blob: c81498d0968667c21c21a1431ea2a1ff1db2a1d5 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "mesa/main/git_sha1.h"
#include "util/strtod.h"
#include "util/debug.h"
#include "genxml/gen7_pack.h"
struct anv_dispatch_table dtable;
static void
compiler_debug_log(void *data, const char *fmt, ...)
{ }
static void
compiler_perf_log(void *data, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (unlikely(INTEL_DEBUG & DEBUG_PERF))
vfprintf(stderr, fmt, args);
va_end(args);
}
static VkResult
anv_physical_device_init(struct anv_physical_device *device,
struct anv_instance *instance,
const char *path)
{
VkResult result;
int fd;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0)
return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"failed to open %s: %m", path);
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = instance;
device->path = path;
device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
if (!device->chipset_id) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"failed to get chipset id: %m");
goto fail;
}
device->name = brw_get_device_name(device->chipset_id);
device->info = brw_get_device_info(device->chipset_id);
if (!device->info) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"failed to get device info");
goto fail;
}
if (device->info->is_haswell) {
fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
} else if (device->info->gen == 7 && !device->info->is_baytrail) {
fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
} else if (device->info->gen == 7 && device->info->is_baytrail) {
fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
} else if (device->info->gen >= 8) {
/* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
* supported as anything */
} else {
result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
"Vulkan not yet supported on %s", device->name);
goto fail;
}
device->cmd_parser_version = -1;
if (device->info->gen == 7) {
device->cmd_parser_version =
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
if (device->cmd_parser_version == -1) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"failed to get command parser version");
goto fail;
}
}
if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"failed to get aperture size: %m");
goto fail;
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"kernel missing gem wait");
goto fail;
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"kernel missing execbuf2");
goto fail;
}
if (!device->info->has_llc &&
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"kernel missing wc mmap");
goto fail;
}
bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
close(fd);
brw_process_intel_debug_variable();
device->compiler = brw_compiler_create(NULL, device->info);
if (device->compiler == NULL) {
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
device->compiler->shader_debug_log = compiler_debug_log;
device->compiler->shader_perf_log = compiler_perf_log;
/* XXX: Actually detect bit6 swizzling */
isl_device_init(&device->isl_dev, device->info, swizzled);
return VK_SUCCESS;
fail:
close(fd);
return result;
}
static void
anv_physical_device_finish(struct anv_physical_device *device)
{
ralloc_free(device->compiler);
}
static const VkExtensionProperties global_extensions[] = {
{
.extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
.specVersion = 25,
},
#ifdef VK_USE_PLATFORM_XCB_KHR
{
.extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
.specVersion = 5,
},
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
{
.extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
.specVersion = 4,
},
#endif
};
static const VkExtensionProperties device_extensions[] = {
{
.extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
.specVersion = 67,
},
};
static void *
default_alloc_func(void *pUserData, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
size_t align, VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
VkResult anv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct anv_instance *instance;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
uint32_t client_version;
if (pCreateInfo->pApplicationInfo &&
pCreateInfo->pApplicationInfo->apiVersion != 0) {
client_version = pCreateInfo->pApplicationInfo->apiVersion;
} else {
client_version = VK_MAKE_VERSION(1, 0, 0);
}
if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
"Client requested version %d.%d.%d",
VK_VERSION_MAJOR(client_version),
VK_VERSION_MINOR(client_version),
VK_VERSION_PATCH(client_version));
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
bool found = false;
for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
global_extensions[j].extensionName) == 0) {
found = true;
break;
}
}
if (!found)
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
}
instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
if (pAllocator)
instance->alloc = *pAllocator;
else
instance->alloc = default_alloc;
instance->apiVersion = client_version;
instance->physicalDeviceCount = -1;
memset(instance->wsi, 0, sizeof(instance->wsi));
_mesa_locale_init();
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
anv_init_wsi(instance);
*pInstance = anv_instance_to_handle(instance);
return VK_SUCCESS;
}
void anv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
if (instance->physicalDeviceCount > 0) {
/* We support at most one physical device. */
assert(instance->physicalDeviceCount == 1);
anv_physical_device_finish(&instance->physicalDevice);
}
anv_finish_wsi(instance);
VG(VALGRIND_DESTROY_MEMPOOL(instance));
_mesa_locale_fini();
anv_free(&instance->alloc, instance);
}
VkResult anv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
VkResult result;
if (instance->physicalDeviceCount < 0) {
result = anv_physical_device_init(&instance->physicalDevice,
instance, "/dev/dri/renderD128");
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
instance->physicalDeviceCount = 0;
} else if (result == VK_SUCCESS) {
instance->physicalDeviceCount = 1;
} else {
return result;
}
}
/* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
* otherwise it's an inout parameter.
