blob: 054f6ac36f85bcddf18b51e768e9b8e7526b4048 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_cs.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_util.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include "sid.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
#include "ac_shader_util.h"
#include "main/menums.h"
struct radv_blend_state {
uint32_t blend_enable_4bit;
uint32_t need_src_alpha;
uint32_t cb_color_control;
uint32_t cb_target_mask;
uint32_t cb_target_enabled_4bit;
uint32_t sx_mrt_blend_opt[8];
uint32_t cb_blend_control[8];
uint32_t spi_shader_col_format;
uint32_t cb_shader_mask;
uint32_t db_alpha_to_mask;
uint32_t commutative_4bit;
bool single_cb_enable;
bool mrt0_is_dual_src;
};
struct radv_dsa_order_invariance {
/* Whether the final result in Z/S buffers is guaranteed to be
* invariant under changes to the order in which fragments arrive.
*/
bool zs;
/* Whether the set of fragments that pass the combined Z/S test is
* guaranteed to be invariant under changes to the order in which
* fragments arrive.
*/
bool pass_set;
};
struct radv_tessellation_state {
uint32_t ls_hs_config;
unsigned num_patches;
unsigned lds_size;
uint32_t tf_param;
};
bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline)
{
struct radv_shader_variant *variant = NULL;
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
else if (pipeline->shaders[MESA_SHADER_VERTEX])
variant = pipeline->shaders[MESA_SHADER_VERTEX];
else
return false;
return variant->info.is_ngg;
}
bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
{
if (!radv_pipeline_has_gs(pipeline))
return false;
/* The GS copy shader is required if the pipeline has GS on GFX6-GFX9.
* On GFX10, it might be required in rare cases if it's not possible to
* enable NGG.
*/
if (radv_pipeline_has_ngg(pipeline))
return false;
assert(pipeline->gs_copy_shader);
return true;
}
static void
radv_pipeline_destroy(struct radv_device *device,
struct radv_pipeline *pipeline,
const VkAllocationCallbacks* allocator)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
radv_shader_variant_destroy(device, pipeline->shaders[i]);
if (pipeline->gs_copy_shader)
radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
if(pipeline->cs.buf)
free(pipeline->cs.buf);
vk_free2(&device->alloc, allocator, pipeline);
}
void radv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
radv_pipeline_destroy(device, pipeline, pAllocator);
}
static uint32_t get_hash_flags(struct radv_device *device)
{
uint32_t hash_flags = 0;
if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH)
hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH;
if (device->instance->debug_flags & RADV_DEBUG_NO_NGG)
hash_flags |= RADV_HASH_SHADER_NO_NGG;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
hash_flags |= RADV_HASH_SHADER_SISCHED;
if (device->physical_device->cs_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
if (device->physical_device->ps_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
if (device->physical_device->ge_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
return hash_flags;
}
static VkResult
radv_pipeline_scratch_init(struct radv_device *device,
struct radv_pipeline *pipeline)
{
unsigned scratch_bytes_per_wave = 0;
unsigned max_waves = 0;
unsigned min_waves = 1;
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pipeline->shaders[i]) {
unsigned max_stage_waves = device->scratch_waves;
scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
pipeline->shaders[i]->config.scratch_bytes_per_wave);
max_stage_waves = MIN2(max_stage_waves,
4 * device->physical_device->rad_info.num_good_compute_units *
(256 / pipeline->shaders[i]->config.num_vgprs));
max_waves = MAX2(max_waves, max_stage_waves);
}
}
if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
}
if (scratch_bytes_per_wave)
max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave);
if (scratch_bytes_per_wave && max_waves < min_waves) {
/* Not really true at this moment, but will be true on first
* execution. Avoid having hanging shaders. */
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
pipeline->max_waves = max_waves;
return VK_SUCCESS;
}
static uint32_t si_translate_blend_logic_op(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
return V_028808_ROP3_CLEAR;
case VK_LOGIC_OP_AND:
return V_028808_ROP3_AND;
case VK_LOGIC_OP_AND_REVERSE:
return V_028808_ROP3_AND_REVERSE;
case VK_LOGIC_OP_COPY:
return V_028808_ROP3_COPY;
case VK_LOGIC_OP_AND_INVERTED:
return V_028808_ROP3_AND_INVERTED;
case VK_LOGIC_OP_NO_OP:
return V_028808_ROP3_NO_OP;
case VK_LOGIC_OP_XOR:
return V_028808_ROP3_XOR;
case VK_LOGIC_OP_OR:
return V_028808_ROP3_OR;
case VK_LOGIC_OP_NOR:
return V_028808_ROP3_NOR;
case VK_LOGIC_OP_EQUIVALENT:
return V_028808_ROP3_EQUIVALENT;
case VK_LOGIC_OP_INVERT:
return V_028808_ROP3_INVERT;
case VK_LOGIC_OP_OR_REVERSE:
return V_028808_ROP3_OR_REVERSE;
case VK_LOGIC_OP_COPY_INVERTED:
return V_028808_ROP3_COPY_INVERTED;
case VK_LOGIC_OP_OR_INVERTED:
return V_028808_ROP3_OR_INVERTED;
case VK_LOGIC_OP_NAND:
return V_028808_ROP3_NAND;
case VK_LOGIC_OP_SET:
return V_028808_ROP3_SET;
default:
unreachable("Unhandled logic op");
}
}
static uint32_t si_translate_blend_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return V_028780_COMB_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
return 0;
}
}
static uint32_t si_translate_blend_factor(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028780_BLEND_ZERO;
case VK_BLEND_FACTOR_ONE:
return V_028780_BLEND_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return V_028780_BLEND_CONSTANT_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return V_028780_BLEND_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return V_028780_BLEND_SRC1_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return V_028780_BLEND_INV_SRC1_COLOR;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return V_028780_BLEND_SRC1_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return V_028780_BLEND_INV_SRC1_ALPHA;
default:
return 0;
}
}
static uint32_t si_translate_blend_opt_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028760_OPT_COMB_ADD;
case VK_BLEND_OP_SUBTRACT:
return V_028760_OPT_COMB_SUBTRACT;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028760_OPT_COMB_REVSUBTRACT;
case VK_BLEND_OP_MIN:
return V_028760_OPT_COMB_MIN;
case VK_BLEND_OP_MAX:
return V_028760_OPT_COMB_MAX;
default:
return V_028760_OPT_COMB_BLEND_DISABLED;
}
}
static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
case VK_BLEND_FACTOR_ONE:
return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
default:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
}
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
unsigned *dst_factor, unsigned expected_dst,
unsigned replacement_src)
{
if (*src_factor == expected_dst &&
*dst_factor == VK_BLEND_FACTOR_ZERO) {
*src_factor = VK_BLEND_FACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == VK_BLEND_OP_SUBTRACT)
*func = VK_BLEND_OP_REVERSE_SUBTRACT;
else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
*func = VK_BLEND_OP_SUBTRACT;
}
}
static bool si_blend_factor_uses_dst(unsigned factor)
{
return factor == VK_BLEND_FACTOR_DST_COLOR ||
factor == VK_BLEND_FACTOR_DST_ALPHA ||
factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
}
static bool is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static unsigned si_choose_spi_color_format(VkFormat vk_format,
bool blend_enable,
bool blend_need_alpha)
{
const struct vk_format_description *desc = vk_format_description(vk_format);
unsigned format, ntype, swap;
/* Alpha is needed for alpha-to-coverage.
* Blending may be with or without alpha.
*/
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
unsigned alpha = 0; /* exports alpha, but may not support blending */
unsigned blend = 0; /* supports blending, but may not export alpha */
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
format = radv_translate_colorformat(vk_format);
ntype = radv_translate_color_numformat(vk_format, desc,
vk_format_get_first_non_void_channel(vk_format));
swap = radv_translate_colorswap(vk_format, false);
/* Choose the SPI color formats. These are required values for Stoney/RB+.
* Other chips have multiple choices, though they are not necessarily better.
*/
switch (format) {
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_5_5_5_1:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_10_11_11:
case V_028C70_COLOR_11_11_10:
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_10_10_10_2:
case V_028C70_COLOR_2_10_10_10:
if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
case V_028C70_COLOR_16_16_16_16:
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM) {
/* UNORM16 and SNORM16 don't support blending */
if (ntype == V_028C70_NUMBER_UNORM)
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
else
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
/* Use 32 bits per channel for blending. */
if (format == V_028C70_COLOR_16) {
if (swap == V_028C70_SWAP_STD) { /* R */
blend = V_028714_SPI_SHADER_32_R;
blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else if (format == V_028C70_COLOR_16_16) {
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = V_028714_SPI_SHADER_32_GR;
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else /* 16_16_16_16 */
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else if (ntype == V_028C70_NUMBER_FLOAT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
else
assert(0);
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD) { /* R */
blend = normal = V_028714_SPI_SHADER_32_R;
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32:
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = normal = V_028714_SPI_SHADER_32_GR;
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32_32_32:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_X24_8_32_FLOAT:
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
break;
default:
unreachable("unhandled blend format");
}
if (blend_enable && blend_need_alpha)
return blend_alpha;
else if(blend_need_alpha)
return alpha;
else if(blend_enable)
return blend;
else
return normal;
}
static void
radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_blend_state *blend)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
unsigned col_format = 0;
unsigned num_targets;
for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) {
unsigned cf;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
bool blend_enable =
blend->blend_enable_4bit & (0xfu << (i * 4));
cf = si_choose_spi_color_format(attachment->format,
blend_enable,
blend->need_src_alpha & (1 << i));
}
col_format |= cf << (4 * i);
}
if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
/* When a subpass doesn't have any color attachments, write the
* alpha channel of MRT0 when alpha coverage is enabled because
* the depth attachment needs it.
*/
col_format |= V_028714_SPI_SHADER_32_AR;
}
/* If the i-th target format is set, all previous target formats must
* be non-zero to avoid hangs.
*/
num_targets = (util_last_bit(col_format) + 3) / 4;
for (unsigned i = 0; i < num_targets; i++) {
if (!(col_format & (0xf << (i * 4)))) {
col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
}
}
/* The output for dual source blending should have the same format as
* the first output.
*/
if (blend->mrt0_is_dual_src)
col_format |= (col_format & 0xf) << 4;
blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
blend->spi_shader_col_format = col_format;
}
static bool
format_is_int8(VkFormat format)
{
const struct vk_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer &&
desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct vk_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
/*
* Ordered so that for each i,
* radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
*/
const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
};
unsigned radv_format_meta_fs_key(VkFormat format)
{
unsigned col_format = si_choose_spi_color_format(format, false, false);
assert(col_format != V_028714_SPI_SHADER_32_AR);
if (col_format >= V_028714_SPI_SHADER_32_AR)
--col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
--col_format; /* Skip V_028714_SPI_SHADER_ZERO */
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
}
static void
radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
unsigned *is_int8, unsigned *is_int10)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
*is_int8 = 0;
*is_int10 = 0;
for (unsigned i = 0; i < subpass->color_count; ++i) {
struct radv_render_pass_attachment *attachment;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
attachment = pass->attachments + subpass->color_attachments[i].attachment;
if (format_is_int8(attachment->format))
*is_int8 |= 1 << i;
if (format_is_int10(attachment->format))
*is_int10 |= 1 << i;
}
}
static void
radv_blend_check_commutativity(struct radv_blend_state *blend,
VkBlendOp op, VkBlendFactor src,
VkBlendFactor dst, unsigned chanmask)
{
/* Src factor is allowed when it does not depend on Dst. */
static const uint32_t src_allowed =
(1u << VK_BLEND_FACTOR_ONE) |
(1u << VK_BLEND_FACTOR_SRC_COLOR) |
(1u << VK_BLEND_FACTOR_SRC_ALPHA) |
(1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
(1u << VK_BLEND_FACTOR_CONSTANT_COLOR) |
(1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
(1u << VK_BLEND_FACTOR_SRC1_COLOR) |
(1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
(1u << VK_BLEND_FACTOR_ZERO) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
if (dst == VK_BLEND_FACTOR_ONE &&
(src_allowed & (1u << src))) {
/* Addition is commutative, but floating point addition isn't
* associative: subtle changes can be introduced via different
* rounding. Be conservative, only enable for min and max.
