blob: 0674e4fd01a95fdba948cc0a8863ae4160ee81eb [file] [log] [blame]
/*
* Copyright (c) 2014 Scott Mansell
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "pipe/p_state.h"
#include "util/u_format.h"
#include "util/u_hash_table.h"
#include "util/u_hash.h"
#include "util/u_memory.h"
#include "util/u_pack_color.h"
#include "util/format_srgb.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_lowering.h"
#include "vc4_context.h"
#include "vc4_qpu.h"
#include "vc4_qir.h"
#ifdef USE_VC4_SIMULATOR
#include "simpenrose/simpenrose.h"
#endif
struct vc4_key {
struct vc4_uncompiled_shader *shader_state;
struct {
enum pipe_format format;
unsigned compare_mode:1;
unsigned compare_func:3;
unsigned wrap_s:3;
unsigned wrap_t:3;
uint8_t swizzle[4];
} tex[VC4_MAX_TEXTURE_SAMPLERS];
uint8_t ucp_enables;
};
struct vc4_fs_key {
struct vc4_key base;
enum pipe_format color_format;
bool depth_enabled;
bool stencil_enabled;
bool stencil_twoside;
bool stencil_full_writemasks;
bool is_points;
bool is_lines;
bool alpha_test;
bool point_coord_upper_left;
bool light_twoside;
uint8_t alpha_test_func;
uint32_t point_sprite_mask;
struct pipe_rt_blend_state blend;
};
struct vc4_vs_key {
struct vc4_key base;
/**
* This is a proxy for the array of FS input semantics, which is
* larger than we would want to put in the key.
*/
uint64_t compiled_fs_id;
enum pipe_format attr_formats[8];
bool is_coord;
bool per_vertex_point_size;
};
static void
resize_qreg_array(struct vc4_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static struct qreg
add_uniform(struct vc4_compile *c,
enum quniform_contents contents,
uint32_t data)
{
uint32_t uniform = c->num_uniforms++;
struct qreg u = { QFILE_UNIF, uniform };
if (uniform >= c->uniform_array_size) {
c->uniform_array_size = MAX2(MAX2(16, uniform + 1),
c->uniform_array_size * 2);
c->uniform_data = reralloc(c, c->uniform_data,
uint32_t,
c->uniform_array_size);
c->uniform_contents = reralloc(c, c->uniform_contents,
enum quniform_contents,
c->uniform_array_size);
}
c->uniform_contents[uniform] = contents;
c->uniform_data[uniform] = data;
return u;
}
static struct qreg
get_temp_for_uniform(struct vc4_compile *c, enum quniform_contents contents,
uint32_t data)
{
struct qreg u = add_uniform(c, contents, data);
struct qreg t = qir_MOV(c, u);
return t;
}
static struct qreg
qir_uniform_ui(struct vc4_compile *c, uint32_t ui)
{
return get_temp_for_uniform(c, QUNIFORM_CONSTANT, ui);
}
static struct qreg
qir_uniform_f(struct vc4_compile *c, float f)
{
return qir_uniform_ui(c, fui(f));
}
static struct qreg
get_src(struct vc4_compile *c, unsigned tgsi_op,
struct tgsi_src_register *src, int i)
{
struct qreg r = c->undef;
uint32_t s = i;
switch (i) {
case TGSI_SWIZZLE_X:
s = src->SwizzleX;
break;
case TGSI_SWIZZLE_Y:
s = src->SwizzleY;
break;
case TGSI_SWIZZLE_Z:
s = src->SwizzleZ;
break;
case TGSI_SWIZZLE_W:
s = src->SwizzleW;
break;
default:
abort();
}
assert(!src->Indirect);
switch (src->File) {
case TGSI_FILE_NULL:
return r;
case TGSI_FILE_TEMPORARY:
r = c->temps[src->Index * 4 + s];
break;
case TGSI_FILE_IMMEDIATE:
r = c->consts[src->Index * 4 + s];
break;
case TGSI_FILE_CONSTANT:
r = get_temp_for_uniform(c, QUNIFORM_UNIFORM,
src->Index * 4 + s);
break;
case TGSI_FILE_INPUT:
r = c->inputs[src->Index * 4 + s];
break;
case TGSI_FILE_SAMPLER:
case TGSI_FILE_SAMPLER_VIEW:
r = c->undef;
break;
default:
fprintf(stderr, "unknown src file %d\n", src->File);
abort();
}
if (src->Absolute)
r = qir_FMAXABS(c, r, r);
if (src->Negate) {
switch (tgsi_opcode_infer_src_type(tgsi_op)) {
case TGSI_TYPE_SIGNED:
case TGSI_TYPE_UNSIGNED:
r = qir_SUB(c, qir_uniform_ui(c, 0), r);
break;
default:
r = qir_FSUB(c, qir_uniform_f(c, 0.0), r);
break;
}
}
return r;
};
static void
update_dst(struct vc4_compile *c, struct tgsi_full_instruction *tgsi_inst,
int i, struct qreg val)
{
struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register;
assert(!tgsi_dst->Indirect);
switch (tgsi_dst->File) {
case TGSI_FILE_TEMPORARY:
c->temps[tgsi_dst->Index * 4 + i] = val;
break;
case TGSI_FILE_OUTPUT:
c->outputs[tgsi_dst->Index * 4 + i] = val;
c->num_outputs = MAX2(c->num_outputs,
tgsi_dst->Index * 4 + i + 1);
break;
default:
fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File);
abort();
}
};
static struct qreg
get_swizzled_channel(struct vc4_compile *c,
struct qreg *srcs, int swiz)
{
switch (swiz) {
default:
case UTIL_FORMAT_SWIZZLE_NONE:
fprintf(stderr, "warning: unknown swizzle\n");
/* FALLTHROUGH */
case UTIL_FORMAT_SWIZZLE_0:
return qir_uniform_f(c, 0.0);
case UTIL_FORMAT_SWIZZLE_1:
return qir_uniform_f(c, 1.0);
case UTIL_FORMAT_SWIZZLE_X:
case UTIL_FORMAT_SWIZZLE_Y:
case UTIL_FORMAT_SWIZZLE_Z:
case UTIL_FORMAT_SWIZZLE_W:
return srcs[swiz];
}
}
static struct qreg
tgsi_to_qir_alu(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg dst = qir_get_temp(c);
qir_emit(c, qir_inst4(op, dst,
src[0 * 4 + i],
src[1 * 4 + i],
src[2 * 4 + i],
c->undef));
return dst;
}
static struct qreg
tgsi_to_qir_scalar(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg dst = qir_get_temp(c);
qir_emit(c, qir_inst(op, dst,
src[0 * 4 + 0],
c->undef));
return dst;
}
static struct qreg
tgsi_to_qir_rcp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg x = src[0 * 4 + 0];
struct qreg r = qir_RCP(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 2.0),
qir_FMUL(c, x, r)));
return r;
}
static struct qreg
tgsi_to_qir_rsq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg x = src[0 * 4 + 0];
struct qreg r = qir_RSQ(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 1.5),
qir_FMUL(c,
qir_uniform_f(c, 0.5),
qir_FMUL(c, x,
qir_FMUL(c, r, r)))));
return r;
}
static struct qreg
qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
{
struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
struct qreg high = qir_POW(c,
qir_FMUL(c,
qir_FADD(c,
srgb,
qir_uniform_f(c, 0.055)),
qir_uniform_f(c, 1.0 / 1.055)),
qir_uniform_f(c, 2.4));
qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
return qir_SEL_X_Y_NS(c, low, high);
}
static struct qreg
qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
{
struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
struct qreg high = qir_FSUB(c,
qir_FMUL(c,
qir_uniform_f(c, 1.055),
qir_POW(c,
linear,
qir_uniform_f(c, 0.41666))),
qir_uniform_f(c, 0.055));
qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
return qir_SEL_X_Y_NS(c, low, high);
}
static struct qreg
tgsi_to_qir_umul(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg src0_hi = qir_SHR(c, src[0 * 4 + i],
