| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "util/mesa-sha1.h" |
| #include "util/u_atomic.h" |
| #include "radv_debug.h" |
| #include "radv_private.h" |
| #include "radv_shader.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "spirv/nir_spirv.h" |
| #include "vk_util.h" |
| |
| #include <llvm-c/Core.h> |
| #include <llvm-c/TargetMachine.h> |
| |
| #include "sid.h" |
| #include "gfx9d.h" |
| #include "ac_binary.h" |
| #include "ac_llvm_util.h" |
| #include "ac_nir_to_llvm.h" |
| #include "vk_format.h" |
| #include "util/debug.h" |
| #include "ac_exp_param.h" |
| |
| static void |
| radv_pipeline_destroy(struct radv_device *device, |
| struct radv_pipeline *pipeline, |
| const VkAllocationCallbacks* allocator) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) |
| if (pipeline->shaders[i]) |
| radv_shader_variant_destroy(device, pipeline->shaders[i]); |
| |
| if (pipeline->gs_copy_shader) |
| radv_shader_variant_destroy(device, pipeline->gs_copy_shader); |
| |
| vk_free2(&device->alloc, allocator, pipeline); |
| } |
| |
| void radv_DestroyPipeline( |
| VkDevice _device, |
| VkPipeline _pipeline, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| |
| if (!_pipeline) |
| return; |
| |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| } |
| |
| static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline) |
| { |
| int i; |
| |
| for (i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (!pipeline->shaders[i]) |
| continue; |
| |
| radv_shader_dump_stats(device, pipeline->shaders[i], i, stderr); |
| } |
| } |
| |
| static uint32_t get_hash_flags(struct radv_device *device) |
| { |
| uint32_t hash_flags = 0; |
| |
| if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH) |
| hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH; |
| if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) |
| hash_flags |= RADV_HASH_SHADER_SISCHED; |
| return hash_flags; |
| } |
| |
| static VkResult |
| radv_pipeline_scratch_init(struct radv_device *device, |
| struct radv_pipeline *pipeline) |
| { |
| unsigned scratch_bytes_per_wave = 0; |
| unsigned max_waves = 0; |
| unsigned min_waves = 1; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i]) { |
| unsigned max_stage_waves = device->scratch_waves; |
| |
| scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, |
| pipeline->shaders[i]->config.scratch_bytes_per_wave); |
| |
| max_stage_waves = MIN2(max_stage_waves, |
| 4 * device->physical_device->rad_info.num_good_compute_units * |
| (256 / pipeline->shaders[i]->config.num_vgprs)); |
| max_waves = MAX2(max_waves, max_stage_waves); |
| } |
| } |
| |
| if (pipeline->shaders[MESA_SHADER_COMPUTE]) { |
| unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; |
| min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); |
| } |
| |
| if (scratch_bytes_per_wave) |
| max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave); |
| |
| if (scratch_bytes_per_wave && max_waves < min_waves) { |
| /* Not really true at this moment, but will be true on first |
| * execution. Avoid having hanging shaders. */ |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| } |
| pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; |
| pipeline->max_waves = max_waves; |
| return VK_SUCCESS; |
| } |
| |
| static uint32_t si_translate_blend_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028780_COMB_DST_PLUS_SRC; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028780_COMB_SRC_MINUS_DST; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028780_COMB_DST_MINUS_SRC; |
| case VK_BLEND_OP_MIN: |
| return V_028780_COMB_MIN_DST_SRC; |
| case VK_BLEND_OP_MAX: |
| return V_028780_COMB_MAX_DST_SRC; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_factor(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028780_BLEND_ZERO; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028780_BLEND_ONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return V_028780_BLEND_SRC_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return V_028780_BLEND_ONE_MINUS_SRC_COLOR; |
| case VK_BLEND_FACTOR_DST_COLOR: |
| return V_028780_BLEND_DST_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: |
| return V_028780_BLEND_ONE_MINUS_DST_COLOR; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028780_BLEND_SRC_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; |
| case VK_BLEND_FACTOR_DST_ALPHA: |
| return V_028780_BLEND_DST_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_DST_ALPHA; |
| case VK_BLEND_FACTOR_CONSTANT_COLOR: |
| return V_028780_BLEND_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_CONSTANT_ALPHA: |
| return V_028780_BLEND_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return V_028780_BLEND_SRC_ALPHA_SATURATE; |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| return V_028780_BLEND_SRC1_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| return V_028780_BLEND_INV_SRC1_COLOR; |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| return V_028780_BLEND_SRC1_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return V_028780_BLEND_INV_SRC1_ALPHA; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028760_OPT_COMB_ADD; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028760_OPT_COMB_SUBTRACT; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028760_OPT_COMB_REVSUBTRACT; |
| case VK_BLEND_OP_MIN: |
| return V_028760_OPT_COMB_MIN; |
| case VK_BLEND_OP_MAX: |
| return V_028760_OPT_COMB_MAX; |
| default: |
| return V_028760_OPT_COMB_BLEND_DISABLED; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 |
| : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 |
| : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE |
| : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| default: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| } |
| } |
| |
| /** |
| * Get rid of DST in the blend factors by commuting the operands: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| static void si_blend_remove_dst(unsigned *func, unsigned *src_factor, |
| unsigned *dst_factor, unsigned expected_dst, |
| unsigned replacement_src) |
| { |
| if (*src_factor == expected_dst && |
| *dst_factor == VK_BLEND_FACTOR_ZERO) { |
| *src_factor = VK_BLEND_FACTOR_ZERO; |
| *dst_factor = replacement_src; |
| |
| /* Commuting the operands requires reversing subtractions. */ |
| if (*func == VK_BLEND_OP_SUBTRACT) |
| *func = VK_BLEND_OP_REVERSE_SUBTRACT; |
| else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) |
| *func = VK_BLEND_OP_SUBTRACT; |
| } |
| } |
| |
| static bool si_blend_factor_uses_dst(unsigned factor) |
| { |
| return factor == VK_BLEND_FACTOR_DST_COLOR || |
| factor == VK_BLEND_FACTOR_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; |
| } |
| |
| static bool is_dual_src(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned si_choose_spi_color_format(VkFormat vk_format, |
| bool blend_enable, |
| bool blend_need_alpha) |
| { |
| const struct vk_format_description *desc = vk_format_description(vk_format); |
| unsigned format, ntype, swap; |
| |
| /* Alpha is needed for alpha-to-coverage. |
| * Blending may be with or without alpha. |
| */ |
| unsigned normal = 0; /* most optimal, may not support blending or export alpha */ |
| unsigned alpha = 0; /* exports alpha, but may not support blending */ |
| unsigned blend = 0; /* supports blending, but may not export alpha */ |
| unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ |
| |
| format = radv_translate_colorformat(vk_format); |
| ntype = radv_translate_color_numformat(vk_format, desc, |
| vk_format_get_first_non_void_channel(vk_format)); |
| swap = radv_translate_colorswap(vk_format, false); |
| |
| /* Choose the SPI color formats. These are required values for Stoney/RB+. |
