operand]->accept(this);
if (this->result.file == BAD_FILE) {
fail("Failed to get tree for expression operand:\n");
ir->operands[operand]->fprint(stderr);
fprintf(stderr, "\n");
}
assert(this->result.is_valid_3src());
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
/* And then those vector operands should have been broken down to scalar.
*/
assert(!ir->operands[operand]->type->is_vector());
}
/* Storage for our result. If our result goes into an assignment, it will
* just get copy-propagated out, so no worries.
*/
this->result = fs_reg(this, ir->type);
switch (ir->operation) {
case ir_unop_logic_not:
if (ctx->Const.UniformBooleanTrue != 1) {
emit(NOT(this->result, op[0]));
} else {
emit(XOR(this->result, op[0], fs_reg(1u)));
}
break;
case ir_unop_neg:
op[0].negate = !op[0].negate;
emit(MOV(this->result, op[0]));
break;
case ir_unop_abs:
op[0].abs = true;
op[0].negate = false;
emit(MOV(this->result, op[0]));
break;
case ir_unop_sign:
if (ir->type->is_float()) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
op[0].type = BRW_REGISTER_TYPE_UD;
this->result.type = BRW_REGISTER_TYPE_UD;
emit(AND(this->result, op[0], fs_reg(0x80000000u)));
inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
this->result.type = BRW_REGISTER_TYPE_F;
} else {
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
emit(ASR(this->result, op[0], fs_reg(31)));
inst = emit(OR(this->result, this->result, fs_reg(1)));
inst->predicate = BRW_PREDICATE_NORMAL;
}
break;
case ir_unop_rcp:
emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
break;
case ir_unop_exp2:
emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
break;
case ir_unop_log2:
emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
break;
case ir_unop_exp:
case ir_unop_log:
unreachable("not reached: should be handled by ir_explog_to_explog2");
case ir_unop_sin:
case ir_unop_sin_reduced:
emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
break;
case ir_unop_cos:
case ir_unop_cos_reduced:
emit_math(SHADER_OPCODE_COS, this->result, op[0]);
break;
case ir_unop_dFdx:
emit(FS_OPCODE_DDX, this->result, op[0], fs_reg(BRW_DERIVATIVE_BY_HINT));
break;
case ir_unop_dFdx_coarse:
emit(FS_OPCODE_DDX, this->result, op[0], fs_reg(BRW_DERIVATIVE_COARSE));
break;
case ir_unop_dFdx_fine:
emit(FS_OPCODE_DDX, this->result, op[0], fs_reg(BRW_DERIVATIVE_FINE));
break;
case ir_unop_dFdy:
emit(FS_OPCODE_DDY, this->result, op[0], fs_reg(BRW_DERIVATIVE_BY_HINT));
break;
case ir_unop_dFdy_coarse:
emit(FS_OPCODE_DDY, this->result, op[0], fs_reg(BRW_DERIVATIVE_COARSE));
break;
case ir_unop_dFdy_fine:
emit(FS_OPCODE_DDY, this->result, op[0], fs_reg(BRW_DERIVATIVE_FINE));
break;
case ir_binop_add:
emit(ADD(this->result, op[0], op[1]));
break;
case ir_binop_sub:
unreachable("not reached: should be handled by ir_sub_to_add_neg");
case ir_binop_mul:
if (brw->gen < 8 && ir->type->is_integer()) {
/* For integer multiplication, the MUL uses the low 16 bits
* of one of the operands (src0 on gen6, src1 on gen7). The
* MACH accumulates in the contribution of the upper 16 bits
* of that operand.
*/
if (ir->operands[0]->is_uint16_constant()) {
if (brw->gen < 7)
emit(MUL(this->result, op[0], op[1]));
else
emit(MUL(this->result, op[1], op[0]));
} else if (ir->operands[1]->is_uint16_constant()) {
if (brw->gen < 7)
emit(MUL(this->result, op[1], op[0]));
else
emit(MUL(this->result, op[0], op[1]));
} else {
if (brw->gen >= 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
this->result.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(reg_null_d, op[0], op[1]));
emit(MOV(this->result, fs_reg(acc)));
}
} else {
emit(MUL(this->result, op[0], op[1]));
}
break;
case ir_binop_imul_high: {
if (brw->gen == 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
this->result.type);
fs_inst *mul = emit(MUL(acc, op[0], op[1]));
emit(MACH(this->result, op[0], op[1]));
/* Until Gen8, integer multiplies read 32-bits from one source, and
* 16-bits from the other, and relying on the MACH instruction to
* generate the high bits of the result.
*
* On Gen8, the multiply instruction does a full 32x32-bit multiply,
* but in order to do a 64x64-bit multiply we have to simulate the
* previous behavior and then use a MACH instruction.
*
* FINISHME: Don't use source modifiers on src1.
*/
if (brw->gen >= 8) {
assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
mul->src[1].type == BRW_REGISTER_TYPE_UD);
if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
mul->src[1].type = BRW_REGISTER_TYPE_W;
} else {
mul->src[1].type = BRW_REGISTER_TYPE_UW;
}
}
break;
}
case ir_binop_div:
/* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
break;
case ir_binop_carry: {
if (brw->gen == 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
BRW_REGISTER_TYPE_UD);
emit(ADDC(reg_null_ud, op[0], op[1]));
emit(MOV(this->result, fs_reg(acc)));
break;
}
case ir_binop_borrow: {
if (brw->gen == 7)
no16("SIMD16 explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
BRW_REGISTER_TYPE_UD);
emit(SUBB(reg_null_ud, op[0], op[1]));
emit(MOV(this->result, fs_reg(acc)));
break;
}
case ir_binop_mod:
/* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
break;
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
if (ctx->Const.UniformBooleanTrue == 1) {
resolve_bool_comparison(ir->operands[0], &op[0]);
resolve_bool_comparison(ir->operands[1], &op[1]);
}
emit(CMP(this->result, op[0], op[1],
brw_conditional_for_comparison(ir->operation)));
break;
case ir_binop_logic_xor:
emit(XOR(this->result, op[0], op[1]));
break;
case ir_binop_logic_or:
emit(OR(this->result, op[0], op[1]));
break;
case ir_binop_logic_and:
emit(AND(this->result, op[0], op[1]));
break;
case ir_binop_dot:
case ir_unop_any:
unreachable("not reached: should be handled by brw_fs_channel_expressions");
case ir_unop_noise:
unreachable("not reached: should be handled by lower_noise");
case ir_quadop_vector:
unreachable("not reached: should be handled by lower_quadop_vector");
case ir_binop_vector_extract:
unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()");
case ir_triop_vector_insert:
unreachable("not reached: should be handled by lower_vector_insert()");
case ir_binop_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case ir_unop_sqrt:
emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
break;
case ir_unop_rsq:
emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
break;
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
op[0].type = BRW_REGISTER_TYPE_F;
this->result = op[0];
break;
case ir_unop_i2u:
case ir_unop_bitcast_f2u:
op[0].type = BRW_REGISTER_TYPE_UD;
this->result = op[0];
break;
case ir_unop_u2i:
case ir_unop_bitcast_f2i:
op[0].type = BRW_REGISTER_TYPE_D;
this->result = op[0];
break;
case ir_unop_i2f:
case ir_unop_u2f:
case ir_unop_f2i:
case ir_unop_f2u:
emit(MOV(this->result, op[0]));
break;
case ir_unop_b2i:
emit(AND(this->result, op[0], fs_reg(1)));
break;
case ir_unop_b2f:
if (ctx->Const.UniformBooleanTrue != 1) {
op[0].type = BRW_REGISTER_TYPE_UD;
this->result.type = BRW_REGISTER_TYPE_UD;
emit(AND(this->result, op[0], fs_reg(0x3f800000u)));
this->result.type = BRW_REGISTER_TYPE_F;
} else {
temp = fs_reg(this, glsl_type::int_type);
emit(AND(temp, op[0], fs_reg(1u)));
emit(MOV(this->result, temp));
}
break;
case ir_unop_f2b:
emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
break;
case ir_unop_i2b:
emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
break;
case ir_unop_trunc:
emit(RNDZ(this->result, op[0]));
break;
case ir_unop_ceil:
op[0].negate = !op[0].negate;
emit(RNDD(this->result, op[0]));
this->result.negate = true;
break;
case ir_unop_floor:
emit(RNDD(this->result, op[0]));
break;
case ir_unop_fract:
emit(FRC(this->result, op[0]));
break;
case ir_unop_round_even:
emit(RNDE(this->result, op[0]));
break;
case ir_binop_min:
case ir_binop_max:
resolve_ud_negate(&op[0]);
resolve_ud_negate(&op[1]);
emit_minmax(ir->operation == ir_binop_min ?
BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
this->result, op[0], op[1]);
break;
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_snorm_4x8:
case ir_unop_pack_unorm_2x16:
case ir_unop_pack_unorm_4x8:
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_snorm_4x8:
case ir_unop_unpack_unorm_2x16:
case ir_unop_unpack_unorm_4x8:
case ir_unop_unpack_half_2x16:
case ir_unop_pack_half_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case ir_unop_unpack_half_2x16_split_x:
emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
break;
case ir_unop_unpack_half_2x16_split_y:
emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
break;
case ir_binop_pow:
emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
break;
case ir_unop_bitfield_reverse:
emit(BFREV(this->result, op[0]));
break;
case ir_unop_bit_count:
emit(CBIT(this->result, op[0]));
break;
case ir_unop_find_msb:
temp = fs_reg(this, glsl_type::uint_type);
emit(FBH(temp, op[0]));
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
/* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
emit(MOV(this->result, temp));
emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
temp.negate = true;
inst = emit(ADD(this->result, temp, fs_reg(31)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case ir_unop_find_lsb:
emit(FBL(this->result, op[0]));
break;
case ir_unop_saturate:
inst = emit(MOV(this->result, op[0]));
inst->saturate = true;
break;
case ir_triop_bitfield_extract:
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(BFE(this->result, op[2], op[1], op[0]));
break;
case ir_binop_bfm:
emit(BFI1(this->result, op[0], op[1]));
break;
case ir_triop_bfi:
emit(BFI2(this->result, op[0], op[1], op[2]));
break;
case ir_quadop_bitfield_insert:
unreachable("not reached: should be handled by "
"lower_instructions::bitfield_insert_to_bfm_bfi");
case ir_unop_bit_not:
emit(NOT(this->result, op[0]));
break;
case ir_binop_bit_and:
emit(AND(this->result, op[0], op[1]));
break;
case ir_binop_bit_xor:
emit(XOR(this->result, op[0], op[1]));
break;
case ir_binop_bit_or:
emit(OR(this->result, op[0], op[1]));
break;
case ir_binop_lshift:
emit(SHL(this->result, op[0], op[1]));
break;
case ir_binop_rshift:
if (ir->type->base_type == GLSL_TYPE_INT)
emit(ASR(this->result, op[0], op[1]));
else
emit(SHR(this->result, op[0], op[1]));
break;
case ir_binop_pack_half_2x16_split:
emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
break;
case ir_binop_ubo_load: {
/* This IR node takes a constant uniform block and a constant or
* variable byte offset within the block and loads a vector from that.
*/
ir_constant *const_uniform_block = ir->operands[0]->as_constant();
ir_constant *const_offset = ir->operands[1]->as_constant();
fs_reg surf_index;
if (const_uniform_block) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
const_uniform_block->value.u[0]);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; the generator will select
* a value from any live channel.
*/
surf_index = fs_reg(this, glsl_type::uint_type);
emit(ADD(surf_index, op[0],
fs_reg(stage_prog_data->binding_table.ubo_start)))
->force_writemask_all = true;
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(prog_data,
stage_prog_data->binding_table.ubo_start +
shader_prog->NumUniformBlocks - 1);
}
if (const_offset) {
fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
packed_consts.type = result.type;
fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
packed_consts, surf_index, const_offset_reg));
for (int i = 0; i < ir->type->vector_elements; i++) {
packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i);
/* The std140 packing rules don't allow vectors to cross 16-byte
* boundaries, and a reg is 32 bytes.
*/
assert(packed_consts.subreg_offset < 32);
/* UBO bools are any nonzero value. We consider bools to be
* values with the low bit set to 1. Convert them using CMP.
*/
if (ir->type->base_type == GLSL_TYPE_BOOL) {
emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
} else {
emit(MOV(result, packed_consts));
}
result = offset(result, 1);
}
} else {
/* Turn the byte offset into a dword offset. */
fs_reg base_offset = fs_reg(this, glsl_type::int_type);
emit(SHR(base_offset, op[1], fs_reg(2)));
for (int i = 0; i < ir->type->vector_elements; i++) {
emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
base_offset, i));
if (ir->type->base_type == GLSL_TYPE_BOOL)
emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
result = offset(result, 1);
}
}
result.reg_offset = 0;
break;
}
case ir_triop_fma:
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(MAD(this->result, op[2], op[1], op[0]));
break;
case ir_triop_lrp:
emit_lrp(this->result, op[0], op[1], op[2]);
break;
case ir_triop_csel:
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample:
unreachable("already handled above");
break;
}
}
void
fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
const glsl_type *type, bool predicated)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
for (unsigned int i = 0; i < type->components(); i++) {
l.type = brw_type_for_base_type(type);
r.type = brw_type_for_base_type(type);
if (predicated || !l.equals(r)) {
fs_inst *inst = emit(MOV(l, r));
inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
}
l = offset(l, 1);
r = offset(r, 1);
}
break;
case GLSL_TYPE_ARRAY:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.array, predicated);
}
break;
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.structure[i].type,
predicated);
}
break;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
break;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
unreachable("not reached");
}
}
/* If the RHS processing resulted in an instruction generating a
* temporary value, and it would be easy to rewrite the instruction to
* generate its result right into the LHS instead, do so. This ends
* up reliably removing instructions where it can be tricky to do so
* later without real UD chain information.
*/
bool
fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
fs_reg dst,
fs_reg src,
fs_inst *pre_rhs_inst,
fs_inst *last_rhs_inst)
{
/* Only attempt if we're doing a direct assignment. */
if (ir->condition ||
!(ir->lhs->type->is_scalar() ||
(ir->lhs->type->is_vector() &&
ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
return false;
/* Make sure the last instruction generated our source reg. */
fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
last_rhs_inst,
src);
if (!modify)
return false;
/* If last_rhs_inst wrote a different number of components than our LHS,
* we can't safely rewrite it.
*/
if (virtual_grf_sizes[dst.reg] != modify->regs_written)
return false;
/* Success! Rewrite the instruction. */
modify->dst = dst;
return true;
}
void
fs_visitor::visit(ir_assignment *ir)
{
fs_reg l, r;
fs_inst *inst;
/* FINISHME: arrays on the lhs */
ir->lhs->accept(this);
l = this->result;
fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
ir->rhs->accept(this);
r = this->result;
fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
assert(l.file != BAD_FILE);
assert(r.file != BAD_FILE);
if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
return;
if (ir->condition) {
emit_bool_to_cond_code(ir->condition);
}
if (ir->lhs->type->is_scalar() ||
ir->lhs->type->is_vector()) {
for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
if (ir->write_mask & (1 << i)) {
inst = emit(MOV(l, r));
if (ir->condition)
inst->predicate = BRW_PREDICATE_NORMAL;
r = offset(r, 1);
}
l = offset(l, 1);
}
} else {
emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
}
}
fs_inst *
fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst,
fs_reg coordinate, int coord_components,
fs_reg shadow_c,
fs_reg lod, fs_reg dPdy, int grad_components,
uint32_t sampler)
{
int mlen;
int base_mrf = 1;
bool simd16 = false;
fs_reg orig_dst;
/* g0 header. */
mlen = 1;
if (shadow_c.file != BAD_FILE) {
for (int i = 0; i < coord_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate = offset(coordinate, 1);
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present.
* the unused slots must be zeroed.
*/
for (int i = coord_components; i < 3; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
}
mlen += 3;
if (op == ir_tex) {
/* There's no plain shadow compare message, so we use shadow
* compare with a bias of 0.0.
*/
emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
mlen++;
} else if (op == ir_txb || op == ir_txl) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen++;
} else {
unreachable("Should not get here.");
}
emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
mlen++;
} else if (op == ir_tex) {
for (int i = 0; i < coord_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate = offset(coordinate, 1);
}
/* zero the others. */
for (int i = coord_components; i<3; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f)));
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present. */
mlen += 3;
} else if (op == ir_txd) {
fs_reg &dPdx = lod;
for (int i = 0; i < coord_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate = offset(coordinate, 1);
}
/* the slots for u and v are always present, but r is optional */
mlen += MAX2(coord_components, 2);
/* P = u, v, r
* dPdx = dudx, dvdx, drdx
* dPdy = dudy, dvdy, drdy
*
* 1-arg: Does not exist.
*
* 2-arg: dudx dvdx dudy dvdy
* dPdx.x dPdx.y dPdy.x dPdy.y
* m4 m5 m6 m7
*
* 3-arg: dudx dvdx drdx dudy dvdy drdy
* dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
* m5 m6 m7 m8 m9 m10
*/
for (int i = 0; i < grad_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
dPdx = offset(dPdx, 1);
}
mlen += MAX2(grad_components, 2);
for (int i = 0; i < grad_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
dPdy = offset(dPdy, 1);
}
mlen += MAX2(grad_components, 2);
} else if (op == ir_txs) {
/* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
simd16 = true;
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
mlen += 2;
} else {
/* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
* instructions. We'll need to do SIMD16 here.
*/
simd16 = true;
assert(op == ir_txb || op == ir_txl || op == ir_txf);
for (int i = 0; i < coord_components; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
coordinate));
coordinate = offset(coordinate, 1);
}
/* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
* be necessary for TXF (ld), but seems wise to do for all messages.
*/
for (int i = coord_components; i < 3; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
}
/* lod/bias appears after u/v/r. */
mlen += 6;
emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
mlen++;
/* The unused upper half. */
mlen++;
}
if (simd16) {
/* Now, since we're doing simd16, the return is 2 interleaved
* vec4s where the odd-indexed ones are junk. We'll need to move
* this weirdness around to the expected layout.
