blob: aaf362d5a7457f7f60d6990c0d9036667478ff0f [file] [log] [blame]
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
/*
* Copyright (C) 2013 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include <stdarg.h>
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "tgsi/tgsi_lowering.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_ureg.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_strings.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_scan.h"
#include "freedreno_util.h"
#include "ir3_compiler.h"
#include "ir3_shader.h"
#include "instr-a3xx.h"
#include "ir3.h"
struct ir3_compile_context {
const struct tgsi_token *tokens;
bool free_tokens;
struct ir3 *ir;
struct ir3_shader_variant *so;
struct ir3_block *block;
struct ir3_instruction *current_instr;
/* we need to defer updates to block->outputs[] until the end
* of an instruction (so we don't see new value until *after*
* the src registers are processed)
*/
struct {
struct ir3_instruction *instr, **instrp;
} output_updates[16];
unsigned num_output_updates;
/* are we in a sequence of "atomic" instructions?
*/
bool atomic;
/* For fragment shaders, from the hw perspective the only
* actual input is r0.xy position register passed to bary.f.
* But TGSI doesn't know that, it still declares things as
* IN[] registers. So we do all the input tracking normally
* and fix things up after compile_instructions()
*
* NOTE that frag_pos is the hardware position (possibly it
* is actually an index or tag or some such.. it is *not*
* values that can be directly used for gl_FragCoord..)
*/
struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4];
struct tgsi_parse_context parser;
unsigned type;
struct tgsi_shader_info info;
/* for calculating input/output positions/linkages: */
unsigned next_inloc;
unsigned num_internal_temps;
struct tgsi_src_register internal_temps[8];
/* idx/slot for last compiler generated immediate */
unsigned immediate_idx;
/* stack of branch instructions that mark (potentially nested)
* branch if/else/loop/etc
*/
struct {
struct ir3_instruction *instr, *cond;
bool inv; /* true iff in else leg of branch */
} branch[16];
unsigned int branch_count;
/* list of kill instructions: */
struct ir3_instruction *kill[16];
unsigned int kill_count;
/* used when dst is same as one of the src, to avoid overwriting a
* src element before the remaining scalar instructions that make
* up the vector operation
*/
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
/* just for catching incorrect use of get_dst()/put_dst():
*/
bool using_tmp_dst;
};
static void vectorize(struct ir3_compile_context *ctx,
struct ir3_instruction *instr, struct tgsi_dst_register *dst,
int nsrcs, ...);
static void create_mov(struct ir3_compile_context *ctx,
struct tgsi_dst_register *dst, struct tgsi_src_register *src);
static type_t get_ftype(struct ir3_compile_context *ctx);
static unsigned
compile_init(struct ir3_compile_context *ctx, struct ir3_shader_variant *so,
const struct tgsi_token *tokens)
{
unsigned ret;
struct tgsi_shader_info *info = &ctx->info;
struct tgsi_lowering_config lconfig = {
.color_two_side = so->key.color_two_side,
.lower_DST = true,
.lower_XPD = true,
.lower_SCS = true,
.lower_LRP = true,
.lower_FRC = true,
.lower_POW = true,
.lower_LIT = true,
.lower_EXP = true,
.lower_LOG = true,
.lower_DP4 = true,
.lower_DP3 = true,
.lower_DPH = true,
.lower_DP2 = true,
.lower_DP2A = true,
};
switch (so->type) {
case SHADER_FRAGMENT:
case SHADER_COMPUTE:
lconfig.saturate_s = so->key.fsaturate_s;
lconfig.saturate_t = so->key.fsaturate_t;
lconfig.saturate_r = so->key.fsaturate_r;
break;
case SHADER_VERTEX:
lconfig.saturate_s = so->key.vsaturate_s;
lconfig.saturate_t = so->key.vsaturate_t;
lconfig.saturate_r = so->key.vsaturate_r;
break;
}
ctx->tokens = tgsi_transform_lowering(&lconfig, tokens, &ctx->info);
ctx->free_tokens = !!ctx->tokens;
if (!ctx->tokens) {
/* no lowering */
ctx->tokens = tokens;
}
ctx->ir = so->ir;
ctx->so = so;
ctx->next_inloc = 8;
ctx->num_internal_temps = 0;
ctx->branch_count = 0;
ctx->kill_count = 0;
ctx->block = NULL;
ctx->current_instr = NULL;
ctx->num_output_updates = 0;
ctx->atomic = false;
ctx->frag_pos = NULL;
ctx->frag_face = NULL;
ctx->tmp_src = NULL;
ctx->using_tmp_dst = false;
memset(ctx->frag_coord, 0, sizeof(ctx->frag_coord));
#define FM(x) (1 << TGSI_FILE_##x)
/* optimize can't deal with relative addressing: */
if (info->indirect_files & (FM(TEMPORARY) | FM(INPUT) | FM(OUTPUT)))
return TGSI_PARSE_ERROR;
/* NOTE: if relative addressing is used, we set constlen in
* the compiler (to worst-case value) since we don't know in
* the assembler what the max addr reg value can be:
*/
if (info->indirect_files & FM(CONSTANT))
so->constlen = 4 * (ctx->info.file_max[TGSI_FILE_CONSTANT] + 1);
/* Immediates go after constants: */
so->first_immediate = info->file_max[TGSI_FILE_CONSTANT] + 1;
ctx->immediate_idx = 4 * (ctx->info.file_max[TGSI_FILE_IMMEDIATE] + 1);
ret = tgsi_parse_init(&ctx->parser, ctx->tokens);
if (ret != TGSI_PARSE_OK)
return ret;
ctx->type = ctx->parser.FullHeader.Processor.Processor;
return ret;
}
static void
compile_error(struct ir3_compile_context *ctx, const char *format, ...)
{
va_list ap;
va_start(ap, format);
_debug_vprintf(format, ap);
va_end(ap);
tgsi_dump(ctx->tokens, 0);
debug_assert(0);
}
#define compile_assert(ctx, cond) do { \
if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
} while (0)
static void
compile_free(struct ir3_compile_context *ctx)
{
if (ctx->free_tokens)
free((void *)ctx->tokens);
tgsi_parse_free(&ctx->parser);
}
struct instr_translater {
void (*fxn)(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst);
unsigned tgsi_opc;
opc_t opc;
opc_t hopc; /* opc to use for half_precision mode, if different */
unsigned arg;
};
static void
instr_finish(struct ir3_compile_context *ctx)
{
unsigned i;
if (ctx->atomic)
return;
for (i = 0; i < ctx->num_output_updates; i++)
*(ctx->output_updates[i].instrp) = ctx->output_updates[i].instr;
ctx->num_output_updates = 0;
}
/* For "atomic" groups of instructions, for example the four scalar
* instructions to perform a vec4 operation. Basically this just
* blocks out handling of output_updates so the next scalar instruction
* still sees the result from before the start of the atomic group.
*
* NOTE: when used properly, this could probably replace get/put_dst()
* stuff.
*/
static void
instr_atomic_start(struct ir3_compile_context *ctx)
{
ctx->atomic = true;
}
static void
instr_atomic_end(struct ir3_compile_context *ctx)
{
ctx->atomic = false;
instr_finish(ctx);
}
static struct ir3_instruction *
instr_create(struct ir3_compile_context *ctx, int category, opc_t opc)
{
instr_finish(ctx);
return (ctx->current_instr = ir3_instr_create(ctx->block, category, opc));
}
static struct ir3_instruction *
instr_clone(struct ir3_compile_context *ctx, struct ir3_instruction *instr)
{
instr_finish(ctx);
return (ctx->current_instr = ir3_instr_clone(instr));
}
static struct ir3_block *
push_block(struct ir3_compile_context *ctx)
{
struct ir3_block *block;
unsigned ntmp, nin, nout;
#define SCALAR_REGS(file) (4 * (ctx->info.file_max[TGSI_FILE_ ## file] + 1))
/* hmm, give ourselves room to create 8 extra temporaries (vec4):
*/
ntmp = SCALAR_REGS(TEMPORARY);
ntmp += 8 * 4;
nout = SCALAR_REGS(OUTPUT);
nin = SCALAR_REGS(INPUT);
/* for outermost block, 'inputs' are the actual shader INPUT
* register file. Reads from INPUT registers always go back to
* top block. For nested blocks, 'inputs' is used to track any
* TEMPORARY file register from one of the enclosing blocks that
* is ready in this block.
*/
if (!ctx->block) {
/* NOTE: fragment shaders actually have two inputs (r0.xy, the
* position)
*/
if (ctx->type == TGSI_PROCESSOR_FRAGMENT) {
int n = 2;
if (ctx->info.reads_position)
n += 4;
if (ctx->info.uses_frontface)
n += 4;
nin = MAX2(n, nin);
nout += ARRAY_SIZE(ctx->kill);
}
} else {
nin = ntmp;
}
block = ir3_block_create(ctx->ir, ntmp, nin, nout);
if ((ctx->type == TGSI_PROCESSOR_FRAGMENT) && !ctx->block)
block->noutputs -= ARRAY_SIZE(ctx->kill);
block->parent = ctx->block;
ctx->block = block;
return block;
}
static void
pop_block(struct ir3_compile_context *ctx)
{
ctx->block = ctx->block->parent;
compile_assert(ctx, ctx->block);
}
static struct ir3_instruction *
create_output(struct ir3_block *block, struct ir3_instruction *instr,
unsigned n)
{
struct ir3_instruction *out;
out = ir3_instr_create(block, -1, OPC_META_OUTPUT);
out->inout.block = block;
ir3_reg_create(out, n, 0);
if (instr)
ir3_reg_create(out, 0, IR3_REG_SSA)->instr = instr;
return out;
}
static struct ir3_instruction *
create_input(struct ir3_block *block, struct ir3_instruction *instr,
unsigned n)
{
struct ir3_instruction *in;
in = ir3_instr_create(block, -1, OPC_META_INPUT);
in->inout.block = block;
ir3_reg_create(in, n, 0);
if (instr)
ir3_reg_create(in, 0, IR3_REG_SSA)->instr = instr;
return in;
}
static struct ir3_instruction *
block_input(struct ir3_block *block, unsigned n)
{
/* references to INPUT register file always go back up to
* top level:
*/
if (block->parent)
return block_input(block->parent, n);
return block->inputs[n];
}
/* return temporary in scope, creating if needed meta-input node
* to track block inputs
*/
static struct ir3_instruction *
block_temporary(struct ir3_block *block, unsigned n)
{
/* references to TEMPORARY register file, find the nearest
* enclosing block which has already assigned this temporary,
* creating meta-input instructions along the way to keep
* track of block inputs
*/
if (block->parent && !block->temporaries[n]) {
/* if already have input for this block, reuse: */
if (!block->inputs[n])
block->inputs[n] = block_temporary(block->parent, n);
/* and create new input to return: */
return create_input(block, block->inputs[n], n);
}
return block->temporaries[n];
}
static struct ir3_instruction *
create_immed(struct ir3_compile_context *ctx, float val)
{
/* NOTE: *don't* use instr_create() here!
*/
struct ir3_instruction *instr;
instr = ir3_instr_create(ctx->block, 1, 0);
instr->cat1.src_type = get_ftype(ctx);
instr->cat1.dst_type = get_ftype(ctx);
ir3_reg_create(instr, 0, 0);
ir3_reg_create(instr, 0, IR3_REG_IMMED)->fim_val = val;
return instr;
}
static void
ssa_dst(struct ir3_compile_context *ctx, struct ir3_instruction *instr,
const struct tgsi_dst_register *dst, unsigned chan)
{
unsigned n = regid(dst->Index, chan);
unsigned idx = ctx->num_output_updates;
compile_assert(ctx, idx < ARRAY_SIZE(ctx->output_updates));
/* NOTE: defer update of temporaries[idx] or output[idx]
* until instr_finish(), so that if the current instruction
* reads the same TEMP/OUT[] it gets the old value:
*
* bleh.. this might be a bit easier to just figure out
* in instr_finish(). But at that point we've already
* lost information about OUTPUT vs TEMPORARY register
* file..