| * Other chips have multiple choices, though they are not necessarily better. |
| */ |
| switch (format) { |
| case V_028C70_COLOR_5_6_5: |
| case V_028C70_COLOR_1_5_5_5: |
| case V_028C70_COLOR_5_5_5_1: |
| case V_028C70_COLOR_4_4_4_4: |
| case V_028C70_COLOR_10_11_11: |
| case V_028C70_COLOR_11_11_10: |
| case V_028C70_COLOR_8: |
| case V_028C70_COLOR_8_8: |
| case V_028C70_COLOR_8_8_8_8: |
| case V_028C70_COLOR_10_10_10_2: |
| case V_028C70_COLOR_2_10_10_10: |
| if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| break; |
| |
| case V_028C70_COLOR_16: |
| case V_028C70_COLOR_16_16: |
| case V_028C70_COLOR_16_16_16_16: |
| if (ntype == V_028C70_NUMBER_UNORM || |
| ntype == V_028C70_NUMBER_SNORM) { |
| /* UNORM16 and SNORM16 don't support blending */ |
| if (ntype == V_028C70_NUMBER_UNORM) |
| normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; |
| else |
| normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; |
| |
| /* Use 32 bits per channel for blending. */ |
| if (format == V_028C70_COLOR_16) { |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = V_028714_SPI_SHADER_32_R; |
| blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else if (format == V_028C70_COLOR_16_16) { |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = V_028714_SPI_SHADER_32_GR; |
| blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else /* 16_16_16_16 */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_FLOAT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32: |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = normal = V_028714_SPI_SHADER_32_R; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32: |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = normal = V_028714_SPI_SHADER_32_GR; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32_32_32: |
| case V_028C70_COLOR_8_24: |
| case V_028C70_COLOR_24_8: |
| case V_028C70_COLOR_X24_8_32_FLOAT: |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; |
| break; |
| |
| default: |
| unreachable("unhandled blend format"); |
| } |
| |
| if (blend_enable && blend_need_alpha) |
| return blend_alpha; |
| else if(blend_need_alpha) |
| return alpha; |
| else if(blend_enable) |
| return blend; |
| else |
| return normal; |
| } |
| |
| static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format) |
| { |
| unsigned i, cb_shader_mask = 0; |
| |
| for (i = 0; i < 8; i++) { |
| switch ((spi_shader_col_format >> (i * 4)) & 0xf) { |
| case V_028714_SPI_SHADER_ZERO: |
| break; |
| case V_028714_SPI_SHADER_32_R: |
| cb_shader_mask |= 0x1 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_32_GR: |
| cb_shader_mask |= 0x3 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_32_AR: |
| cb_shader_mask |= 0x9 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_FP16_ABGR: |
| case V_028714_SPI_SHADER_UNORM16_ABGR: |
| case V_028714_SPI_SHADER_SNORM16_ABGR: |
| case V_028714_SPI_SHADER_UINT16_ABGR: |
| case V_028714_SPI_SHADER_SINT16_ABGR: |
| case V_028714_SPI_SHADER_32_ABGR: |
| cb_shader_mask |= 0xf << (i * 4); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| return cb_shader_mask; |
| } |
| |
| static void |
| radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| uint32_t blend_enable, |
| uint32_t blend_need_alpha, |
| bool single_cb_enable, |
| bool blend_mrt0_is_dual_src) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| struct radv_blend_state *blend = &pipeline->graphics.blend; |
| unsigned col_format = 0; |
| |
| for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) { |
| unsigned cf; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) { |
| cf = V_028714_SPI_SHADER_ZERO; |
| } else { |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| |
| cf = si_choose_spi_color_format(attachment->format, |
| blend_enable & (1 << i), |
| blend_need_alpha & (1 << i)); |
| } |
| |
| col_format |= cf << (4 * i); |
| } |
| |
| blend->cb_shader_mask = si_get_cb_shader_mask(col_format); |
| |
| if (blend_mrt0_is_dual_src) |
| col_format |= (col_format & 0xf) << 4; |
| blend->spi_shader_col_format = col_format; |
| } |
| |
| static bool |
| format_is_int8(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].pure_integer && |
| desc->channel[channel].size == 8; |
| } |
| |
| static bool |
| format_is_int10(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| |
| if (desc->nr_channels != 4) |
| return false; |
| for (unsigned i = 0; i < 4; i++) { |
| if (desc->channel[i].pure_integer && desc->channel[i].size == 10) |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned radv_format_meta_fs_key(VkFormat format) |
| { |
| unsigned col_format = si_choose_spi_color_format(format, false, false) - 1; |
| bool is_int8 = format_is_int8(format); |
| bool is_int10 = format_is_int10(format); |
| |
| return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0); |
| } |
| |
| static void |
| radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| unsigned *is_int8, unsigned *is_int10) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| *is_int8 = 0; |
| *is_int10 = 0; |
| |
| for (unsigned i = 0; i < subpass->color_count; ++i) { |
| struct radv_render_pass_attachment *attachment; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| |
| if (format_is_int8(attachment->format)) |
| *is_int8 |= 1 << i; |
| if (format_is_int10(attachment->format)) |
| *is_int10 |= 1 << i; |
| } |
| } |
| |
| static void |
| radv_pipeline_init_blend_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; |
| struct radv_blend_state *blend = &pipeline->graphics.blend; |
| unsigned mode = V_028808_CB_NORMAL; |
| uint32_t blend_enable = 0, blend_need_alpha = 0; |
| bool blend_mrt0_is_dual_src = false; |
| int i; |
| bool single_cb_enable = false; |
| |
| if (!vkblend) |
| return; |
| |
| if (extra && extra->custom_blend_mode) { |
| single_cb_enable = true; |
| mode = extra->custom_blend_mode; |
| } |
| blend->cb_color_control = 0; |
| if (vkblend->logicOpEnable) |
| blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4)); |
| else |
| blend->cb_color_control |= S_028808_ROP3(0xcc); |
| |
| blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET1(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET2(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET3(2); |
| |
| if (vkms && vkms->alphaToCoverageEnable) { |
| blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); |
| } |
| |
| blend->cb_target_mask = 0; |
| for (i = 0; i < vkblend->attachmentCount; i++) { |
| const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; |
| unsigned blend_cntl = 0; |
| unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; |
| VkBlendOp eqRGB = att->colorBlendOp; |
| VkBlendFactor srcRGB = att->srcColorBlendFactor; |
| VkBlendFactor dstRGB = att->dstColorBlendFactor; |
| VkBlendOp eqA = att->alphaBlendOp; |
| VkBlendFactor srcA = att->srcAlphaBlendFactor; |
| VkBlendFactor dstA = att->dstAlphaBlendFactor; |
| |
| blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| |
| if (!att->colorWriteMask) |
| continue; |
| |
| blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); |
| if (!att->blendEnable) { |
| blend->cb_blend_control[i] = blend_cntl; |
| continue; |
| } |
| |
| if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) |
| if (i == 0) |
| blend_mrt0_is_dual_src = true; |
| |
| if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { |
| srcRGB = VK_BLEND_FACTOR_ONE; |
| dstRGB = VK_BLEND_FACTOR_ONE; |
| } |
| if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { |
| srcA = VK_BLEND_FACTOR_ONE; |
| dstA = VK_BLEND_FACTOR_ONE; |
| } |
| |
| /* Blending optimizations for RB+. |
| * These transformations don't change the behavior. |
| * |
| * First, get rid of DST in the blend factors: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_ALPHA, |