qir_uniform_ui(c, 16));
struct qreg src0_lo = qir_AND(c, src[0 * 4 + i],
qir_uniform_ui(c, 0xffff));
struct qreg src1_hi = qir_SHR(c, src[1 * 4 + i],
qir_uniform_ui(c, 16));
struct qreg src1_lo = qir_AND(c, src[1 * 4 + i],
qir_uniform_ui(c, 0xffff));
struct qreg hilo = qir_MUL24(c, src0_hi, src1_lo);
struct qreg lohi = qir_MUL24(c, src0_lo, src1_hi);
struct qreg lolo = qir_MUL24(c, src0_lo, src1_lo);
return qir_ADD(c, lolo, qir_SHL(c,
qir_ADD(c, hilo, lohi),
qir_uniform_ui(c, 16)));
}
static struct qreg
tgsi_to_qir_idiv(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_FTOI(c, qir_FMUL(c,
qir_ITOF(c, src[0 * 4 + i]),
qir_RCP(c, qir_ITOF(c, src[1 * 4 + i]))));
}
static struct qreg
tgsi_to_qir_ineg(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_SUB(c, qir_uniform_ui(c, 0), src[0 * 4 + i]);
}
static struct qreg
tgsi_to_qir_seq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_sne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_slt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_sge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_fseq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fsne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fslt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fsge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_useq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_usne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_islt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_isge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_cmp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, src[0 * 4 + i]);
return qir_SEL_X_Y_NS(c,
src[1 * 4 + i],
src[2 * 4 + i]);
}
static struct qreg
tgsi_to_qir_mad(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_FADD(c,
qir_FMUL(c,
src[0 * 4 + i],
src[1 * 4 + i]),
src[2 * 4 + i]);
}
static struct qreg
tgsi_to_qir_lrp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg src0 = src[0 * 4 + i];
struct qreg src1 = src[1 * 4 + i];
struct qreg src2 = src[2 * 4 + i];
/* LRP is:
* src0 * src1 + (1 - src0) * src2.
* -> src0 * src1 + src2 - src0 * src2
* -> src2 + src0 * (src1 - src2)
*/
return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2)));
}
static void
tgsi_to_qir_tex(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src)
{
assert(!tgsi_inst->Instruction.Saturate);
struct qreg s = src[0 * 4 + 0];
struct qreg t = src[0 * 4 + 1];
struct qreg r = src[0 * 4 + 2];
uint32_t unit = tgsi_inst->Src[1].Register.Index;
bool is_txl = tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL;
struct qreg proj = c->undef;
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
proj = qir_RCP(c, src[0 * 4 + 3]);
s = qir_FMUL(c, s, proj);
t = qir_FMUL(c, t, proj);
}
struct qreg texture_u[] = {
add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
add_uniform(c, QUNIFORM_CONSTANT, 0),
add_uniform(c, QUNIFORM_CONSTANT, 0),
};
uint32_t next_texture_u = 0;
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
s = qir_FMUL(c, s,
get_temp_for_uniform(c,
QUNIFORM_TEXRECT_SCALE_X,
unit));
t = qir_FMUL(c, t,
get_temp_for_uniform(c,
QUNIFORM_TEXRECT_SCALE_Y,
unit));
}
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
is_txl) {
texture_u[2] = add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
unit | (is_txl << 16));
}
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE) {
struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
struct qreg rcp_ma = qir_RCP(c, ma);
s = qir_FMUL(c, s, rcp_ma);
t = qir_FMUL(c, t, rcp_ma);
r = qir_FMUL(c, r, rcp_ma);
qir_TEX_R(c, r, texture_u[next_texture_u++]);
} else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
qir_TEX_R(c, get_temp_for_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
texture_u[next_texture_u++]);
}
if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
s = qir_FMIN(c, qir_FMAX(c, s, qir_uniform_f(c, 0.0)),
qir_uniform_f(c, 1.0));
}
if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
t = qir_FMIN(c, qir_FMAX(c, t, qir_uniform_f(c, 0.0)),
qir_uniform_f(c, 1.0));
}
qir_TEX_T(c, t, texture_u[next_texture_u++]);
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL)
qir_TEX_B(c, src[0 * 4 + 3], texture_u[next_texture_u++]);
qir_TEX_S(c, s, texture_u[next_texture_u++]);
c->num_texture_samples++;
struct qreg r4 = qir_TEX_RESULT(c);
enum pipe_format format = c->key->tex[unit].format;
struct qreg unpacked[4];
if (util_format_is_depth_or_stencil(format)) {
struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
qir_uniform_ui(c, 8)));
struct qreg normalized = qir_FMUL(c, depthf,
qir_uniform_f(c, 1.0f/0xffffff));
struct qreg depth_output;
struct qreg one = qir_uniform_f(c, 1.0f);
if (c->key->tex[unit].compare_mode) {
struct qreg compare = src[0 * 4 + 2];
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP)
compare = qir_FMUL(c, compare, proj);
switch (c->key->tex[unit].compare_func) {
case PIPE_FUNC_NEVER:
depth_output = qir_uniform_f(c, 0.0f);
break;
case PIPE_FUNC_ALWAYS:
depth_output = one;
break;
case PIPE_FUNC_EQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_ZS(c, one);
break;
case PIPE_FUNC_NOTEQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_ZC(c, one);
break;
case PIPE_FUNC_GREATER:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_NC(c, one);
break;
case PIPE_FUNC_GEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL_X_0_NS(c, one);
break;
case PIPE_FUNC_LESS:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_NS(c, one);
break;
case PIPE_FUNC_LEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL_X_0_NC(c, one);
break;
}
} else {
depth_output = normalized;
}
for (int i = 0; i < 4; i++)
unpacked[i] = depth_output;
} else {
for (int i = 0; i < 4; i++)
unpacked[i] = qir_R4_UNPACK(c, r4, i);
}
const uint8_t *format_swiz = vc4_get_format_swizzle(format);
struct qreg texture_output[4];
for (int i = 0; i < 4; i++) {
texture_output[i] = get_swizzled_channel(c, unpacked,
format_swiz[i]);
}
if (util_format_is_srgb(format)) {
for (int i = 0; i < 3; i++)
texture_output[i] = qir_srgb_decode(c,
texture_output[i]);
}
for (int i = 0; i < 4; i++) {
if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
update_dst(c, tgsi_inst, i,
get_swizzled_channel(c, texture_output,
c->key->tex[unit].swizzle[i]));
}
}
static struct qreg
tgsi_to_qir_trunc(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
}
/**
* Computes x - floor(x), which is tricky because our FTOI truncates (rounds
* to zero).
