| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "util/mesa-sha1.h" |
| #include "util/u_atomic.h" |
| #include "radv_debug.h" |
| #include "radv_private.h" |
| #include "radv_cs.h" |
| #include "radv_shader.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "nir/nir_xfb_info.h" |
| #include "spirv/nir_spirv.h" |
| #include "vk_util.h" |
| |
| #include <llvm-c/Core.h> |
| #include <llvm-c/TargetMachine.h> |
| |
| #include "sid.h" |
| #include "ac_binary.h" |
| #include "ac_llvm_util.h" |
| #include "ac_nir_to_llvm.h" |
| #include "vk_format.h" |
| #include "util/debug.h" |
| #include "ac_exp_param.h" |
| #include "ac_shader_util.h" |
| #include "main/menums.h" |
| |
| struct radv_blend_state { |
| uint32_t blend_enable_4bit; |
| uint32_t need_src_alpha; |
| |
| uint32_t cb_color_control; |
| uint32_t cb_target_mask; |
| uint32_t cb_target_enabled_4bit; |
| uint32_t sx_mrt_blend_opt[8]; |
| uint32_t cb_blend_control[8]; |
| |
| uint32_t spi_shader_col_format; |
| uint32_t cb_shader_mask; |
| uint32_t db_alpha_to_mask; |
| |
| uint32_t commutative_4bit; |
| |
| bool single_cb_enable; |
| bool mrt0_is_dual_src; |
| }; |
| |
| struct radv_dsa_order_invariance { |
| /* Whether the final result in Z/S buffers is guaranteed to be |
| * invariant under changes to the order in which fragments arrive. |
| */ |
| bool zs; |
| |
| /* Whether the set of fragments that pass the combined Z/S test is |
| * guaranteed to be invariant under changes to the order in which |
| * fragments arrive. |
| */ |
| bool pass_set; |
| }; |
| |
| struct radv_tessellation_state { |
| uint32_t ls_hs_config; |
| unsigned num_patches; |
| unsigned lds_size; |
| uint32_t tf_param; |
| }; |
| |
| bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *variant = NULL; |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) |
| variant = pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| else if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) |
| variant = pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| else if (pipeline->shaders[MESA_SHADER_VERTEX]) |
| variant = pipeline->shaders[MESA_SHADER_VERTEX]; |
| else |
| return false; |
| return variant->info.is_ngg; |
| } |
| |
| bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline) |
| { |
| if (!radv_pipeline_has_gs(pipeline)) |
| return false; |
| |
| /* The GS copy shader is required if the pipeline has GS on GFX6-GFX9. |
| * On GFX10, it might be required in rare cases if it's not possible to |
| * enable NGG. |
| */ |
| if (radv_pipeline_has_ngg(pipeline)) |
| return false; |
| |
| assert(pipeline->gs_copy_shader); |
| return true; |
| } |
| |
| static void |
| radv_pipeline_destroy(struct radv_device *device, |
| struct radv_pipeline *pipeline, |
| const VkAllocationCallbacks* allocator) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) |
| if (pipeline->shaders[i]) |
| radv_shader_variant_destroy(device, pipeline->shaders[i]); |
| |
| if (pipeline->gs_copy_shader) |
| radv_shader_variant_destroy(device, pipeline->gs_copy_shader); |
| |
| if(pipeline->cs.buf) |
| free(pipeline->cs.buf); |
| vk_free2(&device->alloc, allocator, pipeline); |
| } |
| |
| void radv_DestroyPipeline( |
| VkDevice _device, |
| VkPipeline _pipeline, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| |
| if (!_pipeline) |
| return; |
| |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| } |
| |
| static uint32_t get_hash_flags(struct radv_device *device) |
| { |
| uint32_t hash_flags = 0; |
| |
| if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH) |
| hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH; |
| if (device->instance->debug_flags & RADV_DEBUG_NO_NGG) |
| hash_flags |= RADV_HASH_SHADER_NO_NGG; |
| if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) |
| hash_flags |= RADV_HASH_SHADER_SISCHED; |
| if (device->physical_device->cs_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_CS_WAVE32; |
| if (device->physical_device->ps_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_PS_WAVE32; |
| if (device->physical_device->ge_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_GE_WAVE32; |
| return hash_flags; |
| } |
| |
| static VkResult |
| radv_pipeline_scratch_init(struct radv_device *device, |
| struct radv_pipeline *pipeline) |
| { |
| unsigned scratch_bytes_per_wave = 0; |
| unsigned max_waves = 0; |
| unsigned min_waves = 1; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i]) { |
| unsigned max_stage_waves = device->scratch_waves; |
| |
| scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, |
| pipeline->shaders[i]->config.scratch_bytes_per_wave); |
| |
| max_stage_waves = MIN2(max_stage_waves, |
| 4 * device->physical_device->rad_info.num_good_compute_units * |
| (256 / pipeline->shaders[i]->config.num_vgprs)); |
| max_waves = MAX2(max_waves, max_stage_waves); |
| } |
| } |
| |
| if (pipeline->shaders[MESA_SHADER_COMPUTE]) { |
| unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; |
| min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); |
| } |
| |
| if (scratch_bytes_per_wave) |
| max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave); |
| |
| if (scratch_bytes_per_wave && max_waves < min_waves) { |
| /* Not really true at this moment, but will be true on first |
| * execution. Avoid having hanging shaders. */ |
| return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); |
| } |
| pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; |
| pipeline->max_waves = max_waves; |
| return VK_SUCCESS; |
| } |
| |
| static uint32_t si_translate_blend_logic_op(VkLogicOp op) |
| { |
| switch (op) { |
| case VK_LOGIC_OP_CLEAR: |
| return V_028808_ROP3_CLEAR; |
| case VK_LOGIC_OP_AND: |
| return V_028808_ROP3_AND; |
| case VK_LOGIC_OP_AND_REVERSE: |
| return V_028808_ROP3_AND_REVERSE; |
| case VK_LOGIC_OP_COPY: |
| return V_028808_ROP3_COPY; |
| case VK_LOGIC_OP_AND_INVERTED: |
| return V_028808_ROP3_AND_INVERTED; |
| case VK_LOGIC_OP_NO_OP: |
| return V_028808_ROP3_NO_OP; |
| case VK_LOGIC_OP_XOR: |
| return V_028808_ROP3_XOR; |
| case VK_LOGIC_OP_OR: |
| return V_028808_ROP3_OR; |
| case VK_LOGIC_OP_NOR: |
| return V_028808_ROP3_NOR; |
| case VK_LOGIC_OP_EQUIVALENT: |
| return V_028808_ROP3_EQUIVALENT; |
| case VK_LOGIC_OP_INVERT: |
| return V_028808_ROP3_INVERT; |
| case VK_LOGIC_OP_OR_REVERSE: |
| return V_028808_ROP3_OR_REVERSE; |
| case VK_LOGIC_OP_COPY_INVERTED: |
| return V_028808_ROP3_COPY_INVERTED; |
| case VK_LOGIC_OP_OR_INVERTED: |
| return V_028808_ROP3_OR_INVERTED; |
| case VK_LOGIC_OP_NAND: |
| return V_028808_ROP3_NAND; |
| case VK_LOGIC_OP_SET: |
| return V_028808_ROP3_SET; |
| default: |
| unreachable("Unhandled logic op"); |
| } |
| } |
| |
| |
| static uint32_t si_translate_blend_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028780_COMB_DST_PLUS_SRC; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028780_COMB_SRC_MINUS_DST; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028780_COMB_DST_MINUS_SRC; |
| case VK_BLEND_OP_MIN: |
| return V_028780_COMB_MIN_DST_SRC; |
| case VK_BLEND_OP_MAX: |
| return V_028780_COMB_MAX_DST_SRC; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_factor(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028780_BLEND_ZERO; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028780_BLEND_ONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return V_028780_BLEND_SRC_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return V_028780_BLEND_ONE_MINUS_SRC_COLOR; |
| case VK_BLEND_FACTOR_DST_COLOR: |
| return V_028780_BLEND_DST_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: |
| return V_028780_BLEND_ONE_MINUS_DST_COLOR; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028780_BLEND_SRC_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; |
| case VK_BLEND_FACTOR_DST_ALPHA: |
| return V_028780_BLEND_DST_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_DST_ALPHA; |
| case VK_BLEND_FACTOR_CONSTANT_COLOR: |
| return V_028780_BLEND_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_CONSTANT_ALPHA: |
| return V_028780_BLEND_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return V_028780_BLEND_SRC_ALPHA_SATURATE; |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| return V_028780_BLEND_SRC1_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| return V_028780_BLEND_INV_SRC1_COLOR; |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| return V_028780_BLEND_SRC1_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return V_028780_BLEND_INV_SRC1_ALPHA; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028760_OPT_COMB_ADD; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028760_OPT_COMB_SUBTRACT; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028760_OPT_COMB_REVSUBTRACT; |
| case VK_BLEND_OP_MIN: |
| return V_028760_OPT_COMB_MIN; |
| case VK_BLEND_OP_MAX: |
| return V_028760_OPT_COMB_MAX; |
| default: |
| return V_028760_OPT_COMB_BLEND_DISABLED; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 |
| : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 |
| : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE |
| : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| default: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| } |
| } |
| |
| /** |
| * Get rid of DST in the blend factors by commuting the operands: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| static void si_blend_remove_dst(unsigned *func, unsigned *src_factor, |
| unsigned *dst_factor, unsigned expected_dst, |
| unsigned replacement_src) |
| { |
| if (*src_factor == expected_dst && |
| *dst_factor == VK_BLEND_FACTOR_ZERO) { |
| *src_factor = VK_BLEND_FACTOR_ZERO; |
| *dst_factor = replacement_src; |
| |
| /* Commuting the operands requires reversing subtractions. */ |
| if (*func == VK_BLEND_OP_SUBTRACT) |
| *func = VK_BLEND_OP_REVERSE_SUBTRACT; |
| else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) |
| *func = VK_BLEND_OP_SUBTRACT; |
| } |
| } |
| |
| static bool si_blend_factor_uses_dst(unsigned factor) |
| { |
| return factor == VK_BLEND_FACTOR_DST_COLOR || |
| factor == VK_BLEND_FACTOR_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; |
| } |
| |
| static bool is_dual_src(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned si_choose_spi_color_format(VkFormat vk_format, |
| bool blend_enable, |
| bool blend_need_alpha) |
| { |
| const struct vk_format_description *desc = vk_format_description(vk_format); |
| unsigned format, ntype, swap; |
| |
| /* Alpha is needed for alpha-to-coverage. |
| * Blending may be with or without alpha. |
| */ |
| unsigned normal = 0; /* most optimal, may not support blending or export alpha */ |
| unsigned alpha = 0; /* exports alpha, but may not support blending */ |
| unsigned blend = 0; /* supports blending, but may not export alpha */ |
| unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ |
| |
| format = radv_translate_colorformat(vk_format); |
| ntype = radv_translate_color_numformat(vk_format, desc, |
| vk_format_get_first_non_void_channel(vk_format)); |
| swap = radv_translate_colorswap(vk_format, false); |
| |
| /* Choose the SPI color formats. These are required values for Stoney/RB+. |
| * Other chips have multiple choices, though they are not necessarily better. |
| */ |
| switch (format) { |
| case V_028C70_COLOR_5_6_5: |
| case V_028C70_COLOR_1_5_5_5: |
| case V_028C70_COLOR_5_5_5_1: |
| case V_028C70_COLOR_4_4_4_4: |
| case V_028C70_COLOR_10_11_11: |
| case V_028C70_COLOR_11_11_10: |
| case V_028C70_COLOR_8: |
| case V_028C70_COLOR_8_8: |
| case V_028C70_COLOR_8_8_8_8: |
| case V_028C70_COLOR_10_10_10_2: |
| case V_028C70_COLOR_2_10_10_10: |
| if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| break; |
| |
| case V_028C70_COLOR_16: |
| case V_028C70_COLOR_16_16: |
| case V_028C70_COLOR_16_16_16_16: |
| if (ntype == V_028C70_NUMBER_UNORM || |
| ntype == V_028C70_NUMBER_SNORM) { |
| /* UNORM16 and SNORM16 don't support blending */ |
| if (ntype == V_028C70_NUMBER_UNORM) |
| normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; |
| else |
| normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; |
| |
| /* Use 32 bits per channel for blending. */ |
| if (format == V_028C70_COLOR_16) { |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = V_028714_SPI_SHADER_32_R; |
| blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else if (format == V_028C70_COLOR_16_16) { |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = V_028714_SPI_SHADER_32_GR; |
| blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else /* 16_16_16_16 */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_FLOAT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32: |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = normal = V_028714_SPI_SHADER_32_R; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32: |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = normal = V_028714_SPI_SHADER_32_GR; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32_32_32: |
| case V_028C70_COLOR_8_24: |
| case V_028C70_COLOR_24_8: |
| case V_028C70_COLOR_X24_8_32_FLOAT: |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; |
| break; |
| |
| default: |
| unreachable("unhandled blend format"); |
| } |
| |
| if (blend_enable && blend_need_alpha) |
| return blend_alpha; |
| else if(blend_need_alpha) |
| return alpha; |
| else if(blend_enable) |
| return blend; |
| else |
| return normal; |
| } |
| |
| static void |
| radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| struct radv_blend_state *blend) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| unsigned col_format = 0; |
| unsigned num_targets; |
| |
| for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) { |
| unsigned cf; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) { |
| cf = V_028714_SPI_SHADER_ZERO; |
| } else { |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| bool blend_enable = |
| blend->blend_enable_4bit & (0xfu << (i * 4)); |
| |
| cf = si_choose_spi_color_format(attachment->format, |
| blend_enable, |
| blend->need_src_alpha & (1 << i)); |
| } |
| |
| col_format |= cf << (4 * i); |
| } |
| |
| if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) { |
| /* When a subpass doesn't have any color attachments, write the |
| * alpha channel of MRT0 when alpha coverage is enabled because |
| * the depth attachment needs it. |
| */ |
| col_format |= V_028714_SPI_SHADER_32_AR; |
| } |
| |
| /* If the i-th target format is set, all previous target formats must |
| * be non-zero to avoid hangs. |
| */ |
| num_targets = (util_last_bit(col_format) + 3) / 4; |
| for (unsigned i = 0; i < num_targets; i++) { |
| if (!(col_format & (0xf << (i * 4)))) { |
| col_format |= V_028714_SPI_SHADER_32_R << (i * 4); |
| } |
| } |
| |
| /* The output for dual source blending should have the same format as |
| * the first output. |
| */ |
| if (blend->mrt0_is_dual_src) |
| col_format |= (col_format & 0xf) << 4; |
| |
| blend->cb_shader_mask = ac_get_cb_shader_mask(col_format); |
| blend->spi_shader_col_format = col_format; |
| } |
| |
| static bool |
| format_is_int8(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].pure_integer && |
| desc->channel[channel].size == 8; |
| } |
| |
| static bool |
| format_is_int10(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| |
| if (desc->nr_channels != 4) |
| return false; |
| for (unsigned i = 0; i < 4; i++) { |
| if (desc->channel[i].pure_integer && desc->channel[i].size == 10) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Ordered so that for each i, |
| * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i. |
| */ |
| const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = { |
| VK_FORMAT_R32_SFLOAT, |
| VK_FORMAT_R32G32_SFLOAT, |
| VK_FORMAT_R8G8B8A8_UNORM, |
| VK_FORMAT_R16G16B16A16_UNORM, |
| VK_FORMAT_R16G16B16A16_SNORM, |
| VK_FORMAT_R16G16B16A16_UINT, |
| VK_FORMAT_R16G16B16A16_SINT, |
| VK_FORMAT_R32G32B32A32_SFLOAT, |
| VK_FORMAT_R8G8B8A8_UINT, |
| VK_FORMAT_R8G8B8A8_SINT, |
| VK_FORMAT_A2R10G10B10_UINT_PACK32, |
| VK_FORMAT_A2R10G10B10_SINT_PACK32, |
| }; |
| |
| unsigned radv_format_meta_fs_key(VkFormat format) |
| { |
| unsigned col_format = si_choose_spi_color_format(format, false, false); |
| |
| assert(col_format != V_028714_SPI_SHADER_32_AR); |
| if (col_format >= V_028714_SPI_SHADER_32_AR) |
| --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */ |
| |
| --col_format; /* Skip V_028714_SPI_SHADER_ZERO */ |
| bool is_int8 = format_is_int8(format); |
| bool is_int10 = format_is_int10(format); |
| |
| return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0); |
| } |
| |
| static void |
| radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| unsigned *is_int8, unsigned *is_int10) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| *is_int8 = 0; |
| *is_int10 = 0; |
| |
| for (unsigned i = 0; i < subpass->color_count; ++i) { |
| struct radv_render_pass_attachment *attachment; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| |
| if (format_is_int8(attachment->format)) |
| *is_int8 |= 1 << i; |
| if (format_is_int10(attachment->format)) |
| *is_int10 |= 1 << i; |
| } |
| } |
| |
| static void |
| radv_blend_check_commutativity(struct radv_blend_state *blend, |
| VkBlendOp op, VkBlendFactor src, |
| VkBlendFactor dst, unsigned chanmask) |
| { |
| /* Src factor is allowed when it does not depend on Dst. */ |
| static const uint32_t src_allowed = |
| (1u << VK_BLEND_FACTOR_ONE) | |
| (1u << VK_BLEND_FACTOR_SRC_COLOR) | |
| (1u << VK_BLEND_FACTOR_SRC_ALPHA) | |
| (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) | |
| (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) | |
| (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) | |
| (1u << VK_BLEND_FACTOR_SRC1_COLOR) | |
| (1u << VK_BLEND_FACTOR_SRC1_ALPHA) | |
| (1u << VK_BLEND_FACTOR_ZERO) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) | |
| (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA); |
| |
| if (dst == VK_BLEND_FACTOR_ONE && |
| (src_allowed & (1u << src))) { |
| /* Addition is commutative, but floating point addition isn't |
| * associative: subtle changes can be introduced via different |
| * rounding. Be conservative, only enable for min and max. |
| */ |
| if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN) |
| blend->commutative_4bit |= chanmask; |
| } |
| } |
| |
| static struct radv_blend_state |
| radv_pipeline_init_blend_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; |
| struct radv_blend_state blend = {0}; |
| unsigned mode = V_028808_CB_NORMAL; |
| int i; |
| |
| if (!vkblend) |
| return blend; |
| |
| if (extra && extra->custom_blend_mode) { |
| blend.single_cb_enable = true; |
| mode = extra->custom_blend_mode; |
| } |
| blend.cb_color_control = 0; |
| if (vkblend->logicOpEnable) |
| blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp)); |
| else |
| blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY); |
| |
| blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | |
| S_028B70_ALPHA_TO_MASK_OFFSET1(1) | |
| S_028B70_ALPHA_TO_MASK_OFFSET2(0) | |
| S_028B70_ALPHA_TO_MASK_OFFSET3(2) | |
| S_028B70_OFFSET_ROUND(1); |
| |
| if (vkms && vkms->alphaToCoverageEnable) { |
| blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); |
| blend.need_src_alpha |= 0x1; |
| } |
| |
| blend.cb_target_mask = 0; |
| for (i = 0; i < vkblend->attachmentCount; i++) { |
| const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; |
| unsigned blend_cntl = 0; |
| unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; |
| VkBlendOp eqRGB = att->colorBlendOp; |
| VkBlendFactor srcRGB = att->srcColorBlendFactor; |
| VkBlendFactor dstRGB = att->dstColorBlendFactor; |
| VkBlendOp eqA = att->alphaBlendOp; |
| VkBlendFactor srcA = att->srcAlphaBlendFactor; |
| VkBlendFactor dstA = att->dstAlphaBlendFactor; |
| |
| blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| |
| if (!att->colorWriteMask) |
| continue; |
| |
| blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); |
| blend.cb_target_enabled_4bit |= 0xf << (4 * i); |
| if (!att->blendEnable) { |
| blend.cb_blend_control[i] = blend_cntl; |
| continue; |
| } |
| |
| if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) |