*/
switch (dst->File) {
case TGSI_FILE_OUTPUT:
compile_assert(ctx, n < ctx->block->noutputs);
ctx->output_updates[idx].instrp = &ctx->block->outputs[n];
ctx->output_updates[idx].instr = instr;
ctx->num_output_updates++;
break;
case TGSI_FILE_TEMPORARY:
compile_assert(ctx, n < ctx->block->ntemporaries);
ctx->output_updates[idx].instrp = &ctx->block->temporaries[n];
ctx->output_updates[idx].instr = instr;
ctx->num_output_updates++;
break;
case TGSI_FILE_ADDRESS:
compile_assert(ctx, n < 1);
ctx->output_updates[idx].instrp = &ctx->block->address;
ctx->output_updates[idx].instr = instr;
ctx->num_output_updates++;
break;
}
}
static void
ssa_src(struct ir3_compile_context *ctx, struct ir3_register *reg,
const struct tgsi_src_register *src, unsigned chan)
{
struct ir3_block *block = ctx->block;
unsigned n = regid(src->Index, chan);
switch (src->File) {
case TGSI_FILE_INPUT:
reg->flags |= IR3_REG_SSA;
reg->instr = block_input(ctx->block, n);
break;
case TGSI_FILE_OUTPUT:
/* really this should just happen in case of 'MOV_SAT OUT[n], ..',
* for the following clamp instructions:
*/
reg->flags |= IR3_REG_SSA;
reg->instr = block->outputs[n];
/* we don't have to worry about read from an OUTPUT that was
* assigned outside of the current block, because the _SAT
* clamp instructions will always be in the same block as
* the original instruction which wrote the OUTPUT
*/
compile_assert(ctx, reg->instr);
break;
case TGSI_FILE_TEMPORARY:
reg->flags |= IR3_REG_SSA;
reg->instr = block_temporary(ctx->block, n);
break;
}
if ((reg->flags & IR3_REG_SSA) && !reg->instr) {
/* this can happen when registers (or components of a TGSI
* register) are used as src before they have been assigned
* (undefined contents). To avoid confusing the rest of the
* compiler, and to generally keep things peachy, substitute
* an instruction that sets the src to 0.0. Or to keep
* things undefined, I could plug in a random number? :-P
*
* NOTE: *don't* use instr_create() here!
*/
reg->instr = create_immed(ctx, 0.0);
}
}
static struct ir3_register *
add_dst_reg_wrmask(struct ir3_compile_context *ctx,
struct ir3_instruction *instr, const struct tgsi_dst_register *dst,
unsigned chan, unsigned wrmask)
{
unsigned flags = 0, num = 0;
struct ir3_register *reg;
switch (dst->File) {
case TGSI_FILE_OUTPUT:
case TGSI_FILE_TEMPORARY:
/* uses SSA */
break;
case TGSI_FILE_ADDRESS:
flags |= IR3_REG_ADDR;
/* uses SSA */
break;
default:
compile_error(ctx, "unsupported dst register file: %s\n",
tgsi_file_name(dst->File));
break;
}
if (dst->Indirect)
flags |= IR3_REG_RELATIV;
reg = ir3_reg_create(instr, regid(num, chan), flags);
/* NOTE: do not call ssa_dst() if atomic.. vectorize()
* itself will call ssa_dst(). This is to filter out
* the (initially bogus) .x component dst which is
* created (but not necessarily used, ie. if the net
* result of the vector operation does not write to
* the .x component)
*/
reg->wrmask = wrmask;
if (wrmask == 0x1) {
/* normal case */
if (!ctx->atomic)
ssa_dst(ctx, instr, dst, chan);
} else if ((dst->File == TGSI_FILE_TEMPORARY) ||
(dst->File == TGSI_FILE_OUTPUT) ||
(dst->File == TGSI_FILE_ADDRESS)) {
unsigned i;
/* if instruction writes multiple, we need to create
* some place-holder collect the registers:
*/
for (i = 0; i < 4; i++) {
if (wrmask & (1 << i)) {
struct ir3_instruction *collect =
ir3_instr_create(ctx->block, -1, OPC_META_FO);
collect->fo.off = i;
/* unused dst reg: */
ir3_reg_create(collect, 0, 0);
/* and src reg used to hold original instr */
ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = instr;
if (!ctx->atomic)
ssa_dst(ctx, collect, dst, chan+i);
}
}
}
return reg;
}
static struct ir3_register *
add_dst_reg(struct ir3_compile_context *ctx, struct ir3_instruction *instr,
const struct tgsi_dst_register *dst, unsigned chan)
{
return add_dst_reg_wrmask(ctx, instr, dst, chan, 0x1);
}
static struct ir3_register *
add_src_reg_wrmask(struct ir3_compile_context *ctx,
struct ir3_instruction *instr, const struct tgsi_src_register *src,
unsigned chan, unsigned wrmask)
{
unsigned flags = 0, num = 0;
struct ir3_register *reg;
struct ir3_instruction *orig = NULL;
switch (src->File) {
case TGSI_FILE_IMMEDIATE:
/* TODO if possible, use actual immediate instead of const.. but
* TGSI has vec4 immediates, we can only embed scalar (of limited
* size, depending on instruction..)
*/
flags |= IR3_REG_CONST;
num = src->Index + ctx->so->first_immediate;
break;
case TGSI_FILE_CONSTANT:
flags |= IR3_REG_CONST;
num = src->Index;
break;
case TGSI_FILE_OUTPUT:
/* NOTE: we should only end up w/ OUTPUT file for things like
* clamp()'ing saturated dst instructions
*/
case TGSI_FILE_INPUT:
case TGSI_FILE_TEMPORARY:
/* uses SSA */
break;
default:
compile_error(ctx, "unsupported src register file: %s\n",
tgsi_file_name(src->File));
break;
}
/* We seem to have 8 bits (6.2) for dst register always, so I think
* it is safe to assume GPR cannot be >=64
*
* cat3 instructions only have 8 bits for src2, but cannot take a
* const for src2
*
* cat5 and cat6 in some cases only has 8 bits, but cannot take a
* const for any src.
*
* Other than that we seem to have 12 bits to encode const src,
* except for cat1 which may only have 11 bits (but that seems like
* a bug)
*/
if (flags & IR3_REG_CONST)
compile_assert(ctx, src->Index < (1 << 9));
else
compile_assert(ctx, src->Index < (1 << 6));
if (src->Absolute)
flags |= IR3_REG_ABS;
if (src->Negate)
flags |= IR3_REG_NEGATE;
if (src->Indirect) {
flags |= IR3_REG_RELATIV;
/* shouldn't happen, and we can't cope with it below: */
compile_assert(ctx, wrmask == 0x1);
/* wrap in a meta-deref to track both the src and address: */
orig = instr;
instr = ir3_instr_create(ctx->block, -1, OPC_META_DEREF);
ir3_reg_create(instr, 0, 0);
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = ctx->block->address;
}
reg = ir3_reg_create(instr, regid(num, chan), flags);
reg->wrmask = wrmask;
if (wrmask == 0x1) {
/* normal case */
ssa_src(ctx, reg, src, chan);
} else if ((src->File == TGSI_FILE_TEMPORARY) ||
(src->File == TGSI_FILE_OUTPUT) ||
(src->File == TGSI_FILE_INPUT)) {
struct ir3_instruction *collect;
unsigned i;
compile_assert(ctx, !src->Indirect);
/* if instruction reads multiple, we need to create
* some place-holder collect the registers:
*/
collect = ir3_instr_create(ctx->block, -1, OPC_META_FI);
ir3_reg_create(collect, 0, 0); /* unused dst reg */
for (i = 0; i < 4; i++) {
if (wrmask & (1 << i)) {
/* and src reg used point to the original instr */
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA),
src, chan + i);
} else if (wrmask & ~((i << i) - 1)) {
/* if any remaining components, then dummy
* placeholder src reg to fill in the blanks:
*/
ir3_reg_create(collect, 0, 0);
}
}
reg->flags |= IR3_REG_SSA;
reg->instr = collect;
}
if (src->Indirect) {
reg = ir3_reg_create(orig, 0, flags | IR3_REG_SSA);
reg->instr = instr;
}
return reg;
}
static struct ir3_register *
add_src_reg(struct ir3_compile_context *ctx, struct ir3_instruction *instr,
const struct tgsi_src_register *src, unsigned chan)
{
return add_src_reg_wrmask(ctx, instr, src, chan, 0x1);
}
static void
src_from_dst(struct tgsi_src_register *src, struct tgsi_dst_register *dst)
{
src->File = dst->File;
src->Indirect = dst->Indirect;
src->Dimension = dst->Dimension;
src->Index = dst->Index;
src->Absolute = 0;
src->Negate = 0;
src->SwizzleX = TGSI_SWIZZLE_X;
src->SwizzleY = TGSI_SWIZZLE_Y;
src->SwizzleZ = TGSI_SWIZZLE_Z;
src->SwizzleW = TGSI_SWIZZLE_W;
}
/* Get internal-temp src/dst to use for a sequence of instructions
* generated by a single TGSI op.
*/
static struct tgsi_src_register *
get_internal_temp(struct ir3_compile_context *ctx,
struct tgsi_dst_register *tmp_dst)
{
struct tgsi_src_register *tmp_src;
int n;
tmp_dst->File = TGSI_FILE_TEMPORARY;
tmp_dst->WriteMask = TGSI_WRITEMASK_XYZW;
tmp_dst->Indirect = 0;
tmp_dst->Dimension = 0;
/* assign next temporary: */
n = ctx->num_internal_temps++;
compile_assert(ctx, n < ARRAY_SIZE(ctx->internal_temps));
tmp_src = &ctx->internal_temps[n];
tmp_dst->Index = ctx->info.file_max[TGSI_FILE_TEMPORARY] + n + 1;
src_from_dst(tmp_src, tmp_dst);
return tmp_src;
}
static inline bool
is_const(struct tgsi_src_register *src)
{
return (src->File == TGSI_FILE_CONSTANT) ||
(src->File == TGSI_FILE_IMMEDIATE);
}
static inline bool
is_relative(struct tgsi_src_register *src)
{
return src->Indirect;
}
static inline bool
is_rel_or_const(struct tgsi_src_register *src)
{
return is_relative(src) || is_const(src);
}
static type_t
get_ftype(struct ir3_compile_context *ctx)
{
return TYPE_F32;
}
static type_t
get_utype(struct ir3_compile_context *ctx)
{
return TYPE_U32;
}
static type_t
get_stype(struct ir3_compile_context *ctx)
{
return TYPE_S32;
}
static unsigned
src_swiz(struct tgsi_src_register *src, int chan)
{
switch (chan) {
case 0: return src->SwizzleX;
case 1: return src->SwizzleY;
case 2: return src->SwizzleZ;
case 3: return src->SwizzleW;
}
assert(0);
return 0;
}
/* for instructions that cannot take a const register as src, if needed
* generate a move to temporary gpr:
*/
static struct tgsi_src_register *
get_unconst(struct ir3_compile_context *ctx, struct tgsi_src_register *src)
{
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
compile_assert(ctx, is_rel_or_const(src));
tmp_src = get_internal_temp(ctx, &tmp_dst);
create_mov(ctx, &tmp_dst, src);
return tmp_src;
}
static void
get_immediate(struct ir3_compile_context *ctx,
struct tgsi_src_register *reg, uint32_t val)
{
unsigned neg, swiz, idx, i;
/* actually maps 1:1 currently.. not sure if that is safe to rely on: */
static const unsigned swiz2tgsi[] = {
TGSI_SWIZZLE_X, TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Z, TGSI_SWIZZLE_W,
};
for (i = 0; i < ctx->immediate_idx; i++) {
swiz = i % 4;
idx = i / 4;
if (ctx->so->immediates[idx].val[swiz] == val) {
neg = 0;
break;
}
if (ctx->so->immediates[idx].val[swiz] == -val) {
neg = 1;
break;
}
}
if (i == ctx->immediate_idx) {
/* need to generate a new immediate: */
swiz = i % 4;
idx = i / 4;
neg = 0;
ctx->so->immediates[idx].val[swiz] = val;
ctx->so->immediates_count = idx + 1;
ctx->immediate_idx++;
}
reg->File = TGSI_FILE_IMMEDIATE;
reg->Indirect = 0;
reg->Dimension = 0;
reg->Index = idx;
reg->Absolute = 0;
reg->Negate = neg;
reg->SwizzleX = swiz2tgsi[swiz];
reg->SwizzleY = swiz2tgsi[swiz];
reg->SwizzleZ = swiz2tgsi[swiz];
reg->SwizzleW = swiz2tgsi[swiz];
}
static void
create_mov(struct ir3_compile_context *ctx, struct tgsi_dst_register *dst,
struct tgsi_src_register *src)
{
type_t type_mov = get_ftype(ctx);
unsigned i;
for (i = 0; i < 4; i++) {
/* move to destination: */
if (dst->WriteMask & (1 << i)) {
struct ir3_instruction *instr;
if (src->Absolute || src->Negate) {
/* can't have abs or neg on a mov instr, so use
* absneg.f instead to handle these cases:
*/
instr = instr_create(ctx, 2, OPC_ABSNEG_F);
} else {
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = type_mov;
instr->cat1.dst_type = type_mov;
}
add_dst_reg(ctx, instr, dst, i);
add_src_reg(ctx, instr, src, src_swiz(src, i));
}
}
}
static void
create_clamp(struct ir3_compile_context *ctx,
struct tgsi_dst_register *dst, struct tgsi_src_register *val,
struct tgsi_src_register *minval, struct tgsi_src_register *maxval)
{
struct ir3_instruction *instr;
instr = instr_create(ctx, 2, OPC_MAX_F);
vectorize(ctx, instr, dst, 2, val, 0, minval, 0);
instr = instr_create(ctx, 2, OPC_MIN_F);
vectorize(ctx, instr, dst, 2, val, 0, maxval, 0);
}
static void
create_clamp_imm(struct ir3_compile_context *ctx,
struct tgsi_dst_register *dst,
uint32_t minval, uint32_t maxval)
{
struct tgsi_src_register minconst, maxconst;
struct tgsi_src_register src;
src_from_dst(&src, dst);
get_immediate(ctx, &minconst, minval);
get_immediate(ctx, &maxconst, maxval);
create_clamp(ctx, dst, &src, &minconst, &maxconst);
}
static struct tgsi_dst_register *
get_dst(struct ir3_compile_context *ctx, struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = &inst->Dst[0].Register;
unsigned i;
compile_assert(ctx, !ctx->using_tmp_dst);
ctx->using_tmp_dst = true;
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
struct tgsi_src_register *src = &inst->Src[i].Register;
if ((src->File == dst->File) && (src->Index == dst->Index)) {
if ((dst->WriteMask == TGSI_WRITEMASK_XYZW) &&
(src->SwizzleX == TGSI_SWIZZLE_X) &&
(src->SwizzleY == TGSI_SWIZZLE_Y) &&
(src->SwizzleZ == TGSI_SWIZZLE_Z) &&
(src->SwizzleW == TGSI_SWIZZLE_W))
continue;
ctx->tmp_src = get_internal_temp(ctx, &ctx->tmp_dst);
ctx->tmp_dst.WriteMask = dst->WriteMask;
dst = &ctx->tmp_dst;
break;
}
}
return dst;
}
static void
put_dst(struct ir3_compile_context *ctx, struct tgsi_full_instruction *inst,
struct tgsi_dst_register *dst)
{
compile_assert(ctx, ctx->using_tmp_dst);
ctx->using_tmp_dst = false;
/* if necessary, add mov back into original dst: */
if (dst != &inst->Dst[0].Register) {
create_mov(ctx, &inst->Dst[0].Register, ctx->tmp_src);
}
}
/* helper to generate the necessary repeat and/or additional instructions
* to turn a scalar instruction into a vector operation:
*/
static void
vectorize(struct ir3_compile_context *ctx, struct ir3_instruction *instr,
struct tgsi_dst_register *dst, int nsrcs, ...)