*/
static struct qreg
tgsi_to_qir_frc(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc);
qir_SF(c, diff);
return qir_SEL_X_Y_NS(c,
qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
diff);
}
/**
* Computes floor(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
tgsi_to_qir_flr(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
/* This will be < 0 if we truncated and the truncation was of a value
* that was < 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], trunc));
return qir_SEL_X_Y_NS(c,
qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
trunc);
}
/**
* Computes ceil(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
tgsi_to_qir_ceil(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
/* This will be < 0 if we truncated and the truncation was of a value
* that was > 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, trunc, src[0 * 4 + i]));
return qir_SEL_X_Y_NS(c,
qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
trunc);
}
static struct qreg
tgsi_to_qir_abs(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg arg = src[0 * 4 + i];
return qir_FMAXABS(c, arg, arg);
}
/* Note that this instruction replicates its result from the x channel */
static struct qreg
tgsi_to_qir_sin(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
float coeff[] = {
-2.0 * M_PI,
pow(2.0 * M_PI, 3) / (3 * 2 * 1),
-pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg scaled_x =
qir_FMUL(c,
src[0 * 4 + 0],
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
struct qreg x = qir_FADD(c,
tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
qir_uniform_f(c, -0.5));
struct qreg x2 = qir_FMUL(c, x, x);
struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c,
sum,
qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])));
}
return sum;
}
/* Note that this instruction replicates its result from the x channel */
static struct qreg
tgsi_to_qir_cos(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
float coeff[] = {
-1.0f,
pow(2.0 * M_PI, 2) / (2 * 1),
-pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg scaled_x =
qir_FMUL(c, src[0 * 4 + 0],
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
struct qreg x_frac = qir_FADD(c,
tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
qir_uniform_f(c, -0.5));
struct qreg sum = qir_uniform_f(c, coeff[0]);
struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
struct qreg x = x2; /* Current x^2, x^4, or x^6 */
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
if (i != 1)
x = qir_FMUL(c, x, x2);
struct qreg mul = qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i]));
if (i == 0)
sum = mul;
else
sum = qir_FADD(c, sum, mul);
}
return sum;
}
static struct qreg
tgsi_to_qir_clamp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_FMAX(c, qir_FMIN(c,
src[0 * 4 + i],
src[2 * 4 + i]),
src[1 * 4 + i]);
}
static struct qreg
tgsi_to_qir_ssg(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, src[0 * 4 + i]);
return qir_SEL_X_Y_NC(c,
qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
qir_uniform_f(c, -1.0));
}
static void
emit_vertex_input(struct vc4_compile *c, int attr)
{
enum pipe_format format = c->vs_key->attr_formats[attr];
struct qreg vpm_reads[4];
/* Right now, we're setting the VPM offsets to be 16 bytes wide every
* time, so we always read 4 32-bit VPM entries.
*/
for (int i = 0; i < 4; i++) {
vpm_reads[i] = qir_get_temp(c);
qir_emit(c, qir_inst(QOP_VPM_READ,
vpm_reads[i],
c->undef,
c->undef));
c->num_inputs++;
}
bool format_warned = false;
const struct util_format_description *desc =
util_format_description(format);
for (int i = 0; i < 4; i++) {
uint8_t swiz = desc->swizzle[i];
struct qreg result;
if (swiz > UTIL_FORMAT_SWIZZLE_W)
result = get_swizzled_channel(c, vpm_reads, swiz);
else if (desc->channel[swiz].size == 32 &&
desc->channel[swiz].type == UTIL_FORMAT_TYPE_FLOAT) {
result = get_swizzled_channel(c, vpm_reads, swiz);
} else if (desc->channel[swiz].size == 8 &&
(desc->channel[swiz].type == UTIL_FORMAT_TYPE_UNSIGNED ||
desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) &&
desc->channel[swiz].normalized) {
struct qreg vpm = vpm_reads[0];
if (desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED)
vpm = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
result = qir_UNPACK_8(c, vpm, swiz);
} else {
if (!format_warned) {
fprintf(stderr,
"vtx element %d unsupported type: %s\n",
attr, util_format_name(format));
format_warned = true;
}
result = qir_uniform_f(c, 0.0);
}
if (desc->channel[swiz].normalized &&
desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) {
result = qir_FSUB(c,
qir_FMUL(c,
result,
qir_uniform_f(c, 2.0)),
qir_uniform_f(c, 1.0));
}
c->inputs[attr * 4 + i] = result;
}
}
static void
tgsi_to_qir_kill_if(struct vc4_compile *c, struct qreg *src, int i)
{
if (c->discard.file == QFILE_NULL)
c->discard = qir_uniform_f(c, 0.0);
qir_SF(c, src[0 * 4 + i]);
c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
c->discard);
}
static void
emit_fragcoord_input(struct vc4_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
c->inputs[attr * 4 + 2] =
qir_FMUL(c,
qir_ITOF(c, qir_FRAG_Z(c)),
qir_uniform_f(c, 1.0 / 0xffffff));
c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
}
static void
emit_point_coord_input(struct vc4_compile *c, int attr)
{
if (c->point_x.file == QFILE_NULL) {
c->point_x = qir_uniform_f(c, 0.0);
c->point_y = qir_uniform_f(c, 0.0);
}
c->inputs[attr * 4 + 0] = c->point_x;
if (c->fs_key->point_coord_upper_left) {
c->inputs[attr * 4 + 1] = qir_FSUB(c,
qir_uniform_f(c, 1.0),
c->point_y);
} else {
c->inputs[attr * 4 + 1] = c->point_y;
}
c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
}
static struct qreg
emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
uint8_t index, uint8_t swizzle)
{
uint32_t i = c->num_input_semantics++;
struct qreg vary = {
QFILE_VARY,
i
};
if (c->num_input_semantics >= c->input_semantics_array_size) {
c->input_semantics_array_size =
MAX2(4, c->input_semantics_array_size * 2);
c->input_semantics = reralloc(c, c->input_semantics,
struct vc4_varying_semantic,
c->input_semantics_array_size);
}
c->input_semantics[i].semantic = semantic;
c->input_semantics[i].index = index;
c->input_semantics[i].swizzle = swizzle;
return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
}
static void
emit_fragment_input(struct vc4_compile *c, int attr,
struct tgsi_full_declaration *decl)
{
for (int i = 0; i < 4; i++) {
c->inputs[attr * 4 + i] =
emit_fragment_varying(c,
decl->Semantic.Name,
decl->Semantic.Index,
i);
c->num_inputs++;
}
}
static void
emit_face_input(struct vc4_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = qir_FSUB(c,
qir_uniform_f(c, 1.0),
qir_FMUL(c,
qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
qir_uniform_f(c, 2.0)));
c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
}
static void
add_output(struct vc4_compile *c,
uint32_t decl_offset,
uint8_t semantic_name,
uint8_t semantic_index,
uint8_t semantic_swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_semantics = reralloc(c,
c->output_semantics,
struct vc4_varying_semantic,
c->outputs_array_size);
}
c->output_semantics[decl_offset].semantic = semantic_name;
c->output_semantics[decl_offset].index = semantic_index;
c->output_semantics[decl_offset].swizzle = semantic_swizzle;
}
static void
emit_tgsi_declaration(struct vc4_compile *c,
struct tgsi_full_declaration *decl)
{
switch (decl->Declaration.File) {
case TGSI_FILE_TEMPORARY: {
uint32_t old_size = c->temps_array_size;
resize_qreg_array(c, &c->temps, &c->temps_array_size,
(decl->Range.Last + 1) * 4);
for (int i = old_size; i < c->temps_array_size; i++)
c->temps[i] = qir_uniform_ui(c, 0);
break;
}
case TGSI_FILE_INPUT:
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(decl->Range.Last + 1) * 4);