| if (i == 0) |
| blend.mrt0_is_dual_src = true; |
| |
| if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { |
| srcRGB = VK_BLEND_FACTOR_ONE; |
| dstRGB = VK_BLEND_FACTOR_ONE; |
| } |
| if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { |
| srcA = VK_BLEND_FACTOR_ONE; |
| dstA = VK_BLEND_FACTOR_ONE; |
| } |
| |
| radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB, |
| 0x7 << (4 * i)); |
| radv_blend_check_commutativity(&blend, eqA, srcA, dstA, |
| 0x8 << (4 * i)); |
| |
| /* Blending optimizations for RB+. |
| * These transformations don't change the behavior. |
| * |
| * First, get rid of DST in the blend factors: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_ALPHA, |
| VK_BLEND_FACTOR_SRC_ALPHA); |
| |
| /* Look up the ideal settings from tables. */ |
| srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); |
| dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); |
| srcA_opt = si_translate_blend_opt_factor(srcA, true); |
| dstA_opt = si_translate_blend_opt_factor(dstA, true); |
| |
| /* Handle interdependencies. */ |
| if (si_blend_factor_uses_dst(srcRGB)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| if (si_blend_factor_uses_dst(srcA)) |
| dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && |
| (dstRGB == VK_BLEND_FACTOR_ZERO || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| |
| /* Set the final value. */ |
| blend.sx_mrt_blend_opt[i] = |
| S_028760_COLOR_SRC_OPT(srcRGB_opt) | |
| S_028760_COLOR_DST_OPT(dstRGB_opt) | |
| S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | |
| S_028760_ALPHA_SRC_OPT(srcA_opt) | |
| S_028760_ALPHA_DST_OPT(dstA_opt) | |
| S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); |
| blend_cntl |= S_028780_ENABLE(1); |
| |
| blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); |
| blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); |
| blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); |
| if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { |
| blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); |
| blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); |
| blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); |
| blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); |
| } |
| blend.cb_blend_control[i] = blend_cntl; |
| |
| blend.blend_enable_4bit |= 0xfu << (i * 4); |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| blend.need_src_alpha |= 1 << i; |
| } |
| for (i = vkblend->attachmentCount; i < 8; i++) { |
| blend.cb_blend_control[i] = 0; |
| blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| } |
| |
| if (pipeline->device->physical_device->rad_info.has_rbplus) { |
| /* Disable RB+ blend optimizations for dual source blending. */ |
| if (blend.mrt0_is_dual_src) { |
| for (i = 0; i < 8; i++) { |
| blend.sx_mrt_blend_opt[i] = |
| S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | |
| S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); |
| } |
| } |
| |
| /* RB+ doesn't work with dual source blending, logic op and |
| * RESOLVE. |
| */ |
| if (blend.mrt0_is_dual_src || vkblend->logicOpEnable || |
| mode == V_028808_CB_RESOLVE) |
| blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); |
| } |
| |
| if (blend.cb_target_mask) |
| blend.cb_color_control |= S_028808_MODE(mode); |
| else |
| blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); |
| |
| radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend); |
| return blend; |
| } |
| |
| static uint32_t si_translate_stencil_op(enum VkStencilOp op) |
| { |
| switch (op) { |
| case VK_STENCIL_OP_KEEP: |
| return V_02842C_STENCIL_KEEP; |
| case VK_STENCIL_OP_ZERO: |
| return V_02842C_STENCIL_ZERO; |
| case VK_STENCIL_OP_REPLACE: |
| return V_02842C_STENCIL_REPLACE_TEST; |
| case VK_STENCIL_OP_INCREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_ADD_CLAMP; |
| case VK_STENCIL_OP_DECREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_SUB_CLAMP; |
| case VK_STENCIL_OP_INVERT: |
| return V_02842C_STENCIL_INVERT; |
| case VK_STENCIL_OP_INCREMENT_AND_WRAP: |
| return V_02842C_STENCIL_ADD_WRAP; |
| case VK_STENCIL_OP_DECREMENT_AND_WRAP: |
| return V_02842C_STENCIL_SUB_WRAP; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_fill(VkPolygonMode func) |
| { |
| switch(func) { |
| case VK_POLYGON_MODE_FILL: |
| return V_028814_X_DRAW_TRIANGLES; |
| case VK_POLYGON_MODE_LINE: |
| return V_028814_X_DRAW_LINES; |
| case VK_POLYGON_MODE_POINT: |
| return V_028814_X_DRAW_POINTS; |
| default: |
| assert(0); |
| return V_028814_X_DRAW_POINTS; |
| } |
| } |
| |
| static uint8_t radv_pipeline_get_ps_iter_samples(const VkPipelineMultisampleStateCreateInfo *vkms) |
| { |
| uint32_t num_samples = vkms->rasterizationSamples; |
| uint32_t ps_iter_samples = 1; |
| |
| if (vkms->sampleShadingEnable) { |
| ps_iter_samples = ceil(vkms->minSampleShading * num_samples); |
| ps_iter_samples = util_next_power_of_two(ps_iter_samples); |
| } |
| return ps_iter_samples; |
| } |
| |
| static bool |
| radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) |
| { |
| return pCreateInfo->depthTestEnable && |
| pCreateInfo->depthWriteEnable && |
| pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER; |
| } |
| |
| static bool |
| radv_writes_stencil(const VkStencilOpState *state) |
| { |
| return state->writeMask && |
| (state->failOp != VK_STENCIL_OP_KEEP || |
| state->passOp != VK_STENCIL_OP_KEEP || |
| state->depthFailOp != VK_STENCIL_OP_KEEP); |
| } |
| |
| static bool |
| radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) |
| { |
| return pCreateInfo->stencilTestEnable && |
| (radv_writes_stencil(&pCreateInfo->front) || |
| radv_writes_stencil(&pCreateInfo->back)); |
| } |
| |
| static bool |
| radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) |
| { |
| return radv_is_depth_write_enabled(pCreateInfo) || |
| radv_is_stencil_write_enabled(pCreateInfo); |
| } |
| |
| static bool |
| radv_order_invariant_stencil_op(VkStencilOp op) |
| { |
| /* REPLACE is normally order invariant, except when the stencil |
| * reference value is written by the fragment shader. Tracking this |
| * interaction does not seem worth the effort, so be conservative. |
| */ |
| return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && |
| op != VK_STENCIL_OP_DECREMENT_AND_CLAMP && |
| op != VK_STENCIL_OP_REPLACE; |
| } |
| |
| static bool |
| radv_order_invariant_stencil_state(const VkStencilOpState *state) |
| { |
| /* Compute whether, assuming Z writes are disabled, this stencil state |
| * is order invariant in the sense that the set of passing fragments as |
| * well as the final stencil buffer result does not depend on the order |
| * of fragments. |
| */ |
| return !state->writeMask || |
| /* The following assumes that Z writes are disabled. */ |
| (state->compareOp == VK_COMPARE_OP_ALWAYS && |
| radv_order_invariant_stencil_op(state->passOp) && |
| radv_order_invariant_stencil_op(state->depthFailOp)) || |
| (state->compareOp == VK_COMPARE_OP_NEVER && |
| radv_order_invariant_stencil_op(state->failOp)); |
| } |
| |
| static bool |
| radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline, |
| struct radv_blend_state *blend, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| unsigned colormask = blend->cb_target_enabled_4bit; |
| |
| if (!pipeline->device->physical_device->out_of_order_rast_allowed) |
| return false; |
| |
| /* Be conservative if a logic operation is enabled with color buffers. */ |
| if (colormask && pCreateInfo->pColorBlendState->logicOpEnable) |
| return false; |
| |
| /* Default depth/stencil invariance when no attachment is bound. */ |
| struct radv_dsa_order_invariance dsa_order_invariant = { |
| .zs = true, .pass_set = true |
| }; |
| |
| if (pCreateInfo->pDepthStencilState && |
| subpass->depth_stencil_attachment) { |
| const VkPipelineDepthStencilStateCreateInfo *vkds = |
| pCreateInfo->pDepthStencilState; |
| struct radv_render_pass_attachment *attachment = |
| pass->attachments + subpass->depth_stencil_attachment->attachment; |
| bool has_stencil = vk_format_is_stencil(attachment->format); |
| struct radv_dsa_order_invariance order_invariance[2]; |
| struct radv_shader_variant *ps = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| |
| /* Compute depth/stencil order invariance in order to know if |
| * it's safe to enable out-of-order. |
| */ |
| bool zfunc_is_ordered = |
| vkds->depthCompareOp == VK_COMPARE_OP_NEVER || |
| vkds->depthCompareOp == VK_COMPARE_OP_LESS || |
| vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL || |
| vkds->depthCompareOp == VK_COMPARE_OP_GREATER || |
| vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL; |
| |
| bool nozwrite_and_order_invariant_stencil = |
| !radv_is_ds_write_enabled(vkds) || |
| (!radv_is_depth_write_enabled(vkds) && |
| radv_order_invariant_stencil_state(&vkds->front) && |
| radv_order_invariant_stencil_state(&vkds->back)); |
| |
| order_invariance[1].zs = |
| nozwrite_and_order_invariant_stencil || |
| (!radv_is_stencil_write_enabled(vkds) && |
| zfunc_is_ordered); |
| order_invariance[0].zs = |
| !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered; |
| |
| order_invariance[1].pass_set = |
| nozwrite_and_order_invariant_stencil || |
| (!radv_is_stencil_write_enabled(vkds) && |
| (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || |
| vkds->depthCompareOp == VK_COMPARE_OP_NEVER)); |
| order_invariance[0].pass_set = |
| !radv_is_depth_write_enabled(vkds) || |
| (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || |
| vkds->depthCompareOp == VK_COMPARE_OP_NEVER); |
| |
| dsa_order_invariant = order_invariance[has_stencil]; |
| if (!dsa_order_invariant.zs) |
| return false; |
| |
| /* The set of PS invocations is always order invariant, |
| * except when early Z/S tests are requested. |
| */ |
| if (ps && |
| ps->info.ps.writes_memory && |
| ps->info.ps.early_fragment_test && |
| !dsa_order_invariant.pass_set) |
| return false; |
| |
| /* Determine if out-of-order rasterization should be disabled |
| * when occlusion queries are used. |
| */ |
| pipeline->graphics.disable_out_of_order_rast_for_occlusion = |
| !dsa_order_invariant.pass_set; |
| } |
| |
| /* No color buffers are enabled for writing. */ |
| if (!colormask) |
| return true; |
| |
| unsigned blendmask = colormask & blend->blend_enable_4bit; |
| |
| if (blendmask) { |
| /* Only commutative blending. */ |
| if (blendmask & ~blend->commutative_4bit) |
| return false; |
| |
| if (!dsa_order_invariant.pass_set) |
| return false; |
| } |
| |
| if (colormask & ~blendmask) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, |
| struct radv_blend_state *blend, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; |
| struct radv_multisample_state *ms = &pipeline->graphics.ms; |
| unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; |
| bool out_of_order_rast = false; |
| int ps_iter_samples = 1; |
| uint32_t mask = 0xffff; |
| |
| if (vkms) |
| ms->num_samples = vkms->rasterizationSamples; |
| else |
| ms->num_samples = 1; |
| |
| if (vkms) |
| ps_iter_samples = radv_pipeline_get_ps_iter_samples(vkms); |
| if (vkms && !vkms->sampleShadingEnable && pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) { |
| ps_iter_samples = ms->num_samples; |
| } |
| |
| const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order = |
| vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD); |
| if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) { |
| /* Out-of-order rasterization is explicitly enabled by the |
| * application. |
| */ |
| out_of_order_rast = true; |
| } else { |
| /* Determine if the driver can enable out-of-order |
| * rasterization internally. |
| */ |
| out_of_order_rast = |
| radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo); |
| } |
| |
| ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1); |
| ms->pa_sc_aa_config = 0; |
| ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | |
| S_028804_INCOHERENT_EQAA_READS(1) | |
| S_028804_INTERPOLATE_COMP_Z(1) | |
| S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); |
| ms->pa_sc_mode_cntl_1 = |
| S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes |
| S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | |
| S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) | |
| S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) | |
| /* always 1: */ |
| S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | |
| S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_TILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | |
| S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | |
| S_028A4C_FORCE_EOV_REZ_ENABLE(1); |
| ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) | |
| S_028A48_VPORT_SCISSOR_ENABLE(1); |
| |
| if (ms->num_samples > 1) { |
| unsigned log_samples = util_logbase2(ms->num_samples); |
| unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples); |
| ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); |
| ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */ |
| ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) | |
| S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | |
| S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | |
| S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); |
| ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | |
| S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) | |
| S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */ |
| ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); |
| if (ps_iter_samples > 1) |
| pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); |
| } |
| |
| if (vkms && vkms->pSampleMask) { |
| mask = vkms->pSampleMask[0] & 0xffff; |
| } |
| |
| ms->pa_sc_aa_mask[0] = mask | (mask << 16); |
| ms->pa_sc_aa_mask[1] = mask | (mask << 16); |
| } |
| |
| static bool |
| radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return false; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return true; |
| default: |
| unreachable("unhandled primitive type"); |
| } |
| } |
| |
| static uint32_t |
| si_translate_prim(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| return V_008958_DI_PT_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| return V_008958_DI_PT_LINELIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| return V_008958_DI_PT_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| return V_008958_DI_PT_TRILIST; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| return V_008958_DI_PT_TRISTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| return V_008958_DI_PT_TRIFAN; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINELIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINESTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRILIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRISTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_008958_DI_PT_PATCH; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_gl_prim_to_gs_out(unsigned gl_prim) |
| { |
| switch (gl_prim) { |
| case 0: /* GL_POINTS */ |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case 1: /* GL_LINES */ |
| case 3: /* GL_LINE_STRIP */ |
| case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ |
| case 0x8E7A: /* GL_ISOLINES */ |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| |
| case 4: /* GL_TRIANGLES */ |
| case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ |
| case 5: /* GL_TRIANGLE_STRIP */ |
| case 7: /* GL_QUADS */ |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static unsigned radv_dynamic_state_mask(VkDynamicState state) |
| { |
| switch(state) { |
| case VK_DYNAMIC_STATE_VIEWPORT: |
| return RADV_DYNAMIC_VIEWPORT; |
| case VK_DYNAMIC_STATE_SCISSOR: |
| return RADV_DYNAMIC_SCISSOR; |
| case VK_DYNAMIC_STATE_LINE_WIDTH: |
| return RADV_DYNAMIC_LINE_WIDTH; |
| case VK_DYNAMIC_STATE_DEPTH_BIAS: |
| return RADV_DYNAMIC_DEPTH_BIAS; |
| case VK_DYNAMIC_STATE_BLEND_CONSTANTS: |
| return RADV_DYNAMIC_BLEND_CONSTANTS; |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS: |
| return RADV_DYNAMIC_DEPTH_BOUNDS; |
| case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: |
| return RADV_DYNAMIC_STENCIL_COMPARE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: |
| return RADV_DYNAMIC_STENCIL_WRITE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_REFERENCE: |
| return RADV_DYNAMIC_STENCIL_REFERENCE; |
| case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: |
| return RADV_DYNAMIC_DISCARD_RECTANGLE; |
| case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: |
| return RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| default: |
| unreachable("Unhandled dynamic state"); |
| } |
| } |
| |
| static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| uint32_t states = RADV_DYNAMIC_ALL; |
| |
| /* If rasterization is disabled we do not care about any of the dynamic states, |
| * since they are all rasterization related only. */ |
| if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable) |
| return 0; |
| |
| if (!pCreateInfo->pRasterizationState->depthBiasEnable) |
| states &= ~RADV_DYNAMIC_DEPTH_BIAS; |
| |
| if (!pCreateInfo->pDepthStencilState || |
| !pCreateInfo->pDepthStencilState->depthBoundsTestEnable) |
| states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; |
| |
| if (!pCreateInfo->pDepthStencilState || |
| !pCreateInfo->pDepthStencilState->stencilTestEnable) |
| states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | |
| RADV_DYNAMIC_STENCIL_WRITE_MASK | |
| RADV_DYNAMIC_STENCIL_REFERENCE); |
| |
| if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT)) |
| states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; |
| |
| if (!pCreateInfo->pMultisampleState || |
| !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext, |
| PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT)) |
| states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| |
| /* TODO: blend constants & line width. */ |
| |
| return states; |
| } |
| |
| |
| static void |
| radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo); |
| uint32_t states = needed_states; |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; |
| |
| pipeline->dynamic_state = default_dynamic_state; |
| pipeline->graphics.needed_dynamic_state = needed_states; |
| |
| if (pCreateInfo->pDynamicState) { |
| /* Remove all of the states that are marked as dynamic */ |
| uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; |
| for (uint32_t s = 0; s < count; s++) |
| states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); |
| } |
| |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| |
| if (needed_states & RADV_DYNAMIC_VIEWPORT) { |
| assert(pCreateInfo->pViewportState); |
| |
| dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; |
| if (states & RADV_DYNAMIC_VIEWPORT) { |
| typed_memcpy(dynamic->viewport.viewports, |
| pCreateInfo->pViewportState->pViewports, |
| pCreateInfo->pViewportState->viewportCount); |
| } |
| } |
| |
| if (needed_states & RADV_DYNAMIC_SCISSOR) { |
| dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; |
| if (states & RADV_DYNAMIC_SCISSOR) { |
| typed_memcpy(dynamic->scissor.scissors, |
| pCreateInfo->pViewportState->pScissors, |
| pCreateInfo->pViewportState->scissorCount); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_WIDTH) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->depth_bias.bias = |
| pCreateInfo->pRasterizationState->depthBiasConstantFactor; |
| dynamic->depth_bias.clamp = |
| pCreateInfo->pRasterizationState->depthBiasClamp; |
| dynamic->depth_bias.slope = |
| pCreateInfo->pRasterizationState->depthBiasSlopeFactor; |
| } |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pColorBlendState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is |
| * created against does not use any color attachments. |
| */ |
| if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) { |
| assert(pCreateInfo->pColorBlendState); |
| typed_memcpy(dynamic->blend_constants, |
| pCreateInfo->pColorBlendState->blendConstants, 4); |
| } |
| |
| /* If there is no depthstencil attachment, then don't read |
| * pDepthStencilState. The Vulkan spec states that pDepthStencilState may |