*/
if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
blend->commutative_4bit |= chanmask;
}
}
static struct radv_blend_state
radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
struct radv_blend_state blend = {0};
unsigned mode = V_028808_CB_NORMAL;
int i;
if (!vkblend)
return blend;
if (extra && extra->custom_blend_mode) {
blend.single_cb_enable = true;
mode = extra->custom_blend_mode;
}
blend.cb_color_control = 0;
if (vkblend->logicOpEnable)
blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp));
else
blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
S_028B70_OFFSET_ROUND(1);
if (vkms && vkms->alphaToCoverageEnable) {
blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
blend.need_src_alpha |= 0x1;
}
blend.cb_target_mask = 0;
for (i = 0; i < vkblend->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
unsigned blend_cntl = 0;
unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
VkBlendOp eqRGB = att->colorBlendOp;
VkBlendFactor srcRGB = att->srcColorBlendFactor;
VkBlendFactor dstRGB = att->dstColorBlendFactor;
VkBlendOp eqA = att->alphaBlendOp;
VkBlendFactor srcA = att->srcAlphaBlendFactor;
VkBlendFactor dstA = att->dstAlphaBlendFactor;
blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
if (!att->colorWriteMask)
continue;
blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
blend.cb_target_enabled_4bit |= 0xf << (4 * i);
if (!att->blendEnable) {
blend.cb_blend_control[i] = blend_cntl;
continue;
}
if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
if (i == 0)
blend.mrt0_is_dual_src = true;
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
srcA = VK_BLEND_FACTOR_ONE;
dstA = VK_BLEND_FACTOR_ONE;
}
radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB,
0x7 << (4 * i));
radv_blend_check_commutativity(&blend, eqA, srcA, dstA,
0x8 << (4 * i));
/* Blending optimizations for RB+.
* These transformations don't change the behavior.
*
* First, get rid of DST in the blend factors:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_SRC_ALPHA);
/* Look up the ideal settings from tables. */
srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
srcA_opt = si_translate_blend_opt_factor(srcA, true);
dstA_opt = si_translate_blend_opt_factor(dstA, true);
/* Handle interdependencies. */
if (si_blend_factor_uses_dst(srcRGB))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (si_blend_factor_uses_dst(srcA))
dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
(dstRGB == VK_BLEND_FACTOR_ZERO ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
/* Set the final value. */
blend.sx_mrt_blend_opt[i] =
S_028760_COLOR_SRC_OPT(srcRGB_opt) |
S_028760_COLOR_DST_OPT(dstRGB_opt) |
S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
S_028760_ALPHA_SRC_OPT(srcA_opt) |
S_028760_ALPHA_DST_OPT(dstA_opt) |
S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
blend_cntl |= S_028780_ENABLE(1);
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
}
blend.cb_blend_control[i] = blend_cntl;
blend.blend_enable_4bit |= 0xfu << (i * 4);
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
blend.need_src_alpha |= 1 << i;
}
for (i = vkblend->attachmentCount; i < 8; i++) {
blend.cb_blend_control[i] = 0;
blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
}
if (pipeline->device->physical_device->rad_info.has_rbplus) {
/* Disable RB+ blend optimizations for dual source blending. */
if (blend.mrt0_is_dual_src) {
for (i = 0; i < 8; i++) {
blend.sx_mrt_blend_opt[i] =
S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
}
}
/* RB+ doesn't work with dual source blending, logic op and
* RESOLVE.
*/
if (blend.mrt0_is_dual_src || vkblend->logicOpEnable ||
mode == V_028808_CB_RESOLVE)
blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
}
if (blend.cb_target_mask)
blend.cb_color_control |= S_028808_MODE(mode);
else
blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend);
return blend;
}
static uint32_t si_translate_stencil_op(enum VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V_02842C_STENCIL_ADD_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V_02842C_STENCIL_SUB_CLAMP;
case VK_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
default:
return 0;
}
}
static uint32_t si_translate_fill(VkPolygonMode func)
{
switch(func) {
case VK_POLYGON_MODE_FILL:
return V_028814_X_DRAW_TRIANGLES;
case VK_POLYGON_MODE_LINE:
return V_028814_X_DRAW_LINES;
case VK_POLYGON_MODE_POINT:
return V_028814_X_DRAW_POINTS;
default:
assert(0);
return V_028814_X_DRAW_POINTS;
}
}
static uint8_t radv_pipeline_get_ps_iter_samples(const VkPipelineMultisampleStateCreateInfo *vkms)
{
uint32_t num_samples = vkms->rasterizationSamples;
uint32_t ps_iter_samples = 1;
if (vkms->sampleShadingEnable) {
ps_iter_samples = ceil(vkms->minSampleShading * num_samples);
ps_iter_samples = util_next_power_of_two(ps_iter_samples);
}
return ps_iter_samples;
}
static bool
radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
{
return pCreateInfo->depthTestEnable &&
pCreateInfo->depthWriteEnable &&
pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER;
}
static bool
radv_writes_stencil(const VkStencilOpState *state)
{
return state->writeMask &&
(state->failOp != VK_STENCIL_OP_KEEP ||
state->passOp != VK_STENCIL_OP_KEEP ||
state->depthFailOp != VK_STENCIL_OP_KEEP);
}
static bool
radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
{
return pCreateInfo->stencilTestEnable &&
(radv_writes_stencil(&pCreateInfo->front) ||
radv_writes_stencil(&pCreateInfo->back));
}
static bool
radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
{
return radv_is_depth_write_enabled(pCreateInfo) ||
radv_is_stencil_write_enabled(pCreateInfo);
}
static bool
radv_order_invariant_stencil_op(VkStencilOp op)
{
/* REPLACE is normally order invariant, except when the stencil
* reference value is written by the fragment shader. Tracking this
* interaction does not seem worth the effort, so be conservative.
*/
return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP &&
op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
op != VK_STENCIL_OP_REPLACE;
}
static bool
radv_order_invariant_stencil_state(const VkStencilOpState *state)
{
/* Compute whether, assuming Z writes are disabled, this stencil state
* is order invariant in the sense that the set of passing fragments as
* well as the final stencil buffer result does not depend on the order
* of fragments.
*/
return !state->writeMask ||
/* The following assumes that Z writes are disabled. */
(state->compareOp == VK_COMPARE_OP_ALWAYS &&
radv_order_invariant_stencil_op(state->passOp) &&
radv_order_invariant_stencil_op(state->depthFailOp)) ||
(state->compareOp == VK_COMPARE_OP_NEVER &&
radv_order_invariant_stencil_op(state->failOp));
}
static bool
radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline,
struct radv_blend_state *blend,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
unsigned colormask = blend->cb_target_enabled_4bit;
if (!pipeline->device->physical_device->out_of_order_rast_allowed)
return false;
/* Be conservative if a logic operation is enabled with color buffers. */
if (colormask && pCreateInfo->pColorBlendState->logicOpEnable)
return false;
/* Default depth/stencil invariance when no attachment is bound. */
struct radv_dsa_order_invariance dsa_order_invariant = {
.zs = true, .pass_set = true
};
if (pCreateInfo->pDepthStencilState &&
subpass->depth_stencil_attachment) {
const VkPipelineDepthStencilStateCreateInfo *vkds =
pCreateInfo->pDepthStencilState;
struct radv_render_pass_attachment *attachment =
pass->attachments + subpass->depth_stencil_attachment->attachment;
bool has_stencil = vk_format_is_stencil(attachment->format);
struct radv_dsa_order_invariance order_invariance[2];
struct radv_shader_variant *ps =
pipeline->shaders[MESA_SHADER_FRAGMENT];
/* Compute depth/stencil order invariance in order to know if
* it's safe to enable out-of-order.
*/
bool zfunc_is_ordered =
vkds->depthCompareOp == VK_COMPARE_OP_NEVER ||
vkds->depthCompareOp == VK_COMPARE_OP_LESS ||
vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL ||
vkds->depthCompareOp == VK_COMPARE_OP_GREATER ||
vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL;
bool nozwrite_and_order_invariant_stencil =
!radv_is_ds_write_enabled(vkds) ||
(!radv_is_depth_write_enabled(vkds) &&
radv_order_invariant_stencil_state(&vkds->front) &&
radv_order_invariant_stencil_state(&vkds->back));
order_invariance[1].zs =
nozwrite_and_order_invariant_stencil ||
(!radv_is_stencil_write_enabled(vkds) &&
zfunc_is_ordered);
order_invariance[0].zs =
!radv_is_depth_write_enabled(vkds) || zfunc_is_ordered;
order_invariance[1].pass_set =
nozwrite_and_order_invariant_stencil ||
(!radv_is_stencil_write_enabled(vkds) &&
(vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
vkds->depthCompareOp == VK_COMPARE_OP_NEVER));
order_invariance[0].pass_set =
!radv_is_depth_write_enabled(vkds) ||
(vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
vkds->depthCompareOp == VK_COMPARE_OP_NEVER);
dsa_order_invariant = order_invariance[has_stencil];
if (!dsa_order_invariant.zs)
return false;
/* The set of PS invocations is always order invariant,
* except when early Z/S tests are requested.
*/
if (ps &&
ps->info.ps.writes_memory &&
ps->info.ps.early_fragment_test &&
!dsa_order_invariant.pass_set)
return false;
/* Determine if out-of-order rasterization should be disabled
* when occlusion queries are used.
*/
pipeline->graphics.disable_out_of_order_rast_for_occlusion =
!dsa_order_invariant.pass_set;
}
/* No color buffers are enabled for writing. */
if (!colormask)
return true;
unsigned blendmask = colormask & blend->blend_enable_4bit;
if (blendmask) {
/* Only commutative blending. */
if (blendmask & ~blend->commutative_4bit)
return false;
if (!dsa_order_invariant.pass_set)
return false;
}
if (colormask & ~blendmask)
return false;
return true;
}
static void
radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
struct radv_blend_state *blend,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
struct radv_multisample_state *ms = &pipeline->graphics.ms;
unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
bool out_of_order_rast = false;
int ps_iter_samples = 1;
uint32_t mask = 0xffff;
if (vkms)
ms->num_samples = vkms->rasterizationSamples;
else
ms->num_samples = 1;
if (vkms)
ps_iter_samples = radv_pipeline_get_ps_iter_samples(vkms);
if (vkms && !vkms->sampleShadingEnable && pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) {
ps_iter_samples = ms->num_samples;
}
const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
/* Out-of-order rasterization is explicitly enabled by the
* application.
*/
out_of_order_rast = true;
} else {
/* Determine if the driver can enable out-of-order
* rasterization internally.