for (int i = decl->Range.First;
i <= decl->Range.Last;
i++) {
if (c->stage == QSTAGE_FRAG) {
if (decl->Semantic.Name ==
TGSI_SEMANTIC_POSITION) {
emit_fragcoord_input(c, i);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
emit_face_input(c, i);
} else if (decl->Semantic.Name == TGSI_SEMANTIC_GENERIC &&
(c->fs_key->point_sprite_mask &
(1 << decl->Semantic.Index))) {
emit_point_coord_input(c, i);
} else {
emit_fragment_input(c, i, decl);
}
} else {
emit_vertex_input(c, i);
}
}
break;
case TGSI_FILE_OUTPUT: {
for (int i = 0; i < 4; i++) {
add_output(c,
decl->Range.First * 4 + i,
decl->Semantic.Name,
decl->Semantic.Index,
i);
}
switch (decl->Semantic.Name) {
case TGSI_SEMANTIC_POSITION:
c->output_position_index = decl->Range.First * 4;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
c->output_clipvertex_index = decl->Range.First * 4;
break;
case TGSI_SEMANTIC_COLOR:
c->output_color_index = decl->Range.First * 4;
break;
case TGSI_SEMANTIC_PSIZE:
c->output_point_size_index = decl->Range.First * 4;
break;
}
break;
}
}
}
static void
emit_tgsi_instruction(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst)
{
struct {
enum qop op;
struct qreg (*func)(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op,
struct qreg *src, int i);
} op_trans[] = {
[TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu },
[TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs },
[TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu },
[TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu },
[TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu },
[TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu },
[TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu },
[TGSI_OPCODE_F2I] = { QOP_FTOI, tgsi_to_qir_alu },
[TGSI_OPCODE_I2F] = { QOP_ITOF, tgsi_to_qir_alu },
[TGSI_OPCODE_UADD] = { QOP_ADD, tgsi_to_qir_alu },
[TGSI_OPCODE_USHR] = { QOP_SHR, tgsi_to_qir_alu },
[TGSI_OPCODE_ISHR] = { QOP_ASR, tgsi_to_qir_alu },
[TGSI_OPCODE_SHL] = { QOP_SHL, tgsi_to_qir_alu },
[TGSI_OPCODE_IMIN] = { QOP_MIN, tgsi_to_qir_alu },
[TGSI_OPCODE_IMAX] = { QOP_MAX, tgsi_to_qir_alu },
[TGSI_OPCODE_AND] = { QOP_AND, tgsi_to_qir_alu },
[TGSI_OPCODE_OR] = { QOP_OR, tgsi_to_qir_alu },
[TGSI_OPCODE_XOR] = { QOP_XOR, tgsi_to_qir_alu },
[TGSI_OPCODE_NOT] = { QOP_NOT, tgsi_to_qir_alu },
[TGSI_OPCODE_UMUL] = { 0, tgsi_to_qir_umul },
[TGSI_OPCODE_IDIV] = { 0, tgsi_to_qir_idiv },
[TGSI_OPCODE_INEG] = { 0, tgsi_to_qir_ineg },
[TGSI_OPCODE_SEQ] = { 0, tgsi_to_qir_seq },
[TGSI_OPCODE_SNE] = { 0, tgsi_to_qir_sne },
[TGSI_OPCODE_SGE] = { 0, tgsi_to_qir_sge },
[TGSI_OPCODE_SLT] = { 0, tgsi_to_qir_slt },
[TGSI_OPCODE_FSEQ] = { 0, tgsi_to_qir_fseq },
[TGSI_OPCODE_FSNE] = { 0, tgsi_to_qir_fsne },
[TGSI_OPCODE_FSGE] = { 0, tgsi_to_qir_fsge },
[TGSI_OPCODE_FSLT] = { 0, tgsi_to_qir_fslt },
[TGSI_OPCODE_USEQ] = { 0, tgsi_to_qir_useq },
[TGSI_OPCODE_USNE] = { 0, tgsi_to_qir_usne },
[TGSI_OPCODE_ISGE] = { 0, tgsi_to_qir_isge },
[TGSI_OPCODE_ISLT] = { 0, tgsi_to_qir_islt },
[TGSI_OPCODE_CMP] = { 0, tgsi_to_qir_cmp },
[TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad },
[TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_rcp },
[TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_rsq },
[TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_scalar },
[TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_scalar },
[TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp },
[TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc },
[TGSI_OPCODE_CEIL] = { 0, tgsi_to_qir_ceil },
[TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc },
[TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr },
[TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin },
[TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos },
[TGSI_OPCODE_CLAMP] = { 0, tgsi_to_qir_clamp },
[TGSI_OPCODE_SSG] = { 0, tgsi_to_qir_ssg },
};
static int asdf = 0;
uint32_t tgsi_op = tgsi_inst->Instruction.Opcode;
if (tgsi_op == TGSI_OPCODE_END)
return;
struct qreg src_regs[12];
for (int s = 0; s < 3; s++) {
for (int i = 0; i < 4; i++) {
src_regs[4 * s + i] =
get_src(c, tgsi_inst->Instruction.Opcode,
&tgsi_inst->Src[s].Register, i);
}
}
switch (tgsi_op) {
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
tgsi_to_qir_tex(c, tgsi_inst,
op_trans[tgsi_op].op, src_regs);
return;
case TGSI_OPCODE_KILL:
c->discard = qir_uniform_f(c, 1.0);
return;
case TGSI_OPCODE_KILL_IF:
for (int i = 0; i < 4; i++)
tgsi_to_qir_kill_if(c, src_regs, i);
return;
default:
break;
}
if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) {
fprintf(stderr, "unknown tgsi inst: ");
tgsi_dump_instruction(tgsi_inst, asdf++);
fprintf(stderr, "\n");
abort();
}
for (int i = 0; i < 4; i++) {
if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
struct qreg result;
result = op_trans[tgsi_op].func(c, tgsi_inst,
op_trans[tgsi_op].op,
src_regs, i);
if (tgsi_inst->Instruction.Saturate) {
float low = (tgsi_inst->Instruction.Saturate ==
TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0);
result = qir_FMAX(c,
qir_FMIN(c,
result,
qir_uniform_f(c, 1.0)),
qir_uniform_f(c, low));
}
update_dst(c, tgsi_inst, i, result);
}
}
static void
parse_tgsi_immediate(struct vc4_compile *c, struct tgsi_full_immediate *imm)
{
for (int i = 0; i < 4; i++) {
unsigned n = c->num_consts++;
resize_qreg_array(c, &c->consts, &c->consts_array_size, n + 1);
c->consts[n] = qir_uniform_ui(c, imm->u[i].Uint);
}
}
static struct qreg
vc4_blend_channel(struct vc4_compile *c,
struct qreg *dst,
struct qreg *src,
struct qreg val,
unsigned factor,
int channel)
{
switch(factor) {
case PIPE_BLENDFACTOR_ONE:
return val;
case PIPE_BLENDFACTOR_SRC_COLOR:
return qir_FMUL(c, val, src[channel]);
case PIPE_BLENDFACTOR_SRC_ALPHA:
return qir_FMUL(c, val, src[3]);
case PIPE_BLENDFACTOR_DST_ALPHA:
return qir_FMUL(c, val, dst[3]);
case PIPE_BLENDFACTOR_DST_COLOR:
return qir_FMUL(c, val, dst[channel]);
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
if (channel != 3) {
return qir_FMUL(c,
val,
qir_FMIN(c,
src[3],
qir_FSUB(c,
qir_uniform_f(c, 1.0),
dst[3])));
} else {
return val;
}
case PIPE_BLENDFACTOR_CONST_COLOR:
return qir_FMUL(c, val,
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
channel));
case PIPE_BLENDFACTOR_CONST_ALPHA:
return qir_FMUL(c, val,
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
3));
case PIPE_BLENDFACTOR_ZERO:
return qir_uniform_f(c, 0.0);
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
src[channel]));
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
src[3]));
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
dst[3]));
case PIPE_BLENDFACTOR_INV_DST_COLOR:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
dst[channel]));
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
return qir_FMUL(c, val,
qir_FSUB(c, qir_uniform_f(c, 1.0),
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
channel)));
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
return qir_FMUL(c, val,
qir_FSUB(c, qir_uniform_f(c, 1.0),
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
3)));
default:
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
/* Unsupported. */
fprintf(stderr, "Unknown blend factor %d\n", factor);
return val;
}
}
static struct qreg
vc4_blend_func(struct vc4_compile *c,
struct qreg src, struct qreg dst,
unsigned func)
{
switch (func) {
case PIPE_BLEND_ADD:
return qir_FADD(c, src, dst);
case PIPE_BLEND_SUBTRACT:
return qir_FSUB(c, src, dst);
case PIPE_BLEND_REVERSE_SUBTRACT:
return qir_FSUB(c, dst, src);
case PIPE_BLEND_MIN:
return qir_FMIN(c, src, dst);
case PIPE_BLEND_MAX:
return qir_FMAX(c, src, dst);
default:
/* Unsupported. */
fprintf(stderr, "Unknown blend func %d\n", func);
return src;
}
}
/**
* Implements fixed function blending in shader code.