| * be NULL in this case. Even if pDepthStencilState is non-NULL, there is |
| * no need to override the depthstencil defaults in |
| * radv_pipeline::dynamic_state when there is no depthstencil attachment. |
| * |
| * Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pDepthStencilState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is created |
| * against does not use a depth/stencil attachment. |
| */ |
| if (needed_states && subpass->depth_stencil_attachment) { |
| assert(pCreateInfo->pDepthStencilState); |
| |
| if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { |
| dynamic->depth_bounds.min = |
| pCreateInfo->pDepthStencilState->minDepthBounds; |
| dynamic->depth_bounds.max = |
| pCreateInfo->pDepthStencilState->maxDepthBounds; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { |
| dynamic->stencil_compare_mask.front = |
| pCreateInfo->pDepthStencilState->front.compareMask; |
| dynamic->stencil_compare_mask.back = |
| pCreateInfo->pDepthStencilState->back.compareMask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { |
| dynamic->stencil_write_mask.front = |
| pCreateInfo->pDepthStencilState->front.writeMask; |
| dynamic->stencil_write_mask.back = |
| pCreateInfo->pDepthStencilState->back.writeMask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { |
| dynamic->stencil_reference.front = |
| pCreateInfo->pDepthStencilState->front.reference; |
| dynamic->stencil_reference.back = |
| pCreateInfo->pDepthStencilState->back.reference; |
| } |
| } |
| |
| const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); |
| if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount; |
| if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| typed_memcpy(dynamic->discard_rectangle.rectangles, |
| discard_rectangle_info->pDiscardRectangles, |
| discard_rectangle_info->discardRectangleCount); |
| } |
| } |
| |
| if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) { |
| const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info = |
| vk_find_struct_const(pCreateInfo->pMultisampleState->pNext, |
| PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); |
| /* If sampleLocationsEnable is VK_FALSE, the default sample |
| * locations are used and the values specified in |
| * sampleLocationsInfo are ignored. |
| */ |
| if (sample_location_info->sampleLocationsEnable) { |
| const VkSampleLocationsInfoEXT *pSampleLocationsInfo = |
| &sample_location_info->sampleLocationsInfo; |
| |
| assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS); |
| |
| dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel; |
| dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize; |
| dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount; |
| typed_memcpy(&dynamic->sample_location.locations[0], |
| pSampleLocationsInfo->pSampleLocations, |
| pSampleLocationsInfo->sampleLocationsCount); |
| } |
| } |
| |
| pipeline->dynamic_state.mask = states; |
| } |
| |
| static void |
| gfx9_get_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_pipeline *pipeline, |
| nir_shader **nir, |
| struct radv_shader_info *infos, |
| struct gfx9_gs_info *out) |
| { |
| struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY]; |
| struct radv_es_output_info *es_info; |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
| es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info; |
| else |
| es_info = nir[MESA_SHADER_TESS_CTRL] ? |
| &infos[MESA_SHADER_TESS_EVAL].tes.es_info : |
| &infos[MESA_SHADER_VERTEX].vs.es_info; |
| |
| unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); |
| bool uses_adjacency; |
| switch(pCreateInfo->pInputAssemblyState->topology) { |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| uses_adjacency = true; |
| break; |
| default: |
| uses_adjacency = false; |
| break; |
| } |
| |
| /* All these are in dwords: */ |
| /* We can't allow using the whole LDS, because GS waves compete with |
| * other shader stages for LDS space. */ |
| const unsigned max_lds_size = 8 * 1024; |
| const unsigned esgs_itemsize = es_info->esgs_itemsize / 4; |
| unsigned esgs_lds_size; |
| |
| /* All these are per subgroup: */ |
| const unsigned max_out_prims = 32 * 1024; |
| const unsigned max_es_verts = 255; |
| const unsigned ideal_gs_prims = 64; |
| unsigned max_gs_prims, gs_prims; |
| unsigned min_es_verts, es_verts, worst_case_es_verts; |
| |
| if (uses_adjacency || gs_num_invocations > 1) |
| max_gs_prims = 127 / gs_num_invocations; |
| else |
| max_gs_prims = 255; |
| |
| /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. |
| * Make sure we don't go over the maximum value. |
| */ |
| if (gs_info->gs.vertices_out > 0) { |
| max_gs_prims = MIN2(max_gs_prims, |
| max_out_prims / |
| (gs_info->gs.vertices_out * gs_num_invocations)); |
| } |
| assert(max_gs_prims > 0); |
| |
| /* If the primitive has adjacency, halve the number of vertices |
| * that will be reused in multiple primitives. |
| */ |
| min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); |
| |
| gs_prims = MIN2(ideal_gs_prims, max_gs_prims); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); |
| |
| /* Compute ESGS LDS size based on the worst case number of ES vertices |
| * needed to create the target number of GS prims per subgroup. |
| */ |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| |
| /* If total LDS usage is too big, refactor partitions based on ratio |
| * of ESGS item sizes. |
| */ |
| if (esgs_lds_size > max_lds_size) { |
| /* Our target GS Prims Per Subgroup was too large. Calculate |
| * the maximum number of GS Prims Per Subgroup that will fit |
| * into LDS, capped by the maximum that the hardware can support. |
| */ |
| gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), |
| max_gs_prims); |
| assert(gs_prims > 0); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, |
| max_es_verts); |
| |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| assert(esgs_lds_size <= max_lds_size); |
| } |
| |
| /* Now calculate remaining ESGS information. */ |
| if (esgs_lds_size) |
| es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); |
| else |
| es_verts = max_es_verts; |
| |
| /* Vertices for adjacency primitives are not always reused, so restore |
| * it for ES_VERTS_PER_SUBGRP. |
| */ |
| min_es_verts = gs_info->gs.vertices_in; |
| |
| /* For normal primitives, the VGT only checks if they are past the ES |
| * verts per subgroup after allocating a full GS primitive and if they |
| * are, kick off a new subgroup. But if those additional ES verts are |
| * unique (e.g. not reused) we need to make sure there is enough LDS |
| * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. |
| */ |
| es_verts -= min_es_verts - 1; |
| |
| uint32_t es_verts_per_subgroup = es_verts; |
| uint32_t gs_prims_per_subgroup = gs_prims; |
| uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; |
| uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; |
| out->lds_size = align(esgs_lds_size, 128) / 128; |
| out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) | |
| S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup); |
| out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup); |
| out->vgt_esgs_ring_itemsize = esgs_itemsize; |
| assert(max_prims_per_subgroup <= max_out_prims); |
| } |
| |
| static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, |
| unsigned min_verts_per_prim, bool use_adjacency) |
| { |
| unsigned max_reuse = max_esverts - min_verts_per_prim; |
| if (use_adjacency) |
| max_reuse /= 2; |
| *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); |
| } |
| |
| static unsigned |
| radv_get_num_input_vertices(nir_shader **nir) |
| { |
| if (nir[MESA_SHADER_GEOMETRY]) { |
| nir_shader *gs = nir[MESA_SHADER_GEOMETRY]; |
| |
| return gs->info.gs.vertices_in; |
| } |
| |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| nir_shader *tes = nir[MESA_SHADER_TESS_EVAL]; |
| |
| if (tes->info.tess.point_mode) |
| return 1; |
| if (tes->info.tess.primitive_mode == GL_ISOLINES) |
| return 2; |
| return 3; |
| } |
| |
| return 3; |
| } |
| |
| static void |
| gfx10_get_ngg_info(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| struct radv_pipeline *pipeline, |
| nir_shader **nir, |
| struct radv_shader_info *infos, |
| struct gfx10_ngg_info *ngg) |
| { |
| struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY]; |
| struct radv_es_output_info *es_info = |
| nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info; |
| unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX; |
| unsigned max_verts_per_prim = radv_get_num_input_vertices(nir); |
| unsigned min_verts_per_prim = |
| gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1; |
| unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1; |
| bool uses_adjacency; |
| switch(pCreateInfo->pInputAssemblyState->topology) { |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| uses_adjacency = true; |
| break; |
| default: |
| uses_adjacency = false; |
| break; |
| } |
| |
| /* All these are in dwords: */ |
| /* We can't allow using the whole LDS, because GS waves compete with |
| * other shader stages for LDS space. |
| * |
| * Streamout can increase the ESGS buffer size later on, so be more |
| * conservative with streamout and use 4K dwords. This may be suboptimal. |
| * |
| * Otherwise, use the limit of 7K dwords. The reason is that we need |
| * to leave some headroom for the max_esverts increase at the end. |
| * |
| * TODO: We should really take the shader's internal LDS use into |
| * account. The linker will fail if the size is greater than |
| * 8K dwords. |
| */ |
| const unsigned max_lds_size = (0 /*gs_info->info.so.num_outputs*/ ? 4 : 7) * 1024 - 128; |
| const unsigned target_lds_size = max_lds_size; |
| unsigned esvert_lds_size = 0; |
| unsigned gsprim_lds_size = 0; |
| |
| /* All these are per subgroup: */ |
| bool max_vert_out_per_gs_instance = false; |
| unsigned max_esverts_base = 256; |
| unsigned max_gsprims_base = 128; /* default prim group size clamp */ |
| |
| /* Hardware has the following non-natural restrictions on the value |
| * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of |
| * the draw: |
| * - at most 252 for any line input primitive type |
| * - at most 251 for any quad input primitive type |
| * - at most 251 for triangle strips with adjacency (this happens to |
| * be the natural limit for triangle *lists* with adjacency) |
| */ |
| max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); |
| |
| if (gs_type == MESA_SHADER_GEOMETRY) { |
| unsigned max_out_verts_per_gsprim = |
| gs_info->gs.vertices_out * gs_num_invocations; |
| |
| if (max_out_verts_per_gsprim <= 256) { |
| if (max_out_verts_per_gsprim) { |
| max_gsprims_base = MIN2(max_gsprims_base, |
| 256 / max_out_verts_per_gsprim); |
| } |
| } else { |
| /* Use special multi-cycling mode in which each GS |
| * instance gets its own subgroup. Does not work with |
| * tessellation. */ |
| max_vert_out_per_gs_instance = true; |
| max_gsprims_base = 1; |
| max_out_verts_per_gsprim = gs_info->gs.vertices_out; |
| } |
| |
| esvert_lds_size = es_info->esgs_itemsize / 4; |
| gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; |
| } else { |
| /* TODO: This needs to be adjusted once LDS use for compaction |
| * after culling is implemented. */ |
| /* |
| if (es_info->info.so.num_outputs) |
| esvert_lds_size = 4 * es_info->info.so.num_outputs + 1; |
| */ |
| |
| /* LDS size for passing data from GS to ES. |
| * GS stores Primitive IDs (one DWORD) into LDS at the address |
| * corresponding to the ES thread of the provoking vertex. All |
| * ES threads load and export PrimitiveID for their thread. |
| */ |
| if (!nir[MESA_SHADER_TESS_CTRL] && |
| infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id) |
| esvert_lds_size = MAX2(esvert_lds_size, 1); |
| } |
| |
| unsigned max_gsprims = max_gsprims_base; |
| unsigned max_esverts = max_esverts_base; |
| |
| if (esvert_lds_size) |
| max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); |
| if (gsprim_lds_size) |
| max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); |
| |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| |
| if (esvert_lds_size || gsprim_lds_size) { |
| /* Now that we have a rough proportionality between esverts |
| * and gsprims based on the primitive type, scale both of them |
| * down simultaneously based on required LDS space. |
| * |
| * We could be smarter about this if we knew how much vertex |
| * reuse to expect. |
| */ |
| unsigned lds_total = max_esverts * esvert_lds_size + |
| max_gsprims * gsprim_lds_size; |
| if (lds_total > target_lds_size) { |
| max_esverts = max_esverts * target_lds_size / lds_total; |
| max_gsprims = max_gsprims * target_lds_size / lds_total; |
| |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, |
| min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| } |
| } |
| |
| /* Round up towards full wave sizes for better ALU utilization. */ |
| if (!max_vert_out_per_gs_instance) { |
| const unsigned wavesize = pipeline->device->physical_device->ge_wave_size; |
| unsigned orig_max_esverts; |
| unsigned orig_max_gsprims; |
| do { |
| orig_max_esverts = max_esverts; |
| orig_max_gsprims = max_gsprims; |
| |
| max_esverts = align(max_esverts, wavesize); |
| max_esverts = MIN2(max_esverts, max_esverts_base); |
| if (esvert_lds_size) |
| max_esverts = MIN2(max_esverts, |
| (max_lds_size - max_gsprims * gsprim_lds_size) / |
| esvert_lds_size); |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| |
| max_gsprims = align(max_gsprims, wavesize); |
| max_gsprims = MIN2(max_gsprims, max_gsprims_base); |
| if (gsprim_lds_size) |
| max_gsprims = MIN2(max_gsprims, |
| (max_lds_size - max_esverts * esvert_lds_size) / |
| gsprim_lds_size); |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, |
| min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); |
| } |
| |
| /* Hardware restriction: minimum value of max_esverts */ |
| max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim); |
| |
| unsigned max_out_vertices = |
| max_vert_out_per_gs_instance ? gs_info->gs.vertices_out : |
| gs_type == MESA_SHADER_GEOMETRY ? |
| max_gsprims * gs_num_invocations * gs_info->gs.vertices_out : |
| max_esverts; |
| assert(max_out_vertices <= 256); |
| |
| unsigned prim_amp_factor = 1; |
| if (gs_type == MESA_SHADER_GEOMETRY) { |
| /* Number of output primitives per GS input primitive after |
| * GS instancing. */ |
| prim_amp_factor = gs_info->gs.vertices_out; |
| } |
| |
| /* The GE only checks against the maximum number of ES verts after |
| * allocating a full GS primitive. So we need to ensure that whenever |
| * this check passes, there is enough space for a full primitive without |
| * vertex reuse. |
| */ |
| ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1; |
| ngg->max_gsprims = max_gsprims; |
| ngg->max_out_verts = max_out_vertices; |
| ngg->prim_amp_factor = prim_amp_factor; |
| ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; |
| ngg->ngg_emit_size = max_gsprims * gsprim_lds_size; |
| ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size; |
| |
| if (gs_type == MESA_SHADER_GEOMETRY) { |
| ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4; |
| } else { |
| ngg->vgt_esgs_ring_itemsize = 1; |
| } |
| |
| pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size; |
| |
| assert(ngg->hw_max_esverts >= 24); /* HW limitation */ |
| } |
| |
| static void |
| calculate_gs_ring_sizes(struct radv_pipeline *pipeline, |
| const struct gfx9_gs_info *gs) |
| { |
| struct radv_device *device = pipeline->device; |
| unsigned num_se = device->physical_device->rad_info.max_se; |
| unsigned wave_size = 64; |
| unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ |
| /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. |
| * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). |
| */ |
| unsigned gs_vertex_reuse = |
| (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se; |
| unsigned alignment = 256 * num_se; |
| /* The maximum size is 63.999 MB per SE. */ |
| unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; |
| struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; |
| |
| /* Calculate the minimum size. */ |
| unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * |
| wave_size, alignment); |
| /* These are recommended sizes, not minimum sizes. */ |
| unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * |
| gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in; |
| unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * |
| gs_info->gs.max_gsvs_emit_size; |
| |
| min_esgs_ring_size = align(min_esgs_ring_size, alignment); |
| esgs_ring_size = align(esgs_ring_size, alignment); |
| gsvs_ring_size = align(gsvs_ring_size, alignment); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class <= GFX8) |
| pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); |
| |
| pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); |
| } |
| |
| static void si_multiwave_lds_size_workaround(struct radv_device *device, |
| unsigned *lds_size) |
| { |
| /* If tessellation is all offchip and on-chip GS isn't used, this |
| * workaround is not needed. |
| */ |
| return; |
| |
| /* SPI barrier management bug: |
| * Make sure we have at least 4k of LDS in use to avoid the bug. |
| * It applies to workgroup sizes of more than one wavefront. |
| */ |
| if (device->physical_device->rad_info.family == CHIP_BONAIRE || |
| device->physical_device->rad_info.family == CHIP_KABINI) |
| *lds_size = MAX2(*lds_size, 8); |
| } |
| |
| struct radv_shader_variant * |
| radv_get_shader(struct radv_pipeline *pipeline, |
| gl_shader_stage stage) |
| { |
| if (stage == MESA_SHADER_VERTEX) { |
| if (pipeline->shaders[MESA_SHADER_VERTEX]) |
| return pipeline->shaders[MESA_SHADER_VERTEX]; |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) |
| return pipeline->shaders[MESA_SHADER_TESS_CTRL]; |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } else if (stage == MESA_SHADER_TESS_EVAL) { |
| if (!radv_pipeline_has_tess(pipeline)) |
| return NULL; |
| if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) |
| return pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } |
| return pipeline->shaders[stage]; |
| } |
| |
| static struct radv_tessellation_state |
| calculate_tess_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| unsigned num_tcs_input_cp; |
| unsigned num_tcs_output_cp; |
| unsigned lds_size; |
| unsigned num_patches; |
| struct radv_tessellation_state tess = {0}; |
| |
| num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; |
| num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT |
| num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; |
| |
| lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) { |
| assert(lds_size <= 65536); |
| lds_size = align(lds_size, 512) / 512; |
| } else { |
| assert(lds_size <= 32768); |
| lds_size = align(lds_size, 256) / 256; |
| } |
| si_multiwave_lds_size_workaround(pipeline->device, &lds_size); |
| |
| tess.lds_size = lds_size; |
| |
| tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | |
| S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | |
| S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); |
| tess.num_patches = num_patches; |
| |
| struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL); |
| unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; |
| |
| switch (tes->info.tes.primitive_mode) { |
| case GL_TRIANGLES: |
| type = V_028B6C_TESS_TRIANGLE; |
| break; |
| case GL_QUADS: |
| type = V_028B6C_TESS_QUAD; |
| break; |
| case GL_ISOLINES: |
| type = V_028B6C_TESS_ISOLINE; |
| break; |
| } |
| |
| switch (tes->info.tes.spacing) { |
| case TESS_SPACING_EQUAL: |
| partitioning = V_028B6C_PART_INTEGER; |
| break; |
| case TESS_SPACING_FRACTIONAL_ODD: |
| partitioning = V_028B6C_PART_FRAC_ODD; |
| break; |
| case TESS_SPACING_FRACTIONAL_EVEN: |
| partitioning = V_028B6C_PART_FRAC_EVEN; |
| break; |
| default: |
| break; |
| } |
| |
| bool ccw = tes->info.tes.ccw; |
| const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state = |
| vk_find_struct_const(pCreateInfo->pTessellationState, |
| PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO); |
| |