| VK_BLEND_FACTOR_SRC_ALPHA); |
| |
| /* Look up the ideal settings from tables. */ |
| srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); |
| dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); |
| srcA_opt = si_translate_blend_opt_factor(srcA, true); |
| dstA_opt = si_translate_blend_opt_factor(dstA, true); |
| |
| /* Handle interdependencies. */ |
| if (si_blend_factor_uses_dst(srcRGB)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| if (si_blend_factor_uses_dst(srcA)) |
| dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && |
| (dstRGB == VK_BLEND_FACTOR_ZERO || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| |
| /* Set the final value. */ |
| blend->sx_mrt_blend_opt[i] = |
| S_028760_COLOR_SRC_OPT(srcRGB_opt) | |
| S_028760_COLOR_DST_OPT(dstRGB_opt) | |
| S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | |
| S_028760_ALPHA_SRC_OPT(srcA_opt) | |
| S_028760_ALPHA_DST_OPT(dstA_opt) | |
| S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); |
| blend_cntl |= S_028780_ENABLE(1); |
| |
| blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); |
| blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); |
| blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); |
| if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { |
| blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); |
| blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); |
| blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); |
| blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); |
| } |
| blend->cb_blend_control[i] = blend_cntl; |
| |
| blend_enable |= 1 << i; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| blend_need_alpha |= 1 << i; |
| } |
| for (i = vkblend->attachmentCount; i < 8; i++) { |
| blend->cb_blend_control[i] = 0; |
| blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| } |
| |
| /* disable RB+ for now */ |
| if (pipeline->device->physical_device->has_rbplus) |
| blend->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); |
| |
| if (blend->cb_target_mask) |
| blend->cb_color_control |= S_028808_MODE(mode); |
| else |
| blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); |
| |
| radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, |
| blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src); |
| } |
| |
| static uint32_t si_translate_stencil_op(enum VkStencilOp op) |
| { |
| switch (op) { |
| case VK_STENCIL_OP_KEEP: |
| return V_02842C_STENCIL_KEEP; |
| case VK_STENCIL_OP_ZERO: |
| return V_02842C_STENCIL_ZERO; |
| case VK_STENCIL_OP_REPLACE: |
| return V_02842C_STENCIL_REPLACE_TEST; |
| case VK_STENCIL_OP_INCREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_ADD_CLAMP; |
| case VK_STENCIL_OP_DECREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_SUB_CLAMP; |
| case VK_STENCIL_OP_INVERT: |
| return V_02842C_STENCIL_INVERT; |
| case VK_STENCIL_OP_INCREMENT_AND_WRAP: |
| return V_02842C_STENCIL_ADD_WRAP; |
| case VK_STENCIL_OP_DECREMENT_AND_WRAP: |
| return V_02842C_STENCIL_SUB_WRAP; |
| default: |
| return 0; |
| } |
| } |
| static void |
| radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; |
| struct radv_depth_stencil_state *ds = &pipeline->graphics.ds; |
| |
| if (!vkds) |
| return; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED) |
| return; |
| |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment; |
| bool has_depth_attachment = vk_format_is_depth(attachment->format); |
| bool has_stencil_attachment = vk_format_is_stencil(attachment->format); |
| |
| if (has_depth_attachment) { |
| ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) | |
| S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) | |
| S_028800_ZFUNC(vkds->depthCompareOp) | |
| S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0); |
| } |
| |
| if (has_stencil_attachment && vkds->stencilTestEnable) { |
| ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); |
| ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp); |
| ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp)); |
| |
| ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp); |
| ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp)); |
| } |
| |
| if (extra) { |
| |
| ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); |
| ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); |
| |
| ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize); |
| ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace); |
| ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace); |
| ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); |
| ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); |
| } |
| } |
| |
| static uint32_t si_translate_fill(VkPolygonMode func) |
| { |
| switch(func) { |
| case VK_POLYGON_MODE_FILL: |
| return V_028814_X_DRAW_TRIANGLES; |
| case VK_POLYGON_MODE_LINE: |
| return V_028814_X_DRAW_LINES; |
| case VK_POLYGON_MODE_POINT: |
| return V_028814_X_DRAW_POINTS; |
| default: |
| assert(0); |
| return V_028814_X_DRAW_POINTS; |
| } |
| } |
| static void |
| radv_pipeline_init_raster_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; |
| struct radv_raster_state *raster = &pipeline->graphics.raster; |
| |
| raster->spi_interp_control = |
| S_0286D4_FLAT_SHADE_ENA(1) | |
| S_0286D4_PNT_SPRITE_ENA(1) | |
| S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | |
| S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | |
| S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | |
| S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | |
| S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom |
| |
| |
| raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) | |
| S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. |
| S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | |
| S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | |
| S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) | |
| S_028810_DX_LINEAR_ATTR_CLIP_ENA(1); |
| |
| raster->pa_su_vtx_cntl = |
| S_028BE4_PIX_CENTER(1) | // TODO verify |
| S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | |
| S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH); |
| |
| raster->pa_su_sc_mode_cntl = |
| S_028814_FACE(vkraster->frontFace) | |
| S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) | |
| S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) | |
| S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) | |
| S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0); |
| |
| } |
| |
| static void |
| radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; |
| struct radv_multisample_state *ms = &pipeline->graphics.ms; |
| unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; |
| int ps_iter_samples = 1; |
| uint32_t mask = 0xffff; |
| |
| if (vkms) |
| ms->num_samples = vkms->rasterizationSamples; |
| else |
| ms->num_samples = 1; |
| |
| if (vkms && vkms->sampleShadingEnable) { |
| ps_iter_samples = ceil(vkms->minSampleShading * ms->num_samples); |
| } else if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.force_persample) { |
| ps_iter_samples = ms->num_samples; |
| } |
| |
| ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1); |
| ms->pa_sc_aa_config = 0; |
| ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | |
| S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); |
| ms->pa_sc_mode_cntl_1 = |
| S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes |
| S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | |
| /* always 1: */ |
| S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | |
| S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_TILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | |
| S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | |
| S_028A4C_FORCE_EOV_REZ_ENABLE(1); |
| ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9); |
| |
| if (ms->num_samples > 1) { |
| unsigned log_samples = util_logbase2(ms->num_samples); |
| unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples)); |
| ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); |
| ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */ |
| ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) | |
| S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | |
| S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | |
| S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); |
| ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | |
| S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) | |
| S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */ |
| ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); |
| } |
| |
| const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order = |
| vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD); |
| if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) { |
| ms->pa_sc_mode_cntl_1 |= S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(1) | |
| S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7); |
| } |
| |
| if (vkms && vkms->pSampleMask) { |
| mask = vkms->pSampleMask[0] & 0xffff; |
| } |
| |
| ms->pa_sc_aa_mask[0] = mask | (mask << 16); |
| ms->pa_sc_aa_mask[1] = mask | (mask << 16); |
| } |
| |
| static bool |
| radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return false; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return true; |
| default: |
| unreachable("unhandled primitive type"); |
| } |
| } |
| |
| static uint32_t |
| si_translate_prim(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| return V_008958_DI_PT_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| return V_008958_DI_PT_LINELIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| return V_008958_DI_PT_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| return V_008958_DI_PT_TRILIST; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| return V_008958_DI_PT_TRISTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| return V_008958_DI_PT_TRIFAN; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINELIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINESTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRILIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRISTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_008958_DI_PT_PATCH; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_gl_prim_to_gs_out(unsigned gl_prim) |
| { |
| switch (gl_prim) { |
| case 0: /* GL_POINTS */ |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case 1: /* GL_LINES */ |
| case 3: /* GL_LINE_STRIP */ |
| case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ |
| case 0x8E7A: /* GL_ISOLINES */ |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| |
| case 4: /* GL_TRIANGLES */ |
| case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ |
| case 5: /* GL_TRIANGLE_STRIP */ |
| case 7: /* GL_QUADS */ |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static unsigned si_map_swizzle(unsigned swizzle) |
| { |
| switch (swizzle) { |
| case VK_SWIZZLE_Y: |
| return V_008F0C_SQ_SEL_Y; |
| case VK_SWIZZLE_Z: |
| return V_008F0C_SQ_SEL_Z; |
| case VK_SWIZZLE_W: |
| return V_008F0C_SQ_SEL_W; |
| case VK_SWIZZLE_0: |
| return V_008F0C_SQ_SEL_0; |
| case VK_SWIZZLE_1: |
| return V_008F0C_SQ_SEL_1; |
| default: /* VK_SWIZZLE_X */ |
| return V_008F0C_SQ_SEL_X; |
| } |
| } |
| |
| static void |
| radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL; |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; |
| |
| pipeline->dynamic_state = default_dynamic_state; |
| |
| if (pCreateInfo->pDynamicState) { |
| /* Remove all of the states that are marked as dynamic */ |
| uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; |
| for (uint32_t s = 0; s < count; s++) |
| states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); |
| } |
| |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pViewportState is [...] NULL if the pipeline |
| * has rasterization disabled. |
| */ |
| if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { |
| assert(pCreateInfo->pViewportState); |
| |
| dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; |
| if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { |
| typed_memcpy(dynamic->viewport.viewports, |
| pCreateInfo->pViewportState->pViewports, |
| pCreateInfo->pViewportState->viewportCount); |
| } |
| |
| dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; |
| if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { |
| typed_memcpy(dynamic->scissor.scissors, |
| pCreateInfo->pViewportState->pScissors, |
| pCreateInfo->pViewportState->scissorCount); |
| } |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->depth_bias.bias = |
| pCreateInfo->pRasterizationState->depthBiasConstantFactor; |
| dynamic->depth_bias.clamp = |
| pCreateInfo->pRasterizationState->depthBiasClamp; |
| dynamic->depth_bias.slope = |
| pCreateInfo->pRasterizationState->depthBiasSlopeFactor; |
| } |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pColorBlendState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is |
| * created against does not use any color attachments. |
| */ |
| bool uses_color_att = false; |
| for (unsigned i = 0; i < subpass->color_count; ++i) { |
| if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { |
| uses_color_att = true; |
| break; |
| } |
| } |
| |
| if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) { |
| assert(pCreateInfo->pColorBlendState); |
| typed_memcpy(dynamic->blend_constants, |
| pCreateInfo->pColorBlendState->blendConstants, 4); |
| } |
| |
| /* If there is no depthstencil attachment, then don't read |
| * pDepthStencilState. The Vulkan spec states that pDepthStencilState may |
| * be NULL in this case. Even if pDepthStencilState is non-NULL, there is |
| * no need to override the depthstencil defaults in |
| * radv_pipeline::dynamic_state when there is no depthstencil attachment. |
| * |
| * Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pDepthStencilState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is created |
| * against does not use a depth/stencil attachment. |
| */ |
| if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && |
| subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { |
| assert(pCreateInfo->pDepthStencilState); |
| |
| if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { |
| dynamic->depth_bounds.min = |
| pCreateInfo->pDepthStencilState->minDepthBounds; |
| dynamic->depth_bounds.max = |
| pCreateInfo->pDepthStencilState->maxDepthBounds; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { |
| dynamic->stencil_compare_mask.front = |
| pCreateInfo->pDepthStencilState->front.compareMask; |
| dynamic->stencil_compare_mask.back = |
| pCreateInfo->pDepthStencilState->back.compareMask; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { |
| dynamic->stencil_write_mask.front = |
| pCreateInfo->pDepthStencilState->front.writeMask; |
| dynamic->stencil_write_mask.back = |
| pCreateInfo->pDepthStencilState->back.writeMask; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { |
| dynamic->stencil_reference.front = |
| pCreateInfo->pDepthStencilState->front.reference; |
| dynamic->stencil_reference.back = |
| pCreateInfo->pDepthStencilState->back.reference; |
| } |
| } |
| |
| pipeline->dynamic_state_mask = states; |
| } |
| |
| static void calculate_gfx9_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| struct radv_pipeline *pipeline) |
| { |
| struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; |
| struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ? |
| &gs_info->tes.es_info : &gs_info->vs.es_info; |
| unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); |
| bool uses_adjacency; |
| switch(pCreateInfo->pInputAssemblyState->topology) { |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| uses_adjacency = false; |
| break; |
| default: |
| uses_adjacency = false; |
| break; |
| } |
| |
| /* All these are in dwords: */ |
| /* We can't allow using the whole LDS, because GS waves compete with |
| * other shader stages for LDS space. */ |
| const unsigned max_lds_size = 8 * 1024; |
| const unsigned esgs_itemsize = es_info->esgs_itemsize / 4; |
| unsigned esgs_lds_size; |
| |
| /* All these are per subgroup: */ |
| const unsigned max_out_prims = 32 * 1024; |
| const unsigned max_es_verts = 255; |
| const unsigned ideal_gs_prims = 64; |
| unsigned max_gs_prims, gs_prims; |
| unsigned min_es_verts, es_verts, worst_case_es_verts; |
| |
| if (uses_adjacency || gs_num_invocations > 1) |
| max_gs_prims = 127 / gs_num_invocations; |
| else |
| max_gs_prims = 255; |
| |
| /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. |
| * Make sure we don't go over the maximum value. |
| */ |
| if (gs_info->gs.vertices_out > 0) { |
| max_gs_prims = MIN2(max_gs_prims, |
| max_out_prims / |
| (gs_info->gs.vertices_out * gs_num_invocations)); |
| } |
| assert(max_gs_prims > 0); |
| |
| /* If the primitive has adjacency, halve the number of vertices |
| * that will be reused in multiple primitives. |
| */ |
| min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); |
| |
| gs_prims = MIN2(ideal_gs_prims, max_gs_prims); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); |
| |
| /* Compute ESGS LDS size based on the worst case number of ES vertices |
| * needed to create the target number of GS prims per subgroup. |
| */ |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| |
| /* If total LDS usage is too big, refactor partitions based on ratio |
| * of ESGS item sizes. |
| */ |
| if (esgs_lds_size > max_lds_size) { |
| /* Our target GS Prims Per Subgroup was too large. Calculate |
| * the maximum number of GS Prims Per Subgroup that will fit |
| * into LDS, capped by the maximum that the hardware can support. |
| */ |
| gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), |
| max_gs_prims); |
| assert(gs_prims > 0); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, |
| max_es_verts); |
| |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| assert(esgs_lds_size <= max_lds_size); |
| } |
| |
| /* Now calculate remaining ESGS information. */ |
| if (esgs_lds_size) |
| es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); |
| else |
| es_verts = max_es_verts; |
| |
| /* Vertices for adjacency primitives are not always reused, so restore |
| * it for ES_VERTS_PER_SUBGRP. |
| */ |
| min_es_verts = gs_info->gs.vertices_in; |
| |
| /* For normal primitives, the VGT only checks if they are past the ES |
| * verts per subgroup after allocating a full GS primitive and if they |
| * are, kick off a new subgroup. But if those additional ES verts are |
| * unique (e.g. not reused) we need to make sure there is enough LDS |
| * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. |
| */ |
| es_verts -= min_es_verts - 1; |
| |
| uint32_t es_verts_per_subgroup = es_verts; |
| uint32_t gs_prims_per_subgroup = gs_prims; |
| uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; |
| uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; |
| pipeline->graphics.gs.lds_size = align(esgs_lds_size, 128) / 128; |
| pipeline->graphics.gs.vgt_gs_onchip_cntl = |
| S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) | |
| S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup); |
| pipeline->graphics.gs.vgt_gs_max_prims_per_subgroup = |
| S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup); |
| pipeline->graphics.gs.vgt_esgs_ring_itemsize = esgs_itemsize; |
| assert(max_prims_per_subgroup <= max_out_prims); |
| } |
| |
| static void |
| calculate_gs_ring_sizes(struct radv_pipeline *pipeline) |
| { |
| struct radv_device *device = pipeline->device; |
| unsigned num_se = device->physical_device->rad_info.max_se; |
| unsigned wave_size = 64; |
| unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ |
| unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */ |
| unsigned alignment = 256 * num_se; |
| /* The maximum size is 63.999 MB per SE. */ |
| unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; |
| struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; |
| struct ac_es_output_info *es_info; |
| if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
| es_info = radv_pipeline_has_tess(pipeline) ? &gs_info->tes.es_info : &gs_info->vs.es_info; |
| else |
| es_info = radv_pipeline_has_tess(pipeline) ? |
| &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info : |
| &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info; |
| |
| /* Calculate the minimum size. */ |
| unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse * |
| wave_size, alignment); |
| /* These are recommended sizes, not minimum sizes. */ |
| unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * |
| es_info->esgs_itemsize * gs_info->gs.vertices_in; |
| unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * |
| gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1); |
| |
| min_esgs_ring_size = align(min_esgs_ring_size, alignment); |
| esgs_ring_size = align(esgs_ring_size, alignment); |
| gsvs_ring_size = align(gsvs_ring_size, alignment); |
| |
| if (pipeline->device->physical_device->rad_info.chip_class <= VI) |
| pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); |
| |
| pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); |
| } |
| |
| static void si_multiwave_lds_size_workaround(struct radv_device *device, |
| unsigned *lds_size) |
| { |
| /* SPI barrier management bug: |
| * Make sure we have at least 4k of LDS in use to avoid the bug. |
| * It applies to workgroup sizes of more than one wavefront. |
| */ |
| if (device->physical_device->rad_info.family == CHIP_BONAIRE || |
| device->physical_device->rad_info.family == CHIP_KABINI || |
| device->physical_device->rad_info.family == CHIP_MULLINS) |
| *lds_size = MAX2(*lds_size, 8); |
| } |
| |
| struct radv_shader_variant * |
| radv_get_vertex_shader(struct radv_pipeline *pipeline) |
| { |
| if (pipeline->shaders[MESA_SHADER_VERTEX]) |
| return pipeline->shaders[MESA_SHADER_VERTEX]; |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) |
| return pipeline->shaders[MESA_SHADER_TESS_CTRL]; |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } |
| |
| static struct radv_shader_variant * |
| radv_get_tess_eval_shader(struct radv_pipeline *pipeline) |
| { |
| if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) |
| return pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } |
| |
| static void |
| calculate_tess_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; |
| unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs; |
| unsigned num_tcs_patch_outputs; |
| unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size; |
| unsigned input_patch_size, output_patch_size, output_patch0_offset; |
| unsigned lds_size, hardware_lds_size; |
| unsigned perpatch_output_offset; |
| unsigned num_patches; |
| struct radv_tessellation_state *tess = &pipeline->graphics.tess; |
| |
| /* This calculates how shader inputs and outputs among VS, TCS, and TES |
| * are laid out in LDS. */ |
| num_tcs_inputs = util_last_bit64(radv_get_vertex_shader(pipeline)->info.vs.outputs_written); |
| |
| num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written |
| num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT |
| num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written); |
| |
| /* Ensure that we only need one wave per SIMD so we don't need to check |