*
* VC4 doesn't have any hardware support for blending. Instead, you read the
* current contents of the destination from the tile buffer after having
* waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
* math using your output color and that destination value, and update the
* output color appropriately.
*/
static void
vc4_blend(struct vc4_compile *c, struct qreg *result,
struct qreg *dst_color, struct qreg *src_color)
{
struct pipe_rt_blend_state *blend = &c->fs_key->blend;
if (!blend->blend_enable) {
for (int i = 0; i < 4; i++)
result[i] = src_color[i];
return;
}
struct qreg src_blend[4], dst_blend[4];
for (int i = 0; i < 3; i++) {
src_blend[i] = vc4_blend_channel(c,
dst_color, src_color,
src_color[i],
blend->rgb_src_factor, i);
dst_blend[i] = vc4_blend_channel(c,
dst_color, src_color,
dst_color[i],
blend->rgb_dst_factor, i);
}
src_blend[3] = vc4_blend_channel(c,
dst_color, src_color,
src_color[3],
blend->alpha_src_factor, 3);
dst_blend[3] = vc4_blend_channel(c,
dst_color, src_color,
dst_color[3],
blend->alpha_dst_factor, 3);
for (int i = 0; i < 3; i++) {
result[i] = vc4_blend_func(c,
src_blend[i], dst_blend[i],
blend->rgb_func);
}
result[3] = vc4_blend_func(c,
src_blend[3], dst_blend[3],
blend->alpha_func);
}
static void
clip_distance_discard(struct vc4_compile *c)
{
for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
if (!(c->key->ucp_enables & (1 << i)))
continue;
struct qreg dist = emit_fragment_varying(c,
TGSI_SEMANTIC_CLIPDIST,
i,
TGSI_SWIZZLE_X);
qir_SF(c, dist);
if (c->discard.file == QFILE_NULL)
c->discard = qir_uniform_f(c, 0.0);
c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
c->discard);
}
}
static void
alpha_test_discard(struct vc4_compile *c)
{
struct qreg src_alpha;
struct qreg alpha_ref = get_temp_for_uniform(c, QUNIFORM_ALPHA_REF, 0);
if (!c->fs_key->alpha_test)
return;
if (c->output_color_index != -1)
src_alpha = c->outputs[c->output_color_index + 3];
else
src_alpha = qir_uniform_f(c, 1.0);
if (c->discard.file == QFILE_NULL)
c->discard = qir_uniform_f(c, 0.0);
switch (c->fs_key->alpha_test_func) {
case PIPE_FUNC_NEVER:
c->discard = qir_uniform_f(c, 1.0);
break;
case PIPE_FUNC_ALWAYS:
break;
case PIPE_FUNC_EQUAL:
qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
c->discard = qir_SEL_X_Y_ZS(c, c->discard,
qir_uniform_f(c, 1.0));
break;
case PIPE_FUNC_NOTEQUAL:
qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
c->discard = qir_SEL_X_Y_ZC(c, c->discard,
qir_uniform_f(c, 1.0));
break;
case PIPE_FUNC_GREATER:
qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
c->discard = qir_SEL_X_Y_NC(c, c->discard,
qir_uniform_f(c, 1.0));
break;
case PIPE_FUNC_GEQUAL:
qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
c->discard = qir_SEL_X_Y_NS(c, c->discard,
qir_uniform_f(c, 1.0));
break;
case PIPE_FUNC_LESS:
qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
c->discard = qir_SEL_X_Y_NS(c, c->discard,
qir_uniform_f(c, 1.0));
break;
case PIPE_FUNC_LEQUAL:
qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
c->discard = qir_SEL_X_Y_NC(c, c->discard,
qir_uniform_f(c, 1.0));
break;
}
}
static void
emit_frag_end(struct vc4_compile *c)
{
clip_distance_discard(c);
alpha_test_discard(c);
enum pipe_format color_format = c->fs_key->color_format;
const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
if (c->fs_key->blend.blend_enable ||
c->fs_key->blend.colormask != 0xf) {
struct qreg r4 = qir_TLB_COLOR_READ(c);
for (int i = 0; i < 4; i++)
tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
for (int i = 0; i < 4; i++) {
dst_color[i] = get_swizzled_channel(c,
tlb_read_color,
format_swiz[i]);
if (util_format_is_srgb(color_format) && i != 3) {
linear_dst_color[i] =
qir_srgb_decode(c, dst_color[i]);
} else {
linear_dst_color[i] = dst_color[i];
}
}
}
struct qreg blend_color[4];
struct qreg undef_array[4] = {
c->undef, c->undef, c->undef, c->undef
};
vc4_blend(c, blend_color, linear_dst_color,
(c->output_color_index != -1 ?
c->outputs + c->output_color_index :
undef_array));
if (util_format_is_srgb(color_format)) {
for (int i = 0; i < 3; i++)
blend_color[i] = qir_srgb_encode(c, blend_color[i]);
}
/* If the bit isn't set in the color mask, then just return the
* original dst color, instead.
*/
for (int i = 0; i < 4; i++) {
if (!(c->fs_key->blend.colormask & (1 << i))) {
blend_color[i] = dst_color[i];
}
}
/* Debug: Sometimes you're getting a black output and just want to see
* if the FS is getting executed at all. Spam magenta into the color
* output.