*/
orig_dst = dst;
dst = fs_reg(GRF, virtual_grf_alloc(8), orig_dst.type);
}
enum opcode opcode;
switch (op) {
case ir_tex: opcode = SHADER_OPCODE_TEX; break;
case ir_txb: opcode = FS_OPCODE_TXB; break;
case ir_txl: opcode = SHADER_OPCODE_TXL; break;
case ir_txd: opcode = SHADER_OPCODE_TXD; break;
case ir_txs: opcode = SHADER_OPCODE_TXS; break;
case ir_txf: opcode = SHADER_OPCODE_TXF; break;
default:
unreachable("not reached");
}
fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
inst->base_mrf = base_mrf;
inst->mlen = mlen;
inst->header_present = true;
inst->regs_written = simd16 ? 8 : 4;
if (simd16) {
for (int i = 0; i < 4; i++) {
emit(MOV(orig_dst, dst));
orig_dst = offset(orig_dst, 1);
dst = offset(dst, 2);
}
}
return inst;
}
/* gen5's sampler has slots for u, v, r, array index, then optional
* parameters like shadow comparitor or LOD bias. If optional
* parameters aren't present, those base slots are optional and don't
* need to be included in the message.
*
* We don't fill in the unnecessary slots regardless, which may look
* surprising in the disassembly.
*/
fs_inst *
fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst,
fs_reg coordinate, int vector_elements,
fs_reg shadow_c,
fs_reg lod, fs_reg lod2, int grad_components,
fs_reg sample_index, uint32_t sampler,
bool has_offset)
{
int reg_width = dispatch_width / 8;
bool header_present = false;
fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width);
fs_reg msg_coords = message;
if (has_offset) {
/* The offsets set up by the ir_texture visitor are in the
* m1 header, so we can't go headerless.
*/
header_present = true;
message.reg--;
}
for (int i = 0; i < vector_elements; i++) {
emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate));
coordinate = offset(coordinate, 1);
}
fs_reg msg_end = offset(msg_coords, vector_elements);
fs_reg msg_lod = offset(msg_coords, 4);
if (shadow_c.file != BAD_FILE) {
fs_reg msg_shadow = msg_lod;
emit(MOV(msg_shadow, shadow_c));
msg_lod = offset(msg_shadow, 1);
msg_end = msg_lod;
}
enum opcode opcode;
switch (op) {
case ir_tex:
opcode = SHADER_OPCODE_TEX;
break;
case ir_txb:
emit(MOV(msg_lod, lod));
msg_end = offset(msg_lod, 1);
opcode = FS_OPCODE_TXB;
break;
case ir_txl:
emit(MOV(msg_lod, lod));
msg_end = offset(msg_lod, 1);
opcode = SHADER_OPCODE_TXL;
break;
case ir_txd: {
/**
* P = u, v, r
* dPdx = dudx, dvdx, drdx
* dPdy = dudy, dvdy, drdy
*
* Load up these values:
* - dudx dudy dvdx dvdy drdx drdy
* - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
*/
msg_end = msg_lod;
for (int i = 0; i < grad_components; i++) {
emit(MOV(msg_end, lod));
lod = offset(lod, 1);
msg_end = offset(msg_end, 1);
emit(MOV(msg_end, lod2));
lod2 = offset(lod2, 1);
msg_end = offset(msg_end, 1);
}
opcode = SHADER_OPCODE_TXD;
break;
}
case ir_txs:
msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
emit(MOV(msg_lod, lod));
msg_end = offset(msg_lod, 1);
opcode = SHADER_OPCODE_TXS;
break;
case ir_query_levels:
msg_lod = msg_end;
emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
msg_end = offset(msg_lod, 1);
opcode = SHADER_OPCODE_TXS;
break;
case ir_txf:
msg_lod = offset(msg_coords, 3);
emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod));
msg_end = offset(msg_lod, 1);
opcode = SHADER_OPCODE_TXF;
break;
case ir_txf_ms:
msg_lod = offset(msg_coords, 3);
/* lod */
emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
/* sample index */
emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index));
msg_end = offset(msg_lod, 2);
opcode = SHADER_OPCODE_TXF_CMS;
break;
case ir_lod:
opcode = SHADER_OPCODE_LOD;
break;
case ir_tg4:
opcode = SHADER_OPCODE_TG4;
break;
default:
unreachable("not reached");
}
fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler));
inst->base_mrf = message.reg;
inst->mlen = msg_end.reg - message.reg;
inst->header_present = header_present;
inst->regs_written = 4 * reg_width;
if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
" disallowed by hardware\n");
}
return inst;
}
static bool
is_high_sampler(struct brw_context *brw, fs_reg sampler)
{
if (brw->gen < 8 && !brw->is_haswell)
return false;
return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
}
fs_inst *
fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst,
fs_reg coordinate, int coord_components,
fs_reg shadow_c,
fs_reg lod, fs_reg lod2, int grad_components,
fs_reg sample_index, fs_reg mcs, fs_reg sampler,
fs_reg offset_value)
{
int reg_width = dispatch_width / 8;
bool header_present = false;
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE);
for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) {
sources[i] = fs_reg(this, glsl_type::float_type);
}
int length = 0;
if (op == ir_tg4 || offset_value.file != BAD_FILE ||
is_high_sampler(brw, sampler)) {
/* For general texture offsets (no txf workaround), we need a header to
* put them in. Note that for SIMD16 we're making space for two actual
* hardware registers here, so the emit will have to fix up for this.
*
* * ir4_tg4 needs to place its channel select in the header,
* for interaction with ARB_texture_swizzle
*
* The sampler index is only 4-bits, so for larger sampler numbers we
* need to offset the Sampler State Pointer in the header.
*/
header_present = true;
sources[0] = fs_reg(GRF, virtual_grf_alloc(1), BRW_REGISTER_TYPE_UD);
length++;
}
if (shadow_c.file != BAD_FILE) {
emit(MOV(sources[length], shadow_c));
length++;
}
bool has_nonconstant_offset =
offset_value.file != BAD_FILE && offset_value.file != IMM;
bool coordinate_done = false;
/* Set up the LOD info */
switch (op) {
case ir_tex:
case ir_lod:
break;
case ir_txb:
emit(MOV(sources[length], lod));
length++;
break;
case ir_txl:
emit(MOV(sources[length], lod));
length++;
break;
case ir_txd: {
no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
/* Load dPdx and the coordinate together:
* [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
*/
for (int i = 0; i < coord_components; i++) {
emit(MOV(sources[length], coordinate));
coordinate = offset(coordinate, 1);
length++;
/* For cube map array, the coordinate is (u,v,r,ai) but there are
* only derivatives for (u, v, r).
*/
if (i < grad_components) {
emit(MOV(sources[length], lod));
lod = offset(lod, 1);
length++;
emit(MOV(sources[length], lod2));
lod2 = offset(lod2, 1);
length++;
}
}
coordinate_done = true;
break;
}
case ir_txs:
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod));
length++;
break;
case ir_query_levels:
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u)));
length++;
break;
case ir_txf:
/* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
coordinate = offset(coordinate, 1);
length++;
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod));
length++;
for (int i = 1; i < coord_components; i++) {
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
coordinate = offset(coordinate, 1);
length++;
}
coordinate_done = true;
break;
case ir_txf_ms:
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index));
length++;
/* data from the multisample control surface */
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs));
length++;
/* there is no offsetting for this message; just copy in the integer
* texture coordinates
*/
for (int i = 0; i < coord_components; i++) {
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate));
coordinate = offset(coordinate, 1);
length++;
}
coordinate_done = true;
break;
case ir_tg4:
if (has_nonconstant_offset) {
if (shadow_c.file != BAD_FILE)
no16("Gen7 does not support gather4_po_c in SIMD16 mode.");
/* More crazy intermixing */
for (int i = 0; i < 2; i++) { /* u, v */
emit(MOV(sources[length], coordinate));
coordinate = offset(coordinate, 1);
length++;
}
for (int i = 0; i < 2; i++) { /* offu, offv */
emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value));
offset_value = offset(offset_value, 1);
length++;
}
if (coord_components == 3) { /* r if present */
emit(MOV(sources[length], coordinate));
coordinate = offset(coordinate, 1);
length++;
}
coordinate_done = true;
}
break;
}
/* Set up the coordinate (except for cases where it was done above) */
if (!coordinate_done) {
for (int i = 0; i < coord_components; i++) {
emit(MOV(sources[length], coordinate));
coordinate = offset(coordinate, 1);
length++;
}
}
int mlen;
if (reg_width == 2)
mlen = length * reg_width - header_present;
else
mlen = length * reg_width;
fs_reg src_payload = fs_reg(GRF, virtual_grf_alloc(mlen),
BRW_REGISTER_TYPE_F);
emit(LOAD_PAYLOAD(src_payload, sources, length));
/* Generate the SEND */
enum opcode opcode;
switch (op) {
case ir_tex: opcode = SHADER_OPCODE_TEX; break;
case ir_txb: opcode = FS_OPCODE_TXB; break;
case ir_txl: opcode = SHADER_OPCODE_TXL; break;
case ir_txd: opcode = SHADER_OPCODE_TXD; break;
case ir_txf: opcode = SHADER_OPCODE_TXF; break;
case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
case ir_txs: opcode = SHADER_OPCODE_TXS; break;
case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
case ir_lod: opcode = SHADER_OPCODE_LOD; break;
case ir_tg4:
if (has_nonconstant_offset)
opcode = SHADER_OPCODE_TG4_OFFSET;
else
opcode = SHADER_OPCODE_TG4;
break;
default:
unreachable("not reached");
}
fs_inst *inst = emit(opcode, dst, src_payload, sampler);
inst->base_mrf = -1;
inst->mlen = mlen;
inst->header_present = header_present;
inst->regs_written = 4 * reg_width;
if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) {
fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE)
" disallowed by hardware\n");
}
return inst;
}
fs_reg
fs_visitor::rescale_texcoord(fs_reg coordinate, const glsl_type *coord_type,
bool is_rect, uint32_t sampler, int texunit)
{
fs_inst *inst = NULL;
bool needs_gl_clamp = true;
fs_reg scale_x, scale_y;
const struct brw_sampler_prog_key_data *tex =
(stage == MESA_SHADER_FRAGMENT) ?