{
va_list ap;
int i, j, n = 0;
instr_atomic_start(ctx);
add_dst_reg(ctx, instr, dst, TGSI_SWIZZLE_X);
va_start(ap, nsrcs);
for (j = 0; j < nsrcs; j++) {
struct tgsi_src_register *src =
va_arg(ap, struct tgsi_src_register *);
unsigned flags = va_arg(ap, unsigned);
struct ir3_register *reg;
if (flags & IR3_REG_IMMED) {
reg = ir3_reg_create(instr, 0, IR3_REG_IMMED);
/* this is an ugly cast.. should have put flags first! */
reg->iim_val = *(int *)&src;
} else {
reg = add_src_reg(ctx, instr, src, TGSI_SWIZZLE_X);
}
reg->flags |= flags & ~IR3_REG_NEGATE;
if (flags & IR3_REG_NEGATE)
reg->flags ^= IR3_REG_NEGATE;
}
va_end(ap);
for (i = 0; i < 4; i++) {
if (dst->WriteMask & (1 << i)) {
struct ir3_instruction *cur;
if (n++ == 0) {
cur = instr;
} else {
cur = instr_clone(ctx, instr);
}
ssa_dst(ctx, cur, dst, i);
/* fix-up dst register component: */
cur->regs[0]->num = regid(cur->regs[0]->num >> 2, i);
/* fix-up src register component: */
va_start(ap, nsrcs);
for (j = 0; j < nsrcs; j++) {
struct ir3_register *reg = cur->regs[j+1];
struct tgsi_src_register *src =
va_arg(ap, struct tgsi_src_register *);
unsigned flags = va_arg(ap, unsigned);
if (reg->flags & IR3_REG_SSA) {
ssa_src(ctx, reg, src, src_swiz(src, i));
} else if (!(flags & IR3_REG_IMMED)) {
reg->num = regid(reg->num >> 2, src_swiz(src, i));
}
}
va_end(ap);
}
}
instr_atomic_end(ctx);
}
/*
* Handlers for TGSI instructions which do not have a 1:1 mapping to
* native instructions:
*/
static void
trans_clamp(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src0 = &inst->Src[0].Register;
struct tgsi_src_register *src1 = &inst->Src[1].Register;
struct tgsi_src_register *src2 = &inst->Src[2].Register;
create_clamp(ctx, dst, src0, src1, src2);
put_dst(ctx, inst, dst);
}
/* ARL(x) = x, but mova from hrN.x to a0.. */
static void
trans_arl(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
struct tgsi_dst_register *dst = &inst->Dst[0].Register;
struct tgsi_src_register *src = &inst->Src[0].Register;
unsigned chan = src->SwizzleX;
compile_assert(ctx, dst->File == TGSI_FILE_ADDRESS);
/* NOTE: we allocate a temporary from a flat register
* namespace (ignoring half vs full). It turns out
* not to really matter since registers get reassigned
* later in ir3_ra which (hopefully!) can deal a bit
* better with mixed half and full precision.
*/
tmp_src = get_internal_temp(ctx, &tmp_dst);
/* cov.{u,f}{32,16}s16 Rtmp, Rsrc */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = (t->tgsi_opc == TGSI_OPCODE_ARL) ?
get_ftype(ctx) : get_utype(ctx);
instr->cat1.dst_type = TYPE_S16;
add_dst_reg(ctx, instr, &tmp_dst, chan)->flags |= IR3_REG_HALF;
add_src_reg(ctx, instr, src, chan);
/* shl.b Rtmp, Rtmp, 2 */
instr = instr_create(ctx, 2, OPC_SHL_B);
add_dst_reg(ctx, instr, &tmp_dst, chan)->flags |= IR3_REG_HALF;
add_src_reg(ctx, instr, tmp_src, chan)->flags |= IR3_REG_HALF;
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = 2;
/* mova a0, Rtmp */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = TYPE_S16;
instr->cat1.dst_type = TYPE_S16;
add_dst_reg(ctx, instr, dst, 0)->flags |= IR3_REG_HALF;
add_src_reg(ctx, instr, tmp_src, chan)->flags |= IR3_REG_HALF;
}
/*
* texture fetch/sample instructions:
*/
struct tex_info {
int8_t order[4];
int8_t args;
unsigned src_wrmask, flags;
};
struct target_info {
uint8_t dims;
uint8_t cube;
uint8_t array;
uint8_t shadow;
};
static const struct target_info tex_targets[] = {
[TGSI_TEXTURE_1D] = { 1, 0, 0, 0 },
[TGSI_TEXTURE_2D] = { 2, 0, 0, 0 },
[TGSI_TEXTURE_3D] = { 3, 0, 0, 0 },
[TGSI_TEXTURE_CUBE] = { 3, 1, 0, 0 },
[TGSI_TEXTURE_RECT] = { 2, 0, 0, 0 },
[TGSI_TEXTURE_SHADOW1D] = { 1, 0, 0, 1 },
[TGSI_TEXTURE_SHADOW2D] = { 2, 0, 0, 1 },
[TGSI_TEXTURE_SHADOWRECT] = { 2, 0, 0, 1 },
[TGSI_TEXTURE_1D_ARRAY] = { 1, 0, 1, 0 },
[TGSI_TEXTURE_2D_ARRAY] = { 2, 0, 1, 0 },
[TGSI_TEXTURE_SHADOW1D_ARRAY] = { 1, 0, 1, 1 },
[TGSI_TEXTURE_SHADOW2D_ARRAY] = { 2, 0, 1, 1 },
[TGSI_TEXTURE_SHADOWCUBE] = { 3, 1, 0, 1 },
[TGSI_TEXTURE_2D_MSAA] = { 2, 0, 0, 0 },
[TGSI_TEXTURE_2D_ARRAY_MSAA] = { 2, 0, 1, 0 },
[TGSI_TEXTURE_CUBE_ARRAY] = { 3, 1, 1, 0 },
[TGSI_TEXTURE_SHADOWCUBE_ARRAY] = { 3, 1, 1, 1 },
};
static void
fill_tex_info(struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst,
struct tex_info *info)
{
const struct target_info *tgt = &tex_targets[inst->Texture.Texture];
if (tgt->dims == 3)
info->flags |= IR3_INSTR_3D;
if (tgt->array)
info->flags |= IR3_INSTR_A;
if (tgt->shadow)
info->flags |= IR3_INSTR_S;
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXB2:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXF:
info->args = 2;
break;
case TGSI_OPCODE_TXP:
info->flags |= IR3_INSTR_P;
/* fallthrough */
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXD:
info->args = 1;
break;
}
/*
* lay out the first argument in the proper order:
* - actual coordinates first
* - array index
* - shadow reference
* - projection w
*
* bias/lod go into the second arg
*/
int arg, pos = 0;
for (arg = 0; arg < tgt->dims; arg++)
info->order[arg] = pos++;
if (tgt->dims == 1)
info->order[pos++] = -1;
if (tgt->shadow)
info->order[pos++] = MAX2(arg + tgt->array, 2);
if (tgt->array)
info->order[pos++] = arg++;
if (info->flags & IR3_INSTR_P)
info->order[pos++] = 3;
info->src_wrmask = (1 << pos) - 1;
for (; pos < 4; pos++)
info->order[pos] = -1;
assert(pos <= 4);
}
static bool check_swiz(struct tgsi_src_register *src, const int8_t order[4])
{
unsigned i;
for (i = 1; (i < 4) && order[i] >= 0; i++)
if (src_swiz(src, i) != (src_swiz(src, 0) + order[i]))
return false;
return true;
}
static bool is_1d(unsigned tex)
{
return tex_targets[tex].dims == 1;
}
static struct tgsi_src_register *
get_tex_coord(struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst,
const struct tex_info *tinf)
{
struct tgsi_src_register *coord = &inst->Src[0].Register;
struct ir3_instruction *instr;
unsigned tex = inst->Texture.Texture;
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
type_t type_mov = get_ftype(ctx);
unsigned j;
/* need to move things around: */
tmp_src = get_internal_temp(ctx, &tmp_dst);
for (j = 0; j < 4; j++) {
if (tinf->order[j] < 0)
continue;
instr = instr_create(ctx, 1, 0); /* mov */
instr->cat1.src_type = type_mov;
instr->cat1.dst_type = type_mov;
add_dst_reg(ctx, instr, &tmp_dst, j);
add_src_reg(ctx, instr, coord,
src_swiz(coord, tinf->order[j]));
}
/* fix up .y coord: */
if (is_1d(tex)) {
struct ir3_register *imm;
instr = instr_create(ctx, 1, 0); /* mov */
instr->cat1.src_type = type_mov;
instr->cat1.dst_type = type_mov;
add_dst_reg(ctx, instr, &tmp_dst, 1); /* .y */
imm = ir3_reg_create(instr, 0, IR3_REG_IMMED);
if (inst->Instruction.Opcode == TGSI_OPCODE_TXF)
imm->iim_val = 0;
else
imm->fim_val = 0.5;
}
return tmp_src;
}
static void
trans_samp(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr, *collect;
struct ir3_register *reg;
struct tgsi_dst_register *dst = &inst->Dst[0].Register;
struct tgsi_src_register *orig, *coord, *samp, *offset, *dpdx, *dpdy;
struct tgsi_src_register zero;
const struct target_info *tgt = &tex_targets[inst->Texture.Texture];
struct tex_info tinf;
int i;
memset(&tinf, 0, sizeof(tinf));
fill_tex_info(ctx, inst, &tinf);
coord = get_tex_coord(ctx, inst, &tinf);
get_immediate(ctx, &zero, 0);
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_TXB2:
orig = &inst->Src[1].Register;
samp = &inst->Src[2].Register;
break;
case TGSI_OPCODE_TXD:
orig = &inst->Src[0].Register;
dpdx = &inst->Src[1].Register;
dpdy = &inst->Src[2].Register;
samp = &inst->Src[3].Register;
if (is_rel_or_const(dpdx))
dpdx = get_unconst(ctx, dpdx);
if (is_rel_or_const(dpdy))
dpdy = get_unconst(ctx, dpdy);
break;
default:
orig = &inst->Src[0].Register;
samp = &inst->Src[1].Register;
break;
}
if (tinf.args > 1 && is_rel_or_const(orig))
orig = get_unconst(ctx, orig);
/* scale up integer coords for TXF based on the LOD */
if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
type_t type_mov = get_utype(ctx);
tmp_src = get_internal_temp(ctx, &tmp_dst);
for (i = 0; i < tgt->dims; i++) {
instr = instr_create(ctx, 2, OPC_SHL_B);
add_dst_reg(ctx, instr, &tmp_dst, i);
add_src_reg(ctx, instr, coord, src_swiz(coord, i));
add_src_reg(ctx, instr, orig, orig->SwizzleW);
}
if (tgt->dims < 2) {
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = type_mov;
instr->cat1.dst_type = type_mov;
add_dst_reg(ctx, instr, &tmp_dst, i);
add_src_reg(ctx, instr, &zero, 0);
i++;
}
if (tgt->array) {
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = type_mov;
instr->cat1.dst_type = type_mov;
add_dst_reg(ctx, instr, &tmp_dst, i);
add_src_reg(ctx, instr, coord, src_swiz(coord, i));
}
coord = tmp_src;
}
if (inst->Texture.NumOffsets) {
struct tgsi_texture_offset *tex_offset = &inst->TexOffsets[0];
struct tgsi_src_register offset_src = {0};
offset_src.File = tex_offset->File;
offset_src.Index = tex_offset->Index;
offset_src.SwizzleX = tex_offset->SwizzleX;
offset_src.SwizzleY = tex_offset->SwizzleY;
offset_src.SwizzleZ = tex_offset->SwizzleZ;
offset = get_unconst(ctx, &offset_src);
tinf.flags |= IR3_INSTR_O;
}
instr = instr_create(ctx, 5, t->opc);
instr->cat5.type = get_ftype(ctx);
instr->cat5.samp = samp->Index;
instr->cat5.tex = samp->Index;
instr->flags |= tinf.flags;
add_dst_reg_wrmask(ctx, instr, dst, 0, dst->WriteMask);
reg = ir3_reg_create(instr, 0, IR3_REG_SSA);
collect = ir3_instr_create(ctx->block, -1, OPC_META_FI);
ir3_reg_create(collect, 0, 0);
for (i = 0; i < 4; i++)
if (tinf.src_wrmask & (1 << i))
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA),
coord, src_swiz(coord, i));
else if (tinf.src_wrmask & ~((1 << i) - 1))
ir3_reg_create(collect, 0, 0);
/* Attach derivatives onto the end of the fan-in. Derivatives start after
* the 4th argument, so make sure that fi is padded up to 4 first.