*/
if (0) {
blend_color[0] = qir_uniform_f(c, 1.0);
blend_color[1] = qir_uniform_f(c, 0.0);
blend_color[2] = qir_uniform_f(c, 1.0);
blend_color[3] = qir_uniform_f(c, 0.5);
}
struct qreg swizzled_outputs[4];
for (int i = 0; i < 4; i++) {
swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
format_swiz[i]);
}
if (c->discard.file != QFILE_NULL)
qir_TLB_DISCARD_SETUP(c, c->discard);
if (c->fs_key->stencil_enabled) {
qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 0));
if (c->fs_key->stencil_twoside) {
qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 1));
}
if (c->fs_key->stencil_full_writemasks) {
qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 2));
}
}
if (c->fs_key->depth_enabled) {
struct qreg z;
if (c->output_position_index != -1) {
z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
qir_uniform_f(c, 0xffffff)));
} else {
z = qir_FRAG_Z(c);
}
qir_TLB_Z_WRITE(c, z);
}
bool color_written = false;
for (int i = 0; i < 4; i++) {
if (swizzled_outputs[i].file != QFILE_NULL)
color_written = true;
}
struct qreg packed_color;
if (color_written) {
/* Fill in any undefined colors. The simulator will assertion
* fail if we read something that wasn't written, and I don't
* know what hardware does.
*/
for (int i = 0; i < 4; i++) {
if (swizzled_outputs[i].file == QFILE_NULL)
swizzled_outputs[i] = qir_uniform_f(c, 0.0);
}
packed_color = qir_get_temp(c);
qir_emit(c, qir_inst4(QOP_PACK_COLORS, packed_color,
swizzled_outputs[0],
swizzled_outputs[1],
swizzled_outputs[2],
swizzled_outputs[3]));
} else {
packed_color = qir_uniform_ui(c, 0);
}
qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
packed_color, c->undef));
}
static void
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg xyi[2];
for (int i = 0; i < 2; i++) {
struct qreg scale =
add_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
xyi[i] = qir_FTOI(c, qir_FMUL(c,
qir_FMUL(c,
c->outputs[i],
scale),
rcp_w));
}
qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
}
static void
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg zscale = add_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = add_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c,
c->outputs[2],
zscale),
zoffset),
rcp_w));
}
static void
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
{
qir_VPM_WRITE(c, rcp_w);
}
static void
emit_point_size_write(struct vc4_compile *c)
{
struct qreg point_size;
if (c->output_point_size_index)
point_size = c->outputs[c->output_point_size_index + 3];
else
point_size = qir_uniform_f(c, 1.0);
/* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
* BCM21553).
*/
point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
qir_VPM_WRITE(c, point_size);
}
/**
* Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
*
* The simulator insists that there be at least one vertex attribute, so
* vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
* insists that all vertex attributes loaded get read by the VS/CS, so we have
* to consume it here.
*/
static void
emit_stub_vpm_read(struct vc4_compile *c)
{
if (c->num_inputs)
return;
for (int i = 0; i < 4; i++) {
qir_emit(c, qir_inst(QOP_VPM_READ,
qir_get_temp(c),
c->undef,
c->undef));
c->num_inputs++;
}
}
static void
emit_ucp_clipdistance(struct vc4_compile *c)
{
struct qreg *clipvertex;
if (c->output_clipvertex_index != -1)
clipvertex = &c->outputs[c->output_clipvertex_index];
else if (c->output_position_index != -1)
clipvertex = &c->outputs[c->output_position_index];
else
return;
for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
if (!(c->key->ucp_enables & (1 << plane)))
continue;
/* Pick the next outputs[] that hasn't been written to, since
* there are no other program writes left to be processed at
* this point. If something had been declared but not written
* (like a w component), we'll just smash over the top of it.
*/
uint32_t output_index = c->num_outputs++;
add_output(c, output_index,
TGSI_SEMANTIC_CLIPDIST,
plane,
TGSI_SWIZZLE_X);
struct qreg dist = qir_uniform_f(c, 0.0);
for (int i = 0; i < 4; i++) {
struct qreg ucp =
add_uniform(c, QUNIFORM_USER_CLIP_PLANE,
plane * 4 + i);
dist = qir_FADD(c, dist, qir_FMUL(c, clipvertex[i], ucp));
}
c->outputs[output_index] = dist;
}
}
static void
emit_vert_end(struct vc4_compile *c,
struct vc4_varying_semantic *fs_inputs,
uint32_t num_fs_inputs)
{
struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
emit_stub_vpm_read(c);
emit_ucp_clipdistance(c);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
for (int i = 0; i < num_fs_inputs; i++) {
struct vc4_varying_semantic *input = &fs_inputs[i];
int j;
for (j = 0; j < c->num_outputs; j++) {
struct vc4_varying_semantic *output =
&c->output_semantics[j];
if (input->semantic == output->semantic &&
input->index == output->index &&
input->swizzle == output->swizzle) {
qir_VPM_WRITE(c, c->outputs[j]);
break;
}
}
/* Emit padding if we didn't find a declared VS output for
* this FS input.
*/
if (j == c->num_outputs)
qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
}
}
static void
emit_coord_end(struct vc4_compile *c)
{
struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
emit_stub_vpm_read(c);
for (int i = 0; i < 4; i++)
qir_VPM_WRITE(c, c->outputs[i]);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
}
static struct vc4_compile *
vc4_shader_tgsi_to_qir(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key)
{
struct vc4_compile *c = qir_compile_init();
int ret;
c->stage = stage;
c->shader_state = &key->shader_state->base;
c->program_id = key->shader_state->program_id;
c->variant_id = key->shader_state->compiled_variant_count++;
c->key = key;
switch (stage) {
case QSTAGE_FRAG:
c->fs_key = (struct vc4_fs_key *)key;
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
}
break;
case QSTAGE_VERT:
c->vs_key = (struct vc4_vs_key *)key;
break;
case QSTAGE_COORD:
c->vs_key = (struct vc4_vs_key *)key;
break;
}
const struct tgsi_token *tokens = key->shader_state->base.tokens;
if (c->fs_key && c->fs_key->light_twoside) {
if (!key->shader_state->twoside_tokens) {
const struct tgsi_lowering_config lowering_config = {
.color_two_side = true,
};
struct tgsi_shader_info info;
key->shader_state->twoside_tokens =
tgsi_transform_lowering(&lowering_config,
key->shader_state->base.tokens,
&info);
/* If no transformation occurred, then NULL is
* returned and we just use our original tokens.
*/
if (!key->shader_state->twoside_tokens) {
key->shader_state->twoside_tokens =
key->shader_state->base.tokens;
}
}
tokens = key->shader_state->twoside_tokens;
}
ret = tgsi_parse_init(&c->parser, tokens);
assert(ret == TGSI_PARSE_OK);
if (vc4_debug & VC4_DEBUG_TGSI) {
fprintf(stderr, "%s prog %d/%d TGSI:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
tgsi_dump(tokens, 0);
}
while (!tgsi_parse_end_of_tokens(&c->parser)) {
tgsi_parse_token(&c->parser);
switch (c->parser.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_DECLARATION:
emit_tgsi_declaration(c,
&c->parser.FullToken.FullDeclaration);
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
emit_tgsi_instruction(c,
&c->parser.FullToken.FullInstruction);
break;
case TGSI_TOKEN_TYPE_IMMEDIATE:
parse_tgsi_immediate(c,
&c->parser.FullToken.FullImmediate);
break;
}
}
switch (stage) {
case QSTAGE_FRAG:
emit_frag_end(c);
break;
case QSTAGE_VERT:
emit_vert_end(c,
vc4->prog.fs->input_semantics,
vc4->prog.fs->num_inputs);
break;
case QSTAGE_COORD:
emit_coord_end(c);
break;
}
tgsi_parse_free(&c->parser);
qir_optimize(c);
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "%s prog %d/%d QIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
qir_dump(c);
}
qir_reorder_uniforms(c);
vc4_generate_code(vc4, c);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->qpu_inst_count);
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->num_uniforms);
}
return c;
}
static void *
vc4_shader_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
if (!so)
return NULL;
const struct tgsi_lowering_config lowering_config = {
.lower_DST = true,
.lower_XPD = true,
.lower_SCS = true,
.lower_POW = true,
.lower_LIT = true,
.lower_EXP = true,
.lower_LOG = true,
.lower_DP4 = true,
.lower_DP3 = true,
.lower_DPH = true,
.lower_DP2 = true,
.lower_DP2A = true,
};
struct tgsi_shader_info info;
so->base.tokens = tgsi_transform_lowering(&lowering_config, cso->tokens, &info);
if (!so->base.tokens)
so->base.tokens = tgsi_dup_tokens(cso->tokens);
so->program_id = vc4->next_uncompiled_program_id++;
return so;
}
static void
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
struct vc4_compile *c)
{
int count = c->num_uniforms;
struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
uinfo->count = count;
uinfo->data = ralloc_array(shader, uint32_t, count);
memcpy(uinfo->data, c->uniform_data,
count * sizeof(*uinfo->data));
uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
memcpy(uinfo->contents, c->uniform_contents,
count * sizeof(*uinfo->contents));
uinfo->num_texture_samples = c->num_texture_samples;
}
static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key)
{
struct util_hash_table *ht;
uint32_t key_size;
if (stage == QSTAGE_FRAG) {
ht = vc4->fs_cache;
key_size = sizeof(struct vc4_fs_key);
} else {
ht = vc4->vs_cache;
key_size = sizeof(struct vc4_vs_key);
}
struct vc4_compiled_shader *shader;
shader = util_hash_table_get(ht, key);
if (shader)
return shader;
struct vc4_compile *c = vc4_shader_tgsi_to_qir(vc4, stage, key);
shader = rzalloc(NULL, struct vc4_compiled_shader);
shader->program_id = vc4->next_compiled_program_id++;
if (stage == QSTAGE_FRAG) {
bool input_live[c->num_input_semantics];
struct simple_node *node;
memset(input_live, 0, sizeof(input_live));
foreach(node, &c->instructions) {
struct qinst *inst = (struct qinst *)node;
for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
if (inst->src[i].file == QFILE_VARY)
input_live[inst->src[i].index] = true;
}
}
shader->input_semantics = ralloc_array(shader,
struct vc4_varying_semantic,
c->num_input_semantics);
for (int i = 0; i < c->num_input_semantics; i++) {
struct vc4_varying_semantic *sem = &c->input_semantics[i];
if (!input_live[i])
continue;
/* Skip non-VS-output inputs. */
if (sem->semantic == (uint8_t)~0)
continue;
if (sem->semantic == TGSI_SEMANTIC_COLOR)
shader->color_inputs |= (1 << shader->num_inputs);
shader->input_semantics[shader->num_inputs] = *sem;
shader->num_inputs++;
}
} else {
shader->num_inputs = c->num_inputs;
}
copy_uniform_state_to_shader(shader, c);
shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
c->qpu_inst_count * sizeof(uint64_t),
"code");
qir_compile_destroy(c);
struct vc4_key *dup_key;
dup_key = malloc(key_size);
memcpy(dup_key, key, key_size);
util_hash_table_set(ht, dup_key, shader);
return shader;
}
static void
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
struct vc4_texture_stateobj *texstate)
{
for (int i = 0; i < texstate->num_textures; i++) {
struct pipe_sampler_view *sampler = texstate->textures[i];
struct pipe_sampler_state *sampler_state =
texstate->samplers[i];
if (sampler) {
key->tex[i].format = sampler->format;
key->tex[i].swizzle[0] = sampler->swizzle_r;
key->tex[i].swizzle[1] = sampler->swizzle_g;
key->tex[i].swizzle[2] = sampler->swizzle_b;
key->tex[i].swizzle[3] = sampler->swizzle_a;
key->tex[i].compare_mode = sampler_state->compare_mode;
key->tex[i].compare_func = sampler_state->compare_func;
key->tex[i].wrap_s = sampler_state->wrap_s;
key->tex[i].wrap_t = sampler_state->wrap_t;
}
}
key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
}
static void
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_fs_key local_key;
struct vc4_fs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_BLEND |
VC4_DIRTY_FRAMEBUFFER |
VC4_DIRTY_ZSA |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_FRAGTEX |
VC4_DIRTY_TEXSTATE |
VC4_DIRTY_PROG))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
key->base.shader_state = vc4->prog.bind_fs;
key->is_points = (prim_mode == PIPE_PRIM_POINTS);
key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
prim_mode <= PIPE_PRIM_LINE_STRIP);
key->blend = vc4->blend->rt[0];
if (vc4->framebuffer.cbufs[0])
key->color_format = vc4->framebuffer.cbufs[0]->format;
key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
key->depth_enabled = (vc4->zsa->base.depth.enabled ||
key->stencil_enabled);
if (vc4->zsa->base.alpha.enabled) {
key->alpha_test = true;
key->alpha_test_func = vc4->zsa->base.alpha.func;
}
if (key->is_points) {
key->point_sprite_mask =
vc4->rasterizer->base.sprite_coord_enable;
key->point_coord_upper_left =
(vc4->rasterizer->base.sprite_coord_mode ==
PIPE_SPRITE_COORD_UPPER_LEFT);
}
key->light_twoside = vc4->rasterizer->base.light_twoside;
struct vc4_compiled_shader *old_fs = vc4->prog.fs;
vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
if (vc4->prog.fs == old_fs)
return;
if (vc4->rasterizer->base.flatshade &&
old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
}
}
static void
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_vs_key local_key;
struct vc4_vs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_VERTTEX |
VC4_DIRTY_TEXSTATE |
VC4_DIRTY_VTXSTATE |
VC4_DIRTY_PROG))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
key->base.shader_state = vc4->prog.bind_vs;
key->compiled_fs_id = vc4->prog.fs->program_id;
for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
key->per_vertex_point_size =
(prim_mode == PIPE_PRIM_POINTS &&
vc4->rasterizer->base.point_size_per_vertex);
vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
key->is_coord = true;
vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
}
void
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
{
vc4_update_compiled_fs(vc4, prim_mode);
vc4_update_compiled_vs(vc4, prim_mode);
}
static unsigned
fs_cache_hash(void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
}
static unsigned
vs_cache_hash(void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
}
static int
fs_cache_compare(void *key1, void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_fs_key));
}
static int
vs_cache_compare(void *key1, void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_vs_key));
}
struct delete_state {
struct vc4_context *vc4;
struct vc4_uncompiled_shader *shader_state;
};
static enum pipe_error
fs_delete_from_cache(void *in_key, void *in_value, void *data)
{
struct delete_state *del = data;
struct vc4_fs_key *key = in_key;
struct vc4_compiled_shader *shader = in_value;
if (key->base.shader_state == data) {
util_hash_table_remove(del->vc4->fs_cache, key);
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