&((brw_wm_prog_key*) this->key)->tex : NULL;
assert(tex);
/* The 965 requires the EU to do the normalization of GL rectangle
* texture coordinates. We use the program parameter state
* tracking to get the scaling factor.
*/
if (is_rect &&
(brw->gen < 6 ||
(brw->gen >= 6 && (tex->gl_clamp_mask[0] & (1 << sampler) ||
tex->gl_clamp_mask[1] & (1 << sampler))))) {
struct gl_program_parameter_list *params = prog->Parameters;
int tokens[STATE_LENGTH] = {
STATE_INTERNAL,
STATE_TEXRECT_SCALE,
texunit,
0,
0
};
no16("rectangle scale uniform setup not supported on SIMD16\n");
if (dispatch_width == 16) {
return coordinate;
}
GLuint index = _mesa_add_state_reference(params,
(gl_state_index *)tokens);
/* Try to find existing copies of the texrect scale uniforms. */
for (unsigned i = 0; i < uniforms; i++) {
if (stage_prog_data->param[i] ==
&prog->Parameters->ParameterValues[index][0]) {
scale_x = fs_reg(UNIFORM, i);
scale_y = fs_reg(UNIFORM, i + 1);
break;
}
}
/* If we didn't already set them up, do so now. */
if (scale_x.file == BAD_FILE) {
scale_x = fs_reg(UNIFORM, uniforms);
scale_y = fs_reg(UNIFORM, uniforms + 1);
stage_prog_data->param[uniforms++] =
&prog->Parameters->ParameterValues[index][0];
stage_prog_data->param[uniforms++] =
&prog->Parameters->ParameterValues[index][1];
}
}
/* The 965 requires the EU to do the normalization of GL rectangle
* texture coordinates. We use the program parameter state
* tracking to get the scaling factor.
*/
if (brw->gen < 6 && is_rect) {
fs_reg dst = fs_reg(this, coord_type);
fs_reg src = coordinate;
coordinate = dst;
emit(MUL(dst, src, scale_x));
dst = offset(dst, 1);
src = offset(src, 1);
emit(MUL(dst, src, scale_y));
} else if (is_rect) {
/* On gen6+, the sampler handles the rectangle coordinates
* natively, without needing rescaling. But that means we have
* to do GL_CLAMP clamping at the [0, width], [0, height] scale,
* not [0, 1] like the default case below.
*/
needs_gl_clamp = false;
for (int i = 0; i < 2; i++) {
if (tex->gl_clamp_mask[i] & (1 << sampler)) {
fs_reg chan = coordinate;
chan = offset(chan, i);
inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f));
inst->conditional_mod = BRW_CONDITIONAL_G;
/* Our parameter comes in as 1.0/width or 1.0/height,
* because that's what people normally want for doing
* texture rectangle handling. We need width or height
* for clamping, but we don't care enough to make a new
* parameter type, so just invert back.
*/
fs_reg limit = fs_reg(this, glsl_type::float_type);
emit(MOV(limit, i == 0 ? scale_x : scale_y));
emit(SHADER_OPCODE_RCP, limit, limit);
inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
inst->conditional_mod = BRW_CONDITIONAL_L;
}
}
}
if (coord_type && needs_gl_clamp) {
for (unsigned int i = 0; i < MIN2(coord_type->vector_elements, 3); i++) {
if (tex->gl_clamp_mask[i] & (1 << sampler)) {
fs_reg chan = coordinate;
chan = offset(chan, i);
fs_inst *inst = emit(MOV(chan, chan));
inst->saturate = true;
}
}
}
return coordinate;
}
/* Sample from the MCS surface attached to this multisample texture. */
fs_reg
fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler)
{
int reg_width = dispatch_width / 8;
fs_reg payload = fs_reg(GRF, virtual_grf_alloc(components * reg_width),
BRW_REGISTER_TYPE_F);
fs_reg dest = fs_reg(this, glsl_type::uvec4_type);
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components);
/* parameters are: u, v, r; missing parameters are treated as zero */
for (int i = 0; i < components; i++) {
sources[i] = fs_reg(this, glsl_type::float_type);
emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate));
coordinate = offset(coordinate, 1);
}
emit(LOAD_PAYLOAD(payload, sources, components));
fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler);
inst->base_mrf = -1;
inst->mlen = components * reg_width;
inst->header_present = false;
inst->regs_written = 4 * reg_width; /* we only care about one reg of
* response, but the sampler always
* writes 4/8
*/
return dest;
}
void
fs_visitor::emit_texture(ir_texture_opcode op,
const glsl_type *dest_type,
fs_reg coordinate, const struct glsl_type *coord_type,
fs_reg shadow_c,
fs_reg lod, fs_reg lod2, int grad_components,
fs_reg sample_index,
fs_reg offset_value, unsigned offset_components,
fs_reg mcs,
int gather_component,
bool is_cube_array,
bool is_rect,
uint32_t sampler,
fs_reg sampler_reg, int texunit)
{
const struct brw_sampler_prog_key_data *tex =
(stage == MESA_SHADER_FRAGMENT) ?
&((brw_wm_prog_key*) this->key)->tex : NULL;
assert(tex);
fs_inst *inst = NULL;
if (op == ir_tg4) {
/* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
* emitting anything other than setting up the constant result.
*/
int swiz = GET_SWZ(tex->swizzles[sampler], gather_component);
if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
fs_reg res = fs_reg(this, glsl_type::vec4_type);
this->result = res;
for (int i=0; i<4; i++) {
emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f)));
res = offset(res, 1);
}
return;
}
}
if (coordinate.file != BAD_FILE) {
/* FINISHME: Texture coordinate rescaling doesn't work with non-constant
* samplers. This should only be a problem with GL_CLAMP on Gen7.
*/
coordinate = rescale_texcoord(coordinate, coord_type, is_rect,
sampler, texunit);
}
/* Writemasking doesn't eliminate channels on SIMD8 texture
* samples, so don't worry about them.
*/
fs_reg dst(this, glsl_type::get_instance(dest_type->base_type, 4, 1));
int coord_components = coord_type ? coord_type->vector_elements : 0;
if (brw->gen >= 7) {
inst = emit_texture_gen7(op, dst, coordinate, coord_components,
shadow_c, lod, lod2, grad_components,
sample_index, mcs, sampler_reg,
offset_value);
} else if (brw->gen >= 5) {
inst = emit_texture_gen5(op, dst, coordinate, coord_components,
shadow_c, lod, lod2, grad_components,
sample_index, sampler,
offset_value.file != BAD_FILE);
} else {
inst = emit_texture_gen4(op, dst, coordinate, coord_components,
shadow_c, lod, lod2, grad_components,
sampler);
}
if (shadow_c.file != BAD_FILE)
inst->shadow_compare = true;
if (offset_value.file == IMM)
inst->texture_offset = offset_value.fixed_hw_reg.dw1.ud;
if (op == ir_tg4) {
inst->texture_offset |=
gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */
if (brw->gen == 6)
emit_gen6_gather_wa(tex->gen6_gather_wa[sampler], dst);
}
/* fixup #layers for cube map arrays */
if (op == ir_txs && is_cube_array) {
fs_reg depth = offset(dst, 2);
fs_reg fixed_depth = fs_reg(this, glsl_type::int_type);
emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6));
fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
int components = inst->regs_written / (dst.width / 8);
for (int i = 0; i < components; i++) {
if (i == 2) {
fixed_payload[i] = fixed_depth;
} else {
fixed_payload[i] = offset(dst, i);
}
}
emit(LOAD_PAYLOAD(dst, fixed_payload, components));
}
swizzle_result(op, dest_type->vector_elements, dst, sampler);
}
void
fs_visitor::visit(ir_texture *ir)
{
const struct brw_sampler_prog_key_data *tex =
(stage == MESA_SHADER_FRAGMENT) ?
&((brw_wm_prog_key*) this->key)->tex : NULL;
assert(tex);
uint32_t sampler =
_mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
ir_rvalue *nonconst_sampler_index =
_mesa_get_sampler_array_nonconst_index(ir->sampler);
/* Handle non-constant sampler array indexing */
fs_reg sampler_reg;
if (nonconst_sampler_index) {
/* The highest sampler which may be used by this operation is
* the last element of the array. Mark it here, because the generator
* doesn't have enough information to determine the bound.