*
* The Vulkan spec (git aaed022) says:
*
* pPhysicalDeviceCount is a pointer to an unsigned integer variable
* that is initialized with the number of devices the application is
* prepared to receive handles to. pname:pPhysicalDevices is pointer to
* an array of at least this many VkPhysicalDevice handles [...].
*
* Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
* overwrites the contents of the variable pointed to by
* pPhysicalDeviceCount with the number of physical devices in in the
* instance; otherwise, vkEnumeratePhysicalDevices overwrites
* pPhysicalDeviceCount with the number of physical handles written to
* pPhysicalDevices.
*/
if (!pPhysicalDevices) {
*pPhysicalDeviceCount = instance->physicalDeviceCount;
} else if (*pPhysicalDeviceCount >= 1) {
pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
*pPhysicalDeviceCount = 1;
} else {
*pPhysicalDeviceCount = 0;
}
return VK_SUCCESS;
}
void anv_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
*pFeatures = (VkPhysicalDeviceFeatures) {
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = false,
.independentBlend = pdevice->info->gen >= 8,
.geometryShader = true,
.tessellationShader = false,
.sampleRateShading = false,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = false,
.drawIndirectFirstInstance = false,
.depthClamp = false,
.depthBiasClamp = false,
.fillModeNonSolid = true,
.depthBounds = false,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = false, /* FINISHME */
.textureCompressionETC2 = pdevice->info->gen >= 8 ||
pdevice->info->is_baytrail,
.textureCompressionASTC_LDR = false, /* FINISHME */
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = false,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = false,
.shaderStorageImageExtendedFormats = false,
.shaderStorageImageMultisample = false,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = false,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = false,
.shaderCullDistance = false,
.shaderFloat64 = false,
.shaderInt64 = false,
.shaderInt16 = false,
.alphaToOne = true,
.variableMultisampleRate = false,
.inheritedQueries = false,
};
/* We can't do image stores in vec4 shaders */
pFeatures->vertexPipelineStoresAndAtomics =
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
}
void
anv_device_get_cache_uuid(void *uuid)
{
memset(uuid, 0, VK_UUID_SIZE);
snprintf(uuid, VK_UUID_SIZE, "anv-%s", MESA_GIT_SHA1 + 4);
}
void anv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
const struct brw_device_info *devinfo = pdevice->info;
anv_finishme("Get correct values for VkPhysicalDeviceLimits");
const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&pdevice->isl_dev);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = 0,
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = 64,
.maxPerStageDescriptorUniformBuffers = 64,
.maxPerStageDescriptorStorageBuffers = 64,
.maxPerStageDescriptorSampledImages = 64,
.maxPerStageDescriptorStorageImages = 64,
.maxPerStageDescriptorInputAttachments = 64,
.maxPerStageResources = 128,
.maxDescriptorSetSamplers = 256,
.maxDescriptorSetUniformBuffers = 256,
.maxDescriptorSetUniformBuffersDynamic = 256,
.maxDescriptorSetStorageBuffers = 256,
.maxDescriptorSetStorageBuffersDynamic = 256,
.maxDescriptorSetSampledImages = 256,
.maxDescriptorSetStorageImages = 256,
.maxDescriptorSetInputAttachments = 256,
.maxVertexInputAttributes = 32,
.maxVertexInputBindings = 32,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 0,
.maxTessellationPatchSize = 0,
.maxTessellationControlPerVertexInputComponents = 0,
.maxTessellationControlPerVertexOutputComponents = 0,
.maxTessellationControlPerPatchOutputComponents = 0,
.maxTessellationControlTotalOutputComponents = 0,
.maxTessellationEvaluationInputComponents = 0,
.maxTessellationEvaluationOutputComponents = 0,
.maxGeometryShaderInvocations = 32,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 2,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 32768,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
.maxComputeWorkGroupSize = {
16 * devinfo->max_cs_threads,
16 * devinfo->max_cs_threads,
16 * devinfo->max_cs_threads,
},
.subPixelPrecisionBits = 4 /* FIXME */,
.subTexelPrecisionBits = 4 /* FIXME */,
