blob: 5c55112dc811f05d225c3aaec1d9b284c94deee7 [file] [log] [blame]
/*
* Copyright © 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "ac_gpu_info.h"
#include "addrlib/src/amdgpu_asic_addr.h"
#include "drm-uapi/amdgpu_drm.h"
#include "sid.h"
#include "util/macros.h"
#include "util/u_math.h"
#include <amdgpu.h>
#include <stdio.h>
#include <xf86drm.h>
#define CIK_TILE_MODE_COLOR_2D 14
#define CIK__GB_TILE_MODE__PIPE_CONFIG(x) (((x) >> 6) & 0x1f)
#define CIK__PIPE_CONFIG__ADDR_SURF_P2 0
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_8x16 4
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_16x16 5
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_16x32 6
#define CIK__PIPE_CONFIG__ADDR_SURF_P4_32x32 7
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x16_8x16 8
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_8x16 9
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_8x16 10
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_16x16 11
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x16 12
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x32 13
#define CIK__PIPE_CONFIG__ADDR_SURF_P8_32x64_32x32 14
#define CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_8X16 16
#define CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_16X16 17
static unsigned cik_get_num_tile_pipes(struct amdgpu_gpu_info *info)
{
unsigned mode2d = info->gb_tile_mode[CIK_TILE_MODE_COLOR_2D];
switch (CIK__GB_TILE_MODE__PIPE_CONFIG(mode2d)) {
case CIK__PIPE_CONFIG__ADDR_SURF_P2:
return 2;
case CIK__PIPE_CONFIG__ADDR_SURF_P4_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_16x32:
case CIK__PIPE_CONFIG__ADDR_SURF_P4_32x32:
return 4;
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x16_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_8x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_16x32_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x16:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x32_16x32:
case CIK__PIPE_CONFIG__ADDR_SURF_P8_32x64_32x32:
return 8;
case CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_8X16:
case CIK__PIPE_CONFIG__ADDR_SURF_P16_32X32_16X16:
return 16;
default:
fprintf(stderr, "Invalid GFX7 pipe configuration, assuming P2\n");
assert(!"this should never occur");
return 2;
}
}
static bool has_syncobj(int fd)
{
uint64_t value;
if (drmGetCap(fd, DRM_CAP_SYNCOBJ, &value))
return false;
return value ? true : false;
}
static bool has_timeline_syncobj(int fd)
{
uint64_t value;
if (drmGetCap(fd, DRM_CAP_SYNCOBJ_TIMELINE, &value))
return false;
return value ? true : false;
}
static uint64_t fix_vram_size(uint64_t size)
{
/* The VRAM size is underreported, so we need to fix it, because
* it's used to compute the number of memory modules for harvesting.
*/
return align64(size, 256 * 1024 * 1024);
}
static uint32_t get_l2_cache_size(enum radeon_family family)
{
switch (family) {
case CHIP_KABINI:
case CHIP_STONEY:
return 128 * 1024;
case CHIP_OLAND:
case CHIP_HAINAN:
case CHIP_ICELAND:
return 256 * 1024;
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_BONAIRE:
case CHIP_KAVERI:
case CHIP_POLARIS12:
case CHIP_CARRIZO:
return 512 * 1024;
case CHIP_TAHITI:
case CHIP_TONGA:
return 768 * 1024;
break;
case CHIP_HAWAII:
case CHIP_POLARIS11:
return 1024 * 1024;
case CHIP_FIJI:
case CHIP_POLARIS10:
return 2048 * 1024;
break;
default:
return 4096 * 1024;
}
}
static bool
has_tmz_support(amdgpu_device_handle dev,
struct radeon_info *info,
struct amdgpu_gpu_info *amdinfo)
{
struct amdgpu_bo_alloc_request request = {0};
int r;
amdgpu_bo_handle bo;
if (amdinfo->ids_flags & AMDGPU_IDS_FLAGS_TMZ)
return true;
/* AMDGPU_IDS_FLAGS_TMZ is supported starting from drm_minor 40 */
if (info->drm_minor >= 40)
return false;
/* Find out ourselves if TMZ is enabled */
if (info->chip_class < GFX9)
return false;
if (info->drm_minor < 36)
return false;
request.alloc_size = 256;
request.phys_alignment = 1024;
request.preferred_heap = AMDGPU_GEM_DOMAIN_VRAM;
request.flags = AMDGPU_GEM_CREATE_ENCRYPTED;
r = amdgpu_bo_alloc(dev, &request, &bo);
if (r)
return false;
amdgpu_bo_free(bo);
return true;
}
bool ac_query_gpu_info(int fd, void *dev_p, struct radeon_info *info,
struct amdgpu_gpu_info *amdinfo)
{
struct drm_amdgpu_info_device device_info = {0};
struct amdgpu_buffer_size_alignments alignment_info = {0};
struct drm_amdgpu_info_hw_ip dma = {0}, compute = {0}, uvd = {0};
struct drm_amdgpu_info_hw_ip uvd_enc = {0}, vce = {0}, vcn_dec = {0}, vcn_jpeg = {0};
struct drm_amdgpu_info_hw_ip vcn_enc = {0}, gfx = {0};
struct amdgpu_gds_resource_info gds = {0};
uint32_t vce_version = 0, vce_feature = 0, uvd_version = 0, uvd_feature = 0;
int r, i, j;
amdgpu_device_handle dev = dev_p;
drmDevicePtr devinfo;
/* Get PCI info. */
r = drmGetDevice2(fd, 0, &devinfo);
if (r) {
fprintf(stderr, "amdgpu: drmGetDevice2 failed.\n");
return false;
}
info->pci_domain = devinfo->businfo.pci->domain;
info->pci_bus = devinfo->businfo.pci->bus;
info->pci_dev = devinfo->businfo.pci->dev;
info->pci_func = devinfo->businfo.pci->func;
drmFreeDevice(&devinfo);
assert(info->drm_major == 3);
info->is_amdgpu = true;
/* Query hardware and driver information. */
r = amdgpu_query_gpu_info(dev, amdinfo);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_gpu_info failed.\n");
return false;
}
r = amdgpu_query_info(dev, AMDGPU_INFO_DEV_INFO, sizeof(device_info), &device_info);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_info(dev_info) failed.\n");
return false;
}
r = amdgpu_query_buffer_size_alignment(dev, &alignment_info);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_buffer_size_alignment failed.\n");
return false;
}
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_DMA, 0, &dma);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(dma) failed.\n");
return false;
}
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_GFX, 0, &gfx);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(gfx) failed.\n");
return false;
}
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_COMPUTE, 0, &compute);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(compute) failed.\n");
return false;
}
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_UVD, 0, &uvd);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(uvd) failed.\n");