*/
uint32_t array_size = ir->sampler->as_dereference_array()
->array->type->array_size();
uint32_t max_used = sampler + array_size - 1;
if (ir->op == ir_tg4 && brw->gen < 8) {
max_used += stage_prog_data->binding_table.gather_texture_start;
} else {
max_used += stage_prog_data->binding_table.texture_start;
}
brw_mark_surface_used(prog_data, max_used);
/* Emit code to evaluate the actual indexing expression */
nonconst_sampler_index->accept(this);
fs_reg temp(this, glsl_type::uint_type);
emit(ADD(temp, this->result, fs_reg(sampler)))
->force_writemask_all = true;
sampler_reg = temp;
} else {
/* Single sampler, or constant array index; the indexing expression
* is just an immediate.
*/
sampler_reg = fs_reg(sampler);
}
/* FINISHME: We're failing to recompile our programs when the sampler is
* updated. This only matters for the texture rectangle scale parameters
* (pre-gen6, or gen6+ with GL_CLAMP).
*/
int texunit = prog->SamplerUnits[sampler];
/* Should be lowered by do_lower_texture_projection */
assert(!ir->projector);
/* Should be lowered */
assert(!ir->offset || !ir->offset->type->is_array());
/* Generate code to compute all the subexpression trees. This has to be
* done before loading any values into MRFs for the sampler message since
* generating these values may involve SEND messages that need the MRFs.
*/
fs_reg coordinate;
const glsl_type *coord_type = NULL;
if (ir->coordinate) {
coord_type = ir->coordinate->type;
ir->coordinate->accept(this);
coordinate = this->result;
}
fs_reg shadow_comparitor;
if (ir->shadow_comparitor) {
ir->shadow_comparitor->accept(this);
shadow_comparitor = this->result;
}
fs_reg offset_value;
int offset_components = 0;
if (ir->offset) {
ir_constant *const_offset = ir->offset->as_constant();
if (const_offset) {
/* Store the header bitfield in an IMM register. This allows us to
* use offset_value.file to distinguish between no offset, a constant
* offset, and a non-constant offset.
*/
offset_value =
fs_reg(brw_texture_offset(ctx, const_offset->value.i,
const_offset->type->vector_elements));
} else {
ir->offset->accept(this);
offset_value = this->result;
}
offset_components = ir->offset->type->vector_elements;
}
fs_reg lod, lod2, sample_index, mcs;
int grad_components = 0;
switch (ir->op) {
case ir_tex:
case ir_lod:
case ir_tg4:
case ir_query_levels:
break;
case ir_txb:
ir->lod_info.bias->accept(this);
lod = this->result;
break;
case ir_txd:
ir->lod_info.grad.dPdx->accept(this);
lod = this->result;
ir->lod_info.grad.dPdy->accept(this);
lod2 = this->result;
grad_components = ir->lod_info.grad.dPdx->type->vector_elements;
break;
case ir_txf:
case ir_txl:
case ir_txs:
ir->lod_info.lod->accept(this);
lod = this->result;
break;
case ir_txf_ms:
ir->lod_info.sample_index->accept(this);
sample_index = this->result;
if (brw->gen >= 7 && tex->compressed_multisample_layout_mask & (1<<sampler))
mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements,
sampler_reg);
else
mcs = fs_reg(0u);
break;
default:
unreachable("Unrecognized texture opcode");
};
int gather_component = 0;
if (ir->op == ir_tg4)
gather_component = ir->lod_info.component->as_constant()->value.i[0];
bool is_rect =
ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT;
bool is_cube_array =
ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
ir->sampler->type->sampler_array;
emit_texture(ir->op, ir->type, coordinate, coord_type, shadow_comparitor,
lod, lod2, grad_components, sample_index, offset_value,
offset_components, mcs, gather_component,
is_cube_array, is_rect, sampler, sampler_reg, texunit);
}
/**
* Apply workarounds for Gen6 gather with UINT/SINT
*/
void
fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
{
if (!wa)
return;
int width = (wa & WA_8BIT) ? 8 : 16;
for (int i = 0; i < 4; i++) {
fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
/* Convert from UNORM to UINT */
emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1))));
emit(MOV(dst, dst_f));
if (wa & WA_SIGN) {
/* Reinterpret the UINT value as a signed INT value by
* shifting the sign bit into place, then shifting back
* preserving sign.
*/
emit(SHL(dst, dst, fs_reg(32 - width)));
emit(ASR(dst, dst, fs_reg(32 - width)));
}
dst = offset(dst, 1);
}
}
/**
* Set up the gather channel based on the swizzle, for gather4.
*/
uint32_t
fs_visitor::gather_channel(int orig_chan, uint32_t sampler)
{
const struct brw_sampler_prog_key_data *tex =
(stage == MESA_SHADER_FRAGMENT) ?
&((brw_wm_prog_key*) this->key)->tex : NULL;
assert(tex);
int swiz = GET_SWZ(tex->swizzles[sampler], orig_chan);
switch (swiz) {
case SWIZZLE_X: return 0;
case SWIZZLE_Y:
/* gather4 sampler is broken for green channel on RG32F --
* we must ask for blue instead.
*/
if (tex->gather_channel_quirk_mask & (1<<sampler))
return 2;
return 1;
case SWIZZLE_Z: return 2;
case SWIZZLE_W: return 3;
default:
unreachable("Not reached"); /* zero, one swizzles handled already */
}
}
/**
* Swizzle the result of a texture result. This is necessary for
* EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
*/
void
fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components,
fs_reg orig_val, uint32_t sampler)
{
if (op == ir_query_levels) {
/* # levels is in .w */
this->result = offset(orig_val, 3);
return;
}
this->result = orig_val;
/* txs,lod don't actually sample the texture, so swizzling the result
* makes no sense.
*/
if (op == ir_txs || op == ir_lod || op == ir_tg4)
return;
const struct brw_sampler_prog_key_data *tex =
(stage == MESA_SHADER_FRAGMENT) ?
&((brw_wm_prog_key*) this->key)->tex : NULL;
assert(tex);
if (dest_components == 1) {
/* Ignore DEPTH_TEXTURE_MODE swizzling. */
} else if (tex->swizzles[sampler] != SWIZZLE_NOOP) {
fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
swizzled_result.type = orig_val.type;
for (int i = 0; i < 4; i++) {
int swiz = GET_SWZ(tex->swizzles[sampler], i);
fs_reg l = swizzled_result;
l = offset(l, i);
if (swiz == SWIZZLE_ZERO) {
emit(MOV(l, fs_reg(0.0f)));
} else if (swiz == SWIZZLE_ONE) {
emit(MOV(l, fs_reg(1.0f)));
} else {
emit(MOV(l, offset(orig_val,
GET_SWZ(tex->swizzles[sampler], i))));
}
}
this->result = swizzled_result;
}
}
void
fs_visitor::visit(ir_swizzle *ir)
{
ir->val->accept(this);
fs_reg val = this->result;
if (ir->type->vector_elements == 1) {
this->result = offset(this->result, ir->mask.x);
return;
}
fs_reg result = fs_reg(this, ir->type);
this->result = result;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
fs_reg channel = val;
int swiz = 0;
switch (i) {
case 0:
swiz = ir->mask.x;
break;
case 1:
swiz = ir->mask.y;
break;
case 2:
swiz = ir->mask.z;
break;
case 3:
swiz = ir->mask.w;
break;
}
emit(MOV(result, offset(channel, swiz)));
result = offset(result, 1);
}
}
void
fs_visitor::visit(ir_discard *ir)
{
assert(ir->condition == NULL); /* FINISHME */
/* We track our discarded pixels in f0.1. By predicating on it, we can
* update just the flag bits that aren't yet discarded. By emitting a
* CMP of g0 != g0, all our currently executing channels will get turned
* off.
*/
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
BRW_CONDITIONAL_NZ));
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
if (brw->gen >= 6) {
/* For performance, after a discard, jump to the end of the shader.
* Only jump if all relevant channels have been discarded.
*/
fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
discard_jump->flag_subreg = 1;
discard_jump->predicate = (dispatch_width == 8)
? BRW_PREDICATE_ALIGN1_ANY8H
: BRW_PREDICATE_ALIGN1_ANY16H;
discard_jump->predicate_inverse = true;
}
}
void
fs_visitor::visit(ir_constant *ir)
{
/* Set this->result to reg at the bottom of the function because some code
* paths will cause this visitor to be applied to other fields. This will
* cause the value stored in this->result to be modified.