*/
if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
while (collect->regs_count < 5)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), &zero, 0);
for (i = 0; i < tgt->dims; i++)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), dpdx, i);
if (tgt->dims < 2)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), &zero, 0);
for (i = 0; i < tgt->dims; i++)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), dpdy, i);
if (tgt->dims < 2)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), &zero, 0);
tinf.src_wrmask |= ((1 << (2 * MAX2(tgt->dims, 2))) - 1) << 4;
}
reg->instr = collect;
reg->wrmask = tinf.src_wrmask;
/* The second argument contains the offsets, followed by the lod/bias
* argument. This is constructed more manually due to the dynamic nature.
*/
if (inst->Texture.NumOffsets == 0 && tinf.args == 1)
return;
reg = ir3_reg_create(instr, 0, IR3_REG_SSA);
collect = ir3_instr_create(ctx->block, -1, OPC_META_FI);
ir3_reg_create(collect, 0, 0);
if (inst->Texture.NumOffsets) {
for (i = 0; i < tgt->dims; i++)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA),
offset, i);
if (tgt->dims < 2)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA), &zero, 0);
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA),
orig, orig->SwizzleX);
else if (tinf.args > 1)
ssa_src(ctx, ir3_reg_create(collect, 0, IR3_REG_SSA),
orig, orig->SwizzleW);
reg->instr = collect;
reg->wrmask = (1 << (collect->regs_count - 1)) - 1;
}
static void
trans_txq(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = &inst->Dst[0].Register;
struct tgsi_src_register *level = &inst->Src[0].Register;
struct tgsi_src_register *samp = &inst->Src[1].Register;
struct tex_info tinf;
memset(&tinf, 0, sizeof(tinf));
fill_tex_info(ctx, inst, &tinf);
if (is_rel_or_const(level))
level = get_unconst(ctx, level);
instr = instr_create(ctx, 5, OPC_GETSIZE);
instr->cat5.type = get_utype(ctx);
instr->cat5.samp = samp->Index;
instr->cat5.tex = samp->Index;
instr->flags |= tinf.flags;
add_dst_reg_wrmask(ctx, instr, dst, 0, dst->WriteMask);
add_src_reg_wrmask(ctx, instr, level, level->SwizzleX, 0x1);
}
/* DDX/DDY */
static void
trans_deriv(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = &inst->Dst[0].Register;
struct tgsi_src_register *src = &inst->Src[0].Register;
static const int8_t order[4] = {0, 1, 2, 3};
if (!check_swiz(src, order)) {
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
tmp_src = get_internal_temp(ctx, &tmp_dst);
create_mov(ctx, &tmp_dst, src);
src = tmp_src;
}
/* This might be a workaround for hw bug? Blob compiler always
* seems to work two components at a time for dsy/dsx. It does
* actually seem to work in some cases (or at least some piglit
* tests) for four components at a time. But seems more reliable
* to split this into two instructions like the blob compiler
* does:
*/
instr = instr_create(ctx, 5, t->opc);
instr->cat5.type = get_ftype(ctx);
add_dst_reg_wrmask(ctx, instr, dst, 0, dst->WriteMask & 0x3);
add_src_reg_wrmask(ctx, instr, src, 0, dst->WriteMask & 0x3);
instr = instr_create(ctx, 5, t->opc);
instr->cat5.type = get_ftype(ctx);
add_dst_reg_wrmask(ctx, instr, dst, 2, (dst->WriteMask >> 2) & 0x3);
add_src_reg_wrmask(ctx, instr, src, 2, (dst->WriteMask >> 2) & 0x3);
}
/*
* SEQ(a,b) = (a == b) ? 1.0 : 0.0
* cmps.f.eq tmp0, a, b
* cov.u16f16 dst, tmp0
*
* SNE(a,b) = (a != b) ? 1.0 : 0.0
* cmps.f.ne tmp0, a, b
* cov.u16f16 dst, tmp0
*
* SGE(a,b) = (a >= b) ? 1.0 : 0.0
* cmps.f.ge tmp0, a, b
* cov.u16f16 dst, tmp0
*
* SLE(a,b) = (a <= b) ? 1.0 : 0.0
* cmps.f.le tmp0, a, b
* cov.u16f16 dst, tmp0
*
* SGT(a,b) = (a > b) ? 1.0 : 0.0
* cmps.f.gt tmp0, a, b
* cov.u16f16 dst, tmp0
*
* SLT(a,b) = (a < b) ? 1.0 : 0.0
* cmps.f.lt tmp0, a, b
* cov.u16f16 dst, tmp0
*
* CMP(a,b,c) = (a < 0.0) ? b : c
* cmps.f.lt tmp0, a, {0.0}
* sel.b16 dst, b, tmp0, c
*/
static void
trans_cmp(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
struct tgsi_src_register constval0;
/* final instruction for CMP() uses orig src1 and src2: */
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *a0, *a1, *a2;
unsigned condition;
tmp_src = get_internal_temp(ctx, &tmp_dst);
a0 = &inst->Src[0].Register; /* a */
a1 = &inst->Src[1].Register; /* b */
switch (t->tgsi_opc) {
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_FSEQ:
condition = IR3_COND_EQ;
break;
case TGSI_OPCODE_SNE:
case TGSI_OPCODE_FSNE:
condition = IR3_COND_NE;
break;
case TGSI_OPCODE_SGE:
case TGSI_OPCODE_FSGE:
condition = IR3_COND_GE;
break;
case TGSI_OPCODE_SLT:
case TGSI_OPCODE_FSLT:
condition = IR3_COND_LT;
break;
case TGSI_OPCODE_SLE:
condition = IR3_COND_LE;
break;
case TGSI_OPCODE_SGT:
condition = IR3_COND_GT;
break;
case TGSI_OPCODE_CMP:
get_immediate(ctx, &constval0, fui(0.0));
a0 = &inst->Src[0].Register; /* a */
a1 = &constval0; /* {0.0} */
condition = IR3_COND_LT;
break;
default:
compile_assert(ctx, 0);
return;
}
if (is_const(a0) && is_const(a1))
a0 = get_unconst(ctx, a0);
/* cmps.f.<cond> tmp, a0, a1 */
instr = instr_create(ctx, 2, OPC_CMPS_F);
instr->cat2.condition = condition;
vectorize(ctx, instr, &tmp_dst, 2, a0, 0, a1, 0);
switch (t->tgsi_opc) {
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_SGE:
case TGSI_OPCODE_SLE:
case TGSI_OPCODE_SNE:
case TGSI_OPCODE_SGT:
case TGSI_OPCODE_SLT:
/* cov.u16f16 dst, tmp0 */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = get_utype(ctx);
instr->cat1.dst_type = get_ftype(ctx);
vectorize(ctx, instr, dst, 1, tmp_src, 0);
break;
case TGSI_OPCODE_FSEQ:
case TGSI_OPCODE_FSGE:
case TGSI_OPCODE_FSNE:
case TGSI_OPCODE_FSLT:
/* absneg.s dst, (neg)tmp0 */
instr = instr_create(ctx, 2, OPC_ABSNEG_S);
vectorize(ctx, instr, dst, 1, tmp_src, IR3_REG_NEGATE);
break;
case TGSI_OPCODE_CMP:
a1 = &inst->Src[1].Register;
a2 = &inst->Src[2].Register;
/* sel.{b32,b16} dst, src2, tmp, src1 */
instr = instr_create(ctx, 3, OPC_SEL_B32);
vectorize(ctx, instr, dst, 3, a1, 0, tmp_src, 0, a2, 0);
break;
}
put_dst(ctx, inst, dst);
}
/*
* USNE(a,b) = (a != b) ? ~0 : 0
* cmps.u32.ne dst, a, b
*
* USEQ(a,b) = (a == b) ? ~0 : 0
* cmps.u32.eq dst, a, b
*
* ISGE(a,b) = (a > b) ? ~0 : 0
* cmps.s32.ge dst, a, b
*
* USGE(a,b) = (a > b) ? ~0 : 0
* cmps.u32.ge dst, a, b
*
* ISLT(a,b) = (a < b) ? ~0 : 0
* cmps.s32.lt dst, a, b
*
* USLT(a,b) = (a < b) ? ~0 : 0
* cmps.u32.lt dst, a, b
*
*/
static void
trans_icmp(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
struct tgsi_src_register *a0, *a1;
unsigned condition;
a0 = &inst->Src[0].Register; /* a */
a1 = &inst->Src[1].Register; /* b */
switch (t->tgsi_opc) {
case TGSI_OPCODE_USNE:
condition = IR3_COND_NE;
break;
case TGSI_OPCODE_USEQ:
condition = IR3_COND_EQ;
break;
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_USGE:
condition = IR3_COND_GE;
break;
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_USLT:
condition = IR3_COND_LT;
break;
default:
compile_assert(ctx, 0);
return;
}
if (is_const(a0) && is_const(a1))
a0 = get_unconst(ctx, a0);
tmp_src = get_internal_temp(ctx, &tmp_dst);
/* cmps.{u32,s32}.<cond> tmp, a0, a1 */
instr = instr_create(ctx, 2, t->opc);
instr->cat2.condition = condition;
vectorize(ctx, instr, &tmp_dst, 2, a0, 0, a1, 0);
/* absneg.s dst, (neg)tmp */
instr = instr_create(ctx, 2, OPC_ABSNEG_S);
vectorize(ctx, instr, dst, 1, tmp_src, IR3_REG_NEGATE);
put_dst(ctx, inst, dst);
}
/*
* UCMP(a,b,c) = a ? b : c
* sel.b16 dst, b, a, c
*/
static void
trans_ucmp(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *a0, *a1, *a2;
a0 = &inst->Src[0].Register; /* a */
a1 = &inst->Src[1].Register; /* b */
a2 = &inst->Src[2].Register; /* c */
if (is_rel_or_const(a0))
a0 = get_unconst(ctx, a0);
/* sel.{b32,b16} dst, b, a, c */
instr = instr_create(ctx, 3, OPC_SEL_B32);
vectorize(ctx, instr, dst, 3, a1, 0, a0, 0, a2, 0);
put_dst(ctx, inst, dst);
}
/*
* ISSG(a) = a < 0 ? -1 : a > 0 ? 1 : 0
* cmps.s.lt tmp_neg, a, 0 # 1 if a is negative
* cmps.s.gt tmp_pos, a, 0 # 1 if a is positive
* sub.u dst, tmp_pos, tmp_neg
*/
static void
trans_issg(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *a = &inst->Src[0].Register;
struct tgsi_dst_register neg_dst, pos_dst;
struct tgsi_src_register *neg_src, *pos_src;
neg_src = get_internal_temp(ctx, &neg_dst);
pos_src = get_internal_temp(ctx, &pos_dst);
/* cmps.s.lt neg, a, 0 */
instr = instr_create(ctx, 2, OPC_CMPS_S);
instr->cat2.condition = IR3_COND_LT;
vectorize(ctx, instr, &neg_dst, 2, a, 0, 0, IR3_REG_IMMED);
/* cmps.s.gt pos, a, 0 */
instr = instr_create(ctx, 2, OPC_CMPS_S);
instr->cat2.condition = IR3_COND_GT;
vectorize(ctx, instr, &pos_dst, 2, a, 0, 0, IR3_REG_IMMED);
/* sub.u dst, pos, neg */
instr = instr_create(ctx, 2, OPC_SUB_U);