return false;
}
if (info->drm_minor >= 17) {
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_UVD_ENC, 0, &uvd_enc);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(uvd_enc) failed.\n");
return false;
}
}
if (info->drm_minor >= 17) {
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_VCN_DEC, 0, &vcn_dec);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(vcn_dec) failed.\n");
return false;
}
}
if (info->drm_minor >= 17) {
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_VCN_ENC, 0, &vcn_enc);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(vcn_enc) failed.\n");
return false;
}
}
if (info->drm_minor >= 27) {
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_VCN_JPEG, 0, &vcn_jpeg);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(vcn_jpeg) failed.\n");
return false;
}
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_ME, 0, 0, &info->me_fw_version,
&info->me_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(me) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_PFP, 0, 0, &info->pfp_fw_version,
&info->pfp_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(pfp) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_GFX_CE, 0, 0, &info->ce_fw_version,
&info->ce_fw_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(ce) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_UVD, 0, 0, &uvd_version, &uvd_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(uvd) failed.\n");
return false;
}
r = amdgpu_query_hw_ip_info(dev, AMDGPU_HW_IP_VCE, 0, &vce);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_hw_ip_info(vce) failed.\n");
return false;
}
r = amdgpu_query_firmware_version(dev, AMDGPU_INFO_FW_VCE, 0, 0, &vce_version, &vce_feature);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_firmware_version(vce) failed.\n");
return false;
}
r = amdgpu_query_sw_info(dev, amdgpu_sw_info_address32_hi, &info->address32_hi);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_sw_info(address32_hi) failed.\n");
return false;
}
r = amdgpu_query_gds_info(dev, &gds);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_gds_info failed.\n");
return false;
}
if (info->drm_minor >= 9) {
struct drm_amdgpu_memory_info meminfo = {0};
r = amdgpu_query_info(dev, AMDGPU_INFO_MEMORY, sizeof(meminfo), &meminfo);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_info(memory) failed.\n");
return false;
}
/* Note: usable_heap_size values can be random and can't be relied on. */
info->gart_size = meminfo.gtt.total_heap_size;
info->vram_size = fix_vram_size(meminfo.vram.total_heap_size);
info->vram_vis_size = meminfo.cpu_accessible_vram.total_heap_size;
} else {
/* This is a deprecated interface, which reports usable sizes
* (total minus pinned), but the pinned size computation is
* buggy, so the values returned from these functions can be
* random.
*/
struct amdgpu_heap_info vram, vram_vis, gtt;
r = amdgpu_query_heap_info(dev, AMDGPU_GEM_DOMAIN_VRAM, 0, &vram);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_heap_info(vram) failed.\n");
return false;
}
r = amdgpu_query_heap_info(dev, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED,
&vram_vis);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_heap_info(vram_vis) failed.\n");
return false;
}
r = amdgpu_query_heap_info(dev, AMDGPU_GEM_DOMAIN_GTT, 0, &gtt);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_query_heap_info(gtt) failed.\n");
return false;
}
info->gart_size = gtt.heap_size;
info->vram_size = fix_vram_size(vram.heap_size);
info->vram_vis_size = vram_vis.heap_size;
}
/* Set chip identification. */
info->pci_id = amdinfo->asic_id; /* TODO: is this correct? */
info->pci_rev_id = amdinfo->pci_rev_id;
info->vce_harvest_config = amdinfo->vce_harvest_config;
#define identify_chip2(asic, chipname) \
if (ASICREV_IS(amdinfo->chip_external_rev, asic)) { \
info->family = CHIP_##chipname; \
info->name = #chipname; \
}
#define identify_chip(chipname) identify_chip2(chipname, chipname)
switch (amdinfo->family_id) {
case FAMILY_SI:
identify_chip(TAHITI);
identify_chip(PITCAIRN);
identify_chip2(CAPEVERDE, VERDE);
identify_chip(OLAND);
identify_chip(HAINAN);
break;
case FAMILY_CI:
identify_chip(BONAIRE);
identify_chip(HAWAII);
break;
case FAMILY_KV:
identify_chip2(SPECTRE, KAVERI);
identify_chip2(SPOOKY, KAVERI);
identify_chip2(KALINDI, KABINI);
identify_chip2(GODAVARI, KABINI);
break;
case FAMILY_VI:
identify_chip(ICELAND);
identify_chip(TONGA);
identify_chip(FIJI);
identify_chip(POLARIS10);
identify_chip(POLARIS11);
identify_chip(POLARIS12);
identify_chip(VEGAM);
break;
case FAMILY_CZ:
identify_chip(CARRIZO);
identify_chip(STONEY);
break;
case FAMILY_AI:
identify_chip(VEGA10);
identify_chip(VEGA12);
identify_chip(VEGA20);
identify_chip(ARCTURUS);
break;
case FAMILY_RV:
identify_chip(RAVEN);
identify_chip(RAVEN2);
identify_chip(RENOIR);
break;
case FAMILY_NV:
identify_chip(NAVI10);
identify_chip(NAVI12);
identify_chip(NAVI14);
identify_chip(SIENNA_CICHLID);
identify_chip(NAVY_FLOUNDER);
identify_chip(DIMGREY_CAVEFISH);
break;
case FAMILY_VGH:
identify_chip(VANGOGH);
break;
}
if (!info->name) {
fprintf(stderr, "amdgpu: unknown (family_id, chip_external_rev): (%u, %u)\n",
amdinfo->family_id, amdinfo->chip_external_rev);
return false;
}
if (info->family >= CHIP_SIENNA_CICHLID)
info->chip_class = GFX10_3;
else if (info->family >= CHIP_NAVI10)
info->chip_class = GFX10;
else if (info->family >= CHIP_VEGA10)
info->chip_class = GFX9;
else if (info->family >= CHIP_TONGA)
info->chip_class = GFX8;
else if (info->family >= CHIP_BONAIRE)
info->chip_class = GFX7;
else if (info->family >= CHIP_TAHITI)
info->chip_class = GFX6;
else {
fprintf(stderr, "amdgpu: Unknown family.\n");
return false;
}
info->family_id = amdinfo->family_id;
info->chip_external_rev = amdinfo->chip_external_rev;
info->marketing_name = amdgpu_get_marketing_name(dev);
info->is_pro_graphics = info->marketing_name && (!strstr(info->marketing_name, "Pro") ||
!strstr(info->marketing_name, "PRO") ||
!strstr(info->marketing_name, "Frontier"));
/* Set which chips have dedicated VRAM. */
info->has_dedicated_vram = !(amdinfo->ids_flags & AMDGPU_IDS_FLAGS_FUSION);
/* The kernel can split large buffers in VRAM but not in GTT, so large
* allocations can fail or cause buffer movement failures in the kernel.