*
* Make reg constant so that it doesn't get accidentally modified along the
* way. Yes, I actually had this problem. :(
*/
const fs_reg reg(this, ir->type);
fs_reg dst_reg = reg;
if (ir->type->is_array()) {
const unsigned size = type_size(ir->type->fields.array);
for (unsigned i = 0; i < ir->type->length; i++) {
ir->array_elements[i]->accept(this);
fs_reg src_reg = this->result;
dst_reg.type = src_reg.type;
for (unsigned j = 0; j < size; j++) {
emit(MOV(dst_reg, src_reg));
src_reg = offset(src_reg, 1);
dst_reg = offset(dst_reg, 1);
}
}
} else if (ir->type->is_record()) {
foreach_in_list(ir_constant, field, &ir->components) {
const unsigned size = type_size(field->type);
field->accept(this);
fs_reg src_reg = this->result;
dst_reg.type = src_reg.type;
for (unsigned j = 0; j < size; j++) {
emit(MOV(dst_reg, src_reg));
src_reg = offset(src_reg, 1);
dst_reg = offset(dst_reg, 1);
}
}
} else {
const unsigned size = type_size(ir->type);
for (unsigned i = 0; i < size; i++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
break;
case GLSL_TYPE_UINT:
emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
break;
case GLSL_TYPE_INT:
emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
break;
case GLSL_TYPE_BOOL:
emit(MOV(dst_reg,
fs_reg(ir->value.b[i] != 0 ? ctx->Const.UniformBooleanTrue
: 0u)));
break;
default:
unreachable("Non-float/uint/int/bool constant");
}
dst_reg = offset(dst_reg, 1);
}
}
this->result = reg;
}
void
fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (!expr || expr->operation == ir_binop_ubo_load) {
ir->accept(this);
fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
return;
}
fs_reg op[3];
fs_inst *inst;
assert(expr->get_num_operands() <= 3);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
assert(expr->operands[i]->type->is_scalar());
expr->operands[i]->accept(this);
op[i] = this->result;
resolve_ud_negate(&op[i]);
}
switch (expr->operation) {
case ir_unop_logic_not:
inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_Z;
break;
case ir_binop_logic_xor:
if (ctx->Const.UniformBooleanTrue == 1) {
fs_reg dst = fs_reg(this, glsl_type::uint_type);
emit(XOR(dst, op[0], op[1]));
inst = emit(AND(reg_null_d, dst, fs_reg(1u)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
} else {
inst = emit(XOR(reg_null_d, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_binop_logic_or:
if (ctx->Const.UniformBooleanTrue == 1) {
fs_reg dst = fs_reg(this, glsl_type::uint_type);
emit(OR(dst, op[0], op[1]));
inst = emit(AND(reg_null_d, dst, fs_reg(1u)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
} else {
inst = emit(OR(reg_null_d, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_binop_logic_and:
if (ctx->Const.UniformBooleanTrue == 1) {
fs_reg dst = fs_reg(this, glsl_type::uint_type);
emit(AND(dst, op[0], op[1]));
inst = emit(AND(reg_null_d, dst, fs_reg(1u)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
} else {
inst = emit(AND(reg_null_d, op[0], op[1]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_unop_f2b:
if (brw->gen >= 6) {
emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(reg_null_f, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_unop_i2b:
if (brw->gen >= 6) {
emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(reg_null_d, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
if (ctx->Const.UniformBooleanTrue == 1) {
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
}
emit(CMP(reg_null_d, op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
break;
case ir_triop_csel: {
/* Expand the boolean condition into the flag register. */
inst = emit(MOV(reg_null_d, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Select which boolean to return. */
fs_reg temp(this, expr->operands[1]->type);
inst = emit(SEL(temp, op[1], op[2]));
inst->predicate = BRW_PREDICATE_NORMAL;
/* Expand the result to a condition code. */
inst = emit(MOV(reg_null_d, temp));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
}
default:
unreachable("not reached");
}
}
/**
* Emit a gen6 IF statement with the comparison folded into the IF
* instruction.
*/
void
fs_visitor::emit_if_gen6(ir_if *ir)
{
ir_expression *expr = ir->condition->as_expression();
if (expr && expr->operation != ir_binop_ubo_load) {
fs_reg op[3];
fs_inst *inst;
fs_reg temp;
assert(expr->get_num_operands() <= 3);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
assert(expr->operands[i]->type->is_scalar());
expr->operands[i]->accept(this);
op[i] = this->result;
}
switch (expr->operation) {
case ir_unop_logic_not:
emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z));
return;
case ir_binop_logic_xor:
emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
return;
case ir_binop_logic_or:
temp = fs_reg(this, glsl_type::bool_type);
emit(OR(temp, op[0], op[1]));
emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_binop_logic_and:
temp = fs_reg(this, glsl_type::bool_type);
emit(AND(temp, op[0], op[1]));
emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_unop_f2b:
inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
return;
case ir_unop_i2b:
emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
if (ctx->Const.UniformBooleanTrue == 1) {
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
}
emit(IF(op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
return;
case ir_triop_csel: {
/* Expand the boolean condition into the flag register. */
fs_inst *inst = emit(MOV(reg_null_d, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Select which boolean to use as the result. */
fs_reg temp(this, expr->operands[1]->type);
inst = emit(SEL(temp, op[1], op[2]));
inst->predicate = BRW_PREDICATE_NORMAL;
emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ));
return;
}
default:
unreachable("not reached");
}
}
ir->condition->accept(this);
emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ));
}
/**
* Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL.
*
* Many GLSL shaders contain the following pattern:
*
* x = condition ? foo : bar
*
* The compiler emits an ir_if tree for this, since each subexpression might be
* a complex tree that could have side-effects or short-circuit logic.
*
* However, the common case is to simply select one of two constants or
* variable values---which is exactly what SEL is for. In this case, the
* assembly looks like:
*
* (+f0) IF
* MOV dst src0
* ELSE
* MOV dst src1
* ENDIF
*
* which can be easily translated into:
*
* (+f0) SEL dst src0 src1
*
* If src0 is an immediate value, we promote it to a temporary GRF.
*/
void
fs_visitor::try_replace_with_sel()
{
fs_inst *endif_inst = (fs_inst *) instructions.get_tail();
assert(endif_inst->opcode == BRW_OPCODE_ENDIF);
/* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */
int opcodes[] = {
BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV,
};
fs_inst *match = (fs_inst *) endif_inst->prev;
for (int i = 0; i < 4; i++) {
if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1])
return;
match = (fs_inst *) match->prev;
}
/* The opcodes match; it looks like the right sequence of instructions. */
fs_inst *else_mov = (fs_inst *) endif_inst->prev;
fs_inst *then_mov = (fs_inst *) else_mov->prev->prev;
fs_inst *if_inst = (fs_inst *) then_mov->prev;
/* Check that the MOVs are the right form. */
if (then_mov->dst.equals(else_mov->dst) &&
!then_mov->is_partial_write() &&
!else_mov->is_partial_write()) {
/* Remove the matched instructions; we'll emit a SEL to replace them. */
while (!if_inst->next->is_tail_sentinel())
if_inst->next->exec_node::remove();
if_inst->exec_node::remove();
/* Only the last source register can be a constant, so if the MOV in
* the "then" clause uses a constant, we need to put it in a temporary.
*/
fs_reg src0(then_mov->src[0]);
if (src0.file == IMM) {
src0 = fs_reg(this, glsl_type::float_type);
src0.type = then_mov->src[0].type;
emit(MOV(src0, then_mov->src[0]));
}
fs_inst *sel;
if (if_inst->conditional_mod) {
/* Sandybridge-specific IF with embedded comparison */
emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1],
if_inst->conditional_mod));
sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
sel->predicate = BRW_PREDICATE_NORMAL;
} else {
/* Separate CMP and IF instructions */
sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]);
sel->predicate = if_inst->predicate;
sel->predicate_inverse = if_inst->predicate_inverse;
}
}
}
void
fs_visitor::visit(ir_if *ir)
{
if (brw->gen < 6) {
no16("Can't support (non-uniform) control flow on SIMD16\n");
}
/* Don't point the annotation at the if statement, because then it plus
* the then and else blocks get printed.
*/
this->base_ir = ir->condition;
if (brw->gen == 6) {
emit_if_gen6(ir);
} else {
emit_bool_to_cond_code(ir->condition);
emit(IF(BRW_PREDICATE_NORMAL));
}
foreach_in_list(ir_instruction, ir_, &ir->then_instructions) {
this->base_ir = ir_;
ir_->accept(this);
}
if (!ir->else_instructions.is_empty()) {
emit(BRW_OPCODE_ELSE);
foreach_in_list(ir_instruction, ir_, &ir->else_instructions) {
this->base_ir = ir_;
ir_->accept(this);
}
}
emit(BRW_OPCODE_ENDIF);
try_replace_with_sel();
}
void
fs_visitor::visit(ir_loop *ir)
{
if (brw->gen < 6) {
no16("Can't support (non-uniform) control flow on SIMD16\n");
}
this->base_ir = NULL;
emit(BRW_OPCODE_DO);
foreach_in_list(ir_instruction, ir_, &ir->body_instructions) {
this->base_ir = ir_;
ir_->accept(this);
}
this->base_ir = NULL;
emit(BRW_OPCODE_WHILE);
}
void
fs_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(BRW_OPCODE_BREAK);
break;
case ir_loop_jump::jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
}
}
void
fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
{
ir_dereference *deref = static_cast<ir_dereference *>(
ir->actual_parameters.get_head());
ir_variable *location = deref->variable_referenced();
unsigned surf_index = (stage_prog_data->binding_table.abo_start +
location->data.binding);
/* Calculate the surface offset */
fs_reg offset(this, glsl_type::uint_type);
ir_dereference_array *deref_array = deref->as_dereference_array();
if (deref_array) {
deref_array->array_index->accept(this);
fs_reg tmp(this, glsl_type::uint_type);
emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE)));
emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset)));
} else {
offset = fs_reg(location->data.atomic.offset);
}
/* Emit the appropriate machine instruction */
const char *callee = ir->callee->function_name();
ir->return_deref->accept(this);
fs_reg dst = this->result;
if (!strcmp("__intrinsic_atomic_read", callee)) {
emit_untyped_surface_read(surf_index, dst, offset);
} else if (!strcmp("__intrinsic_atomic_increment", callee)) {
emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
fs_reg(), fs_reg());
} else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
fs_reg(), fs_reg());
}
}
void
fs_visitor::visit(ir_call *ir)
{
const char *callee = ir->callee->function_name();
if (!strcmp("__intrinsic_atomic_read", callee) ||
!strcmp("__intrinsic_atomic_increment", callee) ||
!strcmp("__intrinsic_atomic_predecrement", callee)) {
visit_atomic_counter_intrinsic(ir);
} else {
unreachable("Unsupported intrinsic.");
}
}
void
fs_visitor::visit(ir_return *)
{
unreachable("FINISHME");
}
void
fs_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to ir_to_mesa.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(NULL, &empty, false);
assert(sig);
foreach_in_list(ir_instruction, ir_, &sig->body) {
this->base_ir = ir_;
ir_->accept(this);
}
}
}
void
fs_visitor::visit(ir_function_signature *)
{
unreachable("not reached");
}
void
fs_visitor::visit(ir_emit_vertex *)
{
unreachable("not reached");
}
void
fs_visitor::visit(ir_end_primitive *)
{
unreachable("not reached");
}
void
fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
fs_reg dst, fs_reg offset, fs_reg src0,
fs_reg src1)
{
bool uses_kill =
(stage == MESA_SHADER_FRAGMENT) &&
((brw_wm_prog_data*) this->prog_data)->uses_kill;
int reg_width = dispatch_width / 8;
int length = 0;
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4);
sources[0] = fs_reg(GRF, virtual_grf_alloc(1), BRW_REGISTER_TYPE_UD);
/* Initialize the sample mask in the message header. */
emit(MOV(sources[0], fs_reg(0u)))
->force_writemask_all = true;
if (uses_kill) {
emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
->force_writemask_all = true;
} else {
emit(MOV(component(sources[0], 7),
retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
->force_writemask_all = true;
}
length++;
/* Set the atomic operation offset. */
sources[1] = fs_reg(this, glsl_type::uint_type);
emit(MOV(sources[1], offset));
length++;
/* Set the atomic operation arguments. */
if (src0.file != BAD_FILE) {
sources[length] = fs_reg(this, glsl_type::uint_type);
emit(MOV(sources[length], src0));
length++;
}
if (src1.file != BAD_FILE) {
sources[length] = fs_reg(this, glsl_type::uint_type);
emit(MOV(sources[length], src1));
length++;
}
int mlen = 1 + (length - 1) * reg_width;
fs_reg src_payload = fs_reg(GRF, virtual_grf_alloc(mlen),
BRW_REGISTER_TYPE_UD);
emit(LOAD_PAYLOAD(src_payload, sources, length));
/* Emit the instruction. */
fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload,
fs_reg(atomic_op), fs_reg(surf_index));
inst->mlen = mlen;
}
void
fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst,
fs_reg offset)
{
bool uses_kill =
(stage == MESA_SHADER_FRAGMENT) &&
((brw_wm_prog_data*) this->prog_data)->uses_kill;
int reg_width = dispatch_width / 8;
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
sources[0] = fs_reg(GRF, virtual_grf_alloc(1), BRW_REGISTER_TYPE_UD);
/* Initialize the sample mask in the message header. */
emit(MOV(sources[0], fs_reg(0u)))
->force_writemask_all = true;
if (uses_kill) {
emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1)))
->force_writemask_all = true;
} else {
emit(MOV(component(sources[0], 7),
retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD)))
->force_writemask_all = true;
}
/* Set the surface read offset. */
sources[1] = fs_reg(this, glsl_type::uint_type);
emit(MOV(sources[1], offset));
int mlen = 1 + reg_width;
fs_reg src_payload = fs_reg(GRF, virtual_grf_alloc(mlen),
BRW_REGISTER_TYPE_UD);
fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2));
/* Emit the instruction. */
inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload,
fs_reg(surf_index));
inst->mlen = mlen;
}
fs_inst *
fs_visitor::emit(fs_inst *inst)
{
if (force_uncompressed_stack > 0)
inst->exec_size = 8;
if (dispatch_width == 16 && inst->exec_size == 8)
inst->force_uncompressed = true;
inst->annotation = this->current_annotation;
inst->ir = this->base_ir;
this->instructions.push_tail(inst);
return inst;
}
void
fs_visitor::emit(exec_list list)
{
foreach_in_list_safe(fs_inst, inst, &list) {
inst->exec_node::remove();
emit(inst);
}
}
/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
int reg_width = dispatch_width / 8;
/* Everyone's favorite color. */
emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
fs_inst *write;
write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
write->base_mrf = 2;
write->mlen = 4 * reg_width;
write->eot = true;
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
struct brw_reg
fs_visitor::interp_reg(int location, int channel)
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
int stride = (channel & 1) * 4;
assert(prog_data->urb_setup[location] != -1);
return brw_vec1_grf(regnr, stride);
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen4()
{
this->current_annotation = "compute pixel centers";
this->pixel_x = fs_reg(this, glsl_type::uint_type);
this->pixel_y = fs_reg(this, glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(FS_OPCODE_PIXEL_X, this->pixel_x);
emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
this->current_annotation = "compute pixel deltas from v0";
if (brw->has_pln) {
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::vec2_type);
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
offset(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 1);
} else {
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::float_type);
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::float_type);
}
emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
this->current_annotation = "compute pos.w and 1/pos.w";
/* Compute wpos.w. It's always in our setup, since it's needed to
* interpolate the other attributes.
*/
this->wpos_w = fs_reg(this, glsl_type::float_type);
emit(FS_OPCODE_LINTERP, wpos_w,
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
interp_reg(VARYING_SLOT_POS, 3));
/* Compute the pixel 1/W value from wpos.w. */
this->pixel_w = fs_reg(this, glsl_type::float_type);
emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
this->current_annotation = NULL;
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
/* If the pixel centers end up used, the setup is the same as for gen4. */
this->current_annotation = "compute pixel centers";
fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
int_pixel_x.type = BRW_REGISTER_TYPE_UW;
int_pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(ADD(int_pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010))));
emit(ADD(int_pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100))));
/* As of gen6, we can no longer mix float and int sources. We have
* to turn the integer pixel centers into floats for their actual
* use.
*/
this->pixel_x = fs_reg(this, glsl_type::float_type);
this->pixel_y = fs_reg(this, glsl_type::float_type);
emit(MOV(this->pixel_x, int_pixel_x));
emit(MOV(this->pixel_y, int_pixel_y));
this->current_annotation = "compute pos.w";
this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
this->wpos_w = fs_reg(this, glsl_type::float_type);
emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
uint8_t reg = payload.barycentric_coord_reg[i];
this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
}
this->current_annotation = NULL;
}
int
fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components)
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
fs_inst *inst;
if (color.file == BAD_FILE) {
return 4 * (dispatch_width / 8);
}
uint8_t colors_enabled;
if (components == 0) {
/* We want to write one component to the alpha channel */
colors_enabled = 0x8;
} else {
/* Enable the first components-many channels */
colors_enabled = (1 << components) - 1;
}
if (dispatch_width == 8 || brw->gen >= 6) {
/* SIMD8 write looks like:
* m + 0: r0
* m + 1: r1
* m + 2: g0
* m + 3: g1
*
* gen6 SIMD16 DP write looks like:
* m + 0: r0
* m + 1: r1
* m + 2: g0
* m + 3: g1
* m + 4: b0
* m + 5: b1
* m + 6: a0
* m + 7: a1
*/
int len = 0;
for (unsigned i = 0; i < 4; ++i) {
if (colors_enabled & (1 << i)) {
dst[len] = fs_reg(GRF, virtual_grf_alloc(color.width / 8),
color.type, color.width);
inst = emit(MOV(dst[len], offset(color, i)));
inst->saturate = key->clamp_fragment_color;
} else if (color.width == 16) {
/* We need two BAD_FILE slots for a 16-wide color */
len++;
}
len++;
}
return len;
} else {
/* pre-gen6 SIMD16 single source DP write looks like:
* m + 0: r0
* m + 1: g0
* m + 2: b0
* m + 3: a0
* m + 4: r1
* m + 5: g1
* m + 6: b1
* m + 7: a1
*/
for (unsigned i = 0; i < 4; ++i) {
if (colors_enabled & (1 << i)) {
dst[i] = fs_reg(GRF, virtual_grf_alloc(1), color.type);
inst = emit(MOV(dst[i], half(offset(color, i), 0)));
inst->saturate = key->clamp_fragment_color;
dst[i + 4] = fs_reg(GRF, virtual_grf_alloc(1), color.type);
inst = emit(MOV(dst[i + 4], half(offset(color, i), 1)));
inst->saturate = key->clamp_fragment_color;
inst->force_sechalf = true;
}
}
return 8;
}
}
static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)
{
switch(func) {
case GL_GREATER:
return BRW_CONDITIONAL_G;
case GL_GEQUAL:
return BRW_CONDITIONAL_GE;
case GL_LESS:
return BRW_CONDITIONAL_L;
case GL_LEQUAL:
return BRW_CONDITIONAL_LE;
case GL_EQUAL:
return BRW_CONDITIONAL_EQ;
case GL_NOTEQUAL:
return BRW_CONDITIONAL_NEQ;
default:
unreachable("Not reached");
}
}
/**
* Alpha test support for when we compile it into the shader instead
* of using the normal fixed-function alpha test.