| * resource usage. Also ensures that the number of tcs in and out |
| * vertices per threadgroup are at most 256. |
| */ |
| input_vertex_size = num_tcs_inputs * 16; |
| output_vertex_size = num_tcs_outputs * 16; |
| |
| input_patch_size = num_tcs_input_cp * input_vertex_size; |
| |
| pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size; |
| output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16; |
| /* Ensure that we only need one wave per SIMD so we don't need to check |
| * resource usage. Also ensures that the number of tcs in and out |
| * vertices per threadgroup are at most 256. |
| */ |
| num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4; |
| |
| /* Make sure that the data fits in LDS. This assumes the shaders only |
| * use LDS for the inputs and outputs. |
| */ |
| hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768; |
| num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size)); |
| |
| /* Make sure the output data fits in the offchip buffer */ |
| num_patches = MIN2(num_patches, |
| (pipeline->device->tess_offchip_block_dw_size * 4) / |
| output_patch_size); |
| |
| /* Not necessary for correctness, but improves performance. The |
| * specific value is taken from the proprietary driver. |
| */ |
| num_patches = MIN2(num_patches, 40); |
| |
| /* SI bug workaround - limit LS-HS threadgroups to only one wave. */ |
| if (pipeline->device->physical_device->rad_info.chip_class == SI) { |
| unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp); |
| num_patches = MIN2(num_patches, one_wave); |
| } |
| |
| output_patch0_offset = input_patch_size * num_patches; |
| perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size; |
| |
| lds_size = output_patch0_offset + output_patch_size * num_patches; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= CIK) { |
| assert(lds_size <= 65536); |
| lds_size = align(lds_size, 512) / 512; |
| } else { |
| assert(lds_size <= 32768); |
| lds_size = align(lds_size, 256) / 256; |
| } |
| si_multiwave_lds_size_workaround(pipeline->device, &lds_size); |
| |
| tess->lds_size = lds_size; |
| |
| tess->tcs_in_layout = (input_patch_size / 4) | |
| ((input_vertex_size / 4) << 13); |
| tess->tcs_out_layout = (output_patch_size / 4) | |
| ((output_vertex_size / 4) << 13); |
| tess->tcs_out_offsets = (output_patch0_offset / 16) | |
| ((perpatch_output_offset / 16) << 16); |
| tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) | |
| (num_tcs_output_cp << 9) | num_patches; |
| |
| tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | |
| S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | |
| S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); |
| tess->num_patches = num_patches; |
| tess->num_tcs_input_cp = num_tcs_input_cp; |
| |
| struct radv_shader_variant *tes = radv_get_tess_eval_shader(pipeline); |
| unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; |
| |
| switch (tes->info.tes.primitive_mode) { |
| case GL_TRIANGLES: |
| type = V_028B6C_TESS_TRIANGLE; |
| break; |
| case GL_QUADS: |
| type = V_028B6C_TESS_QUAD; |
| break; |
| case GL_ISOLINES: |
| type = V_028B6C_TESS_ISOLINE; |
| break; |
| } |
| |
| switch (tes->info.tes.spacing) { |
| case TESS_SPACING_EQUAL: |
| partitioning = V_028B6C_PART_INTEGER; |
| break; |
| case TESS_SPACING_FRACTIONAL_ODD: |
| partitioning = V_028B6C_PART_FRAC_ODD; |
| break; |
| case TESS_SPACING_FRACTIONAL_EVEN: |
| partitioning = V_028B6C_PART_FRAC_EVEN; |
| break; |
| default: |
| break; |
| } |
| |
| bool ccw = tes->info.tes.ccw; |
| const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state = |
| vk_find_struct_const(pCreateInfo->pTessellationState, |
| PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR); |
| |
| if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR) |
| ccw = !ccw; |
| |
| if (tes->info.tes.point_mode) |
| topology = V_028B6C_OUTPUT_POINT; |
| else if (tes->info.tes.primitive_mode == GL_ISOLINES) |
| topology = V_028B6C_OUTPUT_LINE; |
| else if (ccw) |
| topology = V_028B6C_OUTPUT_TRIANGLE_CCW; |
| else |
| topology = V_028B6C_OUTPUT_TRIANGLE_CW; |
| |
| if (pipeline->device->has_distributed_tess) { |
| if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || |
| pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; |
| else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; |
| } else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; |
| |
| tess->tf_param = S_028B6C_TYPE(type) | |
| S_028B6C_PARTITIONING(partitioning) | |
| S_028B6C_TOPOLOGY(topology) | |
| S_028B6C_DISTRIBUTION_MODE(distribution_mode); |
| } |
| |
| static const struct radv_prim_vertex_count prim_size_table[] = { |
| [V_008958_DI_PT_NONE] = {0, 0}, |
| [V_008958_DI_PT_POINTLIST] = {1, 1}, |
| [V_008958_DI_PT_LINELIST] = {2, 2}, |
| [V_008958_DI_PT_LINESTRIP] = {2, 1}, |
| [V_008958_DI_PT_TRILIST] = {3, 3}, |
| [V_008958_DI_PT_TRIFAN] = {3, 1}, |
| [V_008958_DI_PT_TRISTRIP] = {3, 1}, |
| [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, |
| [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, |
| [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, |
| [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, |
| [V_008958_DI_PT_RECTLIST] = {3, 3}, |
| [V_008958_DI_PT_LINELOOP] = {2, 1}, |
| [V_008958_DI_PT_POLYGON] = {3, 1}, |
| [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, |
| }; |
| |
| static uint32_t si_vgt_gs_mode(struct radv_shader_variant *gs, |
| enum chip_class chip_class) |
| { |
| unsigned gs_max_vert_out = gs->info.gs.vertices_out; |
| unsigned cut_mode; |
| |
| if (gs_max_vert_out <= 128) { |
| cut_mode = V_028A40_GS_CUT_128; |
| } else if (gs_max_vert_out <= 256) { |
| cut_mode = V_028A40_GS_CUT_256; |
| } else if (gs_max_vert_out <= 512) { |
| cut_mode = V_028A40_GS_CUT_512; |
| } else { |
| assert(gs_max_vert_out <= 1024); |
| cut_mode = V_028A40_GS_CUT_1024; |
| } |
| |
| return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | |
| S_028A40_CUT_MODE(cut_mode)| |
| S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) | |
| S_028A40_GS_WRITE_OPTIMIZE(1) | |
| S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0); |
| } |
| |
| static struct ac_vs_output_info *get_vs_output_info(struct radv_pipeline *pipeline) |
| { |
| if (radv_pipeline_has_gs(pipeline)) |
| return &pipeline->gs_copy_shader->info.vs.outinfo; |
| else if (radv_pipeline_has_tess(pipeline)) |
| return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo; |
| else |
| return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo; |
| } |
| |
| static void calculate_vgt_gs_mode(struct radv_pipeline *pipeline) |
| { |
| struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| |
| pipeline->graphics.vgt_primitiveid_en = false; |
| pipeline->graphics.vgt_gs_mode = 0; |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| pipeline->graphics.vgt_gs_mode = si_vgt_gs_mode(pipeline->shaders[MESA_SHADER_GEOMETRY], |
| pipeline->device->physical_device->rad_info.chip_class); |
| } else if (outinfo->export_prim_id) { |
| pipeline->graphics.vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); |
| pipeline->graphics.vgt_primitiveid_en = true; |
| } |
| } |
| |
| static void calculate_pa_cl_vs_out_cntl(struct radv_pipeline *pipeline) |
| { |
| struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| |
| bool misc_vec_ena = outinfo->writes_pointsize || |
| outinfo->writes_layer || |
| outinfo->writes_viewport_index; |
| pipeline->graphics.pa_cl_vs_out_cntl = |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| cull_dist_mask << 8 | |
| clip_dist_mask; |
| |
| } |
| |
| static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade) |
| { |
| uint32_t ps_input_cntl; |
| if (offset <= AC_EXP_PARAM_OFFSET_31) { |