vectorize(ctx, instr, dst, 2, pos_src, 0, neg_src, 0);
put_dst(ctx, inst, dst);
}
/*
* Conditional / Flow control
*/
static void
push_branch(struct ir3_compile_context *ctx, bool inv,
struct ir3_instruction *instr, struct ir3_instruction *cond)
{
unsigned int idx = ctx->branch_count++;
compile_assert(ctx, idx < ARRAY_SIZE(ctx->branch));
ctx->branch[idx].instr = instr;
ctx->branch[idx].inv = inv;
/* else side of branch has same condition: */
if (!inv)
ctx->branch[idx].cond = cond;
}
static struct ir3_instruction *
pop_branch(struct ir3_compile_context *ctx)
{
unsigned int idx = --ctx->branch_count;
return ctx->branch[idx].instr;
}
static void
trans_if(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr, *cond;
struct tgsi_src_register *src = &inst->Src[0].Register;
struct tgsi_dst_register tmp_dst;
struct tgsi_src_register *tmp_src;
struct tgsi_src_register constval;
get_immediate(ctx, &constval, fui(0.0));
tmp_src = get_internal_temp(ctx, &tmp_dst);
if (is_const(src))
src = get_unconst(ctx, src);
/* cmps.{f,u}.ne tmp0, b, {0.0} */
instr = instr_create(ctx, 2, t->opc);
add_dst_reg(ctx, instr, &tmp_dst, 0);
add_src_reg(ctx, instr, src, src->SwizzleX);
add_src_reg(ctx, instr, &constval, constval.SwizzleX);
instr->cat2.condition = IR3_COND_NE;
compile_assert(ctx, instr->regs[1]->flags & IR3_REG_SSA); /* because get_unconst() */
cond = instr->regs[1]->instr;
/* meta:flow tmp0 */
instr = instr_create(ctx, -1, OPC_META_FLOW);
ir3_reg_create(instr, 0, 0); /* dummy dst */
add_src_reg(ctx, instr, tmp_src, TGSI_SWIZZLE_X);
push_branch(ctx, false, instr, cond);
instr->flow.if_block = push_block(ctx);
}
static void
trans_else(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
pop_block(ctx);
instr = pop_branch(ctx);
compile_assert(ctx, (instr->category == -1) &&
(instr->opc == OPC_META_FLOW));
push_branch(ctx, true, instr, NULL);
instr->flow.else_block = push_block(ctx);
}
static struct ir3_instruction *
find_temporary(struct ir3_block *block, unsigned n)
{
if (block->parent && !block->temporaries[n])
return find_temporary(block->parent, n);
return block->temporaries[n];
}
static struct ir3_instruction *
find_output(struct ir3_block *block, unsigned n)
{
if (block->parent && !block->outputs[n])
return find_output(block->parent, n);
return block->outputs[n];
}
static struct ir3_instruction *
create_phi(struct ir3_compile_context *ctx, struct ir3_instruction *cond,
struct ir3_instruction *a, struct ir3_instruction *b)
{
struct ir3_instruction *phi;
compile_assert(ctx, cond);
/* Either side of the condition could be null.. which
* indicates a variable written on only one side of the
* branch. Normally this should only be variables not
* used outside of that side of the branch. So we could
* just 'return a ? a : b;' in that case. But for better
* defined undefined behavior we just stick in imm{0.0}.
* In the common case of a value only used within the
* one side of the branch, the PHI instruction will not
* get scheduled
*/
if (!a)
a = create_immed(ctx, 0.0);
if (!b)
b = create_immed(ctx, 0.0);
phi = instr_create(ctx, -1, OPC_META_PHI);
ir3_reg_create(phi, 0, 0); /* dummy dst */
ir3_reg_create(phi, 0, IR3_REG_SSA)->instr = cond;
ir3_reg_create(phi, 0, IR3_REG_SSA)->instr = a;
ir3_reg_create(phi, 0, IR3_REG_SSA)->instr = b;
return phi;
}
static void
trans_endif(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct ir3_block *ifb, *elseb;
struct ir3_instruction **ifout, **elseout;
unsigned i, ifnout = 0, elsenout = 0;
pop_block(ctx);
instr = pop_branch(ctx);
compile_assert(ctx, (instr->category == -1) &&
(instr->opc == OPC_META_FLOW));
ifb = instr->flow.if_block;
elseb = instr->flow.else_block;
/* if there is no else block, the parent block is used for the
* branch-not-taken src of the PHI instructions:
*/
if (!elseb)
elseb = ifb->parent;
/* worst case sizes: */
ifnout = ifb->ntemporaries + ifb->noutputs;
elsenout = elseb->ntemporaries + elseb->noutputs;
ifout = ir3_alloc(ctx->ir, sizeof(ifb->outputs[0]) * ifnout);
if (elseb != ifb->parent)
elseout = ir3_alloc(ctx->ir, sizeof(ifb->outputs[0]) * elsenout);
ifnout = 0;
elsenout = 0;
/* generate PHI instructions for any temporaries written: */
for (i = 0; i < ifb->ntemporaries; i++) {
struct ir3_instruction *a = ifb->temporaries[i];
struct ir3_instruction *b = elseb->temporaries[i];
/* if temporary written in if-block, or if else block
* is present and temporary written in else-block:
*/
if (a || ((elseb != ifb->parent) && b)) {
struct ir3_instruction *phi;
/* if only written on one side, find the closest
* enclosing update on other side:
*/
if (!a)
a = find_temporary(ifb, i);
if (!b)
b = find_temporary(elseb, i);
ifout[ifnout] = a;
a = create_output(ifb, a, ifnout++);
if (elseb != ifb->parent) {
elseout[elsenout] = b;
b = create_output(elseb, b, elsenout++);
}
phi = create_phi(ctx, instr, a, b);
ctx->block->temporaries[i] = phi;
}
}
compile_assert(ctx, ifb->noutputs == elseb->noutputs);
/* .. and any outputs written: */
for (i = 0; i < ifb->noutputs; i++) {
struct ir3_instruction *a = ifb->outputs[i];
struct ir3_instruction *b = elseb->outputs[i];
/* if output written in if-block, or if else block
* is present and output written in else-block:
*/
if (a || ((elseb != ifb->parent) && b)) {
struct ir3_instruction *phi;
/* if only written on one side, find the closest
* enclosing update on other side:
*/
if (!a)
a = find_output(ifb, i);
if (!b)
b = find_output(elseb, i);
ifout[ifnout] = a;
a = create_output(ifb, a, ifnout++);
if (elseb != ifb->parent) {
elseout[elsenout] = b;
b = create_output(elseb, b, elsenout++);
}
phi = create_phi(ctx, instr, a, b);
ctx->block->outputs[i] = phi;
}
}
ifb->noutputs = ifnout;
ifb->outputs = ifout;
if (elseb != ifb->parent) {
elseb->noutputs = elsenout;
elseb->outputs = elseout;
}
// TODO maybe we want to compact block->inputs?
}
/*
* Kill
*/
static void
trans_kill(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr, *immed, *cond = NULL;
bool inv = false;
switch (t->tgsi_opc) {
case TGSI_OPCODE_KILL:
/* unconditional kill, use enclosing if condition: */
if (ctx->branch_count > 0) {
unsigned int idx = ctx->branch_count - 1;
cond = ctx->branch[idx].cond;
inv = ctx->branch[idx].inv;
} else {
cond = create_immed(ctx, 1.0);
}
break;
}
compile_assert(ctx, cond);
immed = create_immed(ctx, 0.0);
/* cmps.f.ne p0.x, cond, {0.0} */
instr = instr_create(ctx, 2, OPC_CMPS_F);
instr->cat2.condition = IR3_COND_NE;
ir3_reg_create(instr, regid(REG_P0, 0), 0);
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = cond;
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = immed;
cond = instr;
/* kill p0.x */
instr = instr_create(ctx, 0, OPC_KILL);
instr->cat0.inv = inv;
ir3_reg_create(instr, 0, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = cond;
ctx->kill[ctx->kill_count++] = instr;
ctx->so->has_kill = true;
}
/*
* Kill-If
*/
static void
trans_killif(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_src_register *src = &inst->Src[0].Register;
struct ir3_instruction *instr, *immed, *cond = NULL;
bool inv = false;
immed = create_immed(ctx, 0.0);
/* cmps.f.ne p0.x, cond, {0.0} */
instr = instr_create(ctx, 2, OPC_CMPS_F);
instr->cat2.condition = IR3_COND_NE;
ir3_reg_create(instr, regid(REG_P0, 0), 0);
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = immed;
add_src_reg(ctx, instr, src, src->SwizzleX);
cond = instr;
/* kill p0.x */
instr = instr_create(ctx, 0, OPC_KILL);
instr->cat0.inv = inv;
ir3_reg_create(instr, 0, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = cond;
ctx->kill[ctx->kill_count++] = instr;
ctx->so->has_kill = true;
}
/*
* I2F / U2F / F2I / F2U
*/
static void
trans_cov(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src = &inst->Src[0].Register;
// cov.f32s32 dst, tmp0 /
instr = instr_create(ctx, 1, 0);
switch (t->tgsi_opc) {
case TGSI_OPCODE_U2F:
instr->cat1.src_type = TYPE_U32;
instr->cat1.dst_type = TYPE_F32;
break;
case TGSI_OPCODE_I2F:
instr->cat1.src_type = TYPE_S32;
instr->cat1.dst_type = TYPE_F32;
break;
case TGSI_OPCODE_F2U:
instr->cat1.src_type = TYPE_F32;
instr->cat1.dst_type = TYPE_U32;
break;
case TGSI_OPCODE_F2I:
instr->cat1.src_type = TYPE_F32;
instr->cat1.dst_type = TYPE_S32;
break;
}
vectorize(ctx, instr, dst, 1, src, 0);
put_dst(ctx, inst, dst);
}
/*
* UMUL / UMAD
*
* There is no 32-bit multiply instruction, so splitting a and b into high and
* low components, we get that
*
* dst = al * bl + ah * bl << 16 + al * bh << 16
*
* mull.u tmp0, a, b (mul low, i.e. al * bl)
* madsh.m16 tmp1, a, b, tmp0 (mul-add shift high mix, i.e. ah * bl << 16)
* madsh.m16 dst, b, a, tmp1 (i.e. al * bh << 16)
*
* For UMAD, replace first mull.u with mad.u16.