.mipmapPrecisionBits = 4 /* FIXME */,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { -16384.0, 16384.0 },
.viewportSubPixelBits = 13, /* We take a float? */
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 1,
.minUniformBufferOffsetAlignment = 1,
.minStorageBufferOffsetAlignment = 1,
.minTexelOffset = -8,
.maxTexelOffset = 7,
.minTexelGatherOffset = -8,
.maxTexelGatherOffset = 7,
.minInterpolationOffset = 0, /* FIXME */
.maxInterpolationOffset = 0, /* FIXME */
.subPixelInterpolationOffsetBits = 0, /* FIXME */
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = false,
.timestampPeriod = time_stamp_base / (1000 * 1000 * 1000),
.maxClipDistances = 0 /* FIXME */,
.maxCullDistances = 0 /* FIXME */,
.maxCombinedClipAndCullDistances = 0 /* FIXME */,
.discreteQueuePriorities = 1,
.pointSizeRange = { 0.125, 255.875 },
.lineWidthRange = { 0.0, 7.9921875 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = VK_MAKE_VERSION(1, 0, 5),
.driverVersion = 1,
.vendorID = 0x8086,
.deviceID = pdevice->chipset_id,
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
};
strcpy(pProperties->deviceName, pdevice->name);
anv_device_get_cache_uuid(pProperties->pipelineCacheUUID);
}
void anv_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties* pQueueFamilyProperties)
{
if (pQueueFamilyProperties == NULL) {
*pCount = 1;
return;
}
assert(*pCount >= 1);
*pQueueFamilyProperties = (VkQueueFamilyProperties) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = 1,
.timestampValidBits = 36, /* XXX: Real value here */
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
}
void anv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VkDeviceSize heap_size;
/* Reserve some wiggle room for the driver by exposing only 75% of the
* aperture to the heap.
*/
heap_size = 3 * physical_device->aperture_size / 4;
if (physical_device->info->has_llc) {
/* Big core GPUs share LLC with the CPU and thus one memory type can be
* both cached and coherent at the same time.
*/
pMemoryProperties->memoryTypeCount = 1;
pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = 0,
};
} else {
/* The spec requires that we expose a host-visible, coherent memory
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
* to give the application a choice between cached, but not coherent and
* coherent but uncached (WC though).
*/
pMemoryProperties->memoryTypeCount = 2;
pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = 0,
};
pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = 0,
};
}
pMemoryProperties->memoryHeapCount = 1;
pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
.size = heap_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
PFN_vkVoidFunction anv_GetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return anv_lookup_entrypoint(pName);
}
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return anv_GetInstanceProcAddr(instance, pName);
}
PFN_vkVoidFunction anv_GetDeviceProcAddr(
VkDevice device,
const char* pName)
{
return anv_lookup_entrypoint(pName);
}
static VkResult
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
{
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
queue->device = device;
queue->pool = &device->surface_state_pool;
return VK_SUCCESS;
}
static void
anv_queue_finish(struct anv_queue *queue)
{
}
static struct anv_state
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
{
struct anv_state state;
state = anv_state_pool_alloc(pool, size, align);
memcpy(state.map, p, size);
if (!pool->block_pool->device->info.has_llc)
anv_state_clflush(state);
return state;
}
struct gen8_border_color {
union {
float float32[4];
uint32_t uint32[4];
};
/* Pad out to 64 bytes */
uint32_t _pad[12];
};
static void
anv_device_init_border_colors(struct anv_device *device)
{
static const struct gen8_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 64,
border_colors);
}
VkResult
anv_device_submit_simple_batch(struct anv_device *device,
struct anv_batch *batch)
{
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec2_objects[1];
struct anv_bo bo;
VkResult result = VK_SUCCESS;
uint32_t size;
int64_t timeout;
int ret;
/* Kernel driver requires 8 byte aligned batch length */
size = align_u32(batch->next - batch->start, 8);