| ps_input_cntl = S_028644_OFFSET(offset); |
| if (flat_shade) |
| ps_input_cntl |= S_028644_FLAT_SHADE(1); |
| } else { |
| /* The input is a DEFAULT_VAL constant. */ |
| assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && |
| offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); |
| offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; |
| ps_input_cntl = S_028644_OFFSET(0x20) | |
| S_028644_DEFAULT_VAL(offset); |
| } |
| return ps_input_cntl; |
| } |
| |
| static void calculate_ps_inputs(struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *ps; |
| struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| |
| ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| |
| unsigned ps_offset = 0; |
| |
| if (ps->info.fs.prim_id_input) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) { |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); |
| ++ps_offset; |
| } |
| } |
| |
| if (ps->info.fs.layer_input) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); |
| else |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true); |
| ++ps_offset; |
| } |
| |
| if (ps->info.fs.has_pcoord) { |
| unsigned val; |
| val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); |
| pipeline->graphics.ps_input_cntl[ps_offset] = val; |
| ps_offset++; |
| } |
| |
| for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) { |
| unsigned vs_offset; |
| bool flat_shade; |
| if (!(ps->info.fs.input_mask & (1u << i))) |
| continue; |
| |
| vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; |
| if (vs_offset == AC_EXP_PARAM_UNDEFINED) { |
| pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); |
| ++ps_offset; |
| continue; |
| } |
| |
| flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset)); |
| |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade); |
| ++ps_offset; |
| } |
| |
| pipeline->graphics.ps_input_cntl_num = ps_offset; |
| } |
| |
| static void |
| radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders) |
| { |
| nir_shader* ordered_shaders[MESA_SHADER_STAGES]; |
| int shader_count = 0; |
| |
| if(shaders[MESA_SHADER_FRAGMENT]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT]; |
| } |
| if(shaders[MESA_SHADER_GEOMETRY]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY]; |
| } |
| if(shaders[MESA_SHADER_TESS_EVAL]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL]; |
| } |
| if(shaders[MESA_SHADER_TESS_CTRL]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL]; |
| } |
| if(shaders[MESA_SHADER_VERTEX]) { |
| ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX]; |
| } |
| |
| for (int i = 1; i < shader_count; ++i) { |
| nir_remove_dead_variables(ordered_shaders[i], |
| nir_var_shader_out); |
| nir_remove_dead_variables(ordered_shaders[i - 1], |
| nir_var_shader_in); |
| |
| bool progress = nir_remove_unused_varyings(ordered_shaders[i], |
| ordered_shaders[i - 1]); |
| |
| if (progress) { |
| nir_lower_global_vars_to_local(ordered_shaders[i]); |
| radv_optimize_nir(ordered_shaders[i]); |
| nir_lower_global_vars_to_local(ordered_shaders[i - 1]); |
| radv_optimize_nir(ordered_shaders[i - 1]); |
| } |
| } |
| } |
| |
| |
| static struct radv_pipeline_key |
| radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| bool has_view_index) |
| { |
| const VkPipelineVertexInputStateCreateInfo *input_state = |
| pCreateInfo->pVertexInputState; |
| struct radv_pipeline_key key; |
| memset(&key, 0, sizeof(key)); |
| |
| key.has_multiview_view_index = has_view_index; |
| |
| for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { |
| unsigned binding; |
| binding = input_state->pVertexAttributeDescriptions[i].binding; |
| if (input_state->pVertexBindingDescriptions[binding].inputRate) |
| key.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location; |
| } |
| |
| if (pCreateInfo->pTessellationState) |
| key.tess_input_vertices = pCreateInfo->pTessellationState->patchControlPoints; |
| |
| |
| if (pCreateInfo->pMultisampleState && |
| pCreateInfo->pMultisampleState->rasterizationSamples > 1) |
| key.multisample = true; |
| |
| key.col_format = pipeline->graphics.blend.spi_shader_col_format; |
| if (pipeline->device->physical_device->rad_info.chip_class < VI) |
| radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10); |
| |
| return key; |
| } |
| |
| static void |
| radv_fill_shader_keys(struct ac_shader_variant_key *keys, |
| const struct radv_pipeline_key *key, |
| nir_shader **nir) |
| { |
| keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs; |
| |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| keys[MESA_SHADER_VERTEX].vs.as_ls = true; |
| keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices; |
| keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode; |
| |
| keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); |
| } |
| |
| if (nir[MESA_SHADER_GEOMETRY]) { |
| if (nir[MESA_SHADER_TESS_CTRL]) |
| keys[MESA_SHADER_TESS_EVAL].tes.as_es = true; |
| else |
| keys[MESA_SHADER_VERTEX].vs.as_es = true; |
| } |
| |
| for(int i = 0; i < MESA_SHADER_STAGES; ++i) |
| keys[i].has_multiview_view_index = key->has_multiview_view_index; |
| |
| keys[MESA_SHADER_FRAGMENT].fs.multisample = key->multisample; |
| keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format; |
| keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8; |
| keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10; |
| } |
| |
| static |
| void radv_create_shaders(struct radv_pipeline *pipeline, |
| struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| struct radv_pipeline_key key, |
| const VkPipelineShaderStageCreateInfo **pStages) |
| { |
| struct radv_shader_module fs_m = {0}; |
| struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; |
| nir_shader *nir[MESA_SHADER_STAGES] = {0}; |
| void *codes[MESA_SHADER_STAGES] = {0}; |
| unsigned code_sizes[MESA_SHADER_STAGES] = {0}; |
| struct ac_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{0}}}}; |
| unsigned char hash[20], gs_copy_hash[20]; |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pStages[i]) { |
| modules[i] = radv_shader_module_from_handle(pStages[i]->module); |
| if (modules[i]->nir) |
| _mesa_sha1_compute(modules[i]->nir->info.name, |
| strlen(modules[i]->nir->info.name), |
| modules[i]->sha1); |
| } |
| } |
| |
| radv_hash_shaders(hash, pStages, pipeline->layout, &key, get_hash_flags(device)); |
| memcpy(gs_copy_hash, hash, 20); |
| gs_copy_hash[0] ^= 1; |
| |
| if (modules[MESA_SHADER_GEOMETRY]) { |
| struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; |
| radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants); |
| pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY]; |
| } |
| |
| if (radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders) && |
| (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i]) |
| pipeline->active_stages |= mesa_to_vk_shader_stage(i); |
| } |
| return; |
| } |
| |
| if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) { |
| nir_builder fs_b; |
| nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); |
| fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs"); |
| fs_m.nir = fs_b.shader; |
| modules[MESA_SHADER_FRAGMENT] = &fs_m; |
| } |
| |
| /* Determine first and last stage. */ |
| unsigned first = MESA_SHADER_STAGES; |
| unsigned last = 0; |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (!pStages[i]) |
| continue; |
| if (first == MESA_SHADER_STAGES) |
| first = i; |
| last = i; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { |
| const VkPipelineShaderStageCreateInfo *stage = pStages[i]; |
| |
| if (!modules[i]) |
| continue; |
| |
| nir[i] = radv_shader_compile_to_nir(device, modules[i], |
| stage ? stage->pName : "main", i, |
| stage ? stage->pSpecializationInfo : NULL); |