}
return 0;
}
static enum pipe_error
vs_delete_from_cache(void *in_key, void *in_value, void *data)
{
struct delete_state *del = data;
struct vc4_vs_key *key = in_key;
struct vc4_compiled_shader *shader = in_value;
if (key->base.shader_state == data) {
util_hash_table_remove(del->vc4->vs_cache, key);
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
}
return 0;
}
static void
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = hwcso;
struct delete_state del;
del.vc4 = vc4;
del.shader_state = so;
util_hash_table_foreach(vc4->fs_cache, fs_delete_from_cache, &del);
util_hash_table_foreach(vc4->vs_cache, vs_delete_from_cache, &del);
if (so->twoside_tokens != so->base.tokens)
free((void *)so->twoside_tokens);
free((void *)so->base.tokens);
free(so);
}
static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
{
switch (p_wrap) {
case PIPE_TEX_WRAP_REPEAT:
return 0;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return 1;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return 2;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return 3;
case PIPE_TEX_WRAP_CLAMP:
return (using_nearest ? 1 : 3);
default:
fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
assert(!"not reached");
return 0;
}
}
static void
write_texture_p0(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t unit)
{
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
cl_reloc(vc4, &vc4->uniforms, rsc->bo,
VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
VC4_SET_FIELD(texture->u.tex.last_level -
texture->u.tex.first_level, VC4_TEX_P0_MIPLVLS) |
VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
VC4_TEX_P0_CMMODE) |
VC4_SET_FIELD(rsc->vc4_format & 7, VC4_TEX_P0_TYPE));
}
static void
write_texture_p1(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t unit)
{
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
struct pipe_sampler_state *sampler = texstate->samplers[unit];
static const uint8_t minfilter_map[6] = {
VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
VC4_TEX_P1_MINFILT_NEAREST,
VC4_TEX_P1_MINFILT_LINEAR,
};
static const uint32_t magfilter_map[] = {
[PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
[PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
};
bool either_nearest =
(sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);
cl_u32(&vc4->uniforms,
VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
VC4_SET_FIELD(texture->texture->height0 & 2047,
VC4_TEX_P1_HEIGHT) |
VC4_SET_FIELD(texture->texture->width0 & 2047,
VC4_TEX_P1_WIDTH) |
VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
VC4_TEX_P1_MAGFILT) |
VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
sampler->min_img_filter],
VC4_TEX_P1_MINFILT) |
VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
VC4_TEX_P1_WRAP_S) |
VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
VC4_TEX_P1_WRAP_T));
}
static void
write_texture_p2(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t data)
{
uint32_t unit = data & 0xffff;
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
cl_u32(&vc4->uniforms,
VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
VC4_TEX_P2_PTYPE) |
VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
}
#define SWIZ(x,y,z,w) { \
UTIL_FORMAT_SWIZZLE_##x, \
UTIL_FORMAT_SWIZZLE_##y, \
UTIL_FORMAT_SWIZZLE_##z, \
UTIL_FORMAT_SWIZZLE_##w \
}
static void
write_texture_border_color(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t unit)
{
struct pipe_sampler_state *sampler = texstate->samplers[unit];
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
union util_color uc;
const struct util_format_description *tex_format_desc =
util_format_description(texture->format);
float border_color[4];
for (int i = 0; i < 4; i++)
border_color[i] = sampler->border_color.f[i];
if (util_format_is_srgb(texture->format)) {
for (int i = 0; i < 3; i++)
border_color[i] =
util_format_linear_to_srgb_float(border_color[i]);
}
/* Turn the border color into the layout of channels that it would
* have when stored as texture contents.
*/
float storage_color[4];
util_format_unswizzle_4f(storage_color,
border_color,
tex_format_desc->swizzle);
/* Now, pack so that when the vc4_format-sampled texture contents are
* replaced with our border color, the vc4_get_format_swizzle()
* swizzling will get the right channels.
*/
if (util_format_is_depth_or_stencil(texture->format)) {
uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
sampler->border_color.f[0]) << 8;
} else {
switch (rsc->vc4_format) {
default:
case VC4_TEXTURE_TYPE_RGBA8888:
util_pack_color(storage_color,
PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
break;
case VC4_TEXTURE_TYPE_RGBA4444:
util_pack_color(storage_color,
PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
break;
case VC4_TEXTURE_TYPE_RGB565:
util_pack_color(storage_color,
PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
break;
case VC4_TEXTURE_TYPE_ALPHA:
uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
break;
case VC4_TEXTURE_TYPE_LUMALPHA:
uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
(float_to_ubyte(storage_color[0]) << 0));
break;
}
}
cl_u32(&vc4->uniforms, uc.ui[0]);
}
static uint32_t
get_texrect_scale(struct vc4_texture_stateobj *texstate,
enum quniform_contents contents,
uint32_t data)
{
struct pipe_sampler_view *texture = texstate->textures[data];
uint32_t dim;
if (contents == QUNIFORM_TEXRECT_SCALE_X)
dim = texture->texture->width0;
else
dim = texture->texture->height0;
return fui(1.0f / dim);
}
void
vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
struct vc4_constbuf_stateobj *cb,
struct vc4_texture_stateobj *texstate)
{
struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
for (int i = 0; i < uinfo->count; i++) {
switch (uinfo->contents[i]) {
case QUNIFORM_CONSTANT:
cl_u32(&vc4->uniforms, uinfo->data[i]);
break;
case QUNIFORM_UNIFORM:
cl_u32(&vc4->uniforms,
gallium_uniforms[uinfo->data[i]]);
break;
case QUNIFORM_VIEWPORT_X_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
break;
case QUNIFORM_VIEWPORT_Y_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
break;
case QUNIFORM_VIEWPORT_Z_OFFSET:
cl_f(&vc4->uniforms, vc4->viewport.translate[2]);
break;
case QUNIFORM_VIEWPORT_Z_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[2]);
break;
case QUNIFORM_USER_CLIP_PLANE:
cl_f(&vc4->uniforms,
vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
break;
case QUNIFORM_TEXTURE_CONFIG_P0:
write_texture_p0(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXTURE_CONFIG_P1:
write_texture_p1(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXTURE_CONFIG_P2:
write_texture_p2(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXTURE_BORDER_COLOR:
write_texture_border_color(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXRECT_SCALE_X:
case QUNIFORM_TEXRECT_SCALE_Y:
cl_u32(&vc4->uniforms,
get_texrect_scale(texstate,
uinfo->contents[i],
uinfo->data[i]));
break;
case QUNIFORM_BLEND_CONST_COLOR:
cl_f(&vc4->uniforms,
vc4->blend_color.color[uinfo->data[i]]);
break;
case QUNIFORM_STENCIL:
cl_u32(&vc4->uniforms,
vc4->zsa->stencil_uniforms[uinfo->data[i]] |
(uinfo->data[i] <= 1 ?
(vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
0));
break;
case QUNIFORM_ALPHA_REF:
cl_f(&vc4->uniforms, vc4->zsa->base.alpha.ref_value);
break;
}
#if 0
uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
shader, i, written_val, uif(written_val));
#endif
}
}
static void
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_fs = hwcso;
vc4->prog.dirty |= VC4_SHADER_DIRTY_FP;
vc4->dirty |= VC4_DIRTY_PROG;
}
static void
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_vs = hwcso;
vc4->prog.dirty |= VC4_SHADER_DIRTY_VP;
vc4->dirty |= VC4_DIRTY_PROG;
}
void
vc4_program_init(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
pctx->create_vs_state = vc4_shader_state_create;
pctx->delete_vs_state = vc4_shader_state_delete;
pctx->create_fs_state = vc4_shader_state_create;
pctx->delete_fs_state = vc4_shader_state_delete;
pctx->bind_fs_state = vc4_fp_state_bind;
pctx->bind_vs_state = vc4_vp_state_bind;
vc4->fs_cache = util_hash_table_create(fs_cache_hash, fs_cache_compare);
vc4->vs_cache = util_hash_table_create(vs_cache_hash, vs_cache_compare);
}