result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
if (result != VK_SUCCESS)
return result;
memcpy(bo.map, batch->start, size);
if (!device->info.has_llc)
anv_clflush_range(bo.map, size);
exec2_objects[0].handle = bo.gem_handle;
exec2_objects[0].relocation_count = 0;
exec2_objects[0].relocs_ptr = 0;
exec2_objects[0].alignment = 0;
exec2_objects[0].offset = bo.offset;
exec2_objects[0].flags = 0;
exec2_objects[0].rsvd1 = 0;
exec2_objects[0].rsvd2 = 0;
execbuf.buffers_ptr = (uintptr_t) exec2_objects;
execbuf.buffer_count = 1;
execbuf.batch_start_offset = 0;
execbuf.batch_len = size;
execbuf.cliprects_ptr = 0;
execbuf.num_cliprects = 0;
execbuf.DR1 = 0;
execbuf.DR4 = 0;
execbuf.flags =
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
execbuf.rsvd1 = device->context_id;
execbuf.rsvd2 = 0;
ret = anv_gem_execbuffer(device, &execbuf);
if (ret != 0) {
/* We don't know the real error. */
result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
goto fail;
}
timeout = INT64_MAX;
ret = anv_gem_wait(device, bo.gem_handle, &timeout);
if (ret != 0) {
/* We don't know the real error. */
result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
goto fail;
}
fail:
anv_bo_pool_free(&device->batch_bo_pool, &bo);
return result;
}
VkResult anv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VkResult result;
struct anv_device *device;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
bool found = false;
for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
device_extensions[j].extensionName) == 0) {
found = true;
break;
}
}
if (!found)
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
}
anv_set_dispatch_devinfo(physical_device->info);
device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = physical_device->instance;
device->chipset_id = physical_device->chipset_id;
if (pAllocator)
device->alloc = *pAllocator;
else
device->alloc = physical_device->instance->alloc;
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
if (device->fd == -1) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
device->context_id = anv_gem_create_context(device);
if (device->context_id == -1) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_fd;
}
device->info = *physical_device->info;
device->isl_dev = physical_device->isl_dev;
/* On Broadwell and later, we can use batch chaining to more efficiently
* implement growing command buffers. Prior to Haswell, the kernel
* command parser gets in the way and we have to fall back to growing
* the batch.
*/
device->can_chain_batches = device->info.gen >= 8;
pthread_mutex_init(&device->mutex, NULL);
anv_bo_pool_init(&device->batch_bo_pool, device);
anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
anv_state_pool_init(&device->dynamic_state_pool,
&device->dynamic_state_block_pool);
anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
anv_pipeline_cache_init(&device->default_pipeline_cache, device);
anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
anv_state_pool_init(&device->surface_state_pool,
&device->surface_state_block_pool);
anv_bo_init_new(&device->workaround_bo, device, 1024);
anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
anv_queue_init(device, &device->queue);
switch (device->info.gen) {
case 7:
if (!device->info.is_haswell)
result = gen7_init_device_state(device);
else
result = gen75_init_device_state(device);
break;
case 8:
result = gen8_init_device_state(device);
break;
case 9:
result = gen9_init_device_state(device);
break;
default:
/* Shouldn't get here as we don't create physical devices for any other
* gens. */
unreachable("unhandled gen");
}
if (result != VK_SUCCESS)
goto fail_fd;
result = anv_device_init_meta(device);
if (result != VK_SUCCESS)
goto fail_fd;
anv_device_init_border_colors(device);
*pDevice = anv_device_to_handle(device);
return VK_SUCCESS;
fail_fd:
close(device->fd);
fail_device:
anv_free(&device->alloc, device);
return result;
}
void anv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
anv_queue_finish(&device->queue);
anv_device_finish_meta(device);
#ifdef HAVE_VALGRIND
/* We only need to free these to prevent valgrind errors. The backing
* BO will go away in a couple of lines so we don't actually leak.
*/
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
#endif
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
anv_gem_close(device, device->workaround_bo.gem_handle);
anv_bo_pool_finish(&device->batch_bo_pool);
anv_state_pool_finish(&device->dynamic_state_pool);
anv_block_pool_finish(&device->dynamic_state_block_pool);
anv_block_pool_finish(&device->instruction_block_pool);
anv_state_pool_finish(&device->surface_state_pool);
anv_block_pool_finish(&device->surface_state_block_pool);
anv_block_pool_finish(&device->scratch_block_pool);
close(device->fd);
pthread_mutex_destroy(&device->mutex);
anv_free(&device->alloc, device);
}
VkResult anv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = ARRAY_SIZE(global_extensions);
return VK_SUCCESS;
}
assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
*pPropertyCount = ARRAY_SIZE(global_extensions);
memcpy(pProperties, global_extensions, sizeof(global_extensions));
return VK_SUCCESS;
}
VkResult anv_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = ARRAY_SIZE(device_extensions);
return VK_SUCCESS;
}
assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
*pPropertyCount = ARRAY_SIZE(device_extensions);
memcpy(pProperties, device_extensions, sizeof(device_extensions));
return VK_SUCCESS;
}
VkResult anv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult anv_EnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
void anv_GetDeviceQueue(
VkDevice _device,
uint32_t queueNodeIndex,
uint32_t queueIndex,
VkQueue* pQueue)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(queueIndex == 0);
*pQueue = anv_queue_to_handle(&device->queue);
}
VkResult anv_QueueSubmit(
VkQueue _queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence _fence)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
struct anv_device *device = queue->device;
int ret;
for (uint32_t i = 0; i < submitCount; i++) {
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
pSubmits[i].pCommandBuffers[j]);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
if (ret != 0) {
/* We don't know the real error. */
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
"execbuf2 failed: %m");
}
for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
}
}
if (fence) {
ret = anv_gem_execbuffer(device, &fence->execbuf);
if (ret != 0) {
/* We don't know the real error. */
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
"execbuf2 failed: %m");
}
}
return VK_SUCCESS;
}
VkResult anv_QueueWaitIdle(
VkQueue _queue)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
}
VkResult anv_DeviceWaitIdle(
VkDevice _device)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_batch batch;
uint32_t cmds[8];
batch.start = batch.next = cmds;
batch.end = (void *) cmds + sizeof(cmds);
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
return anv_device_submit_simple_batch(device, &batch);
}
VkResult
anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
{
bo->gem_handle = anv_gem_create(device, size);
if (!bo->gem_handle)
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
bo->map = NULL;
bo->index = 0;
bo->offset = 0;
bo->size = size;
bo->is_winsys_bo = false;
return VK_SUCCESS;
}
VkResult anv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_device_memory *mem;
VkResult result;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
if (pAllocateInfo->allocationSize == 0) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
/* We support exactly one memory heap. */
assert(pAllocateInfo->memoryTypeIndex == 0 ||
(!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
/* FINISHME: Fail if allocation request exceeds heap size. */
mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
/* The kernel is going to give us whole pages anyway */
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
result = anv_bo_init_new(&mem->bo, device, alloc_size);
if (result != VK_SUCCESS)
goto fail;
mem->type_index = pAllocateInfo->memoryTypeIndex;
*pMem = anv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
anv_free2(&device->alloc, pAllocator, mem);
return result;
}
void anv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
if (mem == NULL)
return;
if (mem->bo.map)
anv_gem_munmap(mem->bo.map, mem->bo.size);
if (mem->bo.gem_handle != 0)
anv_gem_close(device, mem->bo.gem_handle);
anv_free2(&device->alloc, pAllocator, mem);
}
VkResult anv_MapMemory(
VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (size == VK_WHOLE_SIZE)
size = mem->bo.size - offset;
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
* at a time is valid. We could just mmap up front and return an offset
* pointer here, but that may exhaust virtual memory on 32 bit
* userspace. */
uint32_t gem_flags = 0;
if (!device->info.has_llc && mem->type_index == 0)
gem_flags |= I915_MMAP_WC;
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
uint64_t map_offset = offset & ~4095ull;
assert(offset >= map_offset);
uint64_t map_size = (offset + size) - map_offset;
/* Let's map whole pages */
map_size = align_u64(map_size, 4096);
mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
map_offset, map_size, gem_flags);
mem->map_size = map_size;
*ppData = mem->map + (offset - map_offset);
return VK_SUCCESS;
}
void anv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _memory)
{
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
if (mem == NULL)
return;
anv_gem_munmap(mem->map, mem->map_size);
}
static void
clflush_mapped_ranges(struct anv_device *device,
uint32_t count,
const VkMappedMemoryRange *ranges)
{
for (uint32_t i = 0; i < count; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
void *end;
if (ranges[i].offset + ranges[i].size > mem->map_size)
end = mem->map + mem->map_size;
else
end = mem->map + ranges[i].offset + ranges[i].size;
while (p < end) {
__builtin_ia32_clflush(p);
p += CACHELINE_SIZE;
}
}
}
VkResult anv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (device->info.has_llc)
return VK_SUCCESS;
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
return VK_SUCCESS;
}
VkResult anv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (device->info.has_llc)
return VK_SUCCESS;
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
/* Make sure no reads get moved up above the invalidate. */
__builtin_ia32_mfence();
return VK_SUCCESS;
}
void anv_GetBufferMemoryRequirements(
VkDevice device,
VkBuffer _buffer,
VkMemoryRequirements* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*
* We support exactly one memory type.
*/
pMemoryRequirements->memoryTypeBits = 1;
pMemoryRequirements->size = buffer->size;
pMemoryRequirements->alignment = 16;
}
void anv_GetImageMemoryRequirements(
VkDevice device,
VkImage _image,
VkMemoryRequirements* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_image, image, _image);
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*
* We support exactly one memory type.
*/
pMemoryRequirements->memoryTypeBits = 1;
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
}
void anv_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
stub();
}
void anv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VkResult anv_BindBufferMemory(
VkDevice device,
VkBuffer _buffer,
VkDeviceMemory _memory,
VkDeviceSize memoryOffset)
{
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
if (mem) {
buffer->bo = &mem->bo;
buffer->offset = memoryOffset;
} else {
buffer->bo = NULL;
buffer->offset = 0;
}
return VK_SUCCESS;
}
VkResult anv_BindImageMemory(
VkDevice device,
VkImage _image,
VkDeviceMemory _memory,
VkDeviceSize memoryOffset)
{
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
ANV_FROM_HANDLE(anv_image, image, _image);
if (mem) {
image->bo = &mem->bo;
image->offset = memoryOffset;
} else {
image->bo = NULL;
image->offset = 0;
}
return VK_SUCCESS;
}
VkResult anv_QueueBindSparse(
VkQueue queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence)
{
stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
}
VkResult anv_CreateFence(
VkDevice _device,
const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_bo fence_bo;
struct anv_fence *fence;
struct anv_batch batch;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
if (result != VK_SUCCESS)
return result;
/* Fences are small. Just store the CPU data structure in the BO. */
fence = fence_bo.map;
fence->bo = fence_bo;
/* Place the batch after the CPU data but on its own cache line. */
const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
batch.next = batch.start = fence->bo.map + batch_offset;
batch.end = fence->bo.map + fence->bo.size;
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
if (!device->info.has_llc) {
assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
assert(batch.next - batch.start <= CACHELINE_SIZE);
__builtin_ia32_mfence();
__builtin_ia32_clflush(batch.start);
}
fence->exec2_objects[0].handle = fence->bo.gem_handle;
fence->exec2_objects[0].relocation_count = 0;
fence->exec2_objects[0].relocs_ptr = 0;
fence->exec2_objects[0].alignment = 0;
fence->exec2_objects[0].offset = fence->bo.offset;
fence->exec2_objects[0].flags = 0;
fence->exec2_objects[0].rsvd1 = 0;
fence->exec2_objects[0].rsvd2 = 0;
fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
fence->execbuf.buffer_count = 1;
fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
fence->execbuf.batch_len = batch.next - batch.start;
fence->execbuf.cliprects_ptr = 0;
fence->execbuf.num_cliprects = 0;
fence->execbuf.DR1 = 0;
fence->execbuf.DR4 = 0;
fence->execbuf.flags =
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
fence->execbuf.rsvd1 = device->context_id;
fence->execbuf.rsvd2 = 0;
fence->ready = false;
*pFence = anv_fence_to_handle(fence);
return VK_SUCCESS;
}
void anv_DestroyFence(
VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
assert(fence->bo.map == fence);
anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
}
VkResult anv_ResetFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences)
{
for (uint32_t i = 0; i < fenceCount; i++) {
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
fence->ready = false;
}
return VK_SUCCESS;
}
VkResult anv_GetFenceStatus(
VkDevice _device,
VkFence _fence)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
int64_t t = 0;
int ret;
if (fence->ready)
return VK_SUCCESS;
ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
if (ret == 0) {
fence->ready = true;
return VK_SUCCESS;
}
return VK_NOT_READY;
}
VkResult anv_WaitForFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences,
VkBool32 waitAll,
uint64_t timeout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
/* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
* to block indefinitely timeouts <= 0. Unfortunately, this was broken
* for a couple of kernel releases. Since there's no way to know
* whether or not the kernel we're using is one of the broken ones, the
* best we can do is to clamp the timeout to INT64_MAX. This limits the
* maximum timeout from 584 years to 292 years - likely not a big deal.
*/
if (timeout > INT64_MAX)
timeout = INT64_MAX;
int64_t t = timeout;
/* FIXME: handle !waitAll */
for (uint32_t i = 0; i < fenceCount; i++) {
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
if (ret == -1 && errno == ETIME) {
return VK_TIMEOUT;
} else if (ret == -1) {
/* We don't know the real error. */
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
"gem wait failed: %m");
}
}
return VK_SUCCESS;
}
// Queue semaphore functions
VkResult anv_CreateSemaphore(
VkDevice device,
const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore)
{
/* The DRM execbuffer ioctl always execute in-oder, even between different
* rings. As such, there's nothing to do for the user space semaphore.
*/
*pSemaphore = (VkSemaphore)1;
return VK_SUCCESS;
}
void anv_DestroySemaphore(
VkDevice device,
VkSemaphore semaphore,
const VkAllocationCallbacks* pAllocator)
{
}
// Event functions
VkResult anv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_state state;
struct anv_event *event;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
state = anv_state_pool_alloc(&device->dynamic_state_pool,
sizeof(*event), 8);
event = state.map;
event->state = state;
event->semaphore = VK_EVENT_RESET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
*pEvent = anv_event_to_handle(event);
return VK_SUCCESS;
}
void anv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_state_pool_free(&device->dynamic_state_pool, event->state);
}
VkResult anv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (!device->info.has_llc) {
/* Invalidate read cache before reading event written by GPU. */
__builtin_ia32_clflush(event);
__builtin_ia32_mfence();
}
return event->semaphore;
}
VkResult anv_SetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
event->semaphore = VK_EVENT_SET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
return VK_SUCCESS;
}
VkResult anv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
event->semaphore = VK_EVENT_RESET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
return VK_SUCCESS;
}
// Buffer functions
VkResult anv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_buffer *buffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->bo = NULL;
buffer->offset = 0;
*pBuffer = anv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void anv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
anv_free2(&device->alloc, pAllocator, buffer);
}
void
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
enum isl_format format,
uint32_t offset, uint32_t range, uint32_t stride)
{
isl_buffer_fill_state(&device->isl_dev, state.map,
.address = offset,
.mocs = device->default_mocs,
.size = range,
.format = format,
.stride = stride);
if (!device->info.has_llc)
anv_state_clflush(state);
}
void anv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
anv_free2(&device->alloc, pAllocator, sampler);
}
VkResult anv_CreateFramebuffer(
VkDevice _device,
const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_framebuffer *framebuffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size = sizeof(*framebuffer) +
sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
framebuffer->attachment_count = pCreateInfo->attachmentCount;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
VkImageView _iview = pCreateInfo->pAttachments[i];
framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
}
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void anv_DestroyFramebuffer(
VkDevice _device,
VkFramebuffer _fb,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
anv_free2(&device->alloc, pAllocator, fb);
}
void vkCmdDbgMarkerBegin(
VkCommandBuffer commandBuffer,
const char* pMarker)
__attribute__ ((visibility ("default")));
void vkCmdDbgMarkerEnd(
VkCommandBuffer commandBuffer)
__attribute__ ((visibility ("default")));
void vkCmdDbgMarkerBegin(
VkCommandBuffer commandBuffer,
const char* pMarker)
{
}
void vkCmdDbgMarkerEnd(
VkCommandBuffer commandBuffer)
{
}