| pipeline->active_stages |= mesa_to_vk_shader_stage(i); |
| |
| /* We don't want to alter meta shaders IR directly so clone it |
| * first. |
| */ |
| if (nir[i]->info.name) { |
| nir[i] = nir_shader_clone(NULL, nir[i]); |
| } |
| |
| if (first != last) { |
| nir_variable_mode mask = 0; |
| |
| if (i != first) |
| mask = mask | nir_var_shader_in; |
| |
| if (i != last) |
| mask = mask | nir_var_shader_out; |
| |
| nir_lower_io_to_scalar_early(nir[i], mask); |
| radv_optimize_nir(nir[i]); |
| } |
| } |
| |
| if (nir[MESA_SHADER_TESS_CTRL]) { |
| nir_lower_tes_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out); |
| } |
| |
| radv_link_shaders(pipeline, nir); |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) |
| continue; |
| |
| if (modules[i]) |
| nir_print_shader(nir[i], stderr); |
| } |
| |
| radv_fill_shader_keys(keys, &key, nir); |
| |
| if (nir[MESA_SHADER_FRAGMENT]) { |
| if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) { |
| pipeline->shaders[MESA_SHADER_FRAGMENT] = |
| radv_shader_variant_create(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1, |
| pipeline->layout, keys + MESA_SHADER_FRAGMENT, |
| &codes[MESA_SHADER_FRAGMENT], &code_sizes[MESA_SHADER_FRAGMENT]); |
| } |
| |
| /* TODO: These are no longer used as keys we should refactor this */ |
| keys[MESA_SHADER_VERTEX].vs.export_prim_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input; |
| keys[MESA_SHADER_TESS_EVAL].tes.export_prim_id = |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input; |
| } |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) { |
| if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) { |
| struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; |
| struct ac_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; |
| key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; |
| pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_create(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2, |
| pipeline->layout, |
| &key, &codes[MESA_SHADER_TESS_CTRL], |
| &code_sizes[MESA_SHADER_TESS_CTRL]); |
| } |
| modules[MESA_SHADER_VERTEX] = NULL; |
| } |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) { |
| gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) { |
| struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; |
| pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_create(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2, |
| pipeline->layout, |
| &keys[pre_stage] , &codes[MESA_SHADER_GEOMETRY], |
| &code_sizes[MESA_SHADER_GEOMETRY]); |
| } |
| modules[pre_stage] = NULL; |
| } |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if(modules[i] && !pipeline->shaders[i]) { |
| pipeline->shaders[i] = radv_shader_variant_create(device, modules[i], &nir[i], 1, |
| pipeline->layout, |
| keys + i, &codes[i], |
| &code_sizes[i]); |
| } |
| } |
| |
| if(modules[MESA_SHADER_GEOMETRY]) { |
| void *gs_copy_code = NULL; |
| unsigned gs_copy_code_size = 0; |
| if (!pipeline->gs_copy_shader) { |
| pipeline->gs_copy_shader = radv_create_gs_copy_shader( |
| device, nir[MESA_SHADER_GEOMETRY], &gs_copy_code, |
| &gs_copy_code_size, |
| keys[MESA_SHADER_GEOMETRY].has_multiview_view_index); |
| } |
| |
| if (pipeline->gs_copy_shader) { |
| void *code[MESA_SHADER_STAGES] = {0}; |
| unsigned code_size[MESA_SHADER_STAGES] = {0}; |
| struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; |
| |
| code[MESA_SHADER_GEOMETRY] = gs_copy_code; |
| code_size[MESA_SHADER_GEOMETRY] = gs_copy_code_size; |
| variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader; |
| |
| radv_pipeline_cache_insert_shaders(device, cache, |
| gs_copy_hash, |
| variants, |
| (const void**)code, |
| code_size); |
| } |
| free(gs_copy_code); |
| } |
| |
| radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders, |
| (const void**)codes, code_sizes); |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| free(codes[i]); |
| if (modules[i] && !pipeline->device->trace_bo) |
| ralloc_free(nir[i]); |
| } |
| |
| if (fs_m.nir) |
| ralloc_free(fs_m.nir); |
| } |
| |
| static VkResult |
| radv_pipeline_init(struct radv_pipeline *pipeline, |
| struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *alloc) |
| { |
| VkResult result; |
| bool has_view_index = false; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| if (subpass->view_mask) |
| has_view_index = true; |
| if (alloc == NULL) |
| alloc = &device->alloc; |
| |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| |
| radv_pipeline_init_dynamic_state(pipeline, pCreateInfo); |
| radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); |
| |
| const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; |
| pStages[stage] = &pCreateInfo->pStages[i]; |
| } |
| |
| radv_create_shaders(pipeline, device, cache, |
| radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, has_view_index), |
| pStages); |
| |
| radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra); |
| radv_pipeline_init_raster_state(pipeline, pCreateInfo); |
| radv_pipeline_init_multisample_state(pipeline, pCreateInfo); |
| pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); |
| pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology); |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); |
| pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| } else { |
| pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); |
| } |
| if (extra && extra->use_rectlist) { |
| pipeline->graphics.prim = V_008958_DI_PT_RECTLIST; |
| pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| pipeline->graphics.can_use_guardband = true; |
| } |
| pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; |
| /* prim vertex count will need TESS changes */ |
| pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim]; |
| |
| /* Ensure that some export memory is always allocated, for two reasons: |
| * |
| * 1) Correctness: The hardware ignores the EXEC mask if no export |
| * memory is allocated, so KILL and alpha test do not work correctly |
| * without this. |
| * 2) Performance: Every shader needs at least a NULL export, even when |
| * it writes no color/depth output. The NULL export instruction |
| * stalls without this setting. |
| * |
| * Don't add this to CB_SHADER_MASK. |
| */ |
| struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| if (!pipeline->graphics.blend.spi_shader_col_format) { |
| if (!ps->info.fs.writes_z && |
| !ps->info.fs.writes_stencil && |
| !ps->info.fs.writes_sample_mask) |
| pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; |
| } |
| |
| unsigned z_order; |
| pipeline->graphics.db_shader_control = 0; |
| if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory) |
| z_order = V_02880C_EARLY_Z_THEN_LATE_Z; |
| else |
| z_order = V_02880C_LATE_Z; |
| |
| pipeline->graphics.db_shader_control = |
| S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) | |
| S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) | |
| S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) | |
| S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) | |
| S_02880C_Z_ORDER(z_order) | |
| S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) | |
| S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) | |
| S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory); |
| |
| if (pipeline->device->physical_device->has_rbplus) |
| pipeline->graphics.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1); |
| |
| pipeline->graphics.shader_z_format = |
| ps->info.fs.writes_sample_mask ? V_028710_SPI_SHADER_32_ABGR : |
| ps->info.fs.writes_stencil ? V_028710_SPI_SHADER_32_GR : |
| ps->info.fs.writes_z ? V_028710_SPI_SHADER_32_R : |
| V_028710_SPI_SHADER_ZERO; |
| |
| calculate_vgt_gs_mode(pipeline); |
| calculate_pa_cl_vs_out_cntl(pipeline); |
| calculