blob: fdddd51bf4d5a4459e46f2e5c9608bf78aa4a4b4 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
* Copyright © 2014-2017 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
*
* The basic model of the list scheduler is to take a basic block, compute a
* DAG of the dependencies, and make a list of the DAG heads. Heuristically
* pick a DAG head, then put all the children that are now DAG heads into the
* list of things to schedule.
*
* The goal of scheduling here is to pack pairs of operations together in a
* single QPU instruction.
*/
#include "qpu/qpu_disasm.h"
#include "v3d_compiler.h"
#include "util/ralloc.h"
static bool debug;
struct schedule_node_child;
struct schedule_node {
struct list_head link;
struct qinst *inst;
struct schedule_node_child *children;
uint32_t child_count;
uint32_t child_array_size;
uint32_t parent_count;
/* Longest cycles + instruction_latency() of any parent of this node. */
uint32_t unblocked_time;
/**
* Minimum number of cycles from scheduling this instruction until the
* end of the program, based on the slowest dependency chain through
* the children.
*/
uint32_t delay;
/**
* cycles between this instruction being scheduled and when its result
* can be consumed.
*/
uint32_t latency;
};
struct schedule_node_child {
struct schedule_node *node;
bool write_after_read;
};
/* When walking the instructions in reverse, we need to swap before/after in
* add_dep().
*/
enum direction { F, R };
struct schedule_state {
const struct v3d_device_info *devinfo;
struct schedule_node *last_r[6];
struct schedule_node *last_rf[64];
struct schedule_node *last_sf;
struct schedule_node *last_vpm_read;
struct schedule_node *last_tmu_write;
struct schedule_node *last_tmu_config;
struct schedule_node *last_tlb;
struct schedule_node *last_vpm;
struct schedule_node *last_unif;
struct schedule_node *last_rtop;
enum direction dir;
/* Estimated cycle when the current instruction would start. */
uint32_t time;
};
static void
add_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after,
bool write)
{
bool write_after_read = !write && state->dir == R;
if (!before || !after)
return;
assert(before != after);
if (state->dir == R) {
struct schedule_node *t = before;
before = after;
after = t;
}
for (int i = 0; i < before->child_count; i++) {
if (before->children[i].node == after &&
(before->children[i].write_after_read == write_after_read)) {
return;
}
}
if (before->child_array_size <= before->child_count) {
before->child_array_size = MAX2(before->child_array_size * 2, 16);
before->children = reralloc(before, before->children,
struct schedule_node_child,
before->child_array_size);
}
before->children[before->child_count].node = after;
before->children[before->child_count].write_after_read =
write_after_read;
before->child_count++;
after->parent_count++;
}
static void
add_read_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after)
{
add_dep(state, before, after, false);
}
static void
add_write_dep(struct schedule_state *state,
struct schedule_node **before,
struct schedule_node *after)
{
add_dep(state, *before, after, true);
*before = after;
}
static bool
qpu_inst_is_tlb(const struct v3d_qpu_instr *inst)
{
if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
return false;
if (inst->alu.add.magic_write &&
(inst->alu.add.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.add.waddr == V3D_QPU_WADDR_TLBU))
return true;
if (inst->alu.mul.magic_write &&
(inst->alu.mul.waddr == V3D_QPU_WADDR_TLB ||
inst->alu.mul.waddr == V3D_QPU_WADDR_TLBU))
return true;
return false;
}
static void
process_mux_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_mux mux)
{
switch (mux) {
case V3D_QPU_MUX_A:
add_read_dep(state, state->last_rf[n->inst->qpu.raddr_a], n);
break;
case V3D_QPU_MUX_B:
add_read_dep(state, state->last_rf[n->inst->qpu.raddr_b], n);
break;
default:
add_read_dep(state, state->last_r[mux - V3D_QPU_MUX_R0], n);
break;
}
}
static void
process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t waddr, bool magic)
{
if (!magic) {
add_write_dep(state, &state->last_rf[waddr], n);
} else if (v3d_qpu_magic_waddr_is_tmu(waddr)) {
add_write_dep(state, &state->last_tmu_write, n);
switch (waddr) {
case V3D_QPU_WADDR_TMUS:
case V3D_QPU_WADDR_TMUSCM:
case V3D_QPU_WADDR_TMUSF:
case V3D_QPU_WADDR_TMUSLOD:
add_write_dep(state, &state->last_tmu_config, n);
break;
default:
break;
}
} else if (v3d_qpu_magic_waddr_is_sfu(waddr)) {
/* Handled by v3d_qpu_writes_r4() check. */
} else {
switch (waddr) {
case V3D_QPU_WADDR_R0:
case V3D_QPU_WADDR_R1:
case V3D_QPU_WADDR_R2:
add_write_dep(state,
&state->last_r[waddr - V3D_QPU_WADDR_R0],
n);
break;
case V3D_QPU_WADDR_R3:
case V3D_QPU_WADDR_R4:
case V3D_QPU_WADDR_R5:
/* Handled by v3d_qpu_writes_r*() checks below. */
break;
case V3D_QPU_WADDR_VPM:
case V3D_QPU_WADDR_VPMU:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_WADDR_TLB:
case V3D_QPU_WADDR_TLBU:
add_write_dep(state, &state->last_tlb, n);
break;
case V3D_QPU_WADDR_NOP:
break;
default:
fprintf(stderr, "Unknown waddr %d\n", waddr);
abort();
}
}
}
static void
process_cond_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_cond cond)
{
if (cond != V3D_QPU_COND_NONE)
add_read_dep(state, state->last_sf, n);
}
static void
process_pf_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_pf pf)
{
if (pf != V3D_QPU_PF_NONE)
add_write_dep(state, &state->last_sf, n);
}
static void
process_uf_deps(struct schedule_state *state, struct schedule_node *n,
enum v3d_qpu_uf uf)
{
if (uf != V3D_QPU_UF_NONE)
add_write_dep(state, &state->last_sf, n);
}
/**
* Common code for dependencies that need to be tracked both forward and
* backward.