*/
if (info->has_dedicated_vram)
info->max_alloc_size = info->vram_size * 0.8;
else
info->max_alloc_size = info->gart_size * 0.7;
info->vram_type = amdinfo->vram_type;
info->vram_bit_width = amdinfo->vram_bit_width;
info->ce_ram_size = amdinfo->ce_ram_size;
info->l2_cache_size = get_l2_cache_size(info->family);
info->l1_cache_size = 16384;
/* Set which chips have uncached device memory. */
info->has_l2_uncached = info->chip_class >= GFX9;
/* Set hardware information. */
info->gds_size = gds.gds_total_size;
info->gds_gfx_partition_size = gds.gds_gfx_partition_size;
/* convert the shader/memory clocks from KHz to MHz */
info->max_shader_clock = amdinfo->max_engine_clk / 1000;
info->max_memory_clock = amdinfo->max_memory_clk / 1000;
info->num_tcc_blocks = device_info.num_tcc_blocks;
info->max_se = amdinfo->num_shader_engines;
info->max_sh_per_se = amdinfo->num_shader_arrays_per_engine;
info->has_hw_decode = (uvd.available_rings != 0) || (vcn_dec.available_rings != 0) ||
(vcn_jpeg.available_rings != 0);
info->uvd_fw_version = uvd.available_rings ? uvd_version : 0;
info->vce_fw_version = vce.available_rings ? vce_version : 0;
info->uvd_enc_supported = uvd_enc.available_rings ? true : false;
info->has_userptr = true;
info->has_syncobj = has_syncobj(fd);
info->has_timeline_syncobj = has_timeline_syncobj(fd);
info->has_syncobj_wait_for_submit = info->has_syncobj && info->drm_minor >= 20;
info->has_fence_to_handle = info->has_syncobj && info->drm_minor >= 21;
info->has_ctx_priority = info->drm_minor >= 22;
info->has_local_buffers = info->drm_minor >= 20;
info->kernel_flushes_hdp_before_ib = true;
info->htile_cmask_support_1d_tiling = true;
info->si_TA_CS_BC_BASE_ADDR_allowed = true;
info->has_bo_metadata = true;
info->has_gpu_reset_status_query = true;
info->has_eqaa_surface_allocator = true;
info->has_format_bc1_through_bc7 = true;
/* DRM 3.1.0 doesn't flush TC for GFX8 correctly. */
info->kernel_flushes_tc_l2_after_ib = info->chip_class != GFX8 || info->drm_minor >= 2;
info->has_indirect_compute_dispatch = true;
/* GFX6 doesn't support unaligned loads. */
info->has_unaligned_shader_loads = info->chip_class != GFX6;
/* Disable sparse mappings on GFX6 due to VM faults in CP DMA. Enable them once
* these faults are mitigated in software.
*/
info->has_sparse_vm_mappings = info->chip_class >= GFX7 && info->drm_minor >= 13;
info->has_2d_tiling = true;
info->has_read_registers_query = true;
info->has_scheduled_fence_dependency = info->drm_minor >= 28;
info->mid_command_buffer_preemption_enabled = amdinfo->ids_flags & AMDGPU_IDS_FLAGS_PREEMPTION;
info->has_tmz_support = has_tmz_support(dev, info, amdinfo);
info->pa_sc_tile_steering_override = device_info.pa_sc_tile_steering_override;
info->num_render_backends = amdinfo->rb_pipes;
/* The value returned by the kernel driver was wrong. */
if (info->family == CHIP_KAVERI)
info->num_render_backends = 2;
/* Guess the number of enabled SEs because the kernel doesn't tell us. */
if (info->chip_class >= GFX10_3 && info->max_se > 1) {
unsigned num_rbs_per_se = info->num_render_backends / info->max_se;
info->num_se = util_bitcount(amdinfo->enabled_rb_pipes_mask) / num_rbs_per_se;
} else {
info->num_se = info->max_se;
}
info->clock_crystal_freq = amdinfo->gpu_counter_freq;
if (!info->clock_crystal_freq) {
fprintf(stderr, "amdgpu: clock crystal frequency is 0, timestamps will be wrong\n");
info->clock_crystal_freq = 1;
}
if (info->chip_class >= GFX10) {
info->tcc_cache_line_size = 128;
if (info->drm_minor >= 35) {
info->tcc_harvested = device_info.tcc_disabled_mask != 0;
} else {
/* This is a hack, but it's all we can do without a kernel upgrade. */
info->tcc_harvested = (info->vram_size / info->num_tcc_blocks) != 512 * 1024 * 1024;
}
} else {
info->tcc_cache_line_size = 64;
}
info->gb_addr_config = amdinfo->gb_addr_cfg;
if (info->chip_class >= GFX9) {
info->num_tile_pipes = 1 << G_0098F8_NUM_PIPES(amdinfo->gb_addr_cfg);
info->pipe_interleave_bytes = 256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(amdinfo->gb_addr_cfg);
} else {
info->num_tile_pipes = cik_get_num_tile_pipes(amdinfo);
info->pipe_interleave_bytes = 256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX6(amdinfo->gb_addr_cfg);
}
info->r600_has_virtual_memory = true;
/* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
* 16KB makes some SIMDs unoccupied).
*
* LDS is 128KB in WGP mode and 64KB in CU mode. Assume the WGP mode is used.
*/
info->lds_size_per_workgroup = info->chip_class >= GFX10 ? 128 * 1024 : 64 * 1024;
info->lds_granularity = info->chip_class >= GFX7 ? 128 * 4 : 64 * 4;
assert(util_is_power_of_two_or_zero(dma.available_rings + 1));
assert(util_is_power_of_two_or_zero(compute.available_rings + 1));
info->has_graphics = gfx.available_rings > 0;
info->num_rings[RING_GFX] = util_bitcount(gfx.available_rings);
info->num_rings[RING_COMPUTE] = util_bitcount(compute.available_rings);
info->num_rings[RING_DMA] = util_bitcount(dma.available_rings);
info->num_rings[RING_UVD] = util_bitcount(uvd.available_rings);
info->num_rings[RING_VCE] = util_bitcount(vce.available_rings);
info->num_rings[RING_UVD_ENC] = util_bitcount(uvd_enc.available_rings);
info->num_rings[RING_VCN_DEC] = util_bitcount(vcn_dec.available_rings);
info->num_rings[RING_VCN_ENC] = util_bitcount(vcn_enc.available_rings);
info->num_rings[RING_VCN_JPEG] = util_bitcount(vcn_jpeg.available_rings);
/* This is "align_mask" copied from the kernel, maximums of all IP versions. */
info->ib_pad_dw_mask[RING_GFX] = 0xff;
info->ib_pad_dw_mask[RING_COMPUTE] = 0xff;
info->ib_pad_dw_mask[RING_DMA] = 0xf;
info->ib_pad_dw_mask[RING_UVD] = 0xf;
info->ib_pad_dw_mask[RING_VCE] = 0x3f;
info->ib_pad_dw_mask[RING_UVD_ENC] = 0x3f;
info->ib_pad_dw_mask[RING_VCN_DEC] = 0xf;
info->ib_pad_dw_mask[RING_VCN_ENC] = 0x3f;
info->ib_pad_dw_mask[RING_VCN_JPEG] = 0xf;
/* The mere presence of CLEAR_STATE in the IB causes random GPU hangs
* on GFX6. Some CLEAR_STATE cause asic hang on radeon kernel, etc.