*/
out_of_order_rast =
radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo);
}
ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
ms->pa_sc_aa_config = 0;
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
S_028804_INCOHERENT_EQAA_READS(1) |
S_028804_INTERPOLATE_COMP_Z(1) |
S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
ms->pa_sc_mode_cntl_1 =
S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
S_028A4C_FORCE_EOV_REZ_ENABLE(1);
ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
S_028A48_VPORT_SCISSOR_ENABLE(1);
if (ms->num_samples > 1) {
unsigned log_samples = util_logbase2(ms->num_samples);
unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
if (ps_iter_samples > 1)
pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
}
if (vkms && vkms->pSampleMask) {
mask = vkms->pSampleMask[0] & 0xffff;
}
ms->pa_sc_aa_mask[0] = mask | (mask << 16);
ms->pa_sc_aa_mask[1] = mask | (mask << 16);
}
static bool
radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return false;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return true;
default:
unreachable("unhandled primitive type");
}
}
static uint32_t
si_translate_prim(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V_008958_DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V_008958_DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V_008958_DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V_008958_DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V_008958_DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V_008958_DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_LINELIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_TRILIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_008958_DI_PT_PATCH;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_gl_prim_to_gs_out(unsigned gl_prim)
{
switch (gl_prim) {
case 0: /* GL_POINTS */
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
case 1: /* GL_LINES */
case 3: /* GL_LINE_STRIP */
case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
case 0x8E7A: /* GL_ISOLINES */
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
case 4: /* GL_TRIANGLES */
case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
case 5: /* GL_TRIANGLE_STRIP */
case 7: /* GL_QUADS */
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
default:
assert(0);
return 0;
}
}
static unsigned radv_dynamic_state_mask(VkDynamicState state)
{
switch(state) {
case VK_DYNAMIC_STATE_VIEWPORT:
return RADV_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
return RADV_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return RADV_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return RADV_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return RADV_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return RADV_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return RADV_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return RADV_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS;
default:
unreachable("Unhandled dynamic state");
}
}
static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint32_t states = RADV_DYNAMIC_ALL;
/* If rasterization is disabled we do not care about any of the dynamic states,
* since they are all rasterization related only. */
if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
return 0;
if (!pCreateInfo->pRasterizationState->depthBiasEnable)
states &= ~RADV_DYNAMIC_DEPTH_BIAS;
if (!pCreateInfo->pDepthStencilState ||
!pCreateInfo->pDepthStencilState->depthBoundsTestEnable)
states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
if (!pCreateInfo->pDepthStencilState ||
!pCreateInfo->pDepthStencilState->stencilTestEnable)
states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK |
RADV_DYNAMIC_STENCIL_WRITE_MASK |
RADV_DYNAMIC_STENCIL_REFERENCE);
if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT))
states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
if (!pCreateInfo->pMultisampleState ||
!vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT))
states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
/* TODO: blend constants & line width. */
return states;
}
static void
radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo);
uint32_t states = needed_states;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
pipeline->graphics.needed_dynamic_state = needed_states;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
if (needed_states & RADV_DYNAMIC_VIEWPORT) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & RADV_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
}
if (needed_states & RADV_DYNAMIC_SCISSOR) {
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & RADV_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & RADV_DYNAMIC_LINE_WIDTH) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (needed_states && subpass->depth_stencil_attachment) {
assert(pCreateInfo->pDepthStencilState);
if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
typed_memcpy(dynamic->discard_rectangle.rectangles,
discard_rectangle_info->pDiscardRectangles,
discard_rectangle_info->discardRectangleCount);
}
}
if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
/* If sampleLocationsEnable is VK_FALSE, the default sample
* locations are used and the values specified in
* sampleLocationsInfo are ignored.
*/
if (sample_location_info->sampleLocationsEnable) {
const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
&sample_location_info->sampleLocationsInfo;
assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
typed_memcpy(&dynamic->sample_location.locations[0],
pSampleLocationsInfo->pSampleLocations,
pSampleLocationsInfo->sampleLocationsCount);
}
}
pipeline->dynamic_state.mask = states;
}
static void
gfx9_get_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_pipeline *pipeline,
nir_shader **nir,
struct radv_shader_info *infos,
struct gfx9_gs_info *out)
{
struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
struct radv_es_output_info *es_info;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
else
es_info = nir[MESA_SHADER_TESS_CTRL] ?
&infos[MESA_SHADER_TESS_EVAL].tes.es_info :
&infos[MESA_SHADER_VERTEX].vs.es_info;
unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
bool uses_adjacency;
switch(pCreateInfo->pInputAssemblyState->topology) {
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
uses_adjacency = true;
break;
default:
uses_adjacency = false;
break;
}
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space. */
const unsigned max_lds_size = 8 * 1024;
const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
unsigned esgs_lds_size;
/* All these are per subgroup: */
const unsigned max_out_prims = 32 * 1024;
const unsigned max_es_verts = 255;
const unsigned ideal_gs_prims = 64;
unsigned max_gs_prims, gs_prims;
unsigned min_es_verts, es_verts, worst_case_es_verts;
if (uses_adjacency || gs_num_invocations > 1)
max_gs_prims = 127 / gs_num_invocations;
else
max_gs_prims = 255;
/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
* Make sure we don't go over the maximum value.
*/
if (gs_info->gs.vertices_out > 0) {
max_gs_prims = MIN2(max_gs_prims,
max_out_prims /
(gs_info->gs.vertices_out * gs_num_invocations));
}
assert(max_gs_prims > 0);
/* If the primitive has adjacency, halve the number of vertices
* that will be reused in multiple primitives.
*/
min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
/* Compute ESGS LDS size based on the worst case number of ES vertices
* needed to create the target number of GS prims per subgroup.
*/
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
/* If total LDS usage is too big, refactor partitions based on ratio
* of ESGS item sizes.
*/
if (esgs_lds_size > max_lds_size) {
/* Our target GS Prims Per Subgroup was too large. Calculate
* the maximum number of GS Prims Per Subgroup that will fit
* into LDS, capped by the maximum that the hardware can support.
*/
gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
max_gs_prims);
assert(gs_prims > 0);
worst_case_es_verts = MIN2(min_es_verts * gs_prims,
max_es_verts);
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
assert(esgs_lds_size <= max_lds_size);
}
/* Now calculate remaining ESGS information. */
if (esgs_lds_size)
es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
else
es_verts = max_es_verts;
/* Vertices for adjacency primitives are not always reused, so restore
* it for ES_VERTS_PER_SUBGRP.
*/
min_es_verts = gs_info->gs.vertices_in;
/* For normal primitives, the VGT only checks if they are past the ES
* verts per subgroup after allocating a full GS primitive and if they
* are, kick off a new subgroup. But if those additional ES verts are
* unique (e.g. not reused) we need to make sure there is enough LDS
* space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
*/
es_verts -= min_es_verts - 1;
uint32_t es_verts_per_subgroup = es_verts;
uint32_t gs_prims_per_subgroup = gs_prims;
uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
out->lds_size = align(esgs_lds_size, 128) / 128;
out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
out->vgt_esgs_ring_itemsize = esgs_itemsize;
assert(max_prims_per_subgroup <= max_out_prims);
}
static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
unsigned min_verts_per_prim, bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
static unsigned
radv_get_num_input_vertices(nir_shader **nir)
{
if (nir[MESA_SHADER_GEOMETRY]) {
nir_shader *gs = nir[MESA_SHADER_GEOMETRY];
return gs->info.gs.vertices_in;
}
if (nir[MESA_SHADER_TESS_CTRL]) {
nir_shader *tes = nir[MESA_SHADER_TESS_EVAL];
if (tes->info.tess.point_mode)
return 1;
if (tes->info.tess.primitive_mode == GL_ISOLINES)
return 2;
return 3;
}
return 3;
}
static void
gfx10_get_ngg_info(const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_pipeline *pipeline,
nir_shader **nir,
struct radv_shader_info *infos,
struct gfx10_ngg_info *ngg)
{
struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
struct radv_es_output_info *es_info =
nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
unsigned max_verts_per_prim = radv_get_num_input_vertices(nir);
unsigned min_verts_per_prim =
gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1;
bool uses_adjacency;
switch(pCreateInfo->pInputAssemblyState->topology) {
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
uses_adjacency = true;
break;
default:
uses_adjacency = false;
break;
}
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* Streamout can increase the ESGS buffer size later on, so be more
* conservative with streamout and use 4K dwords. This may be suboptimal.
*
* Otherwise, use the limit of 7K dwords. The reason is that we need
* to leave some headroom for the max_esverts increase at the end.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = (0 /*gs_info->info.so.num_outputs*/ ? 4 : 7) * 1024 - 128;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
bool max_vert_out_per_gs_instance = false;
unsigned max_esverts_base = 256;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_type == MESA_SHADER_GEOMETRY) {
unsigned max_out_verts_per_gsprim =
gs_info->gs.vertices_out * gs_num_invocations;
if (max_out_verts_per_gsprim <= 256) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base,
256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_info->gs.vertices_out;
}
esvert_lds_size = es_info->esgs_itemsize / 4;
gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
} else {
/* TODO: This needs to be adjusted once LDS use for compaction
* after culling is implemented. */
/*
if (es_info->info.so.num_outputs)
esvert_lds_size = 4 * es_info->info.so.num_outputs + 1;
*/
/* LDS size for passing data from GS to ES.
* GS stores Primitive IDs (one DWORD) into LDS at the address
* corresponding to the ES thread of the provoking vertex. All
* ES threads load and export PrimitiveID for their thread.
*/
if (!nir[MESA_SHADER_TESS_CTRL] &&
infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id)
esvert_lds_size = MAX2(esvert_lds_size, 1);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size +
max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
const unsigned wavesize = pipeline->device->physical_device->ge_wave_size;
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts = MIN2(max_esverts,
(max_lds_size - max_gsprims * gsprim_lds_size) /
esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims,
(max_lds_size - max_esverts * esvert_lds_size) /
gsprim_lds_size);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
}
/* Hardware restriction: minimum value of max_esverts */
max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
unsigned max_out_vertices =
max_vert_out_per_gs_instance ? gs_info->gs.vertices_out :
gs_type == MESA_SHADER_GEOMETRY ?
max_gsprims * gs_num_invocations * gs_info->gs.vertices_out :
max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_type == MESA_SHADER_GEOMETRY) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_info->gs.vertices_out;
}
/* The GE only checks against the maximum number of ES verts after
* allocating a full GS primitive. So we need to ensure that whenever
* this check passes, there is enough space for a full primitive without
* vertex reuse.
*/
ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
ngg->max_gsprims = max_gsprims;
ngg->max_out_verts = max_out_vertices;
ngg->prim_amp_factor = prim_amp_factor;
ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size;
if (gs_type == MESA_SHADER_GEOMETRY) {
ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
} else {
ngg->vgt_esgs_ring_itemsize = 1;
}
pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size;
assert(ngg->hw_max_esverts >= 24); /* HW limitation */
}
static void
calculate_gs_ring_sizes(struct radv_pipeline *pipeline,
const struct gfx9_gs_info *gs)
{
struct radv_device *device = pipeline->device;
unsigned num_se = device->physical_device->rad_info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
/* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
* On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
*/
unsigned gs_vertex_reuse =
(device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se;
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse *
wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
gs_info->gs.max_gsvs_emit_size;
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
}
static void si_multiwave_lds_size_workaround(struct radv_device *device,
unsigned *lds_size)
{
/* If tessellation is all offchip and on-chip GS isn't used, this
* workaround is not needed.
*/
return;
/* SPI barrier management bug:
* Make sure we have at least 4k of LDS in use to avoid the bug.
* It applies to workgroup sizes of more than one wavefront.
*/
if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
device->physical_device->rad_info.family == CHIP_KABINI)
*lds_size = MAX2(*lds_size, 8);
}
struct radv_shader_variant *
radv_get_shader(struct radv_pipeline *pipeline,
gl_shader_stage stage)
{
if (stage == MESA_SHADER_VERTEX) {
if (pipeline->shaders[MESA_SHADER_VERTEX])
return pipeline->shaders[MESA_SHADER_VERTEX];
if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
return pipeline->shaders[MESA_SHADER_TESS_CTRL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (!radv_pipeline_has_tess(pipeline))
return NULL;
if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
return pipeline->shaders[MESA_SHADER_TESS_EVAL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
}
return pipeline->shaders[stage];
}
static struct radv_tessellation_state
calculate_tess_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
unsigned num_tcs_input_cp;
unsigned num_tcs_output_cp;
unsigned lds_size;
unsigned num_patches;
struct radv_tessellation_state tess = {0};
num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
assert(lds_size <= 65536);
lds_size = align(lds_size, 512) / 512;
} else {
assert(lds_size <= 32768);
lds_size = align(lds_size, 256) / 256;
}
si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
tess.lds_size = lds_size;
tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
tess.num_patches = num_patches;
struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL);
unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
switch (tes->info.tes.primitive_mode) {
case GL_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case GL_QUADS:
type = V_028B6C_TESS_QUAD;
break;
case GL_ISOLINES:
type = V_028B6C_TESS_ISOLINE;
break;
}
switch (tes->info.tes.spacing) {
case TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
case TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
default:
break;
}
bool ccw = tes->info.tes.ccw;
const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
vk_find_struct_const(pCreateInfo->pTessellationState,
PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
ccw = !ccw;
if (tes->info.tes.point_mode)
topology = V_028B6C_OUTPUT_POINT;
else if (tes->info.tes.primitive_mode == GL_ISOLINES)
topology = V_028B6C_OUTPUT_LINE;
else if (ccw)
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
else
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
if (pipeline->device->physical_device->rad_info.has_distributed_tess) {
if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
} else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
tess.tf_param = S_028B6C_TYPE(type) |
S_028B6C_PARTITIONING(partitioning) |
S_028B6C_TOPOLOGY(topology) |
S_028B6C_DISTRIBUTION_MODE(distribution_mode);
return tess;
}
static const struct radv_prim_vertex_count prim_size_table[] = {
[V_008958_DI_PT_NONE] = {0, 0},
[V_008958_DI_PT_POINTLIST] = {1, 1},
[V_008958_DI_PT_LINELIST] = {2, 2},
[V_008958_DI_PT_LINESTRIP] = {2, 1},
[V_008958_DI_PT_TRILIST] = {3, 3},
[V_008958_DI_PT_TRIFAN] = {3, 1},
[V_008958_DI_PT_TRISTRIP] = {3, 1},
[V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
[V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
[V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
[V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
[V_008958_DI_PT_RECTLIST] = {3, 3},
[V_008958_DI_PT_LINELOOP] = {2, 1},
[V_008958_DI_PT_POLYGON] = {3, 1},
[V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
};
static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
{
if (radv_pipeline_has_gs(pipeline))
if (radv_pipeline_has_ngg(pipeline))
return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
else
return &pipeline->gs_copy_shader->info.vs.outinfo;
else if (radv_pipeline_has_tess(pipeline))
return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
else
return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
}
static void
radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
{
nir_shader* ordered_shaders[MESA_SHADER_STAGES];
int shader_count = 0;
if(shaders[MESA_SHADER_FRAGMENT]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
}
if(shaders[MESA_SHADER_GEOMETRY]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
}
if(shaders[MESA_SHADER_TESS_EVAL]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
}
if(shaders[MESA_SHADER_TESS_CTRL]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
}
if(shaders[MESA_SHADER_VERTEX]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
}
if (shader_count > 1) {
unsigned first = ordered_shaders[shader_count - 1]->info.stage;
unsigned last = ordered_shaders[0]->info.stage;
if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
ordered_shaders[1]->info.has_transform_feedback_varyings)
nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
for (int i = 0; i < shader_count; ++i) {
nir_variable_mode mask = 0;
if (ordered_shaders[i]->info.stage != first)
mask = mask | nir_var_shader_in;
if (ordered_shaders[i]->info.stage != last)
mask = mask | nir_var_shader_out;
nir_lower_io_to_scalar_early(ordered_shaders[i], mask);
radv_optimize_nir(ordered_shaders[i], false, false);
}
}
for (int i = 1; i < shader_count; ++i) {
nir_lower_io_arrays_to_elements(ordered_shaders[i],
ordered_shaders[i - 1]);
if (nir_link_opt_varyings(ordered_shaders[i],
ordered_shaders[i - 1]))
radv_optimize_nir(ordered_shaders[i - 1], false, false);
nir_remove_dead_variables(ordered_shaders[i],
nir_var_shader_out);
nir_remove_dead_variables(ordered_shaders[i - 1],
nir_var_shader_in);
bool progress = nir_remove_unused_varyings(ordered_shaders[i],
ordered_shaders[i - 1]);
nir_compact_varyings(ordered_shaders[i],
ordered_shaders[i - 1], true);
if (progress) {
if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
ac_lower_indirect_derefs(ordered_shaders[i],
pipeline->device->physical_device->rad_info.chip_class);
}
radv_optimize_nir(ordered_shaders[i], false, false);
if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
ac_lower_indirect_derefs(ordered_shaders[i - 1],
pipeline->device->physical_device->rad_info.chip_class);
}
radv_optimize_nir(ordered_shaders[i - 1], false, false);
}
}
}
static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state,
uint32_t attrib_binding)
{
for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *input_binding =
&input_state->pVertexBindingDescriptions[i];
if (input_binding->binding == attrib_binding)
return input_binding->stride;
}
return 0;
}
static struct radv_pipeline_key
radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_blend_state *blend,
bool has_view_index)
{
const VkPipelineVertexInputStateCreateInfo *input_state =
pCreateInfo->pVertexInputState;
const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
struct radv_pipeline_key key;
memset(&key, 0, sizeof(key));
if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
key.optimisations_disabled = 1;
key.has_multiview_view_index = has_view_index;
uint32_t binding_input_rate = 0;
uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
if (input_state->pVertexBindingDescriptions[i].inputRate) {
unsigned binding = input_state->pVertexBindingDescriptions[i].binding;
binding_input_rate |= 1u << binding;
instance_rate_divisors[binding] = 1;
}
}
if (divisor_state) {
for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
divisor_state->pVertexBindingDivisors[i].divisor;
}
}
for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
const VkVertexInputAttributeDescription *desc =
&input_state->pVertexAttributeDescriptions[i];
const struct vk_format_description *format_desc;
unsigned location = desc->location;
unsigned binding = desc->binding;
unsigned num_format, data_format;
int first_non_void;
if (binding_input_rate & (1u << binding)) {
key.instance_rate_inputs |= 1u << location;
key.instance_rate_divisors[location] = instance_rate_divisors[binding];
}
format_desc = vk_format_description(desc->format);
first_non_void = vk_format_get_first_non_void_channel(desc->format);
num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
key.vertex_attribute_formats[location] = data_format | (num_format << 4);
key.vertex_attribute_bindings[location] = desc->binding;
key.vertex_attribute_offsets[location] = desc->offset;
key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding);
if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 &&
pipeline->device->physical_device->rad_info.family != CHIP_STONEY) {
VkFormat format = input_state->pVertexAttributeDescriptions[i].format;
uint64_t adjust;
switch(format) {
case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
adjust = RADV_ALPHA_ADJUST_SNORM;
break;
case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
adjust = RADV_ALPHA_ADJUST_SSCALED;
break;
case VK_FORMAT_A2R10G10B10_SINT_PACK32:
case VK_FORMAT_A2B10G10R10_SINT_PACK32:
adjust = RADV_ALPHA_ADJUST_SINT;
break;
default:
adjust = 0;
break;
}
key.vertex_alpha_adjust |= adjust << (2 * location);
}
switch (desc->format) {
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SNORM:
case VK_FORMAT_B8G8R8A8_USCALED:
case VK_FORMAT_B8G8R8A8_SSCALED:
case VK_FORMAT_B8G8R8A8_UINT:
case VK_FORMAT_B8G8R8A8_SINT:
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
case VK_FORMAT_A2R10G10B10_UINT_PACK32:
case VK_FORMAT_A2R10G10B10_SINT_PACK32:
key.vertex_post_shuffle |= 1 << location;
break;
default:
break;
}
}
if (pCreateInfo->pTessellationState)
key.tess_input_vertices = pCreateInfo->pTessellationState->patchControlPoints;
if (pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->rasterizationSamples > 1) {
uint32_t num_samples = pCreateInfo->pMultisampleState->rasterizationSamples;
uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo->pMultisampleState);
key.num_samples = num_samples;
key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
}
key.col_format = blend->spi_shader_col_format;
if (pipeline->device->physical_device->rad_info.chip_class < GFX8)
radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10);
return key;
}
static bool
radv_nir_stage_uses_xfb(const nir_shader *nir)
{
nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL);
bool uses_xfb = !!xfb;
ralloc_free(xfb);
return uses_xfb;
}
static void
radv_fill_shader_keys(struct radv_device *device,
struct radv_shader_variant_key *keys,
const struct radv_pipeline_key *key,
nir_shader **nir)
{
keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust;
keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle;
for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) {
keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i];
keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i];
keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i];
keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i];
keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i];
}
if (nir[MESA_SHADER_TESS_CTRL]) {
keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true;
keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0;
keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
}
if (nir[MESA_SHADER_GEOMETRY]) {
if (nir[MESA_SHADER_TESS_CTRL])
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true;
else
keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true;
}
if (device->physical_device->rad_info.chip_class >= GFX10 &&
device->physical_device->rad_info.family != CHIP_NAVI14 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) {
if (nir[MESA_SHADER_TESS_CTRL]) {
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true;
} else {
keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true;
}
if (nir[MESA_SHADER_TESS_CTRL] &&
nir[MESA_SHADER_GEOMETRY] &&
nir[MESA_SHADER_GEOMETRY]->info.gs.invocations *
nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) {
/* Fallback to the legacy path if tessellation is
* enabled with extreme geometry because
* EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
* might hang.
*/
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
}
/*
* Disable NGG with geometry shaders. There are a bunch of
* issues still:
* * GS primitives in pipeline statistic queries do not get
* updates. See dEQP-VK.query_pool.statistics_query.geometry_shader_primitives
* * General issues with the last primitive missing/corrupt:
* https://bugs.freedesktop.org/show_bug.cgi?id=111248
*
* Furthermore, XGL/AMDVLK also disables this as of 9b632ef.
*/
if (nir[MESA_SHADER_GEOMETRY]) {
if (nir[MESA_SHADER_TESS_CTRL])
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
else
keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
}
/* TODO: Implement streamout support for NGG. */
gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (nir[i])
last_xfb_stage = i;
}
if (nir[last_xfb_stage] &&
radv_nir_stage_uses_xfb(nir[last_xfb_stage])) {
if (nir[MESA_SHADER_TESS_CTRL])
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
else
keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
}
}
for(int i = 0; i < MESA_SHADER_STAGES; ++i)
keys[i].has_multiview_view_index = key->has_multiview_view_index;
keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples;
}
static void
radv_fill_shader_info(struct radv_pipeline *pipeline,
struct radv_shader_variant_key *keys,
struct radv_shader_info *infos,
nir_shader **nir)
{
unsigned active_stages = 0;
unsigned filled_stages = 0;
for (int i = 0; i < MESA_SHADER_STAGES; i++) {
if (nir[i])
active_stages |= (1 << i);
}
if (nir[MESA_SHADER_FRAGMENT]) {
radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]);
radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT],
pipeline->layout,
&keys[MESA_SHADER_FRAGMENT],
&infos[MESA_SHADER_FRAGMENT]);
/* TODO: These are no longer used as keys we should refactor this */
keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
infos[MESA_SHADER_FRAGMENT].ps.layer_input;
keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
!!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
infos[MESA_SHADER_FRAGMENT].ps.layer_input;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
!!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
filled_stages |= (1 << MESA_SHADER_FRAGMENT);
}
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
nir[MESA_SHADER_TESS_CTRL]) {
struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]);
for (int i = 0; i < 2; i++) {
radv_nir_shader_info_pass(combined_nir[i],
pipeline->layout, &key,
&infos[MESA_SHADER_TESS_CTRL]);
}
keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
filled_stages |= (1 << MESA_SHADER_VERTEX);
filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
}
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
nir[MESA_SHADER_GEOMETRY]) {
gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]);
for (int i = 0; i < 2; i++) {
radv_nir_shader_info_pass(combined_nir[i],
pipeline->layout,
&keys[pre_stage],
&infos[MESA_SHADER_GEOMETRY]);
}
filled_stages |= (1 << pre_stage);
filled_stages |= (1 << MESA_SHADER_GEOMETRY);
}
active_stages ^= filled_stages;
while (active_stages) {
int i = u_bit_scan(&active_stages);
if (i == MESA_SHADER_TESS_CTRL) {
keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs =
util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written);
}
if (i == MESA_SHADER_TESS_EVAL) {
keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
}
radv_nir_shader_info_init(&infos[i]);
radv_nir_shader_info_pass(nir[i], pipeline->layout,
&keys[i], &infos[i]);
}
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static
void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext)
{
if (!ext)
return;
if (ext->pPipelineCreationFeedback) {
ext->pPipelineCreationFeedback->flags = 0;
ext->pPipelineCreationFeedback->duration = 0;
}
for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) {
ext->pPipelineStageCreationFeedbacks[i].flags = 0;
ext->pPipelineStageCreationFeedbacks[i].duration = 0;
}
}
static
void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback)
{
if (!feedback)
return;
feedback->duration -= radv_get_current_time();
feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
}
static
void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit)
{
if (!feedback)
return;
feedback->duration += radv_get_current_time();
feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT |
(cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0);
}
static
void radv_create_shaders(struct radv_pipeline *pipeline,
struct radv_device *device,
struct radv_pipeline_cache *cache,
const struct radv_pipeline_key *key,
const VkPipelineShaderStageCreateInfo **pStages,
const VkPipelineCreateFlags flags,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
VkPipelineCreationFeedbackEXT *pipeline_feedback,
VkPipelineCreationFeedbackEXT **stage_feedbacks)
{
struct radv_shader_module fs_m = {0};
struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
nir_shader *nir[MESA_SHADER_STAGES] = {0};
struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}};
struct radv_shader_info infos[MESA_SHADER_STAGES] = {0};
unsigned char hash[20], gs_copy_hash[20];
bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info;
radv_start_feedback(pipeline_feedback);
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pStages[i]) {
modules[i] = radv_shader_module_from_handle(pStages[i]->module);
if (modules[i]->nir)
_mesa_sha1_compute(modules[i]->nir->info.name,
strlen(modules[i]->nir->info.name),
modules[i]->sha1);
pipeline->active_stages |= mesa_to_vk_shader_stage(i);
}
}
radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device));
memcpy(gs_copy_hash, hash, 20);
gs_copy_hash[0] ^= 1;
bool found_in_application_cache = true;
if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info) {
struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants,
&found_in_application_cache);
pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
}
if (!keep_executable_info &&
radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders,
&found_in_application_cache) &&
(!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
radv_stop_feedback(pipeline_feedback, found_in_application_cache);
return;
}
if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
nir_builder fs_b;
nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
fs_m.nir = fs_b.shader;
modules[MESA_SHADER_FRAGMENT] = &fs_m;
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
const VkPipelineShaderStageCreateInfo *stage = pStages[i];
if (!modules[i])
continue;
radv_start_feedback(stage_feedbacks[i]);
nir[i] = radv_shader_compile_to_nir(device, modules[i],
stage ? stage->pName : "main", i,
stage ? stage->pSpecializationInfo : NULL,
flags, pipeline->layout);
/* We don't want to alter meta shaders IR directly so clone it
* first.
*/
if (nir[i]->info.name) {
nir[i] = nir_shader_clone(NULL, nir[i]);
}
radv_stop_feedback(stage_feedbacks[i], false);
}
if (nir[MESA_SHADER_TESS_CTRL]) {
nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
}
if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
radv_link_shaders(pipeline, nir);
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (nir[i]) {
NIR_PASS_V(nir[i], nir_lower_non_uniform_access,
nir_lower_non_uniform_ubo_access |
nir_lower_non_uniform_ssbo_access |
nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access);
NIR_PASS_V(nir[i], nir_lower_bool_to_int32);
}
if (radv_can_dump_shader(device, modules[i], false))
nir_print_shader(nir[i], stderr);
}
if (nir[MESA_SHADER_FRAGMENT])
radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]);
radv_fill_shader_keys(device, keys, key, nir);
radv_fill_shader_info(pipeline, keys, infos, nir);
if ((nir[MESA_SHADER_VERTEX] &&
keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) ||
(nir[MESA_SHADER_TESS_EVAL] &&
keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) {
struct gfx10_ngg_info *ngg_info;
if (nir[MESA_SHADER_GEOMETRY])
ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info;
else if (nir[MESA_SHADER_TESS_CTRL])
ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info;
else
ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info;
gfx10_get_ngg_info(pCreateInfo, pipeline, nir, infos, ngg_info);
} else if (nir[MESA_SHADER_GEOMETRY]) {
struct gfx9_gs_info *gs_info =
&infos[MESA_SHADER_GEOMETRY].gs_ring_info;
gfx9_get_gs_info(pCreateInfo, pipeline, nir, infos, gs_info);
}
if (nir[MESA_SHADER_FRAGMENT]) {
if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]);
pipeline->shaders[MESA_SHADER_FRAGMENT] =
radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
pipeline->layout, keys + MESA_SHADER_FRAGMENT,
infos + MESA_SHADER_FRAGMENT,
keep_executable_info, &binaries[MESA_SHADER_FRAGMENT]);
radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false);
}
/* TODO: These are no longer used as keys we should refactor this */
keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input;
keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.layer_input;
keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
!!pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.num_input_clips_culls;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.layer_input;
keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
!!pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.num_input_clips_culls;
}
if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]);
pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
pipeline->layout,
&key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info,
&binaries[MESA_SHADER_TESS_CTRL]);
radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false);
}
modules[MESA_SHADER_VERTEX] = NULL;
keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
}
if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]);
pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
pipeline->layout,
&keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info,
&binaries[MESA_SHADER_GEOMETRY]);
radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false);
}
modules[pre_stage] = NULL;
}
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if(modules[i] && !pipeline->shaders[i]) {
if (i == MESA_SHADER_TESS_CTRL) {
keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written);
}
if (i == MESA_SHADER_TESS_EVAL) {
keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
}
radv_start_feedback(stage_feedbacks[i]);
pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1,
pipeline->layout,
keys + i, infos + i,keep_executable_info,
&binaries[i]);
radv_stop_feedback(stage_feedbacks[i], false);
}
}
if(modules[MESA_SHADER_GEOMETRY]) {
struct radv_shader_binary *gs_copy_binary = NULL;
if (!pipeline->gs_copy_shader &&
!radv_pipeline_has_ngg(pipeline)) {
struct radv_shader_info info = {};
struct radv_shader_variant_key key = {};
key.has_multiview_view_index =
keys[MESA_SHADER_GEOMETRY].has_multiview_view_index;
radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY],
pipeline->layout, &key,
&info);
pipeline->gs_copy_shader = radv_create_gs_copy_shader(
device, nir[MESA_SHADER_GEOMETRY], &info,
&gs_copy_binary, keep_executable_info,
keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
}
if (!keep_executable_info && pipeline->gs_copy_shader) {
struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary;
variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
radv_pipeline_cache_insert_shaders(device, cache,
gs_copy_hash,
variants,
binaries);
}
free(gs_copy_binary);
}
if (!keep_executable_info) {
radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
binaries);
}
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
free(binaries[i]);
if (nir[i]) {
ralloc_free(nir[i]);
if (radv_can_dump_shader_stats(device, modules[i]))
radv_shader_dump_stats(device,
pipeline->shaders[i],
i, stderr);
}
}
if (fs_m.nir)
ralloc_free(fs_m.nir);
radv_stop_feedback(pipeline_feedback, false);
}
static uint32_t
radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
gl_shader_stage stage, enum chip_class chip_class)
{
bool has_gs = radv_pipeline_has_gs(pipeline);
bool has_tess = radv_pipeline_has_tess(pipeline);
bool has_ngg = radv_pipeline_has_ngg(pipeline);
switch (stage) {
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_VERTEX:
if (has_tess) {
if (chip_class >= GFX10) {
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
} else if (chip_class == GFX9) {
return R_00B430_SPI_SHADER_USER_DATA_LS_0;
} else {
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
}
}
if (has_gs) {
if (chip_class >= GFX10) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
}
}
if (has_ngg)
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_GEOMETRY:
return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_COMPUTE:
return R_00B900_COMPUTE_USER_DATA_0;
case MESA_SHADER_TESS_CTRL:
return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_TESS_EVAL:
if (has_gs) {
return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 :
R_00B330_SPI_SHADER_USER_DATA_ES_0;
} else if (has_ngg) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
}
default:
unreachable("unknown shader");
}
}
struct radv_bin_size_entry {
unsigned bpp;
VkExtent2D extent;
};
static VkExtent2D
radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
static const struct radv_bin_size_entry color_size_table[][3][9] = {
{
/* One RB / SE */
{
/* One shader engine */
{ 0, {128, 128}},
{ 1, { 64, 128}},
{ 2, { 32, 128}},
{ 3, { 16, 128}},
{ 17, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Two shader engines */
{ 0, {128, 128}},
{ 2, { 64, 128}},
{ 3, { 32, 128}},
{ 5, { 16, 128}},
{ 17, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Four shader engines */
{ 0, {128, 128}},
{ 3, { 64, 128}},
{ 5, { 16, 128}},
{ 17, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
},
{
/* Two RB / SE */
{
/* One shader engine */
{ 0, {128, 128}},
{ 2, { 64, 128}},
{ 3, { 32, 128}},
{ 5, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Two shader engines */
{ 0, {128, 128}},
{ 3, { 64, 128}},
{ 5, { 32, 128}},
{ 9, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Four shader engines */
{ 0, {256, 256}},
{ 2, {128, 256}},
{ 3, {128, 128}},
{ 5, { 64, 128}},
{ 9, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
},
{
/* Four RB / SE */
{
/* One shader engine */
{ 0, {128, 256}},
{ 2, {128, 128}},
{ 3, { 64, 128}},
{ 5, { 32, 128}},
{ 9, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Two shader engines */
{ 0, {256, 256}},
{ 2, {128, 256}},
{ 3, {128, 128}},
{ 5, { 64, 128}},
{ 9, { 32, 128}},
{ 17, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
/* Four shader engines */
{ 0, {256, 512}},
{ 2, {256, 256}},
{ 3, {128, 256}},
{ 5, {128, 128}},
{ 9, { 64, 128}},
{ 17, { 16, 128}},
{ 33, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
},
};
static const struct radv_bin_size_entry ds_size_table[][3][9] = {
{
// One RB / SE
{
// One shader engine
{ 0, {128, 256}},
{ 2, {128, 128}},
{ 4, { 64, 128}},
{ 7, { 32, 128}},
{ 13, { 16, 128}},
{ 49, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
// Two shader engines
{ 0, {256, 256}},
{ 2, {128, 256}},
{ 4, {128, 128}},
{ 7, { 64, 128}},
{ 13, { 32, 128}},
{ 25, { 16, 128}},
{ 49, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
// Four shader engines
{ 0, {256, 512}},
{ 2, {256, 256}},
{ 4, {128, 256}},
{ 7, {128, 128}},
{ 13, { 64, 128}},
{ 25, { 16, 128}},
{ 49, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
},
{
// Two RB / SE
{
// One shader engine
{ 0, {256, 256}},
{ 2, {128, 256}},
{ 4, {128, 128}},
{ 7, { 64, 128}},
{ 13, { 32, 128}},
{ 25, { 16, 128}},
{ 97, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
// Two shader engines
{ 0, {256, 512}},
{ 2, {256, 256}},
{ 4, {128, 256}},
{ 7, {128, 128}},
{ 13, { 64, 128}},
{ 25, { 32, 128}},
{ 49, { 16, 128}},
{ 97, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
{
// Four shader engines
{ 0, {512, 512}},
{ 2, {256, 512}},
{ 4, {256, 256}},
{ 7, {128, 256}},
{ 13, {128, 128}},
{ 25, { 64, 128}},
{ 49, { 16, 128}},
{ 97, { 0, 0}},
{ UINT_MAX, { 0, 0}},
},
},
{
// Four RB / SE
{
// One shader engine
{ 0, {256, 512}},
{ 2, {256, 256}},
{ 4, {128, 256}},
{ 7, {128, 128}},
{ 13, { 64, 128}},
{ 25, { 32, 128}},
{ 49, { 16, 128}},
{ UINT_MAX, { 0, 0}},
},
{
// Two shader engines
{ 0, {512, 512}},
{ 2, {256, 512}},
{ 4, {256, 256}},
{ 7, {128, 256}},
{ 13, {128, 128}},
{ 25, { 64, 128}},
{ 49, { 32, 128}},
{ 97, { 16, 128}},
{ UINT_MAX, { 0, 0}},
},
{
// Four shader engines
{ 0, {512, 512}},
{ 4, {256, 512}},
{ 7, {256, 256}},
{ 13, {128, 256}},
{ 25, {128, 128}},
{ 49, { 64, 128}},
{ 97, { 16, 128}},
{ UINT_MAX, { 0, 0}},
},
},
};
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
VkExtent2D extent = {512, 512};
unsigned log_num_rb_per_se =
util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
pipeline->device->physical_device->rad_info.max_se);
unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
unsigned effective_samples = total_samples;
unsigned color_bytes_per_pixel = 0;
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
if (vkblend) {
for (unsigned i = 0; i < subpass->color_count; i++) {
if (!vkblend->pAttachments[i].colorWriteMask)
continue;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
color_bytes_per_pixel += vk_format_get_blocksize(format);
}
/* MSAA images typically don't use all samples all the time. */
if (effective_samples >= 2 && ps_iter_samples <= 1)
effective_samples = 2;
color_bytes_per_pixel *= effective_samples;
}
const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
while(color_entry[1].bpp <= color_bytes_per_pixel)
++color_entry;
extent = color_entry->extent;
if (subpass->depth_stencil_attachment) {
struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
/* Coefficients taken from AMDVLK */
unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
while(ds_entry[1].bpp <= ds_bytes_per_pixel)
++ds_entry;
if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
extent = ds_entry->extent;
}
return extent;
}
static VkExtent2D
radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
VkExtent2D extent = {512, 512};
unsigned sdp_interface_count;
switch(pipeline->device->physical_device->rad_info.family) {
case CHIP_NAVI10:
case CHIP_NAVI12:
sdp_interface_count = 16;
break;
case CHIP_NAVI14:
sdp_interface_count = 8;
break;
default:
unreachable("Unhandled GFX10 chip");
}
const unsigned db_tag_size = 64;
const unsigned db_tag_count = 312;
const unsigned color_tag_size = 1024;
const unsigned color_tag_count = 31;
const unsigned fmask_tag_size = 256;
const unsigned fmask_tag_count = 44;
const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends;
const unsigned pipe_count = MAX2(rb_count, sdp_interface_count);
const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
const unsigned samples_log = util_logbase2_ceil(total_samples);
unsigned color_bytes_per_pixel = 0;
unsigned fmask_bytes_per_pixel = 0;
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
if (vkblend) {
for (unsigned i = 0; i < subpass->color_count; i++) {
if (!vkblend->pAttachments[i].colorWriteMask)
continue;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
color_bytes_per_pixel += vk_format_get_blocksize(format);
if (total_samples > 1) {
const unsigned fmask_array[] = {0, 1, 1, 4};
fmask_bytes_per_pixel += fmask_array[samples_log];
}
}
color_bytes_per_pixel *= total_samples;
}
color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
extent.height = 1ull << (color_pixel_count_log / 2);
if (fmask_bytes_per_pixel) {
const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
const VkExtent2D fmask_extent = (VkExtent2D){
.width = 1ull << ((fmask_pixel_count_log + 1) / 2),
.height = 1ull << (color_pixel_count_log / 2)
};
if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
extent = fmask_extent;
}
if (subpass->depth_stencil_attachment) {
struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
/* Coefficients taken from AMDVLK */
unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
const VkExtent2D db_extent = (VkExtent2D){
.width = 1ull << ((db_pixel_count_log + 1) / 2),
.height = 1ull << (color_pixel_count_log / 2)
};
if (db_extent.width * db_extent.height < extent.width * extent.height)
extent = db_extent;
}
extent.width = MAX2(extent.width, 128);
extent.height = MAX2(extent.width, 64);
return extent;
}
static void
radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint32_t pa_sc_binner_cntl_0 =
S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
S_028C44_DISABLE_START_OF_PRIM(1);
uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
unsigned min_bytes_per_pixel = 0;
if (vkblend) {
for (unsigned i = 0; i < subpass->color_count; i++) {
if (!vkblend->pAttachments[i].colorWriteMask)
continue;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
unsigned bytes = vk_format_get_blocksize(format);
if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
min_bytes_per_pixel = bytes;
}
}
pa_sc_binner_cntl_0 =
S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) |
S_028C44_BIN_SIZE_X(0) |
S_028C44_BIN_SIZE_Y(0) |
S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
S_028C44_DISABLE_START_OF_PRIM(1);
}
pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
}
static void
radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
return;
VkExtent2D bin_size;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo);
} else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) {
bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo);
} else
unreachable("Unhandled generation for binning bin size calculation");
if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) {
unsigned context_states_per_bin; /* allowed range: [1, 6] */
unsigned persistent_states_per_bin; /* allowed range: [1, 32] */
unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */
if (pipeline->device->physical_device->rad_info.has_dedicated_vram) {
context_states_per_bin = 1;
persistent_states_per_bin = 1;
fpovs_per_batch = 63;
} else {
/* The context states are affected by the scissor bug. */
context_states_per_bin = pipeline->device->physical_device->rad_info.has_gfx9_scissor_bug ? 1 : 6;
/* 32 causes hangs for RAVEN. */
persistent_states_per_bin = 16;
fpovs_per_batch = 63;
}
const uint32_t pa_sc_binner_cntl_0 =
S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
S_028C44_BIN_SIZE_X(bin_size.width == 16) |
S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
S_028C44_CONTEXT_STATES_PER_BIN(context_states_per_bin - 1) |
S_028C44_PERSISTENT_STATES_PER_BIN(persistent_states_per_bin - 1) |
S_028C44_DISABLE_START_OF_PRIM(1) |
S_028C44_FPOVS_PER_BATCH(fpovs_per_batch) |
S_028C44_OPTIMAL_BIN_SELECTION(1);
uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
} else
radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo);
}
static void
radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
struct radv_render_pass_attachment *attachment = NULL;
uint32_t db_depth_control = 0, db_stencil_control = 0;
uint32_t db_render_control = 0, db_render_override2 = 0;
uint32_t db_render_override = 0;
if (subpass->depth_stencil_attachment)
attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format);
bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format);
if (vkds && has_depth_attachment) {
db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
S_028800_ZFUNC(vkds->depthCompareOp) |
S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
/* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2);
}
if (has_stencil_attachment && vkds && vkds->stencilTestEnable) {
db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
}
if (attachment && extra) {
db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
}
db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
if (!pCreateInfo->pRasterizationState->depthClampEnable) {
/* From VK_EXT_depth_range_unrestricted spec:
*
* "The behavior described in Primitive Clipping still applies.
* If depth clamping is disabled the depth values are still
* clipped to 0 ≤ zc ≤ wc before the viewport transform. If
* depth clamping is enabled the above equation is ignored and
* the depth values are instead clamped to the VkViewport
* minDepth and maxDepth values, which in the case of this
* extension can be outside of the 0.0 to 1.0 range."
*/
db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
}
radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control);
radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override);
radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2);
}
static void
radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const struct radv_blend_state *blend)
{
radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
radeon_emit_array(ctx_cs, blend->cb_blend_control,
8);
radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control);
radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
if (pipeline->device->physical_device->rad_info.has_rbplus) {
radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
}
radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
pipeline->graphics.col_format = blend->spi_shader_col_format;
pipeline->graphics.cb_target_mask = blend->cb_target_mask;
}
static const VkConservativeRasterizationModeEXT
radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo)
{
const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
if (!conservative_raster)
return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
return conservative_raster->conservativeRasterizationMode;
}
static void
radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
const VkConservativeRasterizationModeEXT mode =
radv_get_conservative_raster_mode(vkraster);
uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
bool depth_clip_disable = vkraster->depthClampEnable;
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
if (depth_clip_state) {
depth_clip_disable = !depth_clip_state->depthClipEnable;
}
radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL,
S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) |
S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) |
S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0,
S_0286D4_FLAT_SHADE_ENA(1) |
S_0286D4_PNT_SPRITE_ENA(1) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL,
S_028BE4_PIX_CENTER(1) | // TODO verify
S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
radeon_set_context_reg(ctx_cs, R_028814_PA_SU_SC_MODE_CNTL,
S_028814_FACE(vkraster->frontFace) |
S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0));
/* Conservative rasterization. */
if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
struct radv_multisample_state *ms = &pipeline->graphics.ms;
ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) |
S_028804_OVERRASTERIZATION_AMOUNT(4);
pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) |
S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
pa_sc_conservative_rast |=
S_028C4C_OVER_RAST_ENABLE(1) |
S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
S_028C4C_UNDER_RAST_ENABLE(0) |
S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
} else {
assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
pa_sc_conservative_rast |=
S_028C4C_OVER_RAST_ENABLE(0) |
S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
S_028C4C_UNDER_RAST_ENABLE(1) |
S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
}
}
radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
pa_sc_conservative_rast);
}
static void
radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline)
{
struct radv_multisample_state *ms = &pipeline->graphics.ms;
radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
/* The exclusion bits can be set to improve rasterization efficiency
* if no sample lies on the pixel boundary (-8 sample offset). It's
* currently always TRUE because the driver doesn't support 16 samples.
*/
bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7;
radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
}
static void
radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline)
{
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
const struct radv_shader_variant *vs =
pipeline->shaders[MESA_SHADER_TESS_EVAL] ?
pipeline->shaders[MESA_SHADER_TESS_EVAL] :
pipeline->shaders[MESA_SHADER_VERTEX];
unsigned vgt_primitiveid_en = 0;
uint32_t vgt_gs_mode = 0;
if (radv_pipeline_has_ngg(pipeline))
return;
if (radv_pipeline_has_gs(pipeline)) {
const struct radv_shader_variant *gs =
pipeline->shaders[MESA_SHADER_GEOMETRY];
vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out,
pipeline->device->physical_device->rad_info.chip_class);
} else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
}
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
}
static void
radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize ||
outinfo->writes_layer ||
outinfo->writes_viewport_index;
unsigned spi_vs_out_config, nparams;
/* VS is required to export at least one param. */
nparams = MAX2(outinfo->param_exports, 1);
spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
}
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) |
S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
cull_dist_mask << 8 |
clip_dist_mask);
if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF,
outinfo->writes_viewport_index);
}
static void
radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
static void
radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader,
const struct radv_tessellation_state *tess)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
uint32_t rsrc2 = shader->config.rsrc2;
radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size);
if (pipeline->device->physical_device->rad_info.chip_class == GFX7 &&
pipeline->device->physical_device->rad_info.family != CHIP_HAWAII)
radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, rsrc2);
}
static void
radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
gl_shader_stage es_type =
radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
struct radv_shader_variant *es =
es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX];
const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize ||
outinfo->writes_layer ||
outinfo->writes_viewport_index;
bool es_enable_prim_id = outinfo->export_prim_id ||
(es && es->info.uses_prim_id);
bool break_wave_at_eoi = false;
unsigned ge_cntl;
unsigned nparams;
if (es_type == MESA_SHADER_TESS_EVAL) {
struct radv_shader_variant *gs =
pipeline->shaders[MESA_SHADER_GEOMETRY];
if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
break_wave_at_eoi = true;
}
nparams = MAX2(outinfo->param_exports, 1);
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0));
radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP));
radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) |
S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
cull_dist_mask << 8 |
clip_dist_mask);
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
S_028A84_NGG_DISABLE_PROVOK_REUSE(es_enable_prim_id));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
ngg_state->vgt_esgs_ring_itemsize);
/* NGG specific registers. */
struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(gs_num_invocations) |
S_028B90_ENABLE(gs_num_invocations > 1) |
S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
/* User edge flags are set by the pos exports. If user edge flags are
* not used, we must use hw-generated edge flags and pass them via
* the prim export to prevent drawing lines on internal edges of
* decomposed primitives (such as quads) with polygon mode = lines.
*
* TODO: We should combine hw-generated edge flags with user edge
* flags in the shader.
*/
radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL,
S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) &&
!radv_pipeline_has_gs(pipeline)));
ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) |
S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) |
S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
/* Bug workaround for a possible hang with non-tessellation cases.
* Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
*
* Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
*/
if ((pipeline->device->physical_device->rad_info.family == CHIP_NAVI10 ||
pipeline->device->physical_device->rad_info.family == CHIP_NAVI12 ||
pipeline->device->physical_device->rad_info.family == CHIP_NAVI14) &&
!radv_pipeline_has_tess(pipeline) &&
ngg_state->hw_max_esverts != 256) {
ge_cntl &= C_03096C_VERT_GRP_SIZE;
if (ngg_state->hw_max_esverts > 5) {
ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
}
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
}
static void
radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *shader,
const struct radv_tessellation_state *tess)
{
uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
unsigned hs_rsrc2 = shader->config.rsrc2;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size);
} else {
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size);
}
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
} else {
radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B414_MEM_BASE(va >> 40));
}
radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, hs_rsrc2);
} else {
radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
}
static void
radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
const struct radv_tessellation_state *tess)
{
struct radv_shader_variant *vs;
/* Skip shaders merged into HS/GS */
vs = pipeline->shaders[MESA_SHADER_VERTEX];
if (!vs)
return;
if (vs->info.vs.as_ls)
radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess);
else if (vs->info.vs.as_es)
radv_pipeline_generate_hw_es(cs, pipeline, vs);
else if (vs->info.is_ngg)
radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs);
else
radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs);
}
static void
radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
const struct radv_tessellation_state *tess)
{
if (!radv_pipeline_has_tess(pipeline))
return;
struct radv_shader_variant *tes, *tcs;
tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
if (tes) {
if (tes->info.is_ngg) {
radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes);
} else if (tes->info.tes.as_es)
radv_pipeline_generate_hw_es(cs, pipeline, tes);
else
radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes);
}
radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess);
radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
tess->tf_param);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX7)
radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2,
tess->ls_hs_config);
else
radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG,
tess->ls_hs_config);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 &&
!radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(250) |
S_028A44_GS_PRIMS_PER_SUBGRP(126) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
}
}
static void
radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_shader_variant *gs)
{
const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
unsigned gs_max_out_vertices;
uint8_t *num_components;
uint8_t max_stream;
unsigned offset;
uint64_t va;
gs_max_out_vertices = gs->info.gs.vertices_out;
max_stream = gs->info.gs.max_stream;
num_components = gs->info.gs.num_stream_output_components;
offset = num_components[0] * gs_max_out_vertices;
radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
radeon_emit(ctx_cs, offset);
if (max_stream >= 1)
offset += num_components[1] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 2)
offset += num_components[2] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 3)
offset += num_components[3] * gs_max_out_vertices;
radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
radeon_emit(ctx_cs, num_components[0]);
radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
uint32_t gs_num_invocations = gs->info.gs.invocations;
radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
S_028B90_ENABLE(gs_num_invocations > 0));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
gs_state->vgt_esgs_ring_itemsize);
va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
} else {
radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B214_MEM_BASE(va >> 40));
}
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
} else {
radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2);
}
radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader);
}
static void
radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *gs;
gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
if (!gs)
return;
if (gs->info.is_ngg)
radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs);
else
radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
gs->info.gs.vertices_out);
}
static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade, bool float16)
{
uint32_t ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
ps_input_cntl = S_028644_OFFSET(offset);
if (flat_shade)
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (float16) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
S_028644_ATTR0_VALID(1);
}
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
ps_input_cntl = S_028644_OFFSET(0x20) |
S_028644_DEFAULT_VAL(offset);
}
return ps_input_cntl;
}
static void
radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
uint32_t ps_input_cntl[32];
unsigned ps_offset = 0;
if (ps->info.ps.prim_id_input) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false);
++ps_offset;
}
}
if (ps->info.ps.layer_input ||
ps->info.needs_multiview_view_index) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
if (vs_offset != AC_EXP_PARAM_UNDEFINED)
ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false);
else
ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false);
++ps_offset;
}
if (ps->info.ps.has_pcoord) {
unsigned val;
val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
ps_input_cntl[ps_offset] = val;
ps_offset++;
}
if (ps->info.ps.num_input_clips_culls) {
unsigned vs_offset;
vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0];
if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false);
++ps_offset;
}
vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1];
if (vs_offset != AC_EXP_PARAM_UNDEFINED &&
ps->info.ps.num_input_clips_culls > 4) {
ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false);
++ps_offset;
}
}
for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) {
unsigned vs_offset;
bool flat_shade;
bool float16;
if (!(ps->info.ps.input_mask & (1u << i)))
continue;
vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
++ps_offset;
continue;
}
flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset));
float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset));
ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, float16);
++ps_offset;
}
if (ps_offset) {
radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
for (unsigned i = 0; i < ps_offset; i++) {
radeon_emit(ctx_cs, ps_input_cntl[i]);
}
}
}
static uint32_t
radv_compute_db_shader_control(const struct radv_device *device,
const struct radv_pipeline *pipeline,
const struct radv_shader_variant *ps)
{
unsigned z_order;
if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
else
z_order = V_02880C_LATE_Z;
bool disable_rbplus = device->physical_device->rad_info.has_rbplus &&
!device->physical_device->rad_info.rbplus_allowed;
/* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
* but this appears to break Project Cars (DXVK). See
* https://bugs.freedesktop.org/show_bug.cgi?id=109401
*/
bool mask_export_enable = ps->info.ps.writes_sample_mask;
return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
S_02880C_Z_ORDER(z_order) |
S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
}
static void
radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs,
struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline)
{
struct radv_shader_variant *ps;
uint64_t va;
assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
radeon_emit(cs, ps->config.rsrc1);
radeon_emit(cs, ps->config.rsrc2);
radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
radv_compute_db_shader_control(pipeline->device,
pipeline, ps));
radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA,
ps->config.spi_ps_input_ena);
radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR,
ps->config.spi_ps_input_addr);
radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
S_0286D8_PS_W32_EN(ps->info.wave_size == 32));
radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
ac_get_spi_shader_z_format(ps->info.ps.writes_z,
ps->info.ps.writes_stencil,
ps->info.ps.writes_sample_mask));
if (pipeline->device->dfsm_allowed) {
/* optimise this? */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
}
}
static void
radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline)
{
if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
pipeline->device->physical_device->rad_info.chip_class >= GFX10)
return;
unsigned vtx_reuse_depth = 30;
if (radv_pipeline_has_tess(pipeline) &&
radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
vtx_reuse_depth = 14;
}
radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
}
static uint32_t
radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline)
{
uint32_t stages = 0;
if (radv_pipeline_has_tess(pipeline)) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (radv_pipeline_has_gs(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
S_028B54_GS_EN(1);
else if (radv_pipeline_has_ngg(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (radv_pipeline_has_gs(pipeline)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
S_028B54_GS_EN(1);
} else if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
}
if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_PRIMGEN_EN(1);
} else if (radv_pipeline_has_gs(pipeline)) {
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
if (radv_pipeline_has_tess(pipeline))
hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
if (pipeline->shaders[MESA_SHADER_GEOMETRY]) {
vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
if (pipeline->gs_copy_shader)
vs_size = pipeline->gs_copy_shader->info.wave_size;
} else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
else if (pipeline->shaders[MESA_SHADER_VERTEX])
vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size;
if (radv_pipeline_has_ngg(pipeline))
gs_size = vs_size;
/* legacy GS only supports Wave64 */
stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
}
return stages;
}
static uint32_t
radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
if (!discard_rectangle_info)
return 0xffff;
unsigned mask = 0;
for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
/* Interpret i as a bitmask, and then set the bit in the mask if
* that combination of rectangles in which the pixel is contained
* should pass the cliprect test. */
unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
!relevant_subset)
continue;
if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
relevant_subset)
continue;
mask |= 1u << i;
}
return mask;
}
static void
gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs,
struct radv_pipeline *pipeline,
const struct radv_tessellation_state *tess)
{
bool break_wave_at_eoi = false;
unsigned primgroup_size;
unsigned vertgroup_size;
if (radv_pipeline_has_tess(pipeline)) {
primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */
vertgroup_size = 0;
} else if (radv_pipeline_has_gs(pipeline)) {
const struct gfx9_gs_info *gs_state =
&pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
vertgroup_size = G_028A44_ES_VERTS_PER_SUBGRP(vgt_gs_onchip_cntl);
} else {
primgroup_size = 128; /* recommended without a GS and tess */
vertgroup_size = 0;
}
if (radv_pipeline_has_tess(pipeline)) {
if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
break_wave_at_eoi = true;
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
S_03096C_PRIM_GRP_SIZE(primgroup_size) |
S_03096C_VERT_GRP_SIZE(vertgroup_size) |
S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
}
static void
radv_pipeline_generate_pm4(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const struct radv_blend_state *blend,
const struct radv_tessellation_state *tess,
unsigned prim, unsigned gs_out)
{
struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs;
struct radeon_cmdbuf *cs = &pipeline->cs;
cs->max_dw = 64;
ctx_cs->max_dw = 256;
cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
ctx_cs->buf = cs->buf + cs->max_dw;
radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra);
radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend);
radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo);
radv_pipeline_generate_multisample_state(ctx_cs, pipeline);
radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline);
radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess);
radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess);
radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline);
radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline);
radv_pipeline_generate_ps_inputs(ctx_cs, pipeline);
radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline);
radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo);
if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline))
gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess);
radeon_set_context_reg(ctx_cs, R_0286E8_SPI_TMPRING_SIZE,
S_0286E8_WAVES(pipeline->max_waves) |
S_0286E8_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10));
radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline));
if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg_idx(pipeline->device->physical_device,
cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
} else {
radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
}
radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out);
radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo));
pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
assert(ctx_cs->cdw <= ctx_cs->max_dw);
assert(cs->cdw <= cs->max_dw);
}
static struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline,
const struct radv_tessellation_state *tess,
uint32_t prim)
{
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
const struct radv_device *device = pipeline->device;
if (radv_pipeline_has_tess(pipeline))
ia_multi_vgt_param.primgroup_size = tess->num_patches;
else if (radv_pipeline_has_gs(pipeline))
ia_multi_vgt_param.primgroup_size = 64;
else
ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
/* GS requirement. */
ia_multi_vgt_param.partial_es_wave = false;
if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8)
if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3)
ia_multi_vgt_param.partial_es_wave = true;
ia_multi_vgt_param.wd_switch_on_eop = false;
if (device->physical_device->rad_info.chip_class >= GFX7) {
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements. */
if (device->physical_device->rad_info.max_se < 4 ||
prim == V_008958_DI_PT_POLYGON ||
prim == V_008958_DI_PT_LINELOOP ||
prim == V_008958_DI_PT_TRIFAN ||
prim == V_008958_DI_PT_TRISTRIP_ADJ ||
(pipeline->graphics.prim_restart_enable &&
(device->physical_device->rad_info.family < CHIP_POLARIS10 ||
(prim != V_008958_DI_PT_POINTLIST &&
prim != V_008958_DI_PT_LINESTRIP))))
ia_multi_vgt_param.wd_switch_on_eop = true;
}
ia_multi_vgt_param.ia_switch_on_eoi = false;
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_gs(pipeline) &&
pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_tess(pipeline)) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
}
ia_multi_vgt_param.partial_vs_wave = false;
if (radv_pipeline_has_tess(pipeline)) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
device->physical_device->rad_info.family == CHIP_PITCAIRN ||
device->physical_device->rad_info.family == CHIP_BONAIRE) &&
radv_pipeline_has_gs(pipeline))
ia_multi_vgt_param.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (device->physical_device->rad_info.has_distributed_tess) {
if (radv_pipeline_has_gs(pipeline)) {
if (device->physical_device->rad_info.chip_class <= GFX8)
ia_multi_vgt_param.partial_es_wave = true;
} else {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
}
/* Workaround for a VGT hang when strip primitive types are used with
* primitive restart.
*/
if (pipeline->graphics.prim_restart_enable &&
(prim == V_008958_DI_PT_LINESTRIP ||
prim == V_008958_DI_PT_TRISTRIP ||
prim == V_008958_DI_PT_LINESTRIP_ADJ ||
prim == V_008958_DI_PT_TRISTRIP_ADJ)) {
ia_multi_vgt_param.partial_vs_wave = true;
}
if (radv_pipeline_has_gs(pipeline)) {
/* On these chips there is the possibility of a hang if the
* pipeline uses a GS and partial_vs_wave is not set.
*
* This mostly does not hit 4-SE chips, as those typically set
* ia_switch_on_eoi and then partial_vs_wave is set for pipelines
* with GS due to another workaround.
*
* Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
*/
if (device->physical_device->rad_info.family == CHIP_TONGA ||
device->physical_device->rad_info.family == CHIP_FIJI ||
device->physical_device->rad_info.family == CHIP_POLARIS10 ||
device->physical_device->rad_info.family == CHIP_POLARIS11 ||
device->physical_device->rad_info.family == CHIP_POLARIS12 ||
device->physical_device->rad_info.family == CHIP_VEGAM) {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
ia_multi_vgt_param.base =
S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
return ia_multi_vgt_param;
}
static void
radv_compute_vertex_input_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
unsigned loc = desc->location;
const struct vk_format_description *format_desc;
format_desc = vk_format_description(desc->format);
velems->format_size[loc] = format_desc->block.bits / 8;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
pipeline->num_vertex_bindings =
MAX2(pipeline->num_vertex_bindings, desc->binding + 1);
}
}
static struct radv_shader_variant *
radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
{
int i;
for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
struct radv_shader_variant *shader =
radv_get_shader(pipeline, i);
if (shader && shader->info.so.num_outputs > 0)
return shader;
}
return NULL;
}
static VkResult
radv_pipeline_init(struct radv_pipeline *pipeline,
struct radv_device *device,
struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
VkResult result;
bool has_view_index = false;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
if (subpass->view_mask)
has_view_index = true;
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
assert(pipeline->layout);
struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
radv_init_feedback(creation_feedback);
VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
if(creation_feedback)
stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i];
}
struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pCreateInfo, pipeline_feedback, stage_feedbacks);
pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
uint32_t gs_out;
uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
if (radv_pipeline_has_gs(pipeline)) {
gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
} else if (radv_pipeline_has_tess(pipeline)) {
if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode)
gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST;
else
gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode);
pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
} else {
gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
}
if (extra && extra->use_rectlist) {
prim = V_008958_DI_PT_RECTLIST;
gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
pipeline->graphics.can_use_guardband = true;
if (radv_pipeline_has_ngg(pipeline))
gs_out = V_028A6C_VGT_OUT_RECT_V0;
}
pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
/* prim vertex count will need TESS changes */
pipeline->graphics.prim_vertex_count = prim_size_table[prim];
radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*
* GFX10 supports pixel shaders without exports by setting both the
* color and Z formats to SPI_SHADER_ZERO. The hw will skip export
* instructions if any are present.
*/
struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 ||
ps->info.ps.can_discard) &&
!blend.spi_shader_col_format) {
if (!ps->info.ps.writes_z &&
!ps->info.ps.writes_stencil &&
!ps->info.ps.writes_sample_mask)
blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (pipeline->shaders[i]) {
pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
}
}
if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
struct radv_shader_variant *gs =
pipeline->shaders[MESA_SHADER_GEOMETRY];
calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info);
}
struct radv_tessellation_state tess = {0};
if (radv_pipeline_has_tess(pipeline)) {
if (prim == V_008958_DI_PT_PATCH) {
pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
pipeline->graphics.prim_vertex_count.incr = 1;
}
tess = calculate_tess_state(pipeline, pCreateInfo);
}
pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim);
radv_compute_vertex_input_state(pipeline, pCreateInfo);
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id)
pipeline->graphics.vtx_emit_num = 3;
else
pipeline->graphics.vtx_emit_num = 2;
}
/* Find the last vertex shader stage that eventually uses streamout. */
pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
result = radv_pipeline_scratch_init(device, pipeline);
radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, prim, gs_out);
return result;
}
VkResult
radv_graphics_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct radv_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
result = radv_pipeline_init(pipeline, device, cache,
pCreateInfo, extra);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult radv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_graphics_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
NULL, pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}
static void
radv_compute_generate_pm4(struct radv_pipeline *pipeline)
{
struct radv_shader_variant *compute_shader;
struct radv_device *device = pipeline->device;
unsigned threads_per_threadgroup;
unsigned threadgroups_per_cu = 1;
unsigned waves_per_threadgroup;
unsigned max_waves_per_sh = 0;
uint64_t va;
pipeline->cs.buf = malloc(20 * 4);
pipeline->cs.max_dw = 20;
compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2);
radeon_emit(&pipeline->cs, va >> 8);
radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40));
radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(&pipeline->cs, compute_shader->config.rsrc1);
radeon_emit(&pipeline->cs, compute_shader->config.rsrc2);
radeon_set_sh_reg(&pipeline->cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(pipeline->max_waves) |
S_00B860_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10));
/* Calculate best compute resource limits. */
threads_per_threadgroup = compute_shader->info.cs.block_size[0] *
compute_shader->info.cs.block_size[1] *
compute_shader->info.cs.block_size[2];
waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup,
device->physical_device->cs_wave_size);
if (device->physical_device->rad_info.chip_class >= GFX10 &&
waves_per_threadgroup == 1)
threadgroups_per_cu = 2;
radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
ac_get_compute_resource_limits(&device->physical_device->rad_info,
waves_per_threadgroup,
max_waves_per_sh,
threadgroups_per_cu));
radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(&pipeline->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
radeon_emit(&pipeline->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
radeon_emit(&pipeline->cs,
S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
assert(pipeline->cs.cdw <= pipeline->cs.max_dw);
}
static VkResult radv_compute_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
struct radv_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
assert(pipeline->layout);
const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
radv_init_feedback(creation_feedback);
VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
if (creation_feedback)
stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0];
pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
radv_create_shaders(pipeline, device, cache, &(struct radv_pipeline_key) {0}, pStages, pCreateInfo->flags, NULL, pipeline_feedback, stage_feedbacks);
pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
result = radv_pipeline_scratch_init(device, pipeline);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
}
radv_compute_generate_pm4(pipeline);
*pPipeline = radv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult radv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_compute_pipeline_create(_device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}
static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline)
{
uint32_t ret = 0;
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pipeline->shaders[i])
ret += i == MESA_SHADER_GEOMETRY ? 2u : 1u;
}
return ret;
}
static struct radv_shader_variant *
radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
{
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (!index) {
*stage = i;
return pipeline->shaders[i];
}
--index;
if (i == MESA_SHADER_GEOMETRY) {
if (!index) {
*stage = i;
return pipeline->gs_copy_shader;
}
--index;
}
}
*stage = -1;
return NULL;
}
/* Basically strlcpy (which does not exist on linux) specialized for
* descriptions. */
static void desc_copy(char *desc, const char *src) {
int len = strlen(src);
assert(len < VK_MAX_DESCRIPTION_SIZE);
memcpy(desc, src, len);
memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
}
VkResult radv_GetPipelineExecutablePropertiesKHR(
VkDevice _device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
const uint32_t total_count = radv_get_executable_count(pipeline);
if (!pProperties) {
*pExecutableCount = total_count;
return VK_SUCCESS;
}
const uint32_t count = MIN2(total_count, *pExecutableCount);
for (unsigned i = 0, executable_idx = 0;
i < MESA_SHADER_STAGES && executable_idx < count; ++i) {
if (!pipeline->shaders[i])
continue;
pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
const char *name = NULL;
const char *description = NULL;
switch(i) {
case MESA_SHADER_VERTEX:
name = "Vertex Shader";
description = "Vulkan Vertex Shader";
break;
case MESA_SHADER_TESS_CTRL:
if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Tessellation Control Shaders";
description = "Combined Vulkan Vertex and Tessellation Control Shaders";
} else {
name = "Tessellation Control Shader";
description = "Vulkan Tessellation Control Shader";
}
break;
case MESA_SHADER_TESS_EVAL:
name = "Tessellation Evaluation Shader";
description = "Vulkan Tessellation Evaluation Shader";
break;
case MESA_SHADER_GEOMETRY:
if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
name = "Tessellation Evaluation + Geometry Shaders";
description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
} else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Geometry Shader";
description = "Combined Vulkan Vertex and Geometry Shaders";
} else {
name = "Geometry Shader";
description = "Vulkan Geometry Shader";
}
break;
case MESA_SHADER_FRAGMENT:
name = "Fragment Shader";
description = "Vulkan Fragment Shader";
break;
case MESA_SHADER_COMPUTE:
name = "Compute Shader";
description = "Vulkan Compute Shader";
break;
}
desc_copy(pProperties[executable_idx].name, name);
desc_copy(pProperties[executable_idx].description, description);
++executable_idx;
if (i == MESA_SHADER_GEOMETRY) {
assert(pipeline->gs_copy_shader);
if (executable_idx >= count)
break;
pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
desc_copy(pProperties[executable_idx].description,
"Extra shader stage that loads the GS output ringbuffer into the rasterizer");
++executable_idx;
}
}
for (unsigned i = 0; i < count; ++i)
pProperties[i].subgroupSize = 64;
VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
*pExecutableCount = count;
return result;
}
VkResult radv_GetPipelineExecutableStatisticsKHR(
VkDevice _device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
enum chip_class chip_class = device->physical_device->rad_info.chip_class;
unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
unsigned max_waves = radv_get_max_waves(device, shader, stage);
VkPipelineExecutableStatisticKHR *s = pStatistics;
VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
VkResult result = VK_SUCCESS;
if (s < end) {
desc_copy(s->name, "SGPRs");
desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "VGPRs");
desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled SGPRs");
desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled VGPRs");
desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "PrivMem VGPRs");
desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->info.private_mem_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Code size");
desc_copy(s->description, "Code size in bytes");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->exec_size;
}
++s;
if (s < end) {
desc_copy(s->name, "LDS size");
desc_copy(s->description, "LDS size in bytes per workgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.lds_size * lds_increment;
}
++s;
if (s < end) {
desc_copy(s->name, "Scratch size");
desc_copy(s->description, "Private memory in bytes per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.scratch_bytes_per_wave;
}
++s;
if (s < end) {
desc_copy(s->name, "Subgroups per SIMD");
desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = max_waves;
}
++s;
if (!pStatistics)
*pStatisticCount = s - pStatistics;
else if (s > end) {
*pStatisticCount = end - pStatistics;
result = VK_INCOMPLETE;
} else {
*pStatisticCount = s - pStatistics;
}
return result;
}
static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src)
{
size_t total_size = strlen(src) + 1;
if (!data) {
*data_size = total_size;
return VK_SUCCESS;
}
size_t size = MIN2(total_size, *data_size);
memcpy(data, src, size);
if (size)
*((char*)data + size - 1) = 0;
return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
}
VkResult radv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
VkResult result = VK_SUCCESS;
/* optimized NIR */
if (p < end) {
p->isText = true;
desc_copy(p->name, "NIR Shader(s)");
desc_copy(p->description, "The optimized NIR shader(s)");
if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* LLVM IR */
if (p < end) {
p->isText = true;
desc_copy(p->name, "LLVM IR");
desc_copy(p->description, "The LLVM IR after some optimizations");
if (radv_copy_representation(p->pData, &p->dataSize, shader->llvm_ir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* Disassembler */
if (p < end) {
p->isText = true;
desc_copy(p->name, "Assembly");
desc_copy(p->description, "Final Assembly");
if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
if (!pInternalRepresentations)
*pInternalRepresentationCount = p - pInternalRepresentations;
else if(p > end) {
result = VK_INCOMPLETE;
*pInternalRepresentationCount = end - pInternalRepresentations;
} else {
*pInternalRepresentationCount = p - pInternalRepresentations;
}
return result;
}