*
* This is for things like "all reads of r4 have to happen between the r4
* writes that surround them".
*/
static void
calculate_deps(struct schedule_state *state, struct schedule_node *n)
{
const struct v3d_device_info *devinfo = state->devinfo;
struct qinst *qinst = n->inst;
struct v3d_qpu_instr *inst = &qinst->qpu;
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
if (inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS)
add_read_dep(state, state->last_sf, n);
/* XXX: BDI */
/* XXX: BDU */
/* XXX: ub */
/* XXX: raddr_a */
add_write_dep(state, &state->last_unif, n);
return;
}
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
/* XXX: LOAD_IMM */
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0)
process_mux_deps(state, n, inst->alu.add.a);
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1)
process_mux_deps(state, n, inst->alu.add.b);
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0)
process_mux_deps(state, n, inst->alu.mul.a);
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1)
process_mux_deps(state, n, inst->alu.mul.b);
switch (inst->alu.add.op) {
case V3D_QPU_A_VPMSETUP:
/* Could distinguish read/write by unpacking the uniform. */
add_write_dep(state, &state->last_vpm, n);
add_write_dep(state, &state->last_vpm_read, n);
break;
case V3D_QPU_A_STVPMV:
case V3D_QPU_A_STVPMD:
case V3D_QPU_A_STVPMP:
add_write_dep(state, &state->last_vpm, n);
break;
case V3D_QPU_A_VPMWT:
add_read_dep(state, state->last_vpm, n);
break;
case V3D_QPU_A_MSF:
add_read_dep(state, state->last_tlb, n);
break;
case V3D_QPU_A_SETMSF:
case V3D_QPU_A_SETREVF:
add_write_dep(state, &state->last_tlb, n);
break;
case V3D_QPU_A_FLAPUSH:
case V3D_QPU_A_FLBPUSH:
case V3D_QPU_A_VFLA:
case V3D_QPU_A_VFLNA:
case V3D_QPU_A_VFLB:
case V3D_QPU_A_VFLNB:
add_read_dep(state, state->last_sf, n);
break;
case V3D_QPU_A_FLBPOP:
add_write_dep(state, &state->last_sf, n);
break;
default:
break;
}
switch (inst->alu.mul.op) {
case V3D_QPU_M_MULTOP:
case V3D_QPU_M_UMUL24:
/* MULTOP sets rtop, and UMUL24 implicitly reads rtop and
* resets it to 0. We could possibly reorder umul24s relative
* to each other, but for now just keep all the MUL parts in
* order.
*/
add_write_dep(state, &state->last_rtop, n);
break;
default:
break;
}
if (inst->alu.add.op != V3D_QPU_A_NOP) {
process_waddr_deps(state, n, inst->alu.add.waddr,
inst->alu.add.magic_write);
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
process_waddr_deps(state, n, inst->alu.mul.waddr,
inst->alu.mul.magic_write);
}
if (v3d_qpu_sig_writes_address(devinfo, &inst->sig)) {
process_waddr_deps(state, n, inst->sig_addr,
inst->sig_magic);
}
if (v3d_qpu_writes_r3(devinfo, inst))
add_write_dep(state, &state->last_r[3], n);
if (v3d_qpu_writes_r4(devinfo, inst))
add_write_dep(state, &state->last_r[4], n);
if (v3d_qpu_writes_r5(devinfo, inst))
add_write_dep(state, &state->last_r[5], n);
if (inst->sig.thrsw) {
/* All accumulator contents and flags are undefined after the
* switch.
*/
for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
add_write_dep(state, &state->last_r[i], n);
add_write_dep(state, &state->last_sf, n);
/* Scoreboard-locking operations have to stay after the last
* thread switch.
*/
add_write_dep(state, &state->last_tlb, n);
add_write_dep(state, &state->last_tmu_write, n);
add_write_dep(state, &state->last_tmu_config, n);
}
if (inst->sig.ldtmu) {
/* TMU loads are coming from a FIFO, so ordering is important.
*/
add_write_dep(state, &state->last_tmu_write, n);
}
if (inst->sig.wrtmuc)
add_write_dep(state, &state->last_tmu_config, n);
if (inst->sig.ldtlb | inst->sig.ldtlbu)
add_read_dep(state, state->last_tlb, n);
if (inst->sig.ldvpm)
add_write_dep(state, &state->last_vpm_read, n);
/* inst->sig.ldunif or sideband uniform read */
if (qinst->uniform != ~0)
add_write_dep(state, &state->last_unif, n);
process_cond_deps(state, n, inst->flags.ac);
process_cond_deps(state, n, inst->flags.mc);
process_pf_deps(state, n, inst->flags.apf);
process_pf_deps(state, n, inst->flags.mpf);
process_uf_deps(state, n, inst->flags.auf);
process_uf_deps(state, n, inst->flags.muf);
}
static void
calculate_forward_deps(struct v3d_compile *c, struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.devinfo = c->devinfo;
state.dir = F;
list_for_each_entry(struct schedule_node, node, schedule_list, link)
calculate_deps(&state, node);
}
static void
calculate_reverse_deps(struct v3d_compile *c, struct list_head *schedule_list)
{
struct list_head *node;
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.devinfo = c->devinfo;
state.dir = R;
for (node = schedule_list->prev; schedule_list != node; node = node->prev) {
calculate_deps(&state, (struct schedule_node *)node);
}
}
struct choose_scoreboard {
int tick;
int last_sfu_write_tick;
int last_ldvary_tick;
int last_uniforms_reset_tick;
uint32_t last_waddr_add, last_waddr_mul;
bool tlb_locked;
};
static bool
mux_reads_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst, enum v3d_qpu_mux mux)
{
switch (mux) {
case V3D_QPU_MUX_A:
if (scoreboard->last_waddr_add == inst->raddr_a ||
scoreboard->last_waddr_mul == inst->raddr_a) {
return true;
}
break;
case V3D_QPU_MUX_B:
if (scoreboard->last_waddr_add == inst->raddr_b ||
scoreboard->last_waddr_mul == inst->raddr_b) {
return true;
}
break;
case V3D_QPU_MUX_R4:
if (scoreboard->tick - scoreboard->last_sfu_write_tick <= 2)
return true;
break;
case V3D_QPU_MUX_R5:
if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
return true;
break;
default:
break;
}
return false;
}
static bool
reads_too_soon_after_write(struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* XXX: Branching off of raddr. */
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return false;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.add.a)) {
return true;
}
if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.add.b)) {
return true;
}
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.mul.a)) {
return true;
}
if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1 &&
mux_reads_too_soon(scoreboard, inst, inst->alu.mul.b)) {
return true;
}
}
/* XXX: imm */
return false;
}
static bool
writes_too_soon_after_write(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct qinst *qinst)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* Don't schedule any other r4 write too soon after an SFU write.
* This would normally be prevented by dependency tracking, but might
* occur if a dead SFU computation makes it to scheduling.
*/
if (scoreboard->tick - scoreboard->last_sfu_write_tick < 2 &&
v3d_qpu_writes_r4(devinfo, inst))
return true;
return false;
}
static bool
pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
return (scoreboard->tick == 0 && qpu_inst_is_tlb(inst));
}
static int
get_instruction_priority(const struct v3d_qpu_instr *inst)
{
uint32_t baseline_score;
uint32_t next_score = 0;
/* Schedule TLB operations as late as possible, to get more
* parallelism between shaders.
*/
if (qpu_inst_is_tlb(inst))
return next_score;
next_score++;
/* Schedule texture read results collection late to hide latency. */
if (inst->sig.ldtmu)
return next_score;
next_score++;
/* Default score for things that aren't otherwise special. */
baseline_score = next_score;
next_score++;
/* Schedule texture read setup early to hide their latency better. */
if (inst->type == V3D_QPU_INSTR_TYPE_ALU &&
((inst->alu.add.magic_write &&
v3d_qpu_magic_waddr_is_tmu(inst->alu.add.waddr)) ||
(inst->alu.mul.magic_write &&
v3d_qpu_magic_waddr_is_tmu(inst->alu.mul.waddr)))) {
return next_score;
}
next_score++;
return baseline_score;
}
static bool
qpu_magic_waddr_is_periph(enum v3d_qpu_waddr waddr)
{
return (v3d_qpu_magic_waddr_is_tmu(waddr) ||
v3d_qpu_magic_waddr_is_sfu(waddr) ||
v3d_qpu_magic_waddr_is_tlb(waddr) ||
v3d_qpu_magic_waddr_is_vpm(waddr) ||
v3d_qpu_magic_waddr_is_tsy(waddr));
}
static bool
qpu_accesses_peripheral(const struct v3d_qpu_instr *inst)
{
if (v3d_qpu_uses_vpm(inst))
return true;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
if (inst->alu.add.op != V3D_QPU_A_NOP &&
inst->alu.add.magic_write &&
qpu_magic_waddr_is_periph(inst->alu.add.waddr)) {
return true;
}
if (inst->alu.mul.op != V3D_QPU_M_NOP &&
inst->alu.mul.magic_write &&
qpu_magic_waddr_is_periph(inst->alu.mul.waddr)) {
return true;
}
}
return (inst->sig.ldvpm ||
inst->sig.ldtmu ||
inst->sig.ldtlb ||
inst->sig.ldtlbu ||
inst->sig.wrtmuc);
}
static bool
qpu_merge_inst(const struct v3d_device_info *devinfo,
struct v3d_qpu_instr *result,
const struct v3d_qpu_instr *a,
const struct v3d_qpu_instr *b)
{
if (a->type != V3D_QPU_INSTR_TYPE_ALU ||
b->type != V3D_QPU_INSTR_TYPE_ALU) {
return false;
}
/* Can't do more than one peripheral access in an instruction.
*
* XXX: V3D 4.1 allows TMU read along with a VPM read or write, and
* WRTMUC with a TMU magic register write (other than tmuc).
*/
if (qpu_accesses_peripheral(a) && qpu_accesses_peripheral(b))
return false;
struct v3d_qpu_instr merge = *a;
if (b->alu.add.op != V3D_QPU_A_NOP) {
if (a->alu.add.op != V3D_QPU_A_NOP)
return false;
merge.alu.add = b->alu.add;
merge.flags.ac = b->flags.ac;
merge.flags.apf = b->flags.apf;
merge.flags.auf = b->flags.auf;
}
if (b->alu.mul.op != V3D_QPU_M_NOP) {
if (a->alu.mul.op != V3D_QPU_M_NOP)
return false;
merge.alu.mul = b->alu.mul;
merge.flags.mc = b->flags.mc;
merge.flags.mpf = b->flags.mpf;
merge.flags.muf = b->flags.muf;
}
if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_A)) {
if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_A) &&
a->raddr_a != b->raddr_a) {
return false;
}
merge.raddr_a = b->raddr_a;
}
if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_B)) {
if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_B) &&
a->raddr_b != b->raddr_b) {
return false;
}
merge.raddr_b = b->raddr_b;
}
merge.sig.thrsw |= b->sig.thrsw;
merge.sig.ldunif |= b->sig.ldunif;
merge.sig.ldunifrf |= b->sig.ldunifrf;
merge.sig.ldunifa |= b->sig.ldunifa;
merge.sig.ldunifarf |= b->sig.ldunifarf;
merge.sig.ldtmu |= b->sig.ldtmu;
merge.sig.ldvary |= b->sig.ldvary;
merge.sig.ldvpm |= b->sig.ldvpm;
merge.sig.small_imm |= b->sig.small_imm;
merge.sig.ldtlb |= b->sig.ldtlb;
merge.sig.ldtlbu |= b->sig.ldtlbu;
merge.sig.ucb |= b->sig.ucb;
merge.sig.rotate |= b->sig.rotate;
merge.sig.wrtmuc |= b->sig.wrtmuc;
if (v3d_qpu_sig_writes_address(devinfo, &a->sig) &&
v3d_qpu_sig_writes_address(devinfo, &b->sig))
return false;
merge.sig_addr |= b->sig_addr;
merge.sig_magic |= b->sig_magic;
uint64_t packed;
bool ok = v3d_qpu_instr_pack(devinfo, &merge, &packed);
*result = merge;
/* No modifying the real instructions on failure. */
assert(ok || (a != result && b != result));
return ok;
}
static struct schedule_node *
choose_instruction_to_schedule(const struct v3d_device_info *devinfo,
struct choose_scoreboard *scoreboard,
struct list_head *schedule_list,
struct schedule_node *prev_inst)
{
struct schedule_node *chosen = NULL;
int chosen_prio = 0;
/* Don't pair up anything with a thread switch signal -- emit_thrsw()
* will handle pairing it along with filling the delay slots.
*/
if (prev_inst) {
if (prev_inst->inst->qpu.sig.thrsw)
return NULL;
}
list_for_each_entry(struct schedule_node, n, schedule_list, link) {
const struct v3d_qpu_instr *inst = &n->inst->qpu;
/* Don't choose the branch instruction until it's the last one
* left. We'll move it up to fit its delay slots after we
* choose it.
*/
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH &&
!list_is_singular(schedule_list)) {
continue;
}
/* "An instruction must not read from a location in physical
* regfile A or B that was written to by the previous
* instruction."
*/
if (reads_too_soon_after_write(scoreboard, n->inst))
continue;
if (writes_too_soon_after_write(devinfo, scoreboard, n->inst))
continue;
/* "A scoreboard wait must not occur in the first two
* instructions of a fragment shader. This is either the
* explicit Wait for Scoreboard signal or an implicit wait
* with the first tile-buffer read or write instruction."
*/
if (pixel_scoreboard_too_soon(scoreboard, inst))
continue;
/* ldunif and ldvary both write r5, but ldunif does so a tick
* sooner. If the ldvary's r5 wasn't used, then ldunif might
* otherwise get scheduled so ldunif and ldvary try to update
* r5 in the same tick.
*/
if ((inst->sig.ldunif || inst->sig.ldunifa) &&
scoreboard->tick == scoreboard->last_ldvary_tick + 1) {
continue;
}
/* If we're trying to pair with another instruction, check
* that they're compatible.
*/
if (prev_inst) {
/* Don't pair up a thread switch signal -- we'll
* handle pairing it when we pick it on its own.
*/
if (inst->sig.thrsw)
continue;
if (prev_inst->inst->uniform != -1 &&
n->inst->uniform != -1)
continue;
/* Don't merge in something that will lock the TLB.
* Hopwefully what we have in inst will release some
* other instructions, allowing us to delay the
* TLB-locking instruction until later.
*/
if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
continue;
struct v3d_qpu_instr merged_inst;
if (!qpu_merge_inst(devinfo, &merged_inst,
&prev_inst->inst->qpu, inst)) {
continue;
}
}
int prio = get_instruction_priority(inst);
/* Found a valid instruction. If nothing better comes along,
* this one works.
*/
if (!chosen) {
chosen = n;
chosen_prio = prio;
continue;
}
if (prio > chosen_prio) {
chosen = n;
chosen_prio = prio;
} else if (prio < chosen_prio) {
continue;
}
if (n->delay > chosen->delay) {
chosen = n;
chosen_prio = prio;
} else if (n->delay < chosen->delay) {
continue;
}
}
return chosen;
}
static void
update_scoreboard_for_magic_waddr(struct choose_scoreboard *scoreboard,
enum v3d_qpu_waddr waddr)
{
if (v3d_qpu_magic_waddr_is_sfu(waddr))
scoreboard->last_sfu_write_tick = scoreboard->tick;
}
static void
update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
const struct v3d_qpu_instr *inst)
{
scoreboard->last_waddr_add = ~0;
scoreboard->last_waddr_mul = ~0;
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
return;
assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
if (inst->alu.add.op != V3D_QPU_A_NOP) {
if (inst->alu.add.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.add.waddr);
} else {
scoreboard->last_waddr_add = inst->alu.add.waddr;
}
}
if (inst->alu.mul.op != V3D_QPU_M_NOP) {
if (inst->alu.mul.magic_write) {
update_scoreboard_for_magic_waddr(scoreboard,
inst->alu.mul.waddr);
} else {
scoreboard->last_waddr_mul = inst->alu.mul.waddr;
}
}
if (inst->sig.ldvary)
scoreboard->last_ldvary_tick = scoreboard->tick;
if (qpu_inst_is_tlb(inst))
scoreboard->tlb_locked = true;
}
static void
dump_state(const struct v3d_device_info *devinfo,
struct list_head *schedule_list)
{
list_for_each_entry(struct schedule_node, n, schedule_list, link) {
fprintf(stderr, " t=%4d: ", n->unblocked_time);
v3d_qpu_dump(devinfo, &n->inst->qpu);
fprintf(stderr, "\n");
for (int i = 0; i < n->child_count; i++) {
struct schedule_node *child = n->children[i].node;
if (!child)
continue;
fprintf(stderr, " - ");
v3d_qpu_dump(devinfo, &child->inst->qpu);
fprintf(stderr, " (%d parents, %c)\n",
child->parent_count,
n->children[i].write_after_read ? 'w' : 'r');
}
}
}
static uint32_t magic_waddr_latency(enum v3d_qpu_waddr waddr,
const struct v3d_qpu_instr *after)
{
/* Apply some huge latency between texture fetch requests and getting
* their results back.
*
* FIXME: This is actually pretty bogus. If we do:
*
* mov tmu0_s, a
* <a bit of math>
* mov tmu0_s, b
* load_tmu0
* <more math>
* load_tmu0
*
* we count that as worse than
*
* mov tmu0_s, a
* mov tmu0_s, b
* <lots of math>
* load_tmu0
* <more math>
* load_tmu0
*
* because we associate the first load_tmu0 with the *second* tmu0_s.
*/
if (v3d_qpu_magic_waddr_is_tmu(waddr) && after->sig.ldtmu)
return 100;
/* Assume that anything depending on us is consuming the SFU result. */
if (v3d_qpu_magic_waddr_is_sfu(waddr))
return 3;
return 1;
}
static uint32_t
instruction_latency(struct schedule_node *before, struct schedule_node *after)
{
const struct v3d_qpu_instr *before_inst = &before->inst->qpu;
const struct v3d_qpu_instr *after_inst = &after->inst->qpu;
uint32_t latency = 1;
if (before_inst->type != V3D_QPU_INSTR_TYPE_ALU ||
after_inst->type != V3D_QPU_INSTR_TYPE_ALU)
return latency;
if (before_inst->alu.add.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(before_inst->alu.add.waddr,
after_inst));
}
if (before_inst->alu.mul.magic_write) {
latency = MAX2(latency,
magic_waddr_latency(before_inst->alu.mul.waddr,
after_inst));
}
return latency;
}
/** Recursive computation of the delay member of a node. */
static void
compute_delay(struct schedule_node *n)
{
if (!n->child_count) {
n->delay = 1;
} else {
for (int i = 0; i < n->child_count; i++) {
if (!n->children[i].node->delay)
compute_delay(n->children[i].node);
n->delay = MAX2(n->delay,
n->children[i].node->delay +
instruction_latency(n, n->children[i].node));
}
}
}
static void
mark_instruction_scheduled(struct list_head *schedule_list,
uint32_t time,
struct schedule_node *node,
bool war_only)
{
if (!node)
return;
for (int i = node->child_count - 1; i >= 0; i--) {
struct schedule_node *child =
node->children[i].node;
if (!child)
continue;
if (war_only && !node->children[i].write_after_read)
continue;
/* If the requirement is only that the node not appear before
* the last read of its destination, then it can be scheduled
* immediately after (or paired with!) the thing reading the
* destination.
*/
uint32_t latency = 0;
if (!war_only) {
latency = instruction_latency(node,
node->children[i].node);
}
child->unblocked_time = MAX2(child->unblocked_time,
time + latency);
child->parent_count--;
if (child->parent_count == 0)
list_add(&child->link, schedule_list);
node->children[i].node = NULL;
}
}
static void
insert_scheduled_instruction(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst)
{
list_addtail(&inst->link, &block->instructions);
update_scoreboard_for_chosen(scoreboard, &inst->qpu);
c->qpu_inst_count++;
scoreboard->tick++;
}
static struct qinst *
vir_nop()
{
struct qreg undef = { QFILE_NULL, 0 };
struct qinst *qinst = vir_add_inst(V3D_QPU_A_NOP, undef, undef, undef);
return qinst;
}
static void
emit_nop(struct v3d_compile *c, struct qblock *block,
struct choose_scoreboard *scoreboard)
{
insert_scheduled_instruction(c, block, scoreboard, vir_nop());
}
static bool
qpu_instruction_valid_in_thrend_slot(struct v3d_compile *c,
const struct qinst *qinst, int slot)
{
const struct v3d_qpu_instr *inst = &qinst->qpu;
/* Only TLB Z writes are prohibited in the last slot, but we don't
* have those flagged so prohibit all TLB ops for now.
*/
if (slot == 2 && qpu_inst_is_tlb(inst))
return false;
if (slot > 0 && qinst->uniform != ~0)
return false;
if (v3d_qpu_uses_vpm(inst))
return false;
if (inst->sig.ldvary)
return false;
if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
/* No writing physical registers at the end. */
if (!inst->alu.add.magic_write ||
!inst->alu.mul.magic_write) {
return false;
}
if (c->devinfo->ver < 40 && inst->alu.add.op == V3D_QPU_A_SETMSF)
return false;
/* RF0-2 might be overwritten during the delay slots by
* fragment shader setup.
*/
if (inst->raddr_a < 3 &&
(inst->alu.add.a == V3D_QPU_MUX_A ||
inst->alu.add.b == V3D_QPU_MUX_A ||
inst->alu.mul.a == V3D_QPU_MUX_A ||
inst->alu.mul.b == V3D_QPU_MUX_A)) {
return false;
}
if (inst->raddr_b < 3 &&
!inst->sig.small_imm &&
(inst->alu.add.a == V3D_QPU_MUX_B ||
inst->alu.add.b == V3D_QPU_MUX_B ||
inst->alu.mul.a == V3D_QPU_MUX_B ||
inst->alu.mul.b == V3D_QPU_MUX_B)) {
return false;
}
}
return true;
}
static bool
valid_thrsw_sequence(struct v3d_compile *c,
struct qinst *qinst, int instructions_in_sequence,
bool is_thrend)
{
for (int slot = 0; slot < instructions_in_sequence; slot++) {
/* No scheduling SFU when the result would land in the other
* thread. The simulator complains for safety, though it
* would only occur for dead code in our case.
*/
if (slot > 0 &&
qinst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
(v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.add.waddr) ||
v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.mul.waddr))) {
return false;
}
if (slot > 0 && qinst->qpu.sig.ldvary)
return false;
if (is_thrend &&
!qpu_instruction_valid_in_thrend_slot(c, qinst, slot)) {
return false;
}
/* Note that the list is circular, so we can only do this up
* to instructions_in_sequence.
*/
qinst = (struct qinst *)qinst->link.next;
}
return true;
}
/**
* Emits a THRSW signal in the stream, trying to move it up to pair with
* another instruction.
*/
static int
emit_thrsw(struct v3d_compile *c,
struct qblock *block,
struct choose_scoreboard *scoreboard,
struct qinst *inst,
bool is_thrend)
{
int time = 0;
/* There should be nothing in a thrsw inst being scheduled other than
* the signal bits.
*/
assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
assert(inst->qpu.alu.add.op == V3D_QPU_A_NOP);
assert(inst->qpu.alu.mul.op == V3D_QPU_M_NOP);
/* Find how far back into previous instructions we can put the THRSW. */
int slots_filled = 0;
struct qinst *merge_inst = NULL;
vir_for_each_inst_rev(prev_inst, block) {
struct v3d_qpu_sig sig = prev_inst->qpu.sig;
sig.thrsw = true;
uint32_t packed_sig;
if (!v3d_qpu_sig_pack(c->devinfo, &sig, &packed_sig))
break;
if (!valid_thrsw_sequence(c, prev_inst, slots_filled + 1,
is_thrend)) {
break;
}
merge_inst = prev_inst;
if (++slots_filled == 3)
break;
}
bool needs_free = false;
if (merge_inst) {
merge_inst->qpu.sig.thrsw = true;
needs_free = true;
} else {
insert_scheduled_instruction(c, block, scoreboard, inst);
time++;
slots_filled++;
merge_inst = inst;
}
/* Insert any extra delay slot NOPs we need. */
for (int i = 0; i < 3 - slots_filled; i++) {
emit_nop(c, block, scoreboard);
time++;
}
/* If we're emitting the last THRSW (other than program end), then
* signal that to the HW by emitting two THRSWs in a row.
*/
if (inst->is_last_thrsw) {
struct qinst *second_inst =
(struct qinst *)merge_inst->link.next;
second_inst->qpu.sig.thrsw = true;
}
/* If we put our THRSW into another instruction, free up the
* instruction that didn't end up scheduled into the list.
*/
if (needs_free)
free(inst);
return time;
}
static uint32_t
schedule_instructions(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
struct list_head *schedule_list,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
const struct v3d_device_info *devinfo = c->devinfo;
uint32_t time = 0;
if (debug) {
fprintf(stderr, "initial deps:\n");
dump_state(devinfo, schedule_list);
fprintf(stderr, "\n");
}
/* Remove non-DAG heads from the list. */
list_for_each_entry_safe(struct schedule_node, n, schedule_list, link) {
if (n->parent_count != 0)
list_del(&n->link);
}
while (!list_empty(schedule_list)) {
struct schedule_node *chosen =
choose_instruction_to_schedule(devinfo,
scoreboard,
schedule_list,
NULL);
struct schedule_node *merge = NULL;
/* If there are no valid instructions to schedule, drop a NOP
* in.
*/
struct qinst *qinst = chosen ? chosen->inst : vir_nop();
struct v3d_qpu_instr *inst = &qinst->qpu;
if (debug) {
fprintf(stderr, "t=%4d: current list:\n",
time);
dump_state(devinfo, schedule_list);
fprintf(stderr, "t=%4d: chose: ", time);
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
/* Schedule this instruction onto the QPU list. Also try to
* find an instruction to pair with it.
*/
if (chosen) {
time = MAX2(chosen->unblocked_time, time);
list_del(&chosen->link);
mark_instruction_scheduled(schedule_list, time,
chosen, true);
merge = choose_instruction_to_schedule(devinfo,
scoreboard,
schedule_list,
chosen);
if (merge) {
time = MAX2(merge->unblocked_time, time);
list_del(&merge->link);
(void)qpu_merge_inst(devinfo, inst,
inst, &merge->inst->qpu);
if (merge->inst->uniform != -1) {
chosen->inst->uniform =
merge->inst->uniform;
}
if (debug) {
fprintf(stderr, "t=%4d: merging: ",
time);
v3d_qpu_dump(devinfo, &merge->inst->qpu);
fprintf(stderr, "\n");
fprintf(stderr, " result: ");
v3d_qpu_dump(devinfo, inst);
fprintf(stderr, "\n");
}
}
}
/* Update the uniform index for the rewritten location --
* branch target updating will still need to change
* c->uniform_data[] using this index.
*/
if (qinst->uniform != -1) {
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
block->branch_uniform = *next_uniform;
c->uniform_data[*next_uniform] =
orig_uniform_data[qinst->uniform];
c->uniform_contents[*next_uniform] =
orig_uniform_contents[qinst->uniform];
qinst->uniform = *next_uniform;
(*next_uniform)++;
}
if (debug) {
fprintf(stderr, "\n");
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
mark_instruction_scheduled(schedule_list, time, chosen, false);
if (merge) {
mark_instruction_scheduled(schedule_list, time, merge,
false);
/* The merged VIR instruction doesn't get re-added to the
* block, so free it now.
*/
free(merge->inst);
}
if (inst->sig.thrsw) {
time += emit_thrsw(c, block, scoreboard, qinst, false);
} else {
insert_scheduled_instruction(c, block,
scoreboard, qinst);
if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
block->branch_qpu_ip = c->qpu_inst_count - 1;
/* Fill the delay slots.
*
* We should fill these with actual instructions,
* instead, but that will probably need to be done
* after this, once we know what the leading
* instructions of the successors are (so we can
* handle A/B register file write latency)
*/
for (int i = 0; i < 3; i++)
emit_nop(c, block, scoreboard);
}
}
}
return time;
}
static uint32_t
qpu_schedule_instructions_block(struct v3d_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
void *mem_ctx = ralloc_context(NULL);
struct list_head schedule_list;
list_inithead(&schedule_list);
/* Wrap each instruction in a scheduler structure. */
while (!list_empty(&block->instructions)) {
struct qinst *qinst = (struct qinst *)block->instructions.next;
struct schedule_node *n =
rzalloc(mem_ctx, struct schedule_node);
n->inst = qinst;
list_del(&qinst->link);
list_addtail(&n->link, &schedule_list);
}
calculate_forward_deps(c, &schedule_list);
calculate_reverse_deps(c, &schedule_list);
list_for_each_entry(struct schedule_node, n, &schedule_list, link) {
compute_delay(n);
}
uint32_t cycles = schedule_instructions(c, scoreboard, block,
&schedule_list,
orig_uniform_contents,
orig_uniform_data,
next_uniform);
ralloc_free(mem_ctx);
return cycles;
}
static void
qpu_set_branch_targets(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
/* The end block of the program has no branch. */
if (!block->successors[0])
continue;
/* If there was no branch instruction, then the successor
* block must follow immediately after this one.
*/
if (block->branch_qpu_ip == ~0) {
assert(block->end_qpu_ip + 1 ==
block->successors[0]->start_qpu_ip);
continue;
}
/* Walk back through the delay slots to find the branch
* instr.
*/
struct list_head *entry = block->instructions.prev;
for (int i = 0; i < 3; i++)
entry = entry->prev;
struct qinst *branch = container_of(entry, branch, link);
assert(branch->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
/* Make sure that the if-we-don't-jump
* successor was scheduled just after the
* delay slots.
*/
assert(!block->successors[1] ||
block->successors[1]->start_qpu_ip ==
block->branch_qpu_ip + 4);
branch->qpu.branch.offset =
((block->successors[0]->start_qpu_ip -
(block->branch_qpu_ip + 4)) *
sizeof(uint64_t));
/* Set up the relative offset to jump in the
* uniform stream.
*
* Use a temporary here, because
* uniform_data[inst->uniform] may be shared
* between multiple instructions.
*/
assert(c->uniform_contents[branch->uniform] == QUNIFORM_CONSTANT);
c->uniform_data[branch->uniform] =
(block->successors[0]->start_uniform -
(block->branch_uniform + 1)) * 4;
}
}
uint32_t
v3d_qpu_schedule_instructions(struct v3d_compile *c)
{
const struct v3d_device_info *devinfo = c->devinfo;
struct qblock *end_block = list_last_entry(&c->blocks,
struct qblock, link);
/* We reorder the uniforms as we schedule instructions, so save the
* old data off and replace it.
*/
uint32_t *uniform_data = c->uniform_data;
enum quniform_contents *uniform_contents = c->uniform_contents;
c->uniform_contents = ralloc_array(c, enum quniform_contents,
c->num_uniforms);
c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
c->uniform_array_size = c->num_uniforms;
uint32_t next_uniform = 0;
struct choose_scoreboard scoreboard;
memset(&scoreboard, 0, sizeof(scoreboard));
scoreboard.last_waddr_add = ~0;
scoreboard.last_waddr_mul = ~0;
scoreboard.last_ldvary_tick = -10;
scoreboard.last_sfu_write_tick = -10;
scoreboard.last_uniforms_reset_tick = -10;
if (debug) {
fprintf(stderr, "Pre-schedule instructions\n");
vir_for_each_block(block, c) {
fprintf(stderr, "BLOCK %d\n", block->index);
list_for_each_entry(struct qinst, qinst,
&block->instructions, link) {
v3d_qpu_dump(devinfo, &qinst->qpu);
fprintf(stderr, "\n");
}
}
fprintf(stderr, "\n");
}
uint32_t cycles = 0;
vir_for_each_block(block, c) {
block->start_qpu_ip = c->qpu_inst_count;
block->branch_qpu_ip = ~0;
block->start_uniform = next_uniform;
cycles += qpu_schedule_instructions_block(c,
&scoreboard,
block,
uniform_contents,
uniform_data,
&next_uniform);
block->end_qpu_ip = c->qpu_inst_count - 1;
}
/* Emit the program-end THRSW instruction. */;
struct qinst *thrsw = vir_nop();
thrsw->qpu.sig.thrsw = true;
emit_thrsw(c, end_block, &scoreboard, thrsw, true);
qpu_set_branch_targets(c);
assert(next_uniform == c->num_uniforms);
return cycles;
}