*/
static void
trans_umul(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *a = &inst->Src[0].Register;
struct tgsi_src_register *b = &inst->Src[1].Register;
struct tgsi_dst_register tmp0_dst, tmp1_dst;
struct tgsi_src_register *tmp0_src, *tmp1_src;
tmp0_src = get_internal_temp(ctx, &tmp0_dst);
tmp1_src = get_internal_temp(ctx, &tmp1_dst);
if (is_rel_or_const(a))
a = get_unconst(ctx, a);
if (is_rel_or_const(b))
b = get_unconst(ctx, b);
if (t->tgsi_opc == TGSI_OPCODE_UMUL) {
/* mull.u tmp0, a, b */
instr = instr_create(ctx, 2, OPC_MULL_U);
vectorize(ctx, instr, &tmp0_dst, 2, a, 0, b, 0);
} else {
struct tgsi_src_register *c = &inst->Src[2].Register;
/* mad.u16 tmp0, a, b, c */
instr = instr_create(ctx, 3, OPC_MAD_U16);
vectorize(ctx, instr, &tmp0_dst, 3, a, 0, b, 0, c, 0);
}
/* madsh.m16 tmp1, a, b, tmp0 */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &tmp1_dst, 3, a, 0, b, 0, tmp0_src, 0);
/* madsh.m16 dst, b, a, tmp1 */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, dst, 3, b, 0, a, 0, tmp1_src, 0);
put_dst(ctx, inst, dst);
}
/*
* IDIV / UDIV / MOD / UMOD
*
* See NV50LegalizeSSA::handleDIV for the origin of this implementation. For
* MOD/UMOD, it becomes a - [IU]DIV(a, modulus) * modulus.
*/
static void
trans_idiv(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct ir3_instruction *instr;
struct tgsi_dst_register *dst = get_dst(ctx, inst), *premod_dst = dst;
struct tgsi_src_register *a = &inst->Src[0].Register;
struct tgsi_src_register *b = &inst->Src[1].Register;
struct tgsi_dst_register af_dst, bf_dst, q_dst, r_dst, a_dst, b_dst;
struct tgsi_src_register *af_src, *bf_src, *q_src, *r_src, *a_src, *b_src;
struct tgsi_src_register negative_2, thirty_one;
type_t src_type;
if (t->tgsi_opc == TGSI_OPCODE_IDIV || t->tgsi_opc == TGSI_OPCODE_MOD)
src_type = get_stype(ctx);
else
src_type = get_utype(ctx);
af_src = get_internal_temp(ctx, &af_dst);
bf_src = get_internal_temp(ctx, &bf_dst);
q_src = get_internal_temp(ctx, &q_dst);
r_src = get_internal_temp(ctx, &r_dst);
a_src = get_internal_temp(ctx, &a_dst);
b_src = get_internal_temp(ctx, &b_dst);
get_immediate(ctx, &negative_2, -2);
get_immediate(ctx, &thirty_one, 31);
if (t->tgsi_opc == TGSI_OPCODE_MOD || t->tgsi_opc == TGSI_OPCODE_UMOD)
premod_dst = &q_dst;
/* cov.[us]32f32 af, numerator */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = get_ftype(ctx);
vectorize(ctx, instr, &af_dst, 1, a, 0);
/* cov.[us]32f32 bf, denominator */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = get_ftype(ctx);
vectorize(ctx, instr, &bf_dst, 1, b, 0);
/* Get the absolute values for IDIV */
if (type_sint(src_type)) {
/* absneg.f af, (abs)af */
instr = instr_create(ctx, 2, OPC_ABSNEG_F);
vectorize(ctx, instr, &af_dst, 1, af_src, IR3_REG_ABS);
/* absneg.f bf, (abs)bf */
instr = instr_create(ctx, 2, OPC_ABSNEG_F);
vectorize(ctx, instr, &bf_dst, 1, bf_src, IR3_REG_ABS);
/* absneg.s a, (abs)numerator */
instr = instr_create(ctx, 2, OPC_ABSNEG_S);
vectorize(ctx, instr, &a_dst, 1, a, IR3_REG_ABS);
/* absneg.s b, (abs)denominator */
instr = instr_create(ctx, 2, OPC_ABSNEG_S);
vectorize(ctx, instr, &b_dst, 1, b, IR3_REG_ABS);
} else {
/* mov.u32u32 a, numerator */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = src_type;
vectorize(ctx, instr, &a_dst, 1, a, 0);
/* mov.u32u32 b, denominator */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = src_type;
vectorize(ctx, instr, &b_dst, 1, b, 0);
}
/* rcp.f bf, bf */
instr = instr_create(ctx, 4, OPC_RCP);
vectorize(ctx, instr, &bf_dst, 1, bf_src, 0);
/* That's right, subtract 2 as an integer from the float */
/* add.u bf, bf, -2 */
instr = instr_create(ctx, 2, OPC_ADD_U);
vectorize(ctx, instr, &bf_dst, 2, bf_src, 0, &negative_2, 0);
/* mul.f q, af, bf */
instr = instr_create(ctx, 2, OPC_MUL_F);
vectorize(ctx, instr, &q_dst, 2, af_src, 0, bf_src, 0);
/* cov.f32[us]32 q, q */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = get_ftype(ctx);
instr->cat1.dst_type = src_type;
vectorize(ctx, instr, &q_dst, 1, q_src, 0);
/* integer multiply q by b */
/* mull.u r, q, b */
instr = instr_create(ctx, 2, OPC_MULL_U);
vectorize(ctx, instr, &r_dst, 2, q_src, 0, b_src, 0);
/* madsh.m16 r, q, b, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, q_src, 0, b_src, 0, r_src, 0);
/* madsh.m16, r, b, q, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, b_src, 0, q_src, 0, r_src, 0);
/* sub.u r, a, r */
instr = instr_create(ctx, 2, OPC_SUB_U);
vectorize(ctx, instr, &r_dst, 2, a_src, 0, r_src, 0);
/* cov.u32f32, r, r */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = get_utype(ctx);
instr->cat1.dst_type = get_ftype(ctx);
vectorize(ctx, instr, &r_dst, 1, r_src, 0);
/* mul.f r, r, bf */
instr = instr_create(ctx, 2, OPC_MUL_F);
vectorize(ctx, instr, &r_dst, 2, r_src, 0, bf_src, 0);
/* cov.f32u32 r, r */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = get_ftype(ctx);
instr->cat1.dst_type = get_utype(ctx);
vectorize(ctx, instr, &r_dst, 1, r_src, 0);
/* add.u q, q, r */
instr = instr_create(ctx, 2, OPC_ADD_U);
vectorize(ctx, instr, &q_dst, 2, q_src, 0, r_src, 0);
/* mull.u r, q, b */
instr = instr_create(ctx, 2, OPC_MULL_U);
vectorize(ctx, instr, &r_dst, 2, q_src, 0, b_src, 0);
/* madsh.m16 r, q, b, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, q_src, 0, b_src, 0, r_src, 0);
/* madsh.m16 r, b, q, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, b_src, 0, q_src, 0, r_src, 0);
/* sub.u r, a, r */
instr = instr_create(ctx, 2, OPC_SUB_U);
vectorize(ctx, instr, &r_dst, 2, a_src, 0, r_src, 0);
/* cmps.u.ge r, r, b */
instr = instr_create(ctx, 2, OPC_CMPS_U);
instr->cat2.condition = IR3_COND_GE;
vectorize(ctx, instr, &r_dst, 2, r_src, 0, b_src, 0);
if (type_uint(src_type)) {
/* add.u dst, q, r */
instr = instr_create(ctx, 2, OPC_ADD_U);
vectorize(ctx, instr, premod_dst, 2, q_src, 0, r_src, 0);
} else {
/* add.u q, q, r */
instr = instr_create(ctx, 2, OPC_ADD_U);
vectorize(ctx, instr, &q_dst, 2, q_src, 0, r_src, 0);
/* negate result based on the original arguments */
if (is_const(a) && is_const(b))
a = get_unconst(ctx, a);
/* xor.b r, numerator, denominator */
instr = instr_create(ctx, 2, OPC_XOR_B);
vectorize(ctx, instr, &r_dst, 2, a, 0, b, 0);
/* shr.b r, r, 31 */
instr = instr_create(ctx, 2, OPC_SHR_B);
vectorize(ctx, instr, &r_dst, 2, r_src, 0, &thirty_one, 0);
/* absneg.s b, (neg)q */
instr = instr_create(ctx, 2, OPC_ABSNEG_S);
vectorize(ctx, instr, &b_dst, 1, q_src, IR3_REG_NEGATE);
/* sel.b dst, b, r, q */
instr = instr_create(ctx, 3, OPC_SEL_B32);
vectorize(ctx, instr, premod_dst, 3, b_src, 0, r_src, 0, q_src, 0);
}
if (t->tgsi_opc == TGSI_OPCODE_MOD || t->tgsi_opc == TGSI_OPCODE_UMOD) {
/* The division result will have ended up in q. */
/* mull.u r, q, b */
instr = instr_create(ctx, 2, OPC_MULL_U);
vectorize(ctx, instr, &r_dst, 2, q_src, 0, b, 0);
/* madsh.m16 r, q, b, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, q_src, 0, b, 0, r_src, 0);
/* madsh.m16 r, b, q, r */
instr = instr_create(ctx, 3, OPC_MADSH_M16);
vectorize(ctx, instr, &r_dst, 3, b, 0, q_src, 0, r_src, 0);
/* sub.u dst, a, r */
instr = instr_create(ctx, 2, OPC_SUB_U);
vectorize(ctx, instr, dst, 2, a, 0, r_src, 0);
}
put_dst(ctx, inst, dst);
}
/*
* Handlers for TGSI instructions which do have 1:1 mapping to native
* instructions:
*/
static void
instr_cat0(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
instr_create(ctx, 0, t->opc);
}
static void
instr_cat1(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src = &inst->Src[0].Register;
create_mov(ctx, dst, src);
put_dst(ctx, inst, dst);
}
static void
instr_cat2(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src0 = &inst->Src[0].Register;
struct tgsi_src_register *src1 = &inst->Src[1].Register;
struct ir3_instruction *instr;
unsigned src0_flags = 0, src1_flags = 0;
switch (t->tgsi_opc) {
case TGSI_OPCODE_ABS:
case TGSI_OPCODE_IABS:
src0_flags = IR3_REG_ABS;
break;
case TGSI_OPCODE_INEG:
src0_flags = IR3_REG_NEGATE;
break;
case TGSI_OPCODE_SUB:
src1_flags = IR3_REG_NEGATE;
break;
}
switch (t->opc) {
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
case OPC_CLZ_B:
case OPC_CLZ_S:
case OPC_SIGN_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_NOT_B:
case OPC_BFREV_B:
case OPC_SETRM:
case OPC_CBITS_B:
/* these only have one src reg */
instr = instr_create(ctx, 2, t->opc);
vectorize(ctx, instr, dst, 1, src0, src0_flags);
break;
default:
if (is_const(src0) && is_const(src1))
src0 = get_unconst(ctx, src0);
instr = instr_create(ctx, 2, t->opc);
vectorize(ctx, instr, dst, 2, src0, src0_flags,
src1, src1_flags);
break;
}
put_dst(ctx, inst, dst);
}
static void
instr_cat3(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src0 = &inst->Src[0].Register;
struct tgsi_src_register *src1 = &inst->Src[1].Register;
struct ir3_instruction *instr;
/* in particular, can't handle const for src1 for cat3..
* for mad, we can swap first two src's if needed:
*/
if (is_rel_or_const(src1)) {
if (is_mad(t->opc) && !is_rel_or_const(src0)) {
struct tgsi_src_register *tmp;
tmp = src0;
src0 = src1;
src1 = tmp;
} else {
src1 = get_unconst(ctx, src1);
}
}
instr = instr_create(ctx, 3, t->opc);
vectorize(ctx, instr, dst, 3, src0, 0, src1, 0,
&inst->Src[2].Register, 0);
put_dst(ctx, inst, dst);
}
static void
instr_cat4(const struct instr_translater *t,
struct ir3_compile_context *ctx,
struct tgsi_full_instruction *inst)
{
struct tgsi_dst_register *dst = get_dst(ctx, inst);
struct tgsi_src_register *src = &inst->Src[0].Register;
struct ir3_instruction *instr;
unsigned i;
/* seems like blob compiler avoids const as src.. */
if (is_const(src))
src = get_unconst(ctx, src);
/* we need to replicate into each component: */
for (i = 0; i < 4; i++) {
if (dst->WriteMask & (1 << i)) {
instr = instr_create(ctx, 4, t->opc);
add_dst_reg(ctx, instr, dst, i);
add_src_reg(ctx, instr, src, src->SwizzleX);
}
}
put_dst(ctx, inst, dst);
}
static const struct instr_translater translaters[TGSI_OPCODE_LAST] = {
#define INSTR(n, f, ...) \
[TGSI_OPCODE_ ## n] = { .fxn = (f), .tgsi_opc = TGSI_OPCODE_ ## n, ##__VA_ARGS__ }
INSTR(MOV, instr_cat1),
INSTR(RCP, instr_cat4, .opc = OPC_RCP),
INSTR(RSQ, instr_cat4, .opc = OPC_RSQ),
INSTR(SQRT, instr_cat4, .opc = OPC_SQRT),
INSTR(MUL, instr_cat2, .opc = OPC_MUL_F),
INSTR(ADD, instr_cat2, .opc = OPC_ADD_F),
INSTR(SUB, instr_cat2, .opc = OPC_ADD_F),
INSTR(MIN, instr_cat2, .opc = OPC_MIN_F),
INSTR(MAX, instr_cat2, .opc = OPC_MAX_F),
INSTR(UADD, instr_cat2, .opc = OPC_ADD_U),
INSTR(IMIN, instr_cat2, .opc = OPC_MIN_S),
INSTR(UMIN, instr_cat2, .opc = OPC_MIN_U),
INSTR(IMAX, instr_cat2, .opc = OPC_MAX_S),
INSTR(UMAX, instr_cat2, .opc = OPC_MAX_U),
INSTR(AND, instr_cat2, .opc = OPC_AND_B),
INSTR(OR, instr_cat2, .opc = OPC_OR_B),
INSTR(NOT, instr_cat2, .opc = OPC_NOT_B),
INSTR(XOR, instr_cat2, .opc = OPC_XOR_B),
INSTR(UMUL, trans_umul),
INSTR(UMAD, trans_umul),
INSTR(UDIV, trans_idiv),
INSTR(IDIV, trans_idiv),
INSTR(MOD, trans_idiv),
INSTR(UMOD, trans_idiv),
INSTR(SHL, instr_cat2, .opc = OPC_SHL_B),
INSTR(USHR, instr_cat2, .opc = OPC_SHR_B),
INSTR(ISHR, instr_cat2, .opc = OPC_ASHR_B),
INSTR(IABS, instr_cat2, .opc = OPC_ABSNEG_S),
INSTR(INEG, instr_cat2, .opc = OPC_ABSNEG_S),
INSTR(AND, instr_cat2, .opc = OPC_AND_B),
INSTR(MAD, instr_cat3, .opc = OPC_MAD_F32, .hopc = OPC_MAD_F16),
INSTR(TRUNC, instr_cat2, .opc = OPC_TRUNC_F),
INSTR(CLAMP, trans_clamp),
INSTR(FLR, instr_cat2, .opc = OPC_FLOOR_F),
INSTR(ROUND, instr_cat2, .opc = OPC_RNDNE_F),
INSTR(SSG, instr_cat2, .opc = OPC_SIGN_F),
INSTR(CEIL, instr_cat2, .opc = OPC_CEIL_F),
INSTR(ARL, trans_arl),
INSTR(UARL, trans_arl),
INSTR(EX2, instr_cat4, .opc = OPC_EXP2),
INSTR(LG2, instr_cat4, .opc = OPC_LOG2),
INSTR(ABS, instr_cat2, .opc = OPC_ABSNEG_F),
INSTR(COS, instr_cat4, .opc = OPC_COS),
INSTR(SIN, instr_cat4, .opc = OPC_SIN),
INSTR(TEX, trans_samp, .opc = OPC_SAM, .arg = TGSI_OPCODE_TEX),
INSTR(TXP, trans_samp, .opc = OPC_SAM, .arg = TGSI_OPCODE_TXP),
INSTR(TXB, trans_samp, .opc = OPC_SAMB, .arg = TGSI_OPCODE_TXB),
INSTR(TXB2, trans_samp, .opc = OPC_SAMB, .arg = TGSI_OPCODE_TXB2),
INSTR(TXL, trans_samp, .opc = OPC_SAML, .arg = TGSI_OPCODE_TXL),
INSTR(TXD, trans_samp, .opc = OPC_SAMGQ, .arg = TGSI_OPCODE_TXD),
INSTR(TXF, trans_samp, .opc = OPC_ISAML, .arg = TGSI_OPCODE_TXF),
INSTR(TXQ, trans_txq),
INSTR(DDX, trans_deriv, .opc = OPC_DSX),
INSTR(DDY, trans_deriv, .opc = OPC_DSY),
INSTR(SGT, trans_cmp),
INSTR(SLT, trans_cmp),
INSTR(FSLT, trans_cmp),
INSTR(SGE, trans_cmp),
INSTR(FSGE, trans_cmp),
INSTR(SLE, trans_cmp),
INSTR(SNE, trans_cmp),
INSTR(FSNE, trans_cmp),
INSTR(SEQ, trans_cmp),
INSTR(FSEQ, trans_cmp),
INSTR(CMP, trans_cmp),
INSTR(USNE, trans_icmp, .opc = OPC_CMPS_U),
INSTR(USEQ, trans_icmp, .opc = OPC_CMPS_U),
INSTR(ISGE, trans_icmp, .opc = OPC_CMPS_S),
INSTR(USGE, trans_icmp, .opc = OPC_CMPS_U),
INSTR(ISLT, trans_icmp, .opc = OPC_CMPS_S),
INSTR(USLT, trans_icmp, .opc = OPC_CMPS_U),
INSTR(UCMP, trans_ucmp),
INSTR(ISSG, trans_issg),
INSTR(IF, trans_if, .opc = OPC_CMPS_F),
INSTR(UIF, trans_if, .opc = OPC_CMPS_U),
INSTR(ELSE, trans_else),
INSTR(ENDIF, trans_endif),
INSTR(END, instr_cat0, .opc = OPC_END),
INSTR(KILL, trans_kill, .opc = OPC_KILL),
INSTR(KILL_IF, trans_killif, .opc = OPC_KILL),
INSTR(I2F, trans_cov),
INSTR(U2F, trans_cov),
INSTR(F2I, trans_cov),
INSTR(F2U, trans_cov),
};
static ir3_semantic
decl_semantic(const struct tgsi_declaration_semantic *sem)
{
return ir3_semantic_name(sem->Name, sem->Index);
}
static struct ir3_instruction *
decl_in_frag_bary(struct ir3_compile_context *ctx, unsigned regid,
unsigned j, unsigned inloc)
{
struct ir3_instruction *instr;
struct ir3_register *src;
/* bary.f dst, #inloc, r0.x */
instr = instr_create(ctx, 2, OPC_BARY_F);
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = inloc;
src = ir3_reg_create(instr, 0, IR3_REG_SSA);
src->wrmask = 0x3;
src->instr = ctx->frag_pos;
return instr;
}
/* TGSI_SEMANTIC_POSITION
* """"""""""""""""""""""
*
* For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
* fragment shader input contains the fragment's window position. The X
* component starts at zero and always increases from left to right.
* The Y component starts at zero and always increases but Y=0 may either
* indicate the top of the window or the bottom depending on the fragment
* coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
* The Z coordinate ranges from 0 to 1 to represent depth from the front
* to the back of the Z buffer. The W component contains the reciprocol
* of the interpolated vertex position W component.
*/
static struct ir3_instruction *
decl_in_frag_coord(struct ir3_compile_context *ctx, unsigned regid,
unsigned j)
{
struct ir3_instruction *instr, *src;
compile_assert(ctx, !ctx->frag_coord[j]);
ctx->frag_coord[j] = create_input(ctx->block, NULL, 0);
switch (j) {
case 0: /* .x */
case 1: /* .y */
/* for frag_coord, we get unsigned values.. we need
* to subtract (integer) 8 and divide by 16 (right-
* shift by 4) then convert to float:
*/
/* add.s tmp, src, -8 */
instr = instr_create(ctx, 2, OPC_ADD_S);
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = ctx->frag_coord[j];
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = -8;
src = instr;
/* shr.b tmp, tmp, 4 */
instr = instr_create(ctx, 2, OPC_SHR_B);
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = 4;
src = instr;
/* mov.u32f32 dst, tmp */
instr = instr_create(ctx, 1, 0);
instr->cat1.src_type = TYPE_U32;
instr->cat1.dst_type = TYPE_F32;
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
break;
case 2: /* .z */
case 3: /* .w */
/* seems that we can use these as-is: */
instr = ctx->frag_coord[j];
break;
default:
compile_error(ctx, "invalid channel\n");
instr = create_immed(ctx, 0.0);
break;
}
return instr;
}
/* TGSI_SEMANTIC_FACE
* """"""""""""""""""
*
* This label applies to fragment shader inputs only and indicates that
* the register contains front/back-face information of the form (F, 0,
* 0, 1). The first component will be positive when the fragment belongs
* to a front-facing polygon, and negative when the fragment belongs to a
* back-facing polygon.
*/
static struct ir3_instruction *
decl_in_frag_face(struct ir3_compile_context *ctx, unsigned regid,
unsigned j)
{
struct ir3_instruction *instr, *src;
switch (j) {
case 0: /* .x */
compile_assert(ctx, !ctx->frag_face);
ctx->frag_face = create_input(ctx->block, NULL, 0);
/* for faceness, we always get -1 or 0 (int).. but TGSI expects
* positive vs negative float.. and piglit further seems to
* expect -1.0 or 1.0:
*
* mul.s tmp, hr0.x, 2
* add.s tmp, tmp, 1
* mov.s16f32, dst, tmp
*
*/
instr = instr_create(ctx, 2, OPC_MUL_S);
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = ctx->frag_face;
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = 2;
src = instr;
instr = instr_create(ctx, 2, OPC_ADD_S);
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
ir3_reg_create(instr, 0, IR3_REG_IMMED)->iim_val = 1;
src = instr;
instr = instr_create(ctx, 1, 0); /* mov */
instr->cat1.src_type = TYPE_S32;
instr->cat1.dst_type = TYPE_F32;
ir3_reg_create(instr, regid, 0); /* dummy dst */
ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
break;
case 1: /* .y */
case 2: /* .z */
instr = create_immed(ctx, 0.0);
break;
case 3: /* .w */
instr = create_immed(ctx, 1.0);
break;
default:
compile_error(ctx, "invalid channel\n");
instr = create_immed(ctx, 0.0);
break;
}
return instr;
}
static void
decl_in(struct ir3_compile_context *ctx, struct tgsi_full_declaration *decl)
{
struct ir3_shader_variant *so = ctx->so;
unsigned name = decl->Semantic.Name;
unsigned i;
/* I don't think we should get frag shader input without
* semantic info? Otherwise how do inputs get linked to
* vert outputs?
*/
compile_assert(ctx, (ctx->type == TGSI_PROCESSOR_VERTEX) ||
decl->Declaration.Semantic);
for (i = decl->Range.First; i <= decl->Range.Last; i++) {
unsigned n = so->inputs_count++;
unsigned r = regid(i, 0);
unsigned ncomp, j;
/* we'll figure out the actual components used after scheduling */
ncomp = 4;
DBG("decl in -> r%d", i);
compile_assert(ctx, n < ARRAY_SIZE(so->inputs));
so->inputs[n].semantic = decl_semantic(&decl->Semantic);
so->inputs[n].compmask = (1 << ncomp) - 1;
so->inputs[n].regid = r;
so->inputs[n].inloc = ctx->next_inloc;
so->inputs[n].interpolate = decl->Interp.Interpolate;
for (j = 0; j < ncomp; j++) {
struct ir3_instruction *instr = NULL;
if (ctx->type == TGSI_PROCESSOR_FRAGMENT) {
/* for fragment shaders, POSITION and FACE are handled
* specially, not using normal varying / bary.f
*/
if (name == TGSI_SEMANTIC_POSITION) {
so->inputs[n].bary = false;
so->frag_coord = true;
instr = decl_in_frag_coord(ctx, r + j, j);
} else if (name == TGSI_SEMANTIC_FACE) {
so->inputs[n].bary = false;
so->frag_face = true;
instr = decl_in_frag_face(ctx, r + j, j);
} else {
so->inputs[n].bary = true;
instr = decl_in_frag_bary(ctx, r + j, j,
so->inputs[n].inloc + j - 8);
}
} else {
instr = create_input(ctx->block, NULL, (i * 4) + j);
}
ctx->block->inputs[(i * 4) + j] = instr;
}
if (so->inputs[n].bary || (ctx->type == TGSI_PROCESSOR_VERTEX)) {
ctx->next_inloc += ncomp;
so->total_in += ncomp;
}
}
}
static void
decl_out(struct ir3_compile_context *ctx, struct tgsi_full_declaration *decl)
{
struct ir3_shader_variant *so = ctx->so;
unsigned comp = 0;
unsigned name = decl->Semantic.Name;
unsigned i;
compile_assert(ctx, decl->Declaration.Semantic);
DBG("decl out[%d] -> r%d", name, decl->Range.First);
if (ctx->type == TGSI_PROCESSOR_VERTEX) {
switch (name) {
case TGSI_SEMANTIC_POSITION:
so->writes_pos = true;
break;
case TGSI_SEMANTIC_PSIZE:
so->writes_psize = true;
break;
case TGSI_SEMANTIC_COLOR:
case TGSI_SEMANTIC_BCOLOR:
case TGSI_SEMANTIC_GENERIC:
case TGSI_SEMANTIC_FOG:
case TGSI_SEMANTIC_TEXCOORD:
break;
default:
compile_error(ctx, "unknown VS semantic name: %s\n",
tgsi_semantic_names[name]);
}
} else {
switch (name) {
case TGSI_SEMANTIC_POSITION:
comp = 2; /* tgsi will write to .z component */
so->writes_pos = true;
break;
case TGSI_SEMANTIC_COLOR:
break;
default:
compile_error(ctx, "unknown FS semantic name: %s\n",
tgsi_semantic_names[name]);
}
}
for (i = decl->Range.First; i <= decl->Range.Last; i++) {
unsigned n = so->outputs_count++;
unsigned ncomp, j;
ncomp = 4;
compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
so->outputs[n].semantic = decl_semantic(&decl->Semantic);
so->outputs[n].regid = regid(i, comp);
/* avoid undefined outputs, stick a dummy mov from imm{0.0},
* which if the output is actually assigned will be over-
* written
*/
for (j = 0; j < ncomp; j++)
ctx->block->outputs[(i * 4) + j] = create_immed(ctx, 0.0);
}
}
/* from TGSI perspective, we actually have inputs. But most of the "inputs"
* for a fragment shader are just bary.f instructions. The *actual* inputs
* from the hw perspective are the frag_pos and optionally frag_coord and
* frag_face.
*/
static void
fixup_frag_inputs(struct ir3_compile_context *ctx)
{
struct ir3_shader_variant *so = ctx->so;
struct ir3_block *block = ctx->block;
struct ir3_instruction **inputs;
struct ir3_instruction *instr;
int n, regid = 0;
block->ninputs = 0;
n = 4; /* always have frag_pos */
n += COND(so->frag_face, 4);
n += COND(so->frag_coord, 4);
inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *)));
if (so->frag_face) {
/* this ultimately gets assigned to hr0.x so doesn't conflict
* with frag_coord/frag_pos..
*/
inputs[block->ninputs++] = ctx->frag_face;
ctx->frag_face->regs[0]->num = 0;
/* remaining channels not used, but let's avoid confusing
* other parts that expect inputs to come in groups of vec4
*/
inputs[block->ninputs++] = NULL;
inputs[block->ninputs++] = NULL;
inputs[block->ninputs++] = NULL;
}
/* since we don't know where to set the regid for frag_coord,
* we have to use r0.x for it. But we don't want to *always*
* use r1.x for frag_pos as that could increase the register
* footprint on simple shaders:
*/
if (so->frag_coord) {
ctx->frag_coord[0]->regs[0]->num = regid++;
ctx->frag_coord[1]->regs[0]->num = regid++;
ctx->frag_coord[2]->regs[0]->num = regid++;
ctx->frag_coord[3]->regs[0]->num = regid++;
inputs[block->ninputs++] = ctx->frag_coord[0];
inputs[block->ninputs++] = ctx->frag_coord[1];
inputs[block->ninputs++] = ctx->frag_coord[2];
inputs[block->ninputs++] = ctx->frag_coord[3];
}
/* we always have frag_pos: */
so->pos_regid = regid;
/* r0.x */
instr = create_input(block, NULL, block->ninputs);
instr->regs[0]->num = regid++;
inputs[block->ninputs++] = instr;
ctx->frag_pos->regs[1]->instr = instr;
/* r0.y */
instr = create_input(block, NULL, block->ninputs);
instr->regs[0]->num = regid++;
inputs[block->ninputs++] = instr;
ctx->frag_pos->regs[2]->instr = instr;
block->inputs = inputs;
}
static void
compile_instructions(struct ir3_compile_context *ctx)
{
push_block(ctx);
/* for fragment shader, we have a single input register (usually
* r0.xy) which is used as the base for bary.f varying fetch instrs:
*/
if (ctx->type == TGSI_PROCESSOR_FRAGMENT) {
struct ir3_instruction *instr;
instr = ir3_instr_create(ctx->block, -1, OPC_META_FI);
ir3_reg_create(instr, 0, 0);
ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */
ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */
ctx->frag_pos = instr;
}
while (!tgsi_parse_end_of_tokens(&ctx->parser)) {
tgsi_parse_token(&ctx->parser);
switch (ctx->parser.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_DECLARATION: {
struct tgsi_full_declaration *decl =
&ctx->parser.FullToken.FullDeclaration;
if (decl->Declaration.File == TGSI_FILE_OUTPUT) {
decl_out(ctx, decl);
} else if (decl->Declaration.File == TGSI_FILE_INPUT) {
decl_in(ctx, decl);
}
break;
}
case TGSI_TOKEN_TYPE_IMMEDIATE: {
/* TODO: if we know the immediate is small enough, and only
* used with instructions that can embed an immediate, we
* can skip this:
*/
struct tgsi_full_immediate *imm =
&ctx->parser.FullToken.FullImmediate;
unsigned n = ctx->so->immediates_count++;
compile_assert(ctx, n < ARRAY_SIZE(ctx->so->immediates));
memcpy(ctx->so->immediates[n].val, imm->u, 16);
break;
}
case TGSI_TOKEN_TYPE_INSTRUCTION: {
struct tgsi_full_instruction *inst =
&ctx->parser.FullToken.FullInstruction;
unsigned opc = inst->Instruction.Opcode;
const struct instr_translater *t = &translaters[opc];
if (t->fxn) {
t->fxn(t, ctx, inst);
ctx->num_internal_temps = 0;
compile_assert(ctx, !ctx->using_tmp_dst);
} else {
compile_error(ctx, "unknown TGSI opc: %s\n",
tgsi_get_opcode_name(opc));
}
switch (inst->Instruction.Saturate) {
case TGSI_SAT_ZERO_ONE:
create_clamp_imm(ctx, &inst->Dst[0].Register,
fui(0.0), fui(1.0));
break;
case TGSI_SAT_MINUS_PLUS_ONE:
create_clamp_imm(ctx, &inst->Dst[0].Register,
fui(-1.0), fui(1.0));
break;
}
instr_finish(ctx);
break;
}
default:
break;
}
}
}
static void
compile_dump(struct ir3_compile_context *ctx)
{
const char *name = (ctx->so->type == SHADER_VERTEX) ? "vert" : "frag";
static unsigned n = 0;
char fname[16];
FILE *f;
snprintf(fname, sizeof(fname), "%s-%04u.dot", name, n++);
f = fopen(fname, "w");
if (!f)
return;
ir3_block_depth(ctx->block);
ir3_dump(ctx->ir, name, ctx->block, f);
fclose(f);
}
int
ir3_compile_shader(struct ir3_shader_variant *so,
const struct tgsi_token *tokens, struct ir3_shader_key key,
bool cp)
{
struct ir3_compile_context ctx;
struct ir3_block *block;
struct ir3_instruction **inputs;
unsigned i, j, actual_in;
int ret = 0, max_bary;
assert(!so->ir);
so->ir = ir3_create();
assert(so->ir);
if (compile_init(&ctx, so, tokens) != TGSI_PARSE_OK) {
DBG("INIT failed!");
ret = -1;
goto out;
}
compile_instructions(&ctx);
block = ctx.block;
so->ir->block = block;
/* keep track of the inputs from TGSI perspective.. */
inputs = block->inputs;
/* but fixup actual inputs for frag shader: */
if (ctx.type == TGSI_PROCESSOR_FRAGMENT)
fixup_frag_inputs(&ctx);
/* at this point, for binning pass, throw away unneeded outputs: */
if (key.binning_pass) {
for (i = 0, j = 0; i < so->outputs_count; i++) {
unsigned name = sem2name(so->outputs[i].semantic);
unsigned idx = sem2name(so->outputs[i].semantic);
/* throw away everything but first position/psize */
if ((idx == 0) && ((name == TGSI_SEMANTIC_POSITION) ||
(name == TGSI_SEMANTIC_PSIZE))) {
if (i != j) {
so->outputs[j] = so->outputs[i];
block->outputs[(j*4)+0] = block->outputs[(i*4)+0];
block->outputs[(j*4)+1] = block->outputs[(i*4)+1];
block->outputs[(j*4)+2] = block->outputs[(i*4)+2];
block->outputs[(j*4)+3] = block->outputs[(i*4)+3];
}
j++;
}
}
so->outputs_count = j;
block->noutputs = j * 4;
}
/* for rendering to alpha format, we only need the .w component,
* and we need it to be in the .x position:
*/
if (key.alpha) {
for (i = 0, j = 0; i < so->outputs_count; i++) {
unsigned name = sem2name(so->outputs[i].semantic);
/* move .w component to .x and discard others: */
if (name == TGSI_SEMANTIC_COLOR) {
block->outputs[(i*4)+0] = block->outputs[(i*4)+3];
block->outputs[(i*4)+1] = NULL;
block->outputs[(i*4)+2] = NULL;
block->outputs[(i*4)+3] = NULL;
}
}
}
/* at this point, we want the kill's in the outputs array too,
* so that they get scheduled (since they have no dst).. we've
* already ensured that the array is big enough in push_block():
*/
if (ctx.type == TGSI_PROCESSOR_FRAGMENT) {
for (i = 0; i < ctx.kill_count; i++)
block->outputs[block->noutputs++] = ctx.kill[i];
}
if (fd_mesa_debug & FD_DBG_OPTDUMP)
compile_dump(&ctx);
ret = ir3_block_flatten(block);
if (ret < 0) {
DBG("FLATTEN failed!");
goto out;
}
if ((ret > 0) && (fd_mesa_debug & FD_DBG_OPTDUMP))
compile_dump(&ctx);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("BEFORE CP:\n");
ir3_dump_instr_list(block->head);
}
if (cp && !(fd_mesa_debug & FD_DBG_NOCP))
ir3_block_cp(block);
if (fd_mesa_debug & FD_DBG_OPTDUMP)
compile_dump(&ctx);
ir3_block_depth(block);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER DEPTH:\n");
ir3_dump_instr_list(block->head);
}
ret = ir3_block_sched(block);
if (ret) {
DBG("SCHED failed!");
goto out;
}
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER SCHED:\n");
ir3_dump_instr_list(block->head);
}
ret = ir3_block_ra(block, so->type, key.half_precision,
so->frag_coord, so->frag_face, &so->has_samp, &max_bary);
if (ret) {
DBG("RA failed!");
goto out;
}
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER RA:\n");
ir3_dump_instr_list(block->head);
}
/* fixup input/outputs: */
for (i = 0; i < so->outputs_count; i++) {
so->outputs[i].regid = block->outputs[i*4]->regs[0]->num;
/* preserve hack for depth output.. tgsi writes depth to .z,
* but what we give the hw is the scalar register:
*/
if ((ctx.type == TGSI_PROCESSOR_FRAGMENT) &&
(sem2name(so->outputs[i].semantic) == TGSI_SEMANTIC_POSITION))
so->outputs[i].regid += 2;
}
/* Note that some or all channels of an input may be unused: */
actual_in = 0;
for (i = 0; i < so->inputs_count; i++) {
unsigned j, regid = ~0, compmask = 0;
so->inputs[i].ncomp = 0;
for (j = 0; j < 4; j++) {
struct ir3_instruction *in = inputs[(i*4) + j];
if (in) {
compmask |= (1 << j);
regid = in->regs[0]->num - j;
actual_in++;
so->inputs[i].ncomp++;
}
}
so->inputs[i].regid = regid;
so->inputs[i].compmask = compmask;
}
/* fragment shader always gets full vec4's even if it doesn't
* fetch all components, but vertex shader we need to update
* with the actual number of components fetch, otherwise thing
* will hang due to mismaptch between VFD_DECODE's and
* TOTALATTRTOVS
*/
if (so->type == SHADER_VERTEX)
so->total_in = actual_in;
else
so->total_in = align(max_bary + 1, 4);
out:
if (ret) {
ir3_destroy(so->ir);
so->ir = NULL;
}
compile_free(&ctx);
return ret;
}