| if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) |
| ccw = !ccw; |
| |
| if (tes->info.tes.point_mode) |
| topology = V_028B6C_OUTPUT_POINT; |
| else if (tes->info.tes.primitive_mode == GL_ISOLINES) |
| topology = V_028B6C_OUTPUT_LINE; |
| else if (ccw) |
| topology = V_028B6C_OUTPUT_TRIANGLE_CCW; |
| else |
| topology = V_028B6C_OUTPUT_TRIANGLE_CW; |
| |
| if (pipeline->device->physical_device->rad_info.has_distributed_tess) { |
| if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || |
| pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; |
| else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; |
| } else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; |
| |
| tess.tf_param = S_028B6C_TYPE(type) | |
| S_028B6C_PARTITIONING(partitioning) | |
| S_028B6C_TOPOLOGY(topology) | |
| S_028B6C_DISTRIBUTION_MODE(distribution_mode); |
| |
| return tess; |
| } |
| |
| static const struct radv_prim_vertex_count prim_size_table[] = { |
| [V_008958_DI_PT_NONE] = {0, 0}, |
| [V_008958_DI_PT_POINTLIST] = {1, 1}, |
| [V_008958_DI_PT_LINELIST] = {2, 2}, |
| [V_008958_DI_PT_LINESTRIP] = {2, 1}, |
| [V_008958_DI_PT_TRILIST] = {3, 3}, |
| [V_008958_DI_PT_TRIFAN] = {3, 1}, |
| [V_008958_DI_PT_TRISTRIP] = {3, 1}, |
| [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, |
| [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, |
| [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, |
| [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, |
| [V_008958_DI_PT_RECTLIST] = {3, 3}, |
| [V_008958_DI_PT_LINELOOP] = {2, 1}, |
| [V_008958_DI_PT_POLYGON] = {3, 1}, |
| [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, |
| }; |
| |
| static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline) |
| { |
| if (radv_pipeline_has_gs(pipeline)) |
| if (radv_pipeline_has_ngg(pipeline)) |
| return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo; |
| else |
| return &pipeline->gs_copy_shader->info.vs.outinfo; |
| else if (radv_pipeline_has_tess(pipeline)) |
| return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo; |
| else |
| return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo; |
| } |
| |
| static void |
| radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders) |
| { |
| nir_shader* ordered_shaders[MESA_SHADER_STAGES]; |
| int shader_count = 0; |
| |
| if(shaders[MESA_SHADER_FRAGMENT]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT]; |
| } |
| if(shaders[MESA_SHADER_GEOMETRY]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY]; |
| } |
| if(shaders[MESA_SHADER_TESS_EVAL]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL]; |
| } |
| if(shaders[MESA_SHADER_TESS_CTRL]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL]; |
| } |
| if(shaders[MESA_SHADER_VERTEX]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX]; |
| } |
| |
| if (shader_count > 1) { |
| unsigned first = ordered_shaders[shader_count - 1]->info.stage; |
| unsigned last = ordered_shaders[0]->info.stage; |
| |
| if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT && |
| ordered_shaders[1]->info.has_transform_feedback_varyings) |
| nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]); |
| |
| for (int i = 0; i < shader_count; ++i) { |
| nir_variable_mode mask = 0; |
| |
| if (ordered_shaders[i]->info.stage != first) |
| mask = mask | nir_var_shader_in; |
| |
| if (ordered_shaders[i]->info.stage != last) |
| mask = mask | nir_var_shader_out; |
| |
| nir_lower_io_to_scalar_early(ordered_shaders[i], mask); |
| radv_optimize_nir(ordered_shaders[i], false, false); |
| } |
| } |
| |
| for (int i = 1; i < shader_count; ++i) { |
| nir_lower_io_arrays_to_elements(ordered_shaders[i], |
| ordered_shaders[i - 1]); |
| |
| if (nir_link_opt_varyings(ordered_shaders[i], |
| ordered_shaders[i - 1])) |
| radv_optimize_nir(ordered_shaders[i - 1], false, false); |
| |
| nir_remove_dead_variables(ordered_shaders[i], |
| nir_var_shader_out); |
| nir_remove_dead_variables(ordered_shaders[i - 1], |
| nir_var_shader_in); |
| |
| bool progress = nir_remove_unused_varyings(ordered_shaders[i], |
| ordered_shaders[i - 1]); |
| |
| nir_compact_varyings(ordered_shaders[i], |
| ordered_shaders[i - 1], true); |
| |
| if (progress) { |
| if (nir_lower_global_vars_to_local(ordered_shaders[i])) { |
| ac_lower_indirect_derefs(ordered_shaders[i], |
| pipeline->device->physical_device->rad_info.chip_class); |
| } |
| radv_optimize_nir(ordered_shaders[i], false, false); |
| |
| if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) { |
| ac_lower_indirect_derefs(ordered_shaders[i - 1], |
| pipeline->device->physical_device->rad_info.chip_class); |
| } |
| radv_optimize_nir(ordered_shaders[i - 1], false, false); |
| } |
| } |
| } |
| |
| static uint32_t |
| radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state, |
| uint32_t attrib_binding) |
| { |
| for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *input_binding = |
| &input_state->pVertexBindingDescriptions[i]; |
| |
| if (input_binding->binding == attrib_binding) |
| return input_binding->stride; |
| } |
| |
| return 0; |
| } |
| |
| static struct radv_pipeline_key |
| radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_blend_state *blend, |
| bool has_view_index) |
| { |
| const VkPipelineVertexInputStateCreateInfo *input_state = |
| pCreateInfo->pVertexInputState; |
| const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state = |
| vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); |
| |
| struct radv_pipeline_key key; |
| memset(&key, 0, sizeof(key)); |
| |
| if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT) |
| key.optimisations_disabled = 1; |
| |
| key.has_multiview_view_index = has_view_index; |
| |
| uint32_t binding_input_rate = 0; |
| uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; |
| for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) { |
| if (input_state->pVertexBindingDescriptions[i].inputRate) { |
| unsigned binding = input_state->pVertexBindingDescriptions[i].binding; |
| binding_input_rate |= 1u << binding; |
| instance_rate_divisors[binding] = 1; |
| } |
| } |
| if (divisor_state) { |
| for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) { |
| instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] = |
| divisor_state->pVertexBindingDivisors[i].divisor; |
| } |
| } |
| |
| for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { |
| const VkVertexInputAttributeDescription *desc = |
| &input_state->pVertexAttributeDescriptions[i]; |
| const struct vk_format_description *format_desc; |
| unsigned location = desc->location; |
| unsigned binding = desc->binding; |
| unsigned num_format, data_format; |
| int first_non_void; |
| |
| if (binding_input_rate & (1u << binding)) { |
| key.instance_rate_inputs |= 1u << location; |
| key.instance_rate_divisors[location] = instance_rate_divisors[binding]; |
| } |
| |
| format_desc = vk_format_description(desc->format); |
| first_non_void = vk_format_get_first_non_void_channel(desc->format); |
| |
| num_format = radv_translate_buffer_numformat(format_desc, first_non_void); |
| data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); |
| |
| key.vertex_attribute_formats[location] = data_format | (num_format << 4); |
| key.vertex_attribute_bindings[location] = desc->binding; |
| key.vertex_attribute_offsets[location] = desc->offset; |
| key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 && |
| pipeline->device->physical_device->rad_info.family != CHIP_STONEY) { |
| VkFormat format = input_state->pVertexAttributeDescriptions[i].format; |
| uint64_t adjust; |
| switch(format) { |
| case VK_FORMAT_A2R10G10B10_SNORM_PACK32: |
| case VK_FORMAT_A2B10G10R10_SNORM_PACK32: |
| adjust = RADV_ALPHA_ADJUST_SNORM; |
| break; |
| case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: |
| case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: |
| adjust = RADV_ALPHA_ADJUST_SSCALED; |
| break; |
| case VK_FORMAT_A2R10G10B10_SINT_PACK32: |
| case VK_FORMAT_A2B10G10R10_SINT_PACK32: |
| adjust = RADV_ALPHA_ADJUST_SINT; |
| break; |
| default: |
| adjust = 0; |
| break; |
| } |
| key.vertex_alpha_adjust |= adjust << (2 * location); |
| } |
| |
| switch (desc->format) { |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_SNORM: |
| case VK_FORMAT_B8G8R8A8_USCALED: |
| case VK_FORMAT_B8G8R8A8_SSCALED: |
| case VK_FORMAT_B8G8R8A8_UINT: |
| case VK_FORMAT_B8G8R8A8_SINT: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| case VK_FORMAT_A2R10G10B10_UNORM_PACK32: |
| case VK_FORMAT_A2R10G10B10_SNORM_PACK32: |
| case VK_FORMAT_A2R10G10B10_USCALED_PACK32: |
| case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: |
| case VK_FORMAT_A2R10G10B10_UINT_PACK32: |
| case VK_FORMAT_A2R10G10B10_SINT_PACK32: |
| key.vertex_post_shuffle |= 1 << location; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (pCreateInfo->pTessellationState) |
| key.tess_input_vertices = pCreateInfo->pTessellationState->patchControlPoints; |
| |
| |
| if (pCreateInfo->pMultisampleState && |
| pCreateInfo->pMultisampleState->rasterizationSamples > 1) { |
| uint32_t num_samples = pCreateInfo->pMultisampleState->rasterizationSamples; |
| uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo->pMultisampleState); |
| key.num_samples = num_samples; |
| key.log2_ps_iter_samples = util_logbase2(ps_iter_samples); |
| } |
| |
| key.col_format = blend->spi_shader_col_format; |
| if (pipeline->device->physical_device->rad_info.chip_class < GFX8) |
| radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10); |
| |
| return key; |
| } |
| |
| static bool |
| radv_nir_stage_uses_xfb(const nir_shader *nir) |
| { |
| nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL); |
| bool uses_xfb = !!xfb; |
| |
| ralloc_free(xfb); |
| return uses_xfb; |
| } |
| |
| static void |
| radv_fill_shader_keys(struct radv_device *device, |
| struct radv_shader_variant_key *keys, |
| const struct radv_pipeline_key *key, |
| nir_shader **nir) |
| { |
| keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs; |
| keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust; |
| keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle; |
| for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) { |
| keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i]; |
| keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i]; |
| keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i]; |
| keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i]; |
| keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i]; |
| } |
| |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true; |
| keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0; |
| keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices; |
| keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode; |
| |
| keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); |
| } |
| |
| if (nir[MESA_SHADER_GEOMETRY]) { |
| if (nir[MESA_SHADER_TESS_CTRL]) |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true; |
| else |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true; |
| } |
| |
| if (device->physical_device->rad_info.chip_class >= GFX10 && |
| device->physical_device->rad_info.family != CHIP_NAVI14 && |
| !(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) { |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true; |
| } else { |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true; |
| } |
| |
| if (nir[MESA_SHADER_TESS_CTRL] && |
| nir[MESA_SHADER_GEOMETRY] && |
| nir[MESA_SHADER_GEOMETRY]->info.gs.invocations * |
| nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) { |
| /* Fallback to the legacy path if tessellation is |
| * enabled with extreme geometry because |
| * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it |
| * might hang. |
| */ |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false; |
| } |
| |
| /* |
| * Disable NGG with geometry shaders. There are a bunch of |
| * issues still: |
| * * GS primitives in pipeline statistic queries do not get |
| * updates. See dEQP-VK.query_pool.statistics_query.geometry_shader_primitives |
| * * General issues with the last primitive missing/corrupt: |
| * https://bugs.freedesktop.org/show_bug.cgi?id=111248 |
| * |
| * Furthermore, XGL/AMDVLK also disables this as of 9b632ef. |
| */ |
| if (nir[MESA_SHADER_GEOMETRY]) { |
| if (nir[MESA_SHADER_TESS_CTRL]) |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false; |
| else |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false; |
| } |
| |
| /* TODO: Implement streamout support for NGG. */ |
| gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX; |
| |
| for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { |
| if (nir[i]) |
| last_xfb_stage = i; |
| } |
| |
| if (nir[last_xfb_stage] && |
| radv_nir_stage_uses_xfb(nir[last_xfb_stage])) { |
| if (nir[MESA_SHADER_TESS_CTRL]) |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false; |
| else |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false; |
| } |
| } |
| |
| for(int i = 0; i < MESA_SHADER_STAGES; ++i) |
| keys[i].has_multiview_view_index = key->has_multiview_view_index; |
| |
| keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format; |
| keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8; |
| keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10; |
| keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples; |
| keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples; |
| } |
| |
| static void |
| radv_fill_shader_info(struct radv_pipeline *pipeline, |
| struct radv_shader_variant_key *keys, |
| struct radv_shader_info *infos, |
| nir_shader **nir) |
| { |
| unsigned active_stages = 0; |
| unsigned filled_stages = 0; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (nir[i]) |
| active_stages |= (1 << i); |
| } |
| |
| if (nir[MESA_SHADER_FRAGMENT]) { |
| radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]); |
| radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT], |
| pipeline->layout, |
| &keys[MESA_SHADER_FRAGMENT], |
| &infos[MESA_SHADER_FRAGMENT]); |
| |
| /* TODO: These are no longer used as keys we should refactor this */ |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id = |
| infos[MESA_SHADER_FRAGMENT].ps.prim_id_input; |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id = |
| infos[MESA_SHADER_FRAGMENT].ps.layer_input; |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists = |
| !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id = |
| infos[MESA_SHADER_FRAGMENT].ps.prim_id_input; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id = |
| infos[MESA_SHADER_FRAGMENT].ps.layer_input; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists = |
| !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls; |
| |
| filled_stages |= (1 << MESA_SHADER_FRAGMENT); |
| } |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 && |
| nir[MESA_SHADER_TESS_CTRL]) { |
| struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; |
| struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; |
| key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; |
| |
| radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]); |
| |
| for (int i = 0; i < 2; i++) { |
| radv_nir_shader_info_pass(combined_nir[i], |
| pipeline->layout, &key, |
| &infos[MESA_SHADER_TESS_CTRL]); |
| } |
| |
| keys[MESA_SHADER_TESS_EVAL].tes.num_patches = |
| infos[MESA_SHADER_TESS_CTRL].tcs.num_patches; |
| keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = |
| util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written); |
| |
| filled_stages |= (1 << MESA_SHADER_VERTEX); |
| filled_stages |= (1 << MESA_SHADER_TESS_CTRL); |
| } |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 && |
| nir[MESA_SHADER_GEOMETRY]) { |
| gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; |
| |
| radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]); |
| |
| for (int i = 0; i < 2; i++) { |
| radv_nir_shader_info_pass(combined_nir[i], |
| pipeline->layout, |
| &keys[pre_stage], |
| &infos[MESA_SHADER_GEOMETRY]); |
| } |
| |
| filled_stages |= (1 << pre_stage); |
| filled_stages |= (1 << MESA_SHADER_GEOMETRY); |
| } |
| |
| active_stages ^= filled_stages; |
| while (active_stages) { |
| int i = u_bit_scan(&active_stages); |
| |
| if (i == MESA_SHADER_TESS_CTRL) { |
| keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = |
| util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written); |
| } |
| |
| if (i == MESA_SHADER_TESS_EVAL) { |
| keys[MESA_SHADER_TESS_EVAL].tes.num_patches = |
| infos[MESA_SHADER_TESS_CTRL].tcs.num_patches; |
| keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = |
| util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written); |
| } |
| |
| radv_nir_shader_info_init(&infos[i]); |
| radv_nir_shader_info_pass(nir[i], pipeline->layout, |
| &keys[i], &infos[i]); |
| } |
| } |
| |
| static void |
| merge_tess_info(struct shader_info *tes_info, |
| const struct shader_info *tcs_info) |
| { |
| /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: |
| * |
| * "PointMode. Controls generation of points rather than triangles |
| * or lines. This functionality defaults to disabled, and is |
| * enabled if either shader stage includes the execution mode. |
| * |
| * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, |
| * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, |
| * and OutputVertices, it says: |
| * |
| * "One mode must be set in at least one of the tessellation |
| * shader stages." |
| * |
| * So, the fields can be set in either the TCS or TES, but they must |
| * agree if set in both. Our backend looks at TES, so bitwise-or in |
| * the values from the TCS. |
| */ |
| assert(tcs_info->tess.tcs_vertices_out == 0 || |
| tes_info->tess.tcs_vertices_out == 0 || |
| tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); |
| tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; |
| |
| assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || |
| tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || |
| tcs_info->tess.spacing == tes_info->tess.spacing); |
| tes_info->tess.spacing |= tcs_info->tess.spacing; |
| |
| assert(tcs_info->tess.primitive_mode == 0 || |
| tes_info->tess.primitive_mode == 0 || |
| tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode); |
| tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode; |
| tes_info->tess.ccw |= tcs_info->tess.ccw; |
| tes_info->tess.point_mode |= tcs_info->tess.point_mode; |
| } |
| |
| static |
| void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext) |
| { |
| if (!ext) |
| return; |
| |
| if (ext->pPipelineCreationFeedback) { |
| ext->pPipelineCreationFeedback->flags = 0; |
| ext->pPipelineCreationFeedback->duration = 0; |
| } |
| |
| for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) { |
| ext->pPipelineStageCreationFeedbacks[i].flags = 0; |
| ext->pPipelineStageCreationFeedbacks[i].duration = 0; |
| } |
| } |
| |
| static |
| void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback) |
| { |
| if (!feedback) |
| return; |
| |
| feedback->duration -= radv_get_current_time(); |
| feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT; |
| } |
| |
| static |
| void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit) |
| { |
| if (!feedback) |
| return; |
| |
| feedback->duration += radv_get_current_time(); |
| feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT | |
| (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0); |
| } |
| |
| static |
| void radv_create_shaders(struct radv_pipeline *pipeline, |
| struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| const struct radv_pipeline_key *key, |
| const VkPipelineShaderStageCreateInfo **pStages, |
| const VkPipelineCreateFlags flags, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| VkPipelineCreationFeedbackEXT *pipeline_feedback, |
| VkPipelineCreationFeedbackEXT **stage_feedbacks) |
| { |
| struct radv_shader_module fs_m = {0}; |
| struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; |
| nir_shader *nir[MESA_SHADER_STAGES] = {0}; |
| struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL}; |
| struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}}; |