*/
void
fs_visitor::emit_alpha_test()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
this->current_annotation = "Alpha test";
fs_inst *cmp;
if (key->alpha_test_func == GL_ALWAYS)
return;
if (key->alpha_test_func == GL_NEVER) {
/* f0.1 = 0 */
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
cmp = emit(CMP(reg_null_f, some_reg, some_reg,
BRW_CONDITIONAL_NEQ));
} else {
/* RT0 alpha */
fs_reg color = offset(outputs[0], 3);
/* f0.1 &= func(color, ref) */
cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref),
cond_for_alpha_func(key->alpha_test_func)));
}
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
}
fs_inst *
fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1,
fs_reg src0_alpha, unsigned components)
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
this->current_annotation = "FB write header";
bool header_present = true;
int reg_size = dispatch_width / 8;
/* We can potentially have a message length of up to 15, so we have to set
* base_mrf to either 0 or 1 in order to fit in m0..m15.
*/
fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15);
int length = 0;
/* From the Sandy Bridge PRM, volume 4, page 198:
*
* "Dispatched Pixel Enables. One bit per pixel indicating
* which pixels were originally enabled when the thread was
* dispatched. This field is only required for the end-of-
* thread message and on all dual-source messages."
*/
if (brw->gen >= 6 &&
(brw->is_haswell || brw->gen >= 8 || !prog_data->uses_kill) &&
color1.file == BAD_FILE &&
key->nr_color_regions == 1) {
header_present = false;
}
if (header_present)
/* Allocate 2 registers for a header */
length += 2;
if (payload.aa_dest_stencil_reg) {
sources[length] = fs_reg(GRF, virtual_grf_alloc(1));
emit(MOV(sources[length],
fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0))));
length++;
}
prog_data->uses_omask =
prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
if (prog_data->uses_omask) {
this->current_annotation = "FB write oMask";
assert(this->sample_mask.file != BAD_FILE);
/* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since
* it's unsinged single words, one vgrf is always 16-wide.
*/
sources[length] = fs_reg(GRF, virtual_grf_alloc(1),
BRW_REGISTER_TYPE_UW, 16);
emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask);
length++;
}
if (color0.file == BAD_FILE) {
/* Even if there's no color buffers enabled, we still need to send
* alpha out the pipeline to our null renderbuffer to support
* alpha-testing, alpha-to-coverage, and so on.
*/
length += setup_color_payload(sources + length, this->outputs[0], 0);
} else if (color1.file == BAD_FILE) {
if (src0_alpha.file != BAD_FILE) {
sources[length] = fs_reg(GRF, virtual_grf_alloc(reg_size),
src0_alpha.type, src0_alpha.width);
fs_inst *inst = emit(MOV(sources[length], src0_alpha));
inst->saturate = key->clamp_fragment_color;
length++;
}
length += setup_color_payload(sources + length, color0, components);
} else {
length += setup_color_payload(sources + length, color0, components);
length += setup_color_payload(sources + length, color1, components);
}
if (source_depth_to_render_target) {
if (brw->gen == 6) {
/* For outputting oDepth on gen6, SIMD8 writes have to be
* used. This would require SIMD8 moves of each half to
* message regs, kind of like pre-gen5 SIMD16 FB writes.
* Just bail on doing so for now.
*/
no16("Missing support for simd16 depth writes on gen6\n");
}
sources[length] = fs_reg(this, glsl_type::float_type);
if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
/* Hand over gl_FragDepth. */
assert(this->frag_depth.file != BAD_FILE);
emit(MOV(sources[length], this->frag_depth));
} else {
/* Pass through the payload depth. */
emit(MOV(sources[length],
fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
}
length++;
}
if (payload.dest_depth_reg) {
sources[length] = fs_reg(this, glsl_type::float_type);
emit(MOV(sources[length],
fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0))));
length++;
}
fs_inst *load;
fs_inst *write;
if (brw->gen >= 7) {
/* Send from the GRF */
fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
load = emit(LOAD_PAYLOAD(payload, sources, length));
payload.reg = virtual_grf_alloc(load->regs_written);
load->dst = payload;
write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload);
write->base_mrf = -1;
} else {
/* Send from the MRF */
load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
sources, length));
write = emit(FS_OPCODE_FB_WRITE);
write->base_mrf = 1;
}
write->mlen = load->regs_written;
write->header_present = header_present;
if ((brw->gen >= 8 || brw->is_haswell) && prog_data->uses_kill) {
write->predicate = BRW_PREDICATE_NORMAL;
write->flag_subreg = 1;
}
return write;
}
void
fs_visitor::emit_fb_writes()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
if (do_dual_src) {
no16("GL_ARB_blend_func_extended not yet supported in SIMD16.");
if (dispatch_width == 16)
do_dual_src = false;
}
fs_inst *inst;
if (do_dual_src) {
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
this->current_annotation = ralloc_asprintf(this->mem_ctx,
"FB dual-source write");
inst = emit_single_fb_write(this->outputs[0], this->dual_src_output,
reg_undef, 4);
inst->target = 0;
prog_data->dual_src_blend = true;
} else if (key->nr_color_regions > 0) {
for (int target = 0; target < key->nr_color_regions; target++) {
this->current_annotation = ralloc_asprintf(this->mem_ctx,
"FB write target %d",
target);
fs_reg src0_alpha;
if (brw->gen >= 6 && key->replicate_alpha && target != 0)
src0_alpha = offset(outputs[0], 3);
if (target == key->nr_color_regions - 1 &&
(INTEL_DEBUG & DEBUG_SHADER_TIME))
emit_shader_time_end();
inst = emit_single_fb_write(this->outputs[target], reg_undef,
src0_alpha,
this->output_components[target]);
inst->target = target;
}
} else {
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
/* Even if there's no color buffers enabled, we still need to send
* alpha out the pipeline to our null renderbuffer to support
* alpha-testing, alpha-to-coverage, and so on.
*/
inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0);
inst->target = 0;
}
inst->eot = true;
this->current_annotation = NULL;
}
void
fs_visitor::resolve_ud_negate(fs_reg *reg)
{
if (reg->type != BRW_REGISTER_TYPE_UD ||
!reg->negate)
return;
fs_reg temp = fs_reg(this, glsl_type::uint_type);
emit(MOV(temp, *reg));
*reg = temp;
}
void
fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
{
assert(ctx->Const.UniformBooleanTrue == 1);
if (rvalue->type != glsl_type::bool_type)
return;
fs_reg temp = fs_reg(this, glsl_type::bool_type);
emit(AND(temp, *reg, fs_reg(1u)));
*reg = temp;
}
fs_visitor::fs_visitor(struct brw_context *brw,
void *mem_ctx,
const struct brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
struct gl_shader_program *shader_prog,
struct gl_fragment_program *fp,
unsigned dispatch_width)
: backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base,
MESA_SHADER_FRAGMENT),
reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)),
reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)),
reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)),
key(key), prog_data(&prog_data->base),
dispatch_width(dispatch_width)
{
this->mem_ctx = mem_ctx;
init();
}
void
fs_visitor::init()
{
this->failed = false;
this->simd16_unsupported = false;
this->no16_msg = NULL;
this->variable_ht = hash_table_ctor(0,
hash_table_pointer_hash,
hash_table_pointer_compare);
memset(&this->payload, 0, sizeof(this->payload));
memset(this->outputs, 0, sizeof(this->outputs));
memset(this->output_components, 0, sizeof(this->output_components));
this->source_depth_to_render_target = false;
this->runtime_check_aads_emit = false;
this->first_non_payload_grf = 0;
this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
this->current_annotation = NULL;
this->base_ir = NULL;
this->virtual_grf_sizes = NULL;
this->virtual_grf_count = 0;
this->virtual_grf_array_size = 0;
this->virtual_grf_start = NULL;
this->virtual_grf_end = NULL;
this->live_intervals = NULL;
this->regs_live_at_ip = NULL;
this->uniforms = 0;
this->last_scratch = 0;
this->pull_constant_loc = NULL;
this->push_constant_loc = NULL;
this->force_uncompressed_stack = 0;
this->spilled_any_registers = false;
this->do_dual_src = false;
if (dispatch_width == 8)
this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
}
fs_visitor::~fs_visitor()
{
hash_table_dtor(this->variable_ht);
}