* SPI_VS_OUT_CONFIG. So only enable GFX7 CLEAR_STATE on amdgpu kernel.
*/
info->has_clear_state = info->chip_class >= GFX7;
info->has_distributed_tess =
info->chip_class >= GFX10 || (info->chip_class >= GFX8 && info->max_se >= 2);
info->has_dcc_constant_encode =
info->family == CHIP_RAVEN2 || info->family == CHIP_RENOIR || info->chip_class >= GFX10;
info->has_rbplus = info->family == CHIP_STONEY || info->chip_class >= GFX9;
/* Some chips have RB+ registers, but don't support RB+. Those must
* always disable it.
*/
info->rbplus_allowed =
info->has_rbplus &&
(info->family == CHIP_STONEY || info->family == CHIP_VEGA12 || info->family == CHIP_RAVEN ||
info->family == CHIP_RAVEN2 || info->family == CHIP_RENOIR || info->chip_class >= GFX10_3);
info->has_out_of_order_rast =
info->chip_class >= GFX8 && info->chip_class <= GFX9 && info->max_se >= 2;
/* Whether chips support double rate packed math instructions. */
info->has_packed_math_16bit = info->chip_class >= GFX9;
/* TODO: Figure out how to use LOAD_CONTEXT_REG on GFX6-GFX7. */
info->has_load_ctx_reg_pkt =
info->chip_class >= GFX9 || (info->chip_class >= GFX8 && info->me_fw_feature >= 41);
info->cpdma_prefetch_writes_memory = info->chip_class <= GFX8;
info->has_gfx9_scissor_bug = info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
info->has_tc_compat_zrange_bug = info->chip_class >= GFX8 && info->chip_class <= GFX9;
info->has_msaa_sample_loc_bug =
(info->family >= CHIP_POLARIS10 && info->family <= CHIP_POLARIS12) ||
info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
info->has_ls_vgpr_init_bug = info->family == CHIP_VEGA10 || info->family == CHIP_RAVEN;
/* Get the number of good compute units. */
info->num_good_compute_units = 0;
for (i = 0; i < info->max_se; i++) {
for (j = 0; j < info->max_sh_per_se; j++) {
/*
* The cu bitmap in amd gpu info structure is
* 4x4 size array, and it's usually suitable for Vega
* ASICs which has 4*2 SE/SH layout.
* But for Arcturus, SE/SH layout is changed to 8*1.
* To mostly reduce the impact, we make it compatible
* with current bitmap array as below:
* SE4,SH0 --> cu_bitmap[0][1]
* SE5,SH0 --> cu_bitmap[1][1]
* SE6,SH0 --> cu_bitmap[2][1]
* SE7,SH0 --> cu_bitmap[3][1]
*/
info->cu_mask[i % 4][j + i / 4] = amdinfo->cu_bitmap[i % 4][j + i / 4];
info->num_good_compute_units += util_bitcount(info->cu_mask[i][j]);
}
}
/* On GFX10, only whole WGPs (in units of 2 CUs) can be disabled,
* and max - min <= 2.
*/
unsigned cu_group = info->chip_class >= GFX10 ? 2 : 1;
info->max_good_cu_per_sa =
DIV_ROUND_UP(info->num_good_compute_units, (info->num_se * info->max_sh_per_se * cu_group)) *
cu_group;
info->min_good_cu_per_sa =
(info->num_good_compute_units / (info->num_se * info->max_sh_per_se * cu_group)) * cu_group;
memcpy(info->si_tile_mode_array, amdinfo->gb_tile_mode, sizeof(amdinfo->gb_tile_mode));
info->enabled_rb_mask = amdinfo->enabled_rb_pipes_mask;
memcpy(info->cik_macrotile_mode_array, amdinfo->gb_macro_tile_mode,
sizeof(amdinfo->gb_macro_tile_mode));
info->pte_fragment_size = alignment_info.size_local;
info->gart_page_size = alignment_info.size_remote;
if (info->chip_class == GFX6)
info->gfx_ib_pad_with_type2 = true;
unsigned ib_align = 0;
ib_align = MAX2(ib_align, gfx.ib_start_alignment);
ib_align = MAX2(ib_align, gfx.ib_size_alignment);
ib_align = MAX2(ib_align, compute.ib_start_alignment);
ib_align = MAX2(ib_align, compute.ib_size_alignment);
ib_align = MAX2(ib_align, dma.ib_start_alignment);
ib_align = MAX2(ib_align, dma.ib_size_alignment);
ib_align = MAX2(ib_align, uvd.ib_start_alignment);
ib_align = MAX2(ib_align, uvd.ib_size_alignment);
ib_align = MAX2(ib_align, uvd_enc.ib_start_alignment);
ib_align = MAX2(ib_align, uvd_enc.ib_size_alignment);
ib_align = MAX2(ib_align, vce.ib_start_alignment);
ib_align = MAX2(ib_align, vce.ib_size_alignment);
ib_align = MAX2(ib_align, vcn_dec.ib_start_alignment);
ib_align = MAX2(ib_align, vcn_dec.ib_size_alignment);
ib_align = MAX2(ib_align, vcn_enc.ib_start_alignment);
ib_align = MAX2(ib_align, vcn_enc.ib_size_alignment);
ib_align = MAX2(ib_align, vcn_jpeg.ib_start_alignment);
ib_align = MAX2(ib_align, vcn_jpeg.ib_size_alignment);
/* GFX10 and maybe GFX9 need this alignment for cache coherency. */
if (info->chip_class >= GFX9)
ib_align = MAX2(ib_align, info->tcc_cache_line_size);
/* The kernel pads gfx and compute IBs to 256 dwords since:
* 66f3b2d527154bd258a57c8815004b5964aa1cf5
* Do the same.