| struct radv_shader_info infos[MESA_SHADER_STAGES] = {0}; |
| unsigned char hash[20], gs_copy_hash[20]; |
| bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info; |
| |
| radv_start_feedback(pipeline_feedback); |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pStages[i]) { |
| modules[i] = radv_shader_module_from_handle(pStages[i]->module); |
| if (modules[i]->nir) |
| _mesa_sha1_compute(modules[i]->nir->info.name, |
| strlen(modules[i]->nir->info.name), |
| modules[i]->sha1); |
| |
| pipeline->active_stages |= mesa_to_vk_shader_stage(i); |
| } |
| } |
| |
| radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device)); |
| memcpy(gs_copy_hash, hash, 20); |
| gs_copy_hash[0] ^= 1; |
| |
| bool found_in_application_cache = true; |
| if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info) { |
| struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; |
| radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants, |
| &found_in_application_cache); |
| pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY]; |
| } |
| |
| if (!keep_executable_info && |
| radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders, |
| &found_in_application_cache) && |
| (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) { |
| radv_stop_feedback(pipeline_feedback, found_in_application_cache); |
| return; |
| } |
| |
| if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) { |
| nir_builder fs_b; |
| nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); |
| fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs"); |
| fs_m.nir = fs_b.shader; |
| modules[MESA_SHADER_FRAGMENT] = &fs_m; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { |
| const VkPipelineShaderStageCreateInfo *stage = pStages[i]; |
| |
| if (!modules[i]) |
| continue; |
| |
| radv_start_feedback(stage_feedbacks[i]); |
| |
| nir[i] = radv_shader_compile_to_nir(device, modules[i], |
| stage ? stage->pName : "main", i, |
| stage ? stage->pSpecializationInfo : NULL, |
| flags, pipeline->layout); |
| |
| /* We don't want to alter meta shaders IR directly so clone it |
| * first. |
| */ |
| if (nir[i]->info.name) { |
| nir[i] = nir_shader_clone(NULL, nir[i]); |
| } |
| |
| radv_stop_feedback(stage_feedbacks[i], false); |
| } |
| |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL); |
| merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info); |
| } |
| |
| if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)) |
| radv_link_shaders(pipeline, nir); |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (nir[i]) { |
| NIR_PASS_V(nir[i], nir_lower_non_uniform_access, |
| nir_lower_non_uniform_ubo_access | |
| nir_lower_non_uniform_ssbo_access | |
| nir_lower_non_uniform_texture_access | |
| nir_lower_non_uniform_image_access); |
| NIR_PASS_V(nir[i], nir_lower_bool_to_int32); |
| } |
| |
| if (radv_can_dump_shader(device, modules[i], false)) |
| nir_print_shader(nir[i], stderr); |
| } |
| |
| if (nir[MESA_SHADER_FRAGMENT]) |
| radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]); |
| |
| radv_fill_shader_keys(device, keys, key, nir); |
| |
| radv_fill_shader_info(pipeline, keys, infos, nir); |
| |
| if ((nir[MESA_SHADER_VERTEX] && |
| keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) || |
| (nir[MESA_SHADER_TESS_EVAL] && |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) { |
| struct gfx10_ngg_info *ngg_info; |
| |
| if (nir[MESA_SHADER_GEOMETRY]) |
| ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info; |
| else if (nir[MESA_SHADER_TESS_CTRL]) |
| ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info; |
| else |
| ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info; |
| |
| gfx10_get_ngg_info(pCreateInfo, pipeline, nir, infos, ngg_info); |
| } else if (nir[MESA_SHADER_GEOMETRY]) { |
| struct gfx9_gs_info *gs_info = |
| &infos[MESA_SHADER_GEOMETRY].gs_ring_info; |
| |
| gfx9_get_gs_info(pCreateInfo, pipeline, nir, infos, gs_info); |
| } |
| |
| if (nir[MESA_SHADER_FRAGMENT]) { |
| if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) { |
| radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]); |
| |
| pipeline->shaders[MESA_SHADER_FRAGMENT] = |
| radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1, |
| pipeline->layout, keys + MESA_SHADER_FRAGMENT, |
| infos + MESA_SHADER_FRAGMENT, |
| keep_executable_info, &binaries[MESA_SHADER_FRAGMENT]); |
| |
| radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false); |
| } |
| |
| /* TODO: These are no longer used as keys we should refactor this */ |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input; |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.layer_input; |
| keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists = |
| !!pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.num_input_clips_culls; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.layer_input; |
| keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists = |
| !!pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.num_input_clips_culls; |
| } |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) { |
| if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) { |
| struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; |
| struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; |
| key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; |
| |
| radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]); |
| |
| pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2, |
| pipeline->layout, |
| &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info, |
| &binaries[MESA_SHADER_TESS_CTRL]); |
| |
| radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false); |
| } |
| modules[MESA_SHADER_VERTEX] = NULL; |
| keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; |
| keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); |
| } |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) { |
| gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) { |
| struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; |
| |
| radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]); |
| |
| pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2, |
| pipeline->layout, |
| &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info, |
| &binaries[MESA_SHADER_GEOMETRY]); |
| |
| radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false); |
| } |
| modules[pre_stage] = NULL; |
| } |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if(modules[i] && !pipeline->shaders[i]) { |
| if (i == MESA_SHADER_TESS_CTRL) { |
| keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written); |
| } |
| if (i == MESA_SHADER_TESS_EVAL) { |
| keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; |
| keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); |
| } |
| |
| radv_start_feedback(stage_feedbacks[i]); |
| |
| pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1, |
| pipeline->layout, |
| keys + i, infos + i,keep_executable_info, |
| &binaries[i]); |
| |
| radv_stop_feedback(stage_feedbacks[i], false); |
| } |
| } |
| |
| if(modules[MESA_SHADER_GEOMETRY]) { |
| struct radv_shader_binary *gs_copy_binary = NULL; |
| if (!pipeline->gs_copy_shader && |
| !radv_pipeline_has_ngg(pipeline)) { |
| struct radv_shader_info info = {}; |
| struct radv_shader_variant_key key = {}; |
| |
| key.has_multiview_view_index = |
| keys[MESA_SHADER_GEOMETRY].has_multiview_view_index; |
| |
| radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY], |
| pipeline->layout, &key, |
| &info); |
| |
| pipeline->gs_copy_shader = radv_create_gs_copy_shader( |
| device, nir[MESA_SHADER_GEOMETRY], &info, |
| &gs_copy_binary, keep_executable_info, |
| keys[MESA_SHADER_GEOMETRY].has_multiview_view_index); |
| } |
| |
| if (!keep_executable_info && pipeline->gs_copy_shader) { |
| struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL}; |
| struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; |
| |
| binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary; |
| variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader; |
| |
| radv_pipeline_cache_insert_shaders(device, cache, |
| gs_copy_hash, |
| variants, |
| binaries); |
| } |
| free(gs_copy_binary); |
| } |
| |
| if (!keep_executable_info) { |
| radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders, |
| binaries); |
| } |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| free(binaries[i]); |
| if (nir[i]) { |
| ralloc_free(nir[i]); |
| |
| if (radv_can_dump_shader_stats(device, modules[i])) |
| radv_shader_dump_stats(device, |
| pipeline->shaders[i], |
| i, stderr); |
| } |
| } |
| |
| if (fs_m.nir) |
| ralloc_free(fs_m.nir); |
| |
| radv_stop_feedback(pipeline_feedback, false); |
| } |
| |
| static uint32_t |
| radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline, |
| gl_shader_stage stage, enum chip_class chip_class) |
| { |
| bool has_gs = radv_pipeline_has_gs(pipeline); |
| bool has_tess = radv_pipeline_has_tess(pipeline); |
| bool has_ngg = radv_pipeline_has_ngg(pipeline); |
| |
| switch (stage) { |
| case MESA_SHADER_FRAGMENT: |
| return R_00B030_SPI_SHADER_USER_DATA_PS_0; |
| case MESA_SHADER_VERTEX: |
| if (has_tess) { |
| if (chip_class >= GFX10) { |
| return R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| } else if (chip_class == GFX9) { |
| return R_00B430_SPI_SHADER_USER_DATA_LS_0; |
| } else { |
| return R_00B530_SPI_SHADER_USER_DATA_LS_0; |
| } |
| |
| } |
| |
| if (has_gs) { |
| if (chip_class >= GFX10) { |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| } else { |
| return R_00B330_SPI_SHADER_USER_DATA_ES_0; |
| } |
| } |
| |
| if (has_ngg) |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| |
| return R_00B130_SPI_SHADER_USER_DATA_VS_0; |
| case MESA_SHADER_GEOMETRY: |
| return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : |
| R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| case MESA_SHADER_COMPUTE: |
| return R_00B900_COMPUTE_USER_DATA_0; |
| case MESA_SHADER_TESS_CTRL: |
| return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : |
| R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| case MESA_SHADER_TESS_EVAL: |
| if (has_gs) { |
| return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 : |
| R_00B330_SPI_SHADER_USER_DATA_ES_0; |
| } else if (has_ngg) { |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| } else { |
| return R_00B130_SPI_SHADER_USER_DATA_VS_0; |
| } |
| default: |
| unreachable("unknown shader"); |
| } |
| } |
| |
| struct radv_bin_size_entry { |
| unsigned bpp; |
| VkExtent2D extent; |
| }; |
| |
| static VkExtent2D |
| radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| static const struct radv_bin_size_entry color_size_table[][3][9] = { |
| { |
| /* One RB / SE */ |
| { |
| /* One shader engine */ |
| { 0, {128, 128}}, |
| { 1, { 64, 128}}, |
| { 2, { 32, 128}}, |
| { 3, { 16, 128}}, |
| { 17, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| { 0, {128, 128}}, |
| { 2, { 64, 128}}, |
| { 3, { 32, 128}}, |
| { 5, { 16, 128}}, |
| { 17, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| { 0, {128, 128}}, |
| { 3, { 64, 128}}, |
| { 5, { 16, 128}}, |
| { 17, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| { |
| /* Two RB / SE */ |
| { |
| /* One shader engine */ |
| { 0, {128, 128}}, |
| { 2, { 64, 128}}, |
| { 3, { 32, 128}}, |
| { 5, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| { 0, {128, 128}}, |
| { 3, { 64, 128}}, |
| { 5, { 32, 128}}, |
| { 9, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| { 0, {256, 256}}, |
| { 2, {128, 256}}, |
| { 3, {128, 128}}, |
| { 5, { 64, 128}}, |
| { 9, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| { |
| /* Four RB / SE */ |
| { |
| /* One shader engine */ |
| { 0, {128, 256}}, |
| { 2, {128, 128}}, |
| { 3, { 64, 128}}, |
| { 5, { 32, 128}}, |
| { 9, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| { 0, {256, 256}}, |
| { 2, {128, 256}}, |
| { 3, {128, 128}}, |
| { 5, { 64, 128}}, |
| { 9, { 32, 128}}, |
| { 17, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| { 0, {256, 512}}, |
| { 2, {256, 256}}, |
| { 3, {128, 256}}, |
| { 5, {128, 128}}, |
| { 9, { 64, 128}}, |
| { 17, { 16, 128}}, |
| { 33, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| }; |
| static const struct radv_bin_size_entry ds_size_table[][3][9] = { |
| { |
| // One RB / SE |
| { |
| // One shader engine |
| { 0, {128, 256}}, |
| { 2, {128, 128}}, |
| { 4, { 64, 128}}, |
| { 7, { 32, 128}}, |
| { 13, { 16, 128}}, |
| { 49, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Two shader engines |
| { 0, {256, 256}}, |
| { 2, {128, 256}}, |
| { 4, {128, 128}}, |
| { 7, { 64, 128}}, |
| { 13, { 32, 128}}, |
| { 25, { 16, 128}}, |
| { 49, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Four shader engines |
| { 0, {256, 512}}, |
| { 2, {256, 256}}, |
| { 4, {128, 256}}, |
| { 7, {128, 128}}, |
| { 13, { 64, 128}}, |
| { 25, { 16, 128}}, |
| { 49, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| { |
| // Two RB / SE |
| { |
| // One shader engine |
| { 0, {256, 256}}, |
| { 2, {128, 256}}, |
| { 4, {128, 128}}, |
| { 7, { 64, 128}}, |
| { 13, { 32, 128}}, |
| { 25, { 16, 128}}, |
| { 97, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Two shader engines |
| { 0, {256, 512}}, |
| { 2, {256, 256}}, |
| { 4, {128, 256}}, |
| { 7, {128, 128}}, |
| { 13, { 64, 128}}, |
| { 25, { 32, 128}}, |
| { 49, { 16, 128}}, |
| { 97, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Four shader engines |
| { 0, {512, 512}}, |
| { 2, {256, 512}}, |
| { 4, {256, 256}}, |
| { 7, {128, 256}}, |
| { 13, {128, 128}}, |
| { 25, { 64, 128}}, |
| { 49, { 16, 128}}, |
| { 97, { 0, 0}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| { |
| // Four RB / SE |
| { |
| // One shader engine |
| { 0, {256, 512}}, |
| { 2, {256, 256}}, |
| { 4, {128, 256}}, |
| { 7, {128, 128}}, |
| { 13, { 64, 128}}, |
| { 25, { 32, 128}}, |
| { 49, { 16, 128}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Two shader engines |
| { 0, {512, 512}}, |
| { 2, {256, 512}}, |
| { 4, {256, 256}}, |
| { 7, {128, 256}}, |
| { 13, {128, 128}}, |
| { 25, { 64, 128}}, |
| { 49, { 32, 128}}, |
| { 97, { 16, 128}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| { |
| // Four shader engines |
| { 0, {512, 512}}, |
| { 4, {256, 512}}, |
| { 7, {256, 256}}, |
| { 13, {128, 256}}, |
| { 25, {128, 128}}, |
| { 49, { 64, 128}}, |
| { 97, { 16, 128}}, |
| { UINT_MAX, { 0, 0}}, |
| }, |
| }, |
| }; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| VkExtent2D extent = {512, 512}; |
| |
| unsigned log_num_rb_per_se = |
| util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends / |
| pipeline->device->physical_device->rad_info.max_se); |
| unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se); |
| |
| unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config); |
| unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa); |
| unsigned effective_samples = total_samples; |
| unsigned color_bytes_per_pixel = 0; |
| |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| if (vkblend) { |
| for (unsigned i = 0; i < subpass->color_count; i++) { |
| if (!vkblend->pAttachments[i].colorWriteMask) |
| continue; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; |
| color_bytes_per_pixel += vk_format_get_blocksize(format); |
| } |
| |
| /* MSAA images typically don't use all samples all the time. */ |
| if (effective_samples >= 2 && ps_iter_samples <= 1) |
| effective_samples = 2; |
| color_bytes_per_pixel *= effective_samples; |
| } |
| |
| const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se]; |
| while(color_entry[1].bpp <= color_bytes_per_pixel) |
| ++color_entry; |
| |
| extent = color_entry->extent; |
| |
| if (subpass->depth_stencil_attachment) { |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; |
| |
| /* Coefficients taken from AMDVLK */ |
| unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0; |
| unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0; |
| unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples; |
| |
| const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se]; |
| while(ds_entry[1].bpp <= ds_bytes_per_pixel) |
| ++ds_entry; |
| |
| if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height) |
| extent = ds_entry->extent; |
| } |
| |
| return extent; |
| } |
| |
| static VkExtent2D |
| radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| VkExtent2D extent = {512, 512}; |
| |
| unsigned sdp_interface_count; |
| |
| switch(pipeline->device->physical_device->rad_info.family) { |
| case CHIP_NAVI10: |
| case CHIP_NAVI12: |
| sdp_interface_count = 16; |
| break; |
| case CHIP_NAVI14: |
| sdp_interface_count = 8; |
| break; |
| default: |
| unreachable("Unhandled GFX10 chip"); |
| } |
| |
| const unsigned db_tag_size = 64; |
| const unsigned db_tag_count = 312; |
| const unsigned color_tag_size = 1024; |
| const unsigned color_tag_count = 31; |
| const unsigned fmask_tag_size = 256; |
| const unsigned fmask_tag_count = 44; |
| |
| const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends; |
| const unsigned pipe_count = MAX2(rb_count, sdp_interface_count); |
| |
| const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count; |
| const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count; |
| const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count; |
| |
| const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config); |
| const unsigned samples_log = util_logbase2_ceil(total_samples); |
| |
| unsigned color_bytes_per_pixel = 0; |
| unsigned fmask_bytes_per_pixel = 0; |
| |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| if (vkblend) { |
| for (unsigned i = 0; i < subpass->color_count; i++) { |
| if (!vkblend->pAttachments[i].colorWriteMask) |
| continue; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; |
| color_bytes_per_pixel += vk_format_get_blocksize(format); |
| |
| if (total_samples > 1) { |
| const unsigned fmask_array[] = {0, 1, 1, 4}; |
| fmask_bytes_per_pixel += fmask_array[samples_log]; |
| } |
| } |
| |
| color_bytes_per_pixel *= total_samples; |
| } |
| color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1); |
| |
| const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel); |
| extent.width = 1ull << ((color_pixel_count_log + 1) / 2); |
| extent.height = 1ull << (color_pixel_count_log / 2); |
| |
| if (fmask_bytes_per_pixel) { |
| const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel); |
| |
| const VkExtent2D fmask_extent = (VkExtent2D){ |
| .width = 1ull << ((fmask_pixel_count_log + 1) / 2), |
| .height = 1ull << (color_pixel_count_log / 2) |
| }; |
| |
| if (fmask_extent.width * fmask_extent.height < extent.width * extent.height) |
| extent = fmask_extent; |
| } |
| |
| if (subpass->depth_stencil_attachment) { |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; |
| |
| /* Coefficients taken from AMDVLK */ |
| unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0; |
| unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0; |
| unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples; |
| |
| const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel); |
| |
| const VkExtent2D db_extent = (VkExtent2D){ |
| .width = 1ull << ((db_pixel_count_log + 1) / 2), |
| .height = 1ull << (color_pixel_count_log / 2) |
| }; |
| |
| if (db_extent.width * db_extent.height < extent.width * extent.height) |
| extent = db_extent; |
| } |
| |
| extent.width = MAX2(extent.width, 128); |
| extent.height = MAX2(extent.width, 64); |
| |
| return extent; |
| } |
| |
| static void |
| radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| uint32_t pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | |
| S_028C44_DISABLE_START_OF_PRIM(1); |
| uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| unsigned min_bytes_per_pixel = 0; |
| |
| if (vkblend) { |
| for (unsigned i = 0; i < subpass->color_count; i++) { |
| if (!vkblend->pAttachments[i].colorWriteMask) |
| continue; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; |
| unsigned bytes = vk_format_get_blocksize(format); |
| if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel) |
| min_bytes_per_pixel = bytes; |
| } |
| } |
| |
| pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) | |
| S_028C44_BIN_SIZE_X(0) | |
| S_028C44_BIN_SIZE_Y(0) | |
| S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */ |
| S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */ |
| S_028C44_DISABLE_START_OF_PRIM(1); |
| } |
| |
| pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; |
| pipeline->graphics.binning.db_dfsm_control = db_dfsm_control; |
| } |
| |
| static void |
| radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| if (pipeline->device->physical_device->rad_info.chip_class < GFX9) |
| return; |
| |
| VkExtent2D bin_size; |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo); |
| } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) { |
| bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo); |
| } else |
| unreachable("Unhandled generation for binning bin size calculation"); |
| |
| if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) { |
| unsigned context_states_per_bin; /* allowed range: [1, 6] */ |
| unsigned persistent_states_per_bin; /* allowed range: [1, 32] */ |
| unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */ |
| |
| if (pipeline->device->physical_device->rad_info.has_dedicated_vram) { |
| context_states_per_bin = 1; |
| persistent_states_per_bin = 1; |
| fpovs_per_batch = 63; |
| } else { |
| /* The context states are affected by the scissor bug. */ |
| context_states_per_bin = pipeline->device->physical_device->rad_info.has_gfx9_scissor_bug ? 1 : 6; |
| /* 32 causes hangs for RAVEN. */ |
| persistent_states_per_bin = 16; |
| fpovs_per_batch = 63; |
| } |
| |
| const uint32_t pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | |
| S_028C44_BIN_SIZE_X(bin_size.width == 16) | |
| S_028C44_BIN_SIZE_Y(bin_size.height == 16) | |
| S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) | |
| S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) | |
| S_028C44_CONTEXT_STATES_PER_BIN(context_states_per_bin - 1) | |
| S_028C44_PERSISTENT_STATES_PER_BIN(persistent_states_per_bin - 1) | |
| S_028C44_DISABLE_START_OF_PRIM(1) | |
| S_028C44_FPOVS_PER_BATCH(fpovs_per_batch) | |
| S_028C44_OPTIMAL_BIN_SELECTION(1); |
| |
| uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF); |
| |
| pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; |
| pipeline->graphics.binning.db_dfsm_control = db_dfsm_control; |
| } else |
| radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo); |
| } |
| |
| |
| static void |
| radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| struct radv_render_pass_attachment *attachment = NULL; |
| uint32_t db_depth_control = 0, db_stencil_control = 0; |
| uint32_t db_render_control = 0, db_render_override2 = 0; |
| uint32_t db_render_override = 0; |
| |
| if (subpass->depth_stencil_attachment) |
| attachment = pass->attachments + subpass->depth_stencil_attachment->attachment; |
| |
| bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format); |
| bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format); |
| |
| if (vkds && has_depth_attachment) { |
| db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) | |
| S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) | |
| S_028800_ZFUNC(vkds->depthCompareOp) | |
| S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0); |
| |
| /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */ |
| db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2); |
| } |
| |
| if (has_stencil_attachment && vkds && vkds->stencilTestEnable) { |
| db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); |
| db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp); |
| db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp)); |
| db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp)); |
| db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp)); |
| |
| db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp); |
| db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp)); |
| db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp)); |
| db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp)); |
| } |
| |
| if (attachment && extra) { |
| db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); |
| db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); |
| |
| db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize); |
| db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace); |
| db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace); |
| db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); |
| db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); |
| } |
| |
| db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | |
| S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE); |
| |
| if (!pCreateInfo->pRasterizationState->depthClampEnable) { |
| /* From VK_EXT_depth_range_unrestricted spec: |
| * |
| * "The behavior described in Primitive Clipping still applies. |
| * If depth clamping is disabled the depth values are still |
| * clipped to 0 ≤ zc ≤ wc before the viewport transform. If |
| * depth clamping is enabled the above equation is ignored and |
| * the depth values are instead clamped to the VkViewport |
| * minDepth and maxDepth values, which in the case of this |
| * extension can be outside of the 0.0 to 1.0 range." |
| */ |
| db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control); |
| radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control); |
| |
| radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control); |
| radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override); |
| radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2); |
| } |
| |
| static void |
| radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const struct radv_blend_state *blend) |
| { |
| radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8); |
| radeon_emit_array(ctx_cs, blend->cb_blend_control, |
| 8); |
| radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control); |
| radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask); |
| |
| if (pipeline->device->physical_device->rad_info.has_rbplus) { |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8); |
| radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format); |
| |
| radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask); |
| radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask); |
| |
| pipeline->graphics.col_format = blend->spi_shader_col_format; |
| pipeline->graphics.cb_target_mask = blend->cb_target_mask; |
| } |
| |
| static const VkConservativeRasterizationModeEXT |
| radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo) |
| { |
| const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT); |
| |
| if (!conservative_raster) |
| return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT; |
| return conservative_raster->conservativeRasterizationMode; |
| } |
| |
| static void |
| radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; |
| const VkConservativeRasterizationModeEXT mode = |
| radv_get_conservative_raster_mode(vkraster); |
| uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1); |
| bool depth_clip_disable = vkraster->depthClampEnable; |
| |
| const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state = |
| vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT); |
| if (depth_clip_state) { |
| depth_clip_disable = !depth_clip_state->depthClipEnable; |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL, |
| S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. |
| S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) | |
| S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) | |
| S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) | |
| S_028810_DX_LINEAR_ATTR_CLIP_ENA(1)); |
| |
| radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0, |
| S_0286D4_FLAT_SHADE_ENA(1) | |
| S_0286D4_PNT_SPRITE_ENA(1) | |
| S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | |
| S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | |
| S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | |
| S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | |
| S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */ |
| |
| radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL, |
| S_028BE4_PIX_CENTER(1) | // TODO verify |
| S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | |
| S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH)); |
| |
| radeon_set_context_reg(ctx_cs, R_028814_PA_SU_SC_MODE_CNTL, |
| S_028814_FACE(vkraster->frontFace) | |
| S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) | |
| S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) | |
| S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) | |
| S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0)); |
| |
| /* Conservative rasterization. */ |
| if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { |
| struct radv_multisample_state *ms = &pipeline->graphics.ms; |
| |
| ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1); |
| ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) | |
| S_028804_OVERRASTERIZATION_AMOUNT(4); |
| |
| pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) | |
| S_028C4C_POSTZ_AA_MASK_ENABLE(1) | |
| S_028C4C_CENTROID_SAMPLE_OVERRIDE(1); |
| |
| if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) { |
| pa_sc_conservative_rast |= |
| S_028C4C_OVER_RAST_ENABLE(1) | |
| S_028C4C_OVER_RAST_SAMPLE_SELECT(0) | |
| S_028C4C_UNDER_RAST_ENABLE(0) | |
| S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) | |
| S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1); |
| } else { |
| assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT); |
| pa_sc_conservative_rast |= |
| S_028C4C_OVER_RAST_ENABLE(0) | |
| S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | |
| S_028C4C_UNDER_RAST_ENABLE(1) | |
| S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) | |
| S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0); |
| } |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, |
| pa_sc_conservative_rast); |
| } |
| |
| |
| static void |
| radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline) |
| { |
| struct radv_multisample_state *ms = &pipeline->graphics.ms; |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2); |
| radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]); |
| radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]); |
| |
| radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa); |
| radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1); |
| |
| /* The exclusion bits can be set to improve rasterization efficiency |
| * if no sample lies on the pixel boundary (-8 sample offset). It's |
| * currently always TRUE because the driver doesn't support 16 samples. |
| */ |
| bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7; |
| radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, |
| S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) | |
| S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion)); |
| } |
| |
| static void |
| radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline) |
| { |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| const struct radv_shader_variant *vs = |
| pipeline->shaders[MESA_SHADER_TESS_EVAL] ? |
| pipeline->shaders[MESA_SHADER_TESS_EVAL] : |
| pipeline->shaders[MESA_SHADER_VERTEX]; |
| unsigned vgt_primitiveid_en = 0; |
| uint32_t vgt_gs_mode = 0; |
| |
| if (radv_pipeline_has_ngg(pipeline)) |
| return; |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| const struct radv_shader_variant *gs = |
| pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| |
| vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, |
| pipeline->device->physical_device->rad_info.chip_class); |
| } else if (outinfo->export_prim_id || vs->info.uses_prim_id) { |
| vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); |
| vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en); |
| radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode); |
| } |
| |
| static void |
| radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *shader) |
| { |
| uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; |
| |
| radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B124_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| bool misc_vec_ena = outinfo->writes_pointsize || |
| outinfo->writes_layer || |
| outinfo->writes_viewport_index; |
| unsigned spi_vs_out_config, nparams; |
| |
| /* VS is required to export at least one param. */ |
| nparams = MAX2(outinfo->param_exports, 1); |
| spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config); |
| |
| radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, |
| S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | |
| S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE)); |
| |
| radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL, |
| S_028818_VTX_W0_FMT(1) | |
| S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | |
| S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | |
| S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1)); |
| |
| radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| cull_dist_mask << 8 | |
| clip_dist_mask); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class <= GFX8) |
| radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, |
| outinfo->writes_viewport_index); |
| } |
| |
| static void |
| radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *shader) |
| { |
| uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; |
| |
| radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| } |
| |
| static void |
| radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *shader, |
| const struct radv_tessellation_state *tess) |
| { |
| uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; |
| uint32_t rsrc2 = shader->config.rsrc2; |
| |
| radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B524_MEM_BASE(va >> 40)); |
| |
| rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size); |
| if (pipeline->device->physical_device->rad_info.chip_class == GFX7 && |
| pipeline->device->physical_device->rad_info.family != CHIP_HAWAII) |
| radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2); |
| |
| radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, rsrc2); |
| } |
| |
| static void |
| radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *shader) |
| { |
| uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; |
| gl_shader_stage es_type = |
| radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| struct radv_shader_variant *es = |
| es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]; |
| const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info; |
| |
| radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); |
| radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| bool misc_vec_ena = outinfo->writes_pointsize || |
| outinfo->writes_layer || |
| outinfo->writes_viewport_index; |
| bool es_enable_prim_id = outinfo->export_prim_id || |
| (es && es->info.uses_prim_id); |
| bool break_wave_at_eoi = false; |
| unsigned ge_cntl; |
| unsigned nparams; |
| |
| if (es_type == MESA_SHADER_TESS_EVAL) { |
| struct radv_shader_variant *gs = |
| pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| |
| if (es_enable_prim_id || (gs && gs->info.uses_prim_id)) |
| break_wave_at_eoi = true; |
| } |
| |
| nparams = MAX2(outinfo->param_exports, 1); |
| radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, |
| S_0286C4_VS_EXPORT_COUNT(nparams - 1) | |
| S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0)); |
| |
| radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, |
| S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP)); |
| radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, |
| S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | |
| S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? |
| V_02870C_SPI_SHADER_4COMP : |
| V_02870C_SPI_SHADER_NONE)); |
| |
| radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL, |
| S_028818_VTX_W0_FMT(1) | |
| S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | |
| S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | |
| S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1)); |
| radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| cull_dist_mask << 8 | |
| clip_dist_mask); |
| |
| radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, |
| S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | |
| S_028A84_NGG_DISABLE_PROVOK_REUSE(es_enable_prim_id)); |
| |
| radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, |
| ngg_state->vgt_esgs_ring_itemsize); |
| |
| /* NGG specific registers. */ |
| struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1; |
| |
| radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, |
| S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) | |
| S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations)); |
| radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, |
| S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts)); |
| radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL, |
| S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | |
| S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */ |
| radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, |
| S_028B90_CNT(gs_num_invocations) | |
| S_028B90_ENABLE(gs_num_invocations > 1) | |
| S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance)); |
| |
| /* User edge flags are set by the pos exports. If user edge flags are |
| * not used, we must use hw-generated edge flags and pass them via |
| * the prim export to prevent drawing lines on internal edges of |
| * decomposed primitives (such as quads) with polygon mode = lines. |
| * |
| * TODO: We should combine hw-generated edge flags with user edge |
| * flags in the shader. |
| */ |
| radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL, |
| S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) && |
| !radv_pipeline_has_gs(pipeline))); |
| |
| ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) | |
| S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) | |
| S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); |
| |
| /* Bug workaround for a possible hang with non-tessellation cases. |
| * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0 |
| * |
| * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5 |
| */ |
| if ((pipeline->device->physical_device->rad_info.family == CHIP_NAVI10 || |
| pipeline->device->physical_device->rad_info.family == CHIP_NAVI12 || |
| pipeline->device->physical_device->rad_info.family == CHIP_NAVI14) && |
| !radv_pipeline_has_tess(pipeline) && |
| ngg_state->hw_max_esverts != 256) { |
| ge_cntl &= C_03096C_VERT_GRP_SIZE; |
| |
| if (ngg_state->hw_max_esverts > 5) { |
| ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5); |
| } |
| } |
| |
| radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl); |
| } |
| |
| static void |
| radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *shader, |
| const struct radv_tessellation_state *tess) |
| { |
| uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { |
| unsigned hs_rsrc2 = shader->config.rsrc2; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size); |
| } else { |
| hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size); |
| } |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B524_MEM_BASE(va >> 40)); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B414_MEM_BASE(va >> 40)); |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, hs_rsrc2); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B424_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| } |
| } |
| |
| static void |
| radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| const struct radv_tessellation_state *tess) |
| { |
| struct radv_shader_variant *vs; |
| |
| /* Skip shaders merged into HS/GS */ |
| vs = pipeline->shaders[MESA_SHADER_VERTEX]; |
| if (!vs) |
| return; |
| |
| if (vs->info.vs.as_ls) |
| radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess); |
| else if (vs->info.vs.as_es) |
| radv_pipeline_generate_hw_es(cs, pipeline, vs); |
| else if (vs->info.is_ngg) |
| radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs); |
| else |
| radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs); |
| } |
| |
| static void |
| radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| const struct radv_tessellation_state *tess) |
| { |
| if (!radv_pipeline_has_tess(pipeline)) |
| return; |
| |
| struct radv_shader_variant *tes, *tcs; |
| |
| tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL]; |
| tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| |
| if (tes) { |
| if (tes->info.is_ngg) { |
| radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes); |
| } else if (tes->info.tes.as_es) |
| radv_pipeline_generate_hw_es(cs, pipeline, tes); |
| else |
| radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes); |
| } |
| |
| radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess); |
| |
| radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM, |
| tess->tf_param); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) |
| radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2, |
| tess->ls_hs_config); |
| else |
| radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, |
| tess->ls_hs_config); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && |
| !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) { |
| radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, |
| S_028A44_ES_VERTS_PER_SUBGRP(250) | |
| S_028A44_GS_PRIMS_PER_SUBGRP(126) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(126)); |
| } |
| } |
| |
| static void |
| radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline, |
| struct radv_shader_variant *gs) |
| { |
| const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info; |
| unsigned gs_max_out_vertices; |
| uint8_t *num_components; |
| uint8_t max_stream; |
| unsigned offset; |
| uint64_t va; |
| |
| gs_max_out_vertices = gs->info.gs.vertices_out; |
| max_stream = gs->info.gs.max_stream; |
| num_components = gs->info.gs.num_stream_output_components; |
| |
| offset = num_components[0] * gs_max_out_vertices; |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3); |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 1) |
| offset += num_components[1] * gs_max_out_vertices; |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 2) |
| offset += num_components[2] * gs_max_out_vertices; |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 3) |
| offset += num_components[3] * gs_max_out_vertices; |
| radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset); |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4); |
| radeon_emit(ctx_cs, num_components[0]); |
| radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0); |
| radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0); |
| radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0); |
| |
| uint32_t gs_num_invocations = gs->info.gs.invocations; |
| radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, |
| S_028B90_CNT(MIN2(gs_num_invocations, 127)) | |
| S_028B90_ENABLE(gs_num_invocations > 0)); |
| |
| radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, |
| gs_state->vgt_esgs_ring_itemsize); |
| |
| va = radv_buffer_get_va(gs->bo) + gs->bo_offset; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B214_MEM_BASE(va >> 40)); |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); |
| radeon_emit(cs, gs->config.rsrc1); |
| radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); |
| |
| radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl); |
| radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B224_MEM_BASE(va >> 40)); |
| radeon_emit(cs, gs->config.rsrc1); |
| radeon_emit(cs, gs->config.rsrc2); |
| } |
| |
| radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader); |
| } |
| |
| static void |
| radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *gs; |
| |
| gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| if (!gs) |
| return; |
| |
| if (gs->info.is_ngg) |
| radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs); |
| else |
| radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs); |
| |
| radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, |
| gs->info.gs.vertices_out); |
| } |
| |
| static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade, bool float16) |
| { |
| uint32_t ps_input_cntl; |
| if (offset <= AC_EXP_PARAM_OFFSET_31) { |
| ps_input_cntl = S_028644_OFFSET(offset); |
| if (flat_shade) |
| ps_input_cntl |= S_028644_FLAT_SHADE(1); |
| if (float16) { |
| ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | |
| S_028644_ATTR0_VALID(1); |
| } |
| } else { |
| /* The input is a DEFAULT_VAL constant. */ |
| assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && |
| offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); |
| offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; |
| ps_input_cntl = S_028644_OFFSET(0x20) | |
| S_028644_DEFAULT_VAL(offset); |
| } |
| return ps_input_cntl; |
| } |
| |
| static void |
| radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| uint32_t ps_input_cntl[32]; |
| |
| unsigned ps_offset = 0; |
| |
| if (ps->info.ps.prim_id_input) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) { |
| ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false); |
| ++ps_offset; |
| } |
| } |
| |
| if (ps->info.ps.layer_input || |
| ps->info.needs_multiview_view_index) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) |
| ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false); |
| else |
| ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false); |
| ++ps_offset; |
| } |
| |
| if (ps->info.ps.has_pcoord) { |
| unsigned val; |
| val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); |
| ps_input_cntl[ps_offset] = val; |
| ps_offset++; |
| } |
| |
| if (ps->info.ps.num_input_clips_culls) { |
| unsigned vs_offset; |
| |
| vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) { |
| ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false); |
| ++ps_offset; |
| } |
| |
| vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED && |
| ps->info.ps.num_input_clips_culls > 4) { |
| ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false); |
| ++ps_offset; |
| } |
| } |
| |
| for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) { |
| unsigned vs_offset; |
| bool flat_shade; |
| bool float16; |
| if (!(ps->info.ps.input_mask & (1u << i))) |
| continue; |
| |
| vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; |
| if (vs_offset == AC_EXP_PARAM_UNDEFINED) { |
| ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); |
| ++ps_offset; |
| continue; |
| } |
| |
| flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset)); |
| float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset)); |
| |
| ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, float16); |
| ++ps_offset; |
| } |
| |
| if (ps_offset) { |
| radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset); |
| for (unsigned i = 0; i < ps_offset; i++) { |
| radeon_emit(ctx_cs, ps_input_cntl[i]); |
| } |
| } |
| } |
| |
| static uint32_t |
| radv_compute_db_shader_control(const struct radv_device *device, |
| const struct radv_pipeline *pipeline, |
| const struct radv_shader_variant *ps) |
| { |
| unsigned z_order; |
| if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory) |
| z_order = V_02880C_EARLY_Z_THEN_LATE_Z; |
| else |
| z_order = V_02880C_LATE_Z; |
| |
| bool disable_rbplus = device->physical_device->rad_info.has_rbplus && |
| !device->physical_device->rad_info.rbplus_allowed; |
| |
| /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled |
| * but this appears to break Project Cars (DXVK). See |
| * https://bugs.freedesktop.org/show_bug.cgi?id=109401 |
| */ |
| bool mask_export_enable = ps->info.ps.writes_sample_mask; |
| |
| return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) | |
| S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) | |
| S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) | |
| S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) | |
| S_02880C_Z_ORDER(z_order) | |
| S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) | |
| S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) | |
| S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) | |
| S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) | |
| S_02880C_DUAL_QUAD_DISABLE(disable_rbplus); |
| } |
| |
| static void |
| radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs, |
| struct radeon_cmdbuf *cs, |
| struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *ps; |
| uint64_t va; |
| assert (pipeline->shaders[MESA_SHADER_FRAGMENT]); |
| |
| ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| va = radv_buffer_get_va(ps->bo) + ps->bo_offset; |
| |
| radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B024_MEM_BASE(va >> 40)); |
| radeon_emit(cs, ps->config.rsrc1); |
| radeon_emit(cs, ps->config.rsrc2); |
| |
| radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL, |
| radv_compute_db_shader_control(pipeline->device, |
| pipeline, ps)); |
| |
| radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, |
| ps->config.spi_ps_input_ena); |
| |
| radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR, |
| ps->config.spi_ps_input_addr); |
| |
| radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL, |
| S_0286D8_NUM_INTERP(ps->info.ps.num_interp) | |
| S_0286D8_PS_W32_EN(ps->info.wave_size == 32)); |
| |
| radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl); |
| |
| radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT, |
| ac_get_spi_shader_z_format(ps->info.ps.writes_z, |
| ps->info.ps.writes_stencil, |
| ps->info.ps.writes_sample_mask)); |
| |
| if (pipeline->device->dfsm_allowed) { |
| /* optimise this? */ |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0)); |
| } |
| } |
| |
| static void |
| radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline) |
| { |
| if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 || |
| pipeline->device->physical_device->rad_info.chip_class >= GFX10) |
| return; |
| |
| unsigned vtx_reuse_depth = 30; |
| if (radv_pipeline_has_tess(pipeline) && |
| radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { |
| vtx_reuse_depth = 14; |
| } |
| radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, |
| S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); |
| } |
| |
| static uint32_t |
| radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline) |
| { |
| uint32_t stages = 0; |
| if (radv_pipeline_has_tess(pipeline)) { |
| stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | |
| S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); |
| |
| if (radv_pipeline_has_gs(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | |
| S_028B54_GS_EN(1); |
| else if (radv_pipeline_has_ngg(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); |
| else |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); |
| } else if (radv_pipeline_has_gs(pipeline)) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | |
| S_028B54_GS_EN(1); |
| } else if (radv_pipeline_has_ngg(pipeline)) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); |
| } |
| |
| if (radv_pipeline_has_ngg(pipeline)) { |
| stages |= S_028B54_PRIMGEN_EN(1); |
| } else if (radv_pipeline_has_gs(pipeline)) { |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| } |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
| stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) { |
| uint8_t hs_size = 64, gs_size = 64, vs_size = 64; |
| |
| if (radv_pipeline_has_tess(pipeline)) |
| hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size; |
| |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) { |
| vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size; |
| if (pipeline->gs_copy_shader) |
| vs_size = pipeline->gs_copy_shader->info.wave_size; |
| } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) |
| vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size; |
| else if (pipeline->shaders[MESA_SHADER_VERTEX]) |
| vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size; |
| |
| if (radv_pipeline_has_ngg(pipeline)) |
| gs_size = vs_size; |
| |
| /* legacy GS only supports Wave64 */ |
| stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) | |
| S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) | |
| S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0); |
| } |
| |
| return stages; |
| } |
| |
| static uint32_t |
| radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); |
| |
| if (!discard_rectangle_info) |
| return 0xffff; |
| |
| unsigned mask = 0; |
| |
| for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { |
| /* Interpret i as a bitmask, and then set the bit in the mask if |
| * that combination of rectangles in which the pixel is contained |
| * should pass the cliprect test. */ |
| unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1); |
| |
| if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && |
| !relevant_subset) |
| continue; |
| |
| if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && |
| relevant_subset) |
| continue; |
| |
| mask |= 1u << i; |
| } |
| |
| return mask; |
| } |
| |
| static void |
| gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs, |
| struct radv_pipeline *pipeline, |
| const struct radv_tessellation_state *tess) |
| { |
| bool break_wave_at_eoi = false; |
| unsigned primgroup_size; |
| unsigned vertgroup_size; |
| |
| if (radv_pipeline_has_tess(pipeline)) { |
| primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */ |
| vertgroup_size = 0; |
| } else if (radv_pipeline_has_gs(pipeline)) { |
| const struct gfx9_gs_info *gs_state = |
| &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info; |
| unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl; |
| primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl); |
| vertgroup_size = G_028A44_ES_VERTS_PER_SUBGRP(vgt_gs_onchip_cntl); |
| } else { |
| primgroup_size = 128; /* recommended without a GS and tess */ |
| vertgroup_size = 0; |
| } |
| |
| if (radv_pipeline_has_tess(pipeline)) { |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || |
| radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) |
| break_wave_at_eoi = true; |
| } |
| |
| radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, |
| S_03096C_PRIM_GRP_SIZE(primgroup_size) | |
| S_03096C_VERT_GRP_SIZE(vertgroup_size) | |
| S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ | |
| S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi)); |
| } |
| |
| static void |
| radv_pipeline_generate_pm4(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const struct radv_blend_state *blend, |
| const struct radv_tessellation_state *tess, |
| unsigned prim, unsigned gs_out) |
| { |
| struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs; |
| struct radeon_cmdbuf *cs = &pipeline->cs; |
| |
| cs->max_dw = 64; |
| ctx_cs->max_dw = 256; |
| cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw)); |
| ctx_cs->buf = cs->buf + cs->max_dw; |
| |
| radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra); |
| radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend); |
| radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo); |
| radv_pipeline_generate_multisample_state(ctx_cs, pipeline); |
| radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline); |
| radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess); |
| radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess); |
| radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline); |
| radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline); |
| radv_pipeline_generate_ps_inputs(ctx_cs, pipeline); |
| radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline); |
| radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline)) |
| gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess); |
| |
| radeon_set_context_reg(ctx_cs, R_0286E8_SPI_TMPRING_SIZE, |
| S_0286E8_WAVES(pipeline->max_waves) | |
| S_0286E8_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10)); |
| |
| radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline)); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) { |
| radeon_set_uconfig_reg_idx(pipeline->device->physical_device, |
| cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim); |
| } else { |
| radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim); |
| } |
| radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out); |
| |
| radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo)); |
| |
| pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4); |
| |
| assert(ctx_cs->cdw <= ctx_cs->max_dw); |
| assert(cs->cdw <= cs->max_dw); |
| } |
| |
| static struct radv_ia_multi_vgt_param_helpers |
| radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline, |
| const struct radv_tessellation_state *tess, |
| uint32_t prim) |
| { |
| struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; |
| const struct radv_device *device = pipeline->device; |
| |
| if (radv_pipeline_has_tess(pipeline)) |
| ia_multi_vgt_param.primgroup_size = tess->num_patches; |
| else if (radv_pipeline_has_gs(pipeline)) |
| ia_multi_vgt_param.primgroup_size = 64; |
| else |
| ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */ |
| |
| /* GS requirement. */ |
| ia_multi_vgt_param.partial_es_wave = false; |
| if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8) |
| if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3) |
| ia_multi_vgt_param.partial_es_wave = true; |
| |
| ia_multi_vgt_param.wd_switch_on_eop = false; |
| if (device->physical_device->rad_info.chip_class >= GFX7) { |
| /* WD_SWITCH_ON_EOP has no effect on GPUs with less than |
| * 4 shader engines. Set 1 to pass the assertion below. |
| * The other cases are hardware requirements. */ |
| if (device->physical_device->rad_info.max_se < 4 || |
| prim == V_008958_DI_PT_POLYGON || |
| prim == V_008958_DI_PT_LINELOOP || |
| prim == V_008958_DI_PT_TRIFAN || |
| prim == V_008958_DI_PT_TRISTRIP_ADJ || |
| (pipeline->graphics.prim_restart_enable && |
| (device->physical_device->rad_info.family < CHIP_POLARIS10 || |
| (prim != V_008958_DI_PT_POINTLIST && |
| prim != V_008958_DI_PT_LINESTRIP)))) |
| ia_multi_vgt_param.wd_switch_on_eop = true; |
| } |
| |
| ia_multi_vgt_param.ia_switch_on_eoi = false; |
| if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_gs(pipeline) && |
| pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_tess(pipeline)) { |
| /* SWITCH_ON_EOI must be set if PrimID is used. */ |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || |
| radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| } |
| |
| ia_multi_vgt_param.partial_vs_wave = false; |
| if (radv_pipeline_has_tess(pipeline)) { |
| /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ |
| if ((device->physical_device->rad_info.family == CHIP_TAHITI || |
| device->physical_device->rad_info.family == CHIP_PITCAIRN || |
| device->physical_device->rad_info.family == CHIP_BONAIRE) && |
| radv_pipeline_has_gs(pipeline)) |
| ia_multi_vgt_param.partial_vs_wave = true; |
| /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ |
| if (device->physical_device->rad_info.has_distributed_tess) { |
| if (radv_pipeline_has_gs(pipeline)) { |
| if (device->physical_device->rad_info.chip_class <= GFX8) |
| ia_multi_vgt_param.partial_es_wave = true; |
| } else { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| } |
| |
| /* Workaround for a VGT hang when strip primitive types are used with |
| * primitive restart. |
| */ |
| if (pipeline->graphics.prim_restart_enable && |
| (prim == V_008958_DI_PT_LINESTRIP || |
| prim == V_008958_DI_PT_TRISTRIP || |
| prim == V_008958_DI_PT_LINESTRIP_ADJ || |
| prim == V_008958_DI_PT_TRISTRIP_ADJ)) { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| /* On these chips there is the possibility of a hang if the |
| * pipeline uses a GS and partial_vs_wave is not set. |
| * |
| * This mostly does not hit 4-SE chips, as those typically set |
| * ia_switch_on_eoi and then partial_vs_wave is set for pipelines |
| * with GS due to another workaround. |
| * |
| * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242 |