*/
ib_align = MAX2(ib_align, 1024);
info->ib_alignment = ib_align;
if ((info->drm_minor >= 31 && (info->family == CHIP_RAVEN || info->family == CHIP_RAVEN2 ||
info->family == CHIP_RENOIR)) ||
(info->drm_minor >= 34 && (info->family == CHIP_NAVI12 || info->family == CHIP_NAVI14)) ||
info->chip_class >= GFX10_3) {
if (info->num_render_backends == 1)
info->use_display_dcc_unaligned = true;
else
info->use_display_dcc_with_retile_blit = true;
}
info->has_gds_ordered_append = info->chip_class >= GFX7 && info->drm_minor >= 29;
if (info->chip_class >= GFX9) {
unsigned pc_lines = 0;
switch (info->family) {
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
pc_lines = 2048;
break;
case CHIP_RAVEN:
case CHIP_RAVEN2:
case CHIP_RENOIR:
case CHIP_NAVI10:
case CHIP_NAVI12:
case CHIP_SIENNA_CICHLID:
case CHIP_NAVY_FLOUNDER:
case CHIP_DIMGREY_CAVEFISH:
pc_lines = 1024;
break;
case CHIP_NAVI14:
pc_lines = 512;
break;
case CHIP_VANGOGH:
pc_lines = 256;
break;
case CHIP_ARCTURUS:
break;
default:
assert(0);
}
info->pc_lines = pc_lines;
if (info->chip_class >= GFX10) {
info->pbb_max_alloc_count = pc_lines / 3;
} else {
info->pbb_max_alloc_count = MIN2(128, pc_lines / (4 * info->max_se));
}
}
/* The number of SDPs is the same as the number of TCCs for now. */
if (info->chip_class >= GFX10)
info->num_sdp_interfaces = device_info.num_tcc_blocks;
if (info->chip_class >= GFX10_3)
info->max_wave64_per_simd = 16;
else if (info->chip_class == GFX10)
info->max_wave64_per_simd = 20;
else if (info->family >= CHIP_POLARIS10 && info->family <= CHIP_VEGAM)
info->max_wave64_per_simd = 8;
else
info->max_wave64_per_simd = 10;
if (info->chip_class >= GFX10) {
info->num_physical_sgprs_per_simd = 128 * info->max_wave64_per_simd;
info->min_sgpr_alloc = 128;
info->sgpr_alloc_granularity = 128;
/* Don't use late alloc on small chips. */
info->use_late_alloc = info->num_render_backends > 4;
} else if (info->chip_class >= GFX8) {
info->num_physical_sgprs_per_simd = 800;
info->min_sgpr_alloc = 16;
info->sgpr_alloc_granularity = 16;
info->use_late_alloc = true;
} else {
info->num_physical_sgprs_per_simd = 512;
info->min_sgpr_alloc = 8;
info->sgpr_alloc_granularity = 8;
/* Potential hang on Kabini: */
info->use_late_alloc = info->family != CHIP_KABINI;
}
info->max_sgpr_alloc = info->family == CHIP_TONGA || info->family == CHIP_ICELAND ? 96 : 104;
info->min_wave64_vgpr_alloc = 4;
info->max_vgpr_alloc = 256;
info->wave64_vgpr_alloc_granularity = 4;
info->num_physical_wave64_vgprs_per_simd = info->chip_class >= GFX10 ? 512 : 256;
info->num_simd_per_compute_unit = info->chip_class >= GFX10 ? 2 : 4;
return true;
}
void ac_compute_driver_uuid(char *uuid, size_t size)
{
char amd_uuid[] = "AMD-MESA-DRV";
assert(size >= sizeof(amd_uuid));
memset(uuid, 0, size);
strncpy(uuid, amd_uuid, size);
}
void ac_compute_device_uuid(struct radeon_info *info, char *uuid, size_t size)
{
uint32_t *uint_uuid = (uint32_t *)uuid;
assert(size >= sizeof(uint32_t) * 4);
/**
* Use the device info directly instead of using a sha1. GL/VK UUIDs
* are 16 byte vs 20 byte for sha1, and the truncation that would be
* required would get rid of part of the little entropy we have.
* */
memset(uuid, 0, size);
uint_uuid[0] = info->pci_domain;
uint_uuid[1] = info->pci_bus;
uint_uuid[2] = info->pci_dev;
uint_uuid[3] = info->pci_func;
}
void ac_print_gpu_info(struct radeon_info *info, FILE *f)
{
fprintf(f, "Device info:\n");
fprintf(f, " pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n", info->pci_domain, info->pci_bus,
info->pci_dev, info->pci_func);
fprintf(f, " name = %s\n", info->name);
fprintf(f, " marketing_name = %s\n", info->marketing_name);
fprintf(f, " is_pro_graphics = %u\n", info->is_pro_graphics);
fprintf(f, " pci_id = 0x%x\n", info->pci_id);
fprintf(f, " pci_rev_id = 0x%x\n", info->pci_rev_id);
fprintf(f, " family = %i\n", info->family);
fprintf(f, " chip_class = %i\n", info->chip_class);
fprintf(f, " family_id = %i\n", info->family_id);
fprintf(f, " chip_external_rev = %i\n", info->chip_external_rev);
fprintf(f, " clock_crystal_freq = %i\n", info->clock_crystal_freq);
fprintf(f, "Features:\n");
fprintf(f, " has_graphics = %i\n", info->has_graphics);
fprintf(f, " num_rings[RING_GFX] = %i\n", info->num_rings[RING_GFX]);
fprintf(f, " num_rings[RING_DMA] = %i\n", info->num_rings[RING_DMA]);
fprintf(f, " num_rings[RING_COMPUTE] = %u\n", info->num_rings[RING_COMPUTE]);
fprintf(f, " num_rings[RING_UVD] = %i\n", info->num_rings[RING_UVD]);
fprintf(f, " num_rings[RING_VCE] = %i\n", info->num_rings[RING_VCE]);
fprintf(f, " num_rings[RING_UVD_ENC] = %i\n", info->num_rings[RING_UVD_ENC]);
fprintf(f, " num_rings[RING_VCN_DEC] = %i\n", info->num_rings[RING_VCN_DEC]);
fprintf(f, " num_rings[RING_VCN_ENC] = %i\n", info->num_rings[RING_VCN_ENC]);
fprintf(f, " num_rings[RING_VCN_JPEG] = %i\n", info->num_rings[RING_VCN_JPEG]);
fprintf(f, " has_clear_state = %u\n", info->has_clear_state);
fprintf(f, " has_distributed_tess = %u\n", info->has_distributed_tess);
fprintf(f, " has_dcc_constant_encode = %u\n", info->has_dcc_constant_encode);
fprintf(f, " has_rbplus = %u\n", info->has_rbplus);
fprintf(f, " rbplus_allowed = %u\n", info->rbplus_allowed);
fprintf(f, " has_load_ctx_reg_pkt = %u\n", info->has_load_ctx_reg_pkt);
fprintf(f, " has_out_of_order_rast = %u\n", info->has_out_of_order_rast);
fprintf(f, " cpdma_prefetch_writes_memory = %u\n", info->cpdma_prefetch_writes_memory);
fprintf(f, " has_gfx9_scissor_bug = %i\n", info->has_gfx9_scissor_bug);
fprintf(f, " has_tc_compat_zrange_bug = %i\n", info->has_tc_compat_zrange_bug);
fprintf(f, " has_msaa_sample_loc_bug = %i\n", info->has_msaa_sample_loc_bug);
fprintf(f, " has_ls_vgpr_init_bug = %i\n", info->has_ls_vgpr_init_bug);
fprintf(f, "Display features:\n");
fprintf(f, " use_display_dcc_unaligned = %u\n", info->use_display_dcc_unaligned);
fprintf(f, " use_display_dcc_with_retile_blit = %u\n", info->use_display_dcc_with_retile_blit);
fprintf(f, "Memory info:\n");
fprintf(f, " pte_fragment_size = %u\n", info->pte_fragment_size);
fprintf(f, " gart_page_size = %u\n", info->gart_page_size);
fprintf(f, " gart_size = %i MB\n", (int)DIV_ROUND_UP(info->gart_size, 1024 * 1024));
fprintf(f, " vram_size = %i MB\n", (int)DIV_ROUND_UP(info->vram_size, 1024 * 1024));
fprintf(f, " vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(info->vram_vis_size, 1024 * 1024));
fprintf(f, " vram_type = %i\n", info->vram_type);
fprintf(f, " vram_bit_width = %i\n", info->vram_bit_width);
fprintf(f, " gds_size = %u kB\n", info->gds_size / 1024);
fprintf(f, " gds_gfx_partition_size = %u kB\n", info->gds_gfx_partition_size / 1024);
fprintf(f, " max_alloc_size = %i MB\n", (int)DIV_ROUND_UP(info->max_alloc_size, 1024 * 1024));
fprintf(f, " min_alloc_size = %u\n", info->min_alloc_size);
fprintf(f, " address32_hi = %u\n", info->address32_hi);
fprintf(f, " has_dedicated_vram = %u\n", info->has_dedicated_vram);
fprintf(f, " num_sdp_interfaces = %u\n", info->num_sdp_interfaces);
fprintf(f, " num_tcc_blocks = %i\n", info->num_tcc_blocks);
fprintf(f, " tcc_cache_line_size = %u\n", info->tcc_cache_line_size);
fprintf(f, " tcc_harvested = %u\n", info->tcc_harvested);
fprintf(f, " pc_lines = %u\n", info->pc_lines);
fprintf(f, " lds_size_per_workgroup = %u\n", info->lds_size_per_workgroup);
fprintf(f, " lds_granularity = %i\n", info->lds_granularity);
fprintf(f, " max_memory_clock = %i\n", info->max_memory_clock);
fprintf(f, " ce_ram_size = %i\n", info->ce_ram_size);
fprintf(f, " l1_cache_size = %i\n", info->l1_cache_size);
fprintf(f, " l2_cache_size = %i\n", info->l2_cache_size);
fprintf(f, "CP info:\n");
fprintf(f, " gfx_ib_pad_with_type2 = %i\n", info->gfx_ib_pad_with_type2);
fprintf(f, " ib_alignment = %u\n", info->ib_alignment);
fprintf(f, " me_fw_version = %i\n", info->me_fw_version);
fprintf(f, " me_fw_feature = %i\n", info->me_fw_feature);
fprintf(f, " pfp_fw_version = %i\n", info->pfp_fw_version);
fprintf(f, " pfp_fw_feature = %i\n", info->pfp_fw_feature);
fprintf(f, " ce_fw_version = %i\n", info->ce_fw_version);
fprintf(f, " ce_fw_feature = %i\n", info->ce_fw_feature);
fprintf(f, "Multimedia info:\n");
fprintf(f, " has_hw_decode = %u\n", info->has_hw_decode);
fprintf(f, " uvd_enc_supported = %u\n", info->uvd_enc_supported);
fprintf(f, " uvd_fw_version = %u\n", info->uvd_fw_version);
fprintf(f, " vce_fw_version = %u\n", info->vce_fw_version);
fprintf(f, " vce_harvest_config = %i\n", info->vce_harvest_config);
fprintf(f, "Kernel & winsys capabilities:\n");
fprintf(f, " drm = %i.%i.%i\n", info->drm_major, info->drm_minor, info->drm_patchlevel);
fprintf(f, " has_userptr = %i\n", info->has_userptr);
fprintf(f, " has_syncobj = %u\n", info->has_syncobj);
fprintf(f, " has_syncobj_wait_for_submit = %u\n", info->has_syncobj_wait_for_submit);
fprintf(f, " has_timeline_syncobj = %u\n", info->has_timeline_syncobj);
fprintf(f, " has_fence_to_handle = %u\n", info->has_fence_to_handle);
fprintf(f, " has_ctx_priority = %u\n", info->has_ctx_priority);
fprintf(f, " has_local_buffers = %u\n", info->has_local_buffers);
fprintf(f, " kernel_flushes_hdp_before_ib = %u\n", info->kernel_flushes_hdp_before_ib);
fprintf(f, " htile_cmask_support_1d_tiling = %u\n", info->htile_cmask_support_1d_tiling);
fprintf(f, " si_TA_CS_BC_BASE_ADDR_allowed = %u\n", info->si_TA_CS_BC_BASE_ADDR_allowed);
fprintf(f, " has_bo_metadata = %u\n", info->has_bo_metadata);
fprintf(f, " has_gpu_reset_status_query = %u\n", info->has_gpu_reset_status_query);
fprintf(f, " has_eqaa_surface_allocator = %u\n", info->has_eqaa_surface_allocator);
fprintf(f, " has_format_bc1_through_bc7 = %u\n", info->has_format_bc1_through_bc7);
fprintf(f, " kernel_flushes_tc_l2_after_ib = %u\n", info->kernel_flushes_tc_l2_after_ib);
fprintf(f, " has_indirect_compute_dispatch = %u\n", info->has_indirect_compute_dispatch);
fprintf(f, " has_unaligned_shader_loads = %u\n", info->has_unaligned_shader_loads);
fprintf(f, " has_sparse_vm_mappings = %u\n", info->has_sparse_vm_mappings);
fprintf(f, " has_2d_tiling = %u\n", info->has_2d_tiling);
fprintf(f, " has_read_registers_query = %u\n", info->has_read_registers_query);
fprintf(f, " has_gds_ordered_append = %u\n", info->has_gds_ordered_append);
fprintf(f, " has_scheduled_fence_dependency = %u\n", info->has_scheduled_fence_dependency);
fprintf(f, " mid_command_buffer_preemption_enabled = %u\n",
info->mid_command_buffer_preemption_enabled);
fprintf(f, " has_tmz_support = %u\n", info->has_tmz_support);
fprintf(f, "Shader core info:\n");
fprintf(f, " max_shader_clock = %i\n", info->max_shader_clock);
fprintf(f, " num_good_compute_units = %i\n", info->num_good_compute_units);
fprintf(f, " max_good_cu_per_sa = %i\n", info->max_good_cu_per_sa);
fprintf(f, " min_good_cu_per_sa = %i\n", info->min_good_cu_per_sa);
fprintf(f, " max_se = %i\n", info->max_se);
fprintf(f, " num_se = %i\n", info->num_se);
fprintf(f, " max_sh_per_se = %i\n", info->max_sh_per_se);
fprintf(f, " max_wave64_per_simd = %i\n", info->max_wave64_per_simd);
fprintf(f, " num_physical_sgprs_per_simd = %i\n", info->num_physical_sgprs_per_simd);
fprintf(f, " num_physical_wave64_vgprs_per_simd = %i\n",
info->num_physical_wave64_vgprs_per_simd);
fprintf(f, " num_simd_per_compute_unit = %i\n", info->num_simd_per_compute_unit);
fprintf(f, " min_sgpr_alloc = %i\n", info->min_sgpr_alloc);
fprintf(f, " max_sgpr_alloc = %i\n", info->max_sgpr_alloc);
fprintf(f, " sgpr_alloc_granularity = %i\n", info->sgpr_alloc_granularity);
fprintf(f, " min_wave64_vgpr_alloc = %i\n", info->min_wave64_vgpr_alloc);
fprintf(f, " max_vgpr_alloc = %i\n", info->max_vgpr_alloc);
fprintf(f, " wave64_vgpr_alloc_granularity = %i\n", info->wave64_vgpr_alloc_granularity);
fprintf(f, "Render backend info:\n");
fprintf(f, " pa_sc_tile_steering_override = 0x%x\n", info->pa_sc_tile_steering_override);
fprintf(f, " num_render_backends = %i\n", info->num_render_backends);
fprintf(f, " num_tile_pipes = %i\n", info->num_tile_pipes);
fprintf(f, " pipe_interleave_bytes = %i\n", info->pipe_interleave_bytes);
fprintf(f, " enabled_rb_mask = 0x%x\n", info->enabled_rb_mask);
fprintf(f, " max_alignment = %u\n", (unsigned)info->max_alignment);
fprintf(f, " pbb_max_alloc_count = %u\n", info->pbb_max_alloc_count);
fprintf(f, "GB_ADDR_CONFIG: 0x%08x\n", info->gb_addr_config);
if (info->chip_class >= GFX10) {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(info->gb_addr_config));
fprintf(f, " max_compressed_frags = %u\n",
1 << G_0098F8_MAX_COMPRESSED_FRAGS(info->gb_addr_config));
if (info->chip_class >= GFX10_3)
fprintf(f, " num_pkrs = %u\n", 1 << G_0098F8_NUM_PKRS(info->gb_addr_config));
} else if (info->chip_class == GFX9) {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX9(info->gb_addr_config));
fprintf(f, " max_compressed_frags = %u\n",
1 << G_0098F8_MAX_COMPRESSED_FRAGS(info->gb_addr_config));
fprintf(f, " bank_interleave_size = %u\n",
1 << G_0098F8_BANK_INTERLEAVE_SIZE(info->gb_addr_config));
fprintf(f, " num_banks = %u\n", 1 << G_0098F8_NUM_BANKS(info->gb_addr_config));
fprintf(f, " shader_engine_tile_size = %u\n",
16 << G_0098F8_SHADER_ENGINE_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_shader_engines = %u\n",
1 << G_0098F8_NUM_SHADER_ENGINES_GFX9(info->gb_addr_config));
fprintf(f, " num_gpus = %u (raw)\n", G_0098F8_NUM_GPUS_GFX9(info->gb_addr_config));
fprintf(f, " multi_gpu_tile_size = %u (raw)\n",
G_0098F8_MULTI_GPU_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_rb_per_se = %u\n", 1 << G_0098F8_NUM_RB_PER_SE(info->gb_addr_config));
fprintf(f, " row_size = %u\n", 1024 << G_0098F8_ROW_SIZE(info->gb_addr_config));
fprintf(f, " num_lower_pipes = %u (raw)\n", G_0098F8_NUM_LOWER_PIPES(info->gb_addr_config));
fprintf(f, " se_enable = %u (raw)\n", G_0098F8_SE_ENABLE(info->gb_addr_config));
} else {
fprintf(f, " num_pipes = %u\n", 1 << G_0098F8_NUM_PIPES(info->gb_addr_config));
fprintf(f, " pipe_interleave_size = %u\n",
256 << G_0098F8_PIPE_INTERLEAVE_SIZE_GFX6(info->gb_addr_config));
fprintf(f, " bank_interleave_size = %u\n",
1 << G_0098F8_BANK_INTERLEAVE_SIZE(info->gb_addr_config));
fprintf(f, " num_shader_engines = %u\n",
1 << G_0098F8_NUM_SHADER_ENGINES_GFX6(info->gb_addr_config));
fprintf(f, " shader_engine_tile_size = %u\n",
16 << G_0098F8_SHADER_ENGINE_TILE_SIZE(info->gb_addr_config));
fprintf(f, " num_gpus = %u (raw)\n", G_0098F8_NUM_GPUS_GFX6(info->gb_addr_config));
fprintf(f, " multi_gpu_tile_size = %u (raw)\n",
G_0098F8_MULTI_GPU_TILE_SIZE(info->gb_addr_config));
fprintf(f, " row_size = %u\n", 1024 << G_0098F8_ROW_SIZE(info->gb_addr_config));
fprintf(f, " num_lower_pipes = %u (raw)\n", G_0098F8_NUM_LOWER_PIPES(info->gb_addr_config));
}
}
int ac_get_gs_table_depth(enum chip_class chip_class, enum radeon_family family)
{
if (chip_class >= GFX9)
return -1;
switch (family) {
case CHIP_OLAND:
case CHIP_HAINAN:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_ICELAND:
case CHIP_CARRIZO:
case CHIP_STONEY:
return 16;
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
return 32;
default:
unreachable("Unknown GPU");
}
}
void ac_get_raster_config(struct radeon_info *info, uint32_t *raster_config_p,
uint32_t *raster_config_1_p, uint32_t *se_tile_repeat_p)
{
unsigned raster_config, raster_config_1, se_tile_repeat;
switch (info->family) {
/* 1 SE / 1 RB */
case CHIP_HAINAN:
case CHIP_KABINI:
case CHIP_STONEY:
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 4 RBs */
case CHIP_VERDE:
raster_config = 0x0000124a;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 2 RBs (Oland is special) */
case CHIP_OLAND:
raster_config = 0x00000082;
raster_config_1 = 0x00000000;
break;
/* 1 SE / 2 RBs */
case CHIP_KAVERI:
case CHIP_ICELAND:
case CHIP_CARRIZO:
raster_config = 0x00000002;
raster_config_1 = 0x00000000;
break;
/* 2 SEs / 4 RBs */
case CHIP_BONAIRE:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
raster_config = 0x16000012;
raster_config_1 = 0x00000000;
break;
/* 2 SEs / 8 RBs */
case CHIP_TAHITI:
case CHIP_PITCAIRN:
raster_config = 0x2a00126a;
raster_config_1 = 0x00000000;
break;
/* 4 SEs / 8 RBs */
case CHIP_TONGA:
case CHIP_POLARIS10:
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
break;
/* 4 SEs / 16 RBs */
case CHIP_HAWAII:
case CHIP_FIJI:
case CHIP_VEGAM:
raster_config = 0x3a00161a;
raster_config_1 = 0x0000002e;
break;
default:
fprintf(stderr, "ac: Unknown GPU, using 0 for raster_config\n");
raster_config = 0x00000000;
raster_config_1 = 0x00000000;
break;
}
/* drm/radeon on Kaveri is buggy, so disable 1 RB to work around it.
* This decreases performance by up to 50% when the RB is the bottleneck.
*/
if (info->family == CHIP_KAVERI && !info->is_amdgpu)
raster_config = 0x00000000;
/* Fiji: Old kernels have incorrect tiling config. This decreases
* RB performance by 25%. (it disables 1 RB in the second packer)
*/
if (info->family == CHIP_FIJI && info->cik_macrotile_mode_array[0] == 0x000000e8) {
raster_config = 0x16000012;
raster_config_1 = 0x0000002a;
}
unsigned se_width = 8 << G_028350_SE_XSEL_GFX6(raster_config);
unsigned se_height = 8 << G_028350_SE_YSEL_GFX6(raster_config);
/* I don't know how to calculate this, though this is probably a good guess. */
se_tile_repeat = MAX2(se_width, se_height) * info->max_se;
*raster_config_p = raster_config;
*raster_config_1_p = raster_config_1;
if (se_tile_repeat_p)
*se_tile_repeat_p = se_tile_repeat;
}
void ac_get_harvested_configs(struct radeon_info *info, unsigned raster_config,
unsigned *cik_raster_config_1_p, unsigned *raster_config_se)
{
unsigned sh_per_se = MAX2(info->max_sh_per_se, 1);
unsigned num_se = MAX2(info->max_se, 1);
unsigned rb_mask = info->enabled_rb_mask;
unsigned num_rb = MIN2(info->num_render_backends, 16);
unsigned rb_per_pkr = MIN2(num_rb / num_se / sh_per_se, 2);
unsigned rb_per_se = num_rb / num_se;
unsigned se_mask[4];
unsigned se;
se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask;
se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask;
se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask;
se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask;
assert(num_se == 1 || num_se == 2 || num_se == 4);
assert(sh_per_se == 1 || sh_per_se == 2);
assert(rb_per_pkr == 1 || rb_per_pkr == 2);
if (info->chip_class >= GFX7) {
unsigned raster_config_1 = *cik_raster_config_1_p;
if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) || (!se_mask[2] && !se_mask[3]))) {
raster_config_1 &= C_028354_SE_PAIR_MAP;
if (!se_mask[0] && !se_mask[1]) {
raster_config_1 |= S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_3);
} else {
raster_config_1 |= S_028354_SE_PAIR_MAP(V_028354_RASTER_CONFIG_SE_PAIR_MAP_0);
}
*cik_raster_config_1_p = raster_config_1;
}
}
for (se = 0; se < num_se; se++) {
unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se);
unsigned pkr1_mask = pkr0_mask << rb_per_pkr;
int idx = (se / 2) * 2;
raster_config_se[se] = raster_config;
if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) {
raster_config_se[se] &= C_028350_SE_MAP;
if (!se_mask[idx]) {
raster_config_se[se] |= S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_3);
} else {
raster_config_se[se] |= S_028350_SE_MAP(V_028350_RASTER_CONFIG_SE_MAP_0);
}
}
pkr0_mask &= rb_mask;
pkr1_mask &= rb_mask;
if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) {
raster_config_se[se] &= C_028350_PKR_MAP;
if (!pkr0_mask) {
raster_config_se[se] |= S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_3);
} else {
raster_config_se[se] |= S_028350_PKR_MAP(V_028350_RASTER_CONFIG_PKR_MAP_0);
}
}
if (rb_per_se >= 2) {
unsigned rb0_mask = 1 << (se * rb_per_se);
unsigned rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se[se] &= C_028350_RB_MAP_PKR0;
if (!rb0_mask) {
raster_config_se[se] |= S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se[se] |= S_028350_RB_MAP_PKR0(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
if (rb_per_se > 2) {
rb0_mask = 1 << (se * rb_per_se + rb_per_pkr);
rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se[se] &= C_028350_RB_MAP_PKR1;
if (!rb0_mask) {
raster_config_se[se] |= S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se[se] |= S_028350_RB_MAP_PKR1(V_028350_RASTER_CONFIG_RB_MAP_0);
}
}
}
}
}
}
unsigned ac_get_compute_resource_limits(struct radeon_info *info, unsigned waves_per_threadgroup,
unsigned max_waves_per_sh, unsigned threadgroups_per_cu)
{
unsigned compute_resource_limits = S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
if (info->chip_class >= GFX7) {
unsigned num_cu_per_se = info->num_good_compute_units / info->num_se;
/* Force even distribution on all SIMDs in CU if the workgroup
* size is 64. This has shown some good improvements if # of CUs
* per SE is not a multiple of 4.
*/
if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
assert(threadgroups_per_cu >= 1 && threadgroups_per_cu <= 8);
compute_resource_limits |=
S_00B854_WAVES_PER_SH(max_waves_per_sh) | S_00B854_CU_GROUP_COUNT(threadgroups_per_cu - 1);
} else {
/* GFX6 */
if (max_waves_per_sh) {
unsigned limit_div16 = DIV_ROUND_UP(max_waves_per_sh, 16);
compute_resource_limits |= S_00B854_WAVES_PER_SH_GFX6(limit_div16);
}
}
return compute_resource_limits;
}