| */ |
| if (device->physical_device->rad_info.family == CHIP_TONGA || |
| device->physical_device->rad_info.family == CHIP_FIJI || |
| device->physical_device->rad_info.family == CHIP_POLARIS10 || |
| device->physical_device->rad_info.family == CHIP_POLARIS11 || |
| device->physical_device->rad_info.family == CHIP_POLARIS12 || |
| device->physical_device->rad_info.family == CHIP_VEGAM) { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| |
| ia_multi_vgt_param.base = |
| S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) | |
| /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ |
| S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) | |
| S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) | |
| S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9); |
| |
| return ia_multi_vgt_param; |
| } |
| |
| |
| static void |
| radv_compute_vertex_input_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineVertexInputStateCreateInfo *vi_info = |
| pCreateInfo->pVertexInputState; |
| struct radv_vertex_elements_info *velems = &pipeline->vertex_elements; |
| |
| for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { |
| const VkVertexInputAttributeDescription *desc = |
| &vi_info->pVertexAttributeDescriptions[i]; |
| unsigned loc = desc->location; |
| const struct vk_format_description *format_desc; |
| |
| format_desc = vk_format_description(desc->format); |
| |
| velems->format_size[loc] = format_desc->block.bits / 8; |
| } |
| |
| for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *desc = |
| &vi_info->pVertexBindingDescriptions[i]; |
| |
| pipeline->binding_stride[desc->binding] = desc->stride; |
| pipeline->num_vertex_bindings = |
| MAX2(pipeline->num_vertex_bindings, desc->binding + 1); |
| } |
| } |
| |
| static struct radv_shader_variant * |
| radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline) |
| { |
| int i; |
| |
| for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { |
| struct radv_shader_variant *shader = |
| radv_get_shader(pipeline, i); |
| |
| if (shader && shader->info.so.num_outputs > 0) |
| return shader; |
| } |
| |
| return NULL; |
| } |
| |
| static VkResult |
| radv_pipeline_init(struct radv_pipeline *pipeline, |
| struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| VkResult result; |
| bool has_view_index = false; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| if (subpass->view_mask) |
| has_view_index = true; |
| |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| assert(pipeline->layout); |
| |
| struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); |
| |
| const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); |
| radv_init_feedback(creation_feedback); |
| |
| VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL; |
| |
| const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; |
| VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 }; |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; |
| pStages[stage] = &pCreateInfo->pStages[i]; |
| if(creation_feedback) |
| stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i]; |
| } |
| |
| struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index); |
| radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pCreateInfo, pipeline_feedback, stage_feedbacks); |
| |
| pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); |
| radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo); |
| uint32_t gs_out; |
| uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); |
| |
| pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology); |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); |
| pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| } else if (radv_pipeline_has_tess(pipeline)) { |
| if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) |
| gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| else |
| gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode); |
| pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| } else { |
| gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); |
| } |
| if (extra && extra->use_rectlist) { |
| prim = V_008958_DI_PT_RECTLIST; |
| gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| pipeline->graphics.can_use_guardband = true; |
| if (radv_pipeline_has_ngg(pipeline)) |
| gs_out = V_028A6C_VGT_OUT_RECT_V0; |
| } |
| pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; |
| /* prim vertex count will need TESS changes */ |
| pipeline->graphics.prim_vertex_count = prim_size_table[prim]; |
| |
| radv_pipeline_init_dynamic_state(pipeline, pCreateInfo); |
| |
| /* Ensure that some export memory is always allocated, for two reasons: |
| * |
| * 1) Correctness: The hardware ignores the EXEC mask if no export |
| * memory is allocated, so KILL and alpha test do not work correctly |
| * without this. |
| * 2) Performance: Every shader needs at least a NULL export, even when |
| * it writes no color/depth output. The NULL export instruction |
| * stalls without this setting. |
| * |
| * Don't add this to CB_SHADER_MASK. |
| * |
| * GFX10 supports pixel shaders without exports by setting both the |
| * color and Z formats to SPI_SHADER_ZERO. The hw will skip export |
| * instructions if any are present. |
| */ |
| struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 || |
| ps->info.ps.can_discard) && |
| !blend.spi_shader_col_format) { |
| if (!ps->info.ps.writes_z && |
| !ps->info.ps.writes_stencil && |
| !ps->info.ps.writes_sample_mask) |
| blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (pipeline->shaders[i]) { |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; |
| } |
| } |
| |
| if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) { |
| struct radv_shader_variant *gs = |
| pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| |
| calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info); |
| } |
| |
| struct radv_tessellation_state tess = {0}; |
| if (radv_pipeline_has_tess(pipeline)) { |
| if (prim == V_008958_DI_PT_PATCH) { |
| pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints; |
| pipeline->graphics.prim_vertex_count.incr = 1; |
| } |
| tess = calculate_tess_state(pipeline, pCreateInfo); |
| } |
| |
| pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim); |
| |
| radv_compute_vertex_input_state(pipeline, pCreateInfo); |
| |
| for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) |
| pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class); |
| |
| struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, |
| AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| if (loc->sgpr_idx != -1) { |
| pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX]; |
| pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4; |
| if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id) |
| pipeline->graphics.vtx_emit_num = 3; |
| else |
| pipeline->graphics.vtx_emit_num = 2; |
| } |
| |
| /* Find the last vertex shader stage that eventually uses streamout. */ |
| pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline); |
| |
| result = radv_pipeline_scratch_init(device, pipeline); |
| radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, prim, gs_out); |
| |
| return result; |
| } |
| |
| VkResult |
| radv_graphics_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *pAllocator, |
| VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| result = radv_pipeline_init(pipeline, device, cache, |
| pCreateInfo, extra); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult radv_CreateGraphicsPipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkGraphicsPipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| unsigned i = 0; |
| |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_graphics_pipeline_create(_device, |
| pipelineCache, |
| &pCreateInfos[i], |
| NULL, pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| static void |
| radv_compute_generate_pm4(struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *compute_shader; |
| struct radv_device *device = pipeline->device; |
| unsigned threads_per_threadgroup; |
| unsigned threadgroups_per_cu = 1; |
| unsigned waves_per_threadgroup; |
| unsigned max_waves_per_sh = 0; |
| uint64_t va; |
| |
| pipeline->cs.buf = malloc(20 * 4); |
| pipeline->cs.max_dw = 20; |
| |
| compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE]; |
| va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset; |
| |
| radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2); |
| radeon_emit(&pipeline->cs, va >> 8); |
| radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40)); |
| |
| radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2); |
| radeon_emit(&pipeline->cs, compute_shader->config.rsrc1); |
| radeon_emit(&pipeline->cs, compute_shader->config.rsrc2); |
| |
| radeon_set_sh_reg(&pipeline->cs, R_00B860_COMPUTE_TMPRING_SIZE, |
| S_00B860_WAVES(pipeline->max_waves) | |
| S_00B860_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10)); |
| |
| /* Calculate best compute resource limits. */ |
| threads_per_threadgroup = compute_shader->info.cs.block_size[0] * |
| compute_shader->info.cs.block_size[1] * |
| compute_shader->info.cs.block_size[2]; |
| waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, |
| device->physical_device->cs_wave_size); |
| |
| if (device->physical_device->rad_info.chip_class >= GFX10 && |
| waves_per_threadgroup == 1) |
| threadgroups_per_cu = 2; |
| |
| radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS, |
| ac_get_compute_resource_limits(&device->physical_device->rad_info, |
| waves_per_threadgroup, |
| max_waves_per_sh, |
| threadgroups_per_cu)); |
| |
| radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); |
| radeon_emit(&pipeline->cs, |
| S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0])); |
| radeon_emit(&pipeline->cs, |
| S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1])); |
| radeon_emit(&pipeline->cs, |
| S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2])); |
| |
| assert(pipeline->cs.cdw <= pipeline->cs.max_dw); |
| } |
| |
| static VkResult radv_compute_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkComputePipelineCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; |
| VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 }; |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| assert(pipeline->layout); |
| |
| const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); |
| radv_init_feedback(creation_feedback); |
| |
| VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL; |
| if (creation_feedback) |
| stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0]; |
| |
| pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage; |
| radv_create_shaders(pipeline, device, cache, &(struct radv_pipeline_key) {0}, pStages, pCreateInfo->flags, NULL, pipeline_feedback, stage_feedbacks); |
| |
| pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class); |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; |
| result = radv_pipeline_scratch_init(device, pipeline); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| radv_compute_generate_pm4(pipeline); |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult radv_CreateComputePipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkComputePipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| unsigned i = 0; |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_compute_pipeline_create(_device, pipelineCache, |
| &pCreateInfos[i], |
| pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline) |
| { |
| uint32_t ret = 0; |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i]) |
| ret += i == MESA_SHADER_GEOMETRY ? 2u : 1u; |
| |
| } |
| return ret; |
| } |
| |
| static struct radv_shader_variant * |
| radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage) |
| { |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (!pipeline->shaders[i]) |
| continue; |
| if (!index) { |
| *stage = i; |
| return pipeline->shaders[i]; |
| } |
| |
| --index; |
| |
| if (i == MESA_SHADER_GEOMETRY) { |
| if (!index) { |
| *stage = i; |
| return pipeline->gs_copy_shader; |
| } |
| --index; |
| } |
| } |
| |
| *stage = -1; |
| return NULL; |
| } |
| |
| /* Basically strlcpy (which does not exist on linux) specialized for |
| * descriptions. */ |
| static void desc_copy(char *desc, const char *src) { |
| int len = strlen(src); |
| assert(len < VK_MAX_DESCRIPTION_SIZE); |
| memcpy(desc, src, len); |
| memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len); |
| } |
| |
| VkResult radv_GetPipelineExecutablePropertiesKHR( |
| VkDevice _device, |
| const VkPipelineInfoKHR* pPipelineInfo, |
| uint32_t* pExecutableCount, |
| VkPipelineExecutablePropertiesKHR* pProperties) |
| { |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline); |
| const uint32_t total_count = radv_get_executable_count(pipeline); |
| |
| if (!pProperties) { |
| *pExecutableCount = total_count; |
| return VK_SUCCESS; |
| } |
| |
| const uint32_t count = MIN2(total_count, *pExecutableCount); |
| for (unsigned i = 0, executable_idx = 0; |
| i < MESA_SHADER_STAGES && executable_idx < count; ++i) { |
| if (!pipeline->shaders[i]) |
| continue; |
| pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i); |
| const char *name = NULL; |
| const char *description = NULL; |
| switch(i) { |
| case MESA_SHADER_VERTEX: |
| name = "Vertex Shader"; |
| description = "Vulkan Vertex Shader"; |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| if (!pipeline->shaders[MESA_SHADER_VERTEX]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| name = "Vertex + Tessellation Control Shaders"; |
| description = "Combined Vulkan Vertex and Tessellation Control Shaders"; |
| } else { |
| name = "Tessellation Control Shader"; |
| description = "Vulkan Tessellation Control Shader"; |
| } |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| name = "Tessellation Evaluation Shader"; |
| description = "Vulkan Tessellation Evaluation Shader"; |
| break; |
| case MESA_SHADER_GEOMETRY: |
| if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; |
| name = "Tessellation Evaluation + Geometry Shaders"; |
| description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders"; |
| } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| name = "Vertex + Geometry Shader"; |
| description = "Combined Vulkan Vertex and Geometry Shaders"; |
| } else { |
| name = "Geometry Shader"; |
| description = "Vulkan Geometry Shader"; |
| } |
| break; |
| case MESA_SHADER_FRAGMENT: |
| name = "Fragment Shader"; |
| description = "Vulkan Fragment Shader"; |
| break; |
| case MESA_SHADER_COMPUTE: |
| name = "Compute Shader"; |
| description = "Vulkan Compute Shader"; |
| break; |
| } |
| |
| desc_copy(pProperties[executable_idx].name, name); |
| desc_copy(pProperties[executable_idx].description, description); |
| |
| ++executable_idx; |
| if (i == MESA_SHADER_GEOMETRY) { |
| assert(pipeline->gs_copy_shader); |
| if (executable_idx >= count) |
| break; |
| |
| pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT; |
| desc_copy(pProperties[executable_idx].name, "GS Copy Shader"); |
| desc_copy(pProperties[executable_idx].description, |
| "Extra shader stage that loads the GS output ringbuffer into the rasterizer"); |
| |
| ++executable_idx; |
| } |
| } |
| |
| for (unsigned i = 0; i < count; ++i) |
| pProperties[i].subgroupSize = 64; |
| |
| VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS; |
| *pExecutableCount = count; |
| return result; |
| } |
| |
| VkResult radv_GetPipelineExecutableStatisticsKHR( |
| VkDevice _device, |
| const VkPipelineExecutableInfoKHR* pExecutableInfo, |
| uint32_t* pStatisticCount, |
| VkPipelineExecutableStatisticKHR* pStatistics) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); |
| gl_shader_stage stage; |
| struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); |
| |
| enum chip_class chip_class = device->physical_device->rad_info.chip_class; |
| unsigned lds_increment = chip_class >= GFX7 ? 512 : 256; |
| unsigned max_waves = radv_get_max_waves(device, shader, stage); |
| |
| VkPipelineExecutableStatisticKHR *s = pStatistics; |
| VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0); |
| VkResult result = VK_SUCCESS; |
| |
| if (s < end) { |
| desc_copy(s->name, "SGPRs"); |
| desc_copy(s->description, "Number of SGPR registers allocated per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.num_sgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "VGPRs"); |
| desc_copy(s->description, "Number of VGPR registers allocated per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.num_vgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Spilled SGPRs"); |
| desc_copy(s->description, "Number of SGPR registers spilled per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.spilled_sgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Spilled VGPRs"); |
| desc_copy(s->description, "Number of VGPR registers spilled per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.spilled_vgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "PrivMem VGPRs"); |
| desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->info.private_mem_vgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Code size"); |
| desc_copy(s->description, "Code size in bytes"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->exec_size; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "LDS size"); |
| desc_copy(s->description, "LDS size in bytes per workgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.lds_size * lds_increment; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Scratch size"); |
| desc_copy(s->description, "Private memory in bytes per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.scratch_bytes_per_wave; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Subgroups per SIMD"); |
| desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = max_waves; |
| } |
| ++s; |
| |
| if (!pStatistics) |
| *pStatisticCount = s - pStatistics; |
| else if (s > end) { |
| *pStatisticCount = end - pStatistics; |
| result = VK_INCOMPLETE; |
| } else { |
| *pStatisticCount = s - pStatistics; |
| } |
| |
| return result; |
| } |
| |
| static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src) |
| { |
| size_t total_size = strlen(src) + 1; |
| |
| if (!data) { |
| *data_size = total_size; |
| return VK_SUCCESS; |
| } |
| |
| size_t size = MIN2(total_size, *data_size); |
| |
| memcpy(data, src, size); |
| if (size) |
| *((char*)data + size - 1) = 0; |
| return size < total_size ? VK_INCOMPLETE : VK_SUCCESS; |
| } |
| |
| VkResult radv_GetPipelineExecutableInternalRepresentationsKHR( |
| VkDevice device, |
| const VkPipelineExecutableInfoKHR* pExecutableInfo, |
| uint32_t* pInternalRepresentationCount, |
| VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations) |
| { |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); |
| gl_shader_stage stage; |
| struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); |
| |
| VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations; |
| VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0); |
| VkResult result = VK_SUCCESS; |
| /* optimized NIR */ |
| if (p < end) { |
| p->isText = true; |
| desc_copy(p->name, "NIR Shader(s)"); |
| desc_copy(p->description, "The optimized NIR shader(s)"); |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| /* LLVM IR */ |
| if (p < end) { |
| p->isText = true; |
| desc_copy(p->name, "LLVM IR"); |
| desc_copy(p->description, "The LLVM IR after some optimizations"); |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->llvm_ir_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| /* Disassembler */ |
| if (p < end) { |
| p->isText = true; |
| desc_copy(p->name, "Assembly"); |
| desc_copy(p->description, "Final Assembly"); |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| if (!pInternalRepresentations) |
| *pInternalRepresentationCount = p - pInternalRepresentations; |
| else if(p > end) { |
| result = VK_INCOMPLETE; |
| *pInternalRepresentationCount = end - pInternalRepresentations; |
| } else { |
| *pInternalRepresentationCount = p - pInternalRepresentations; |
| } |
| |
| return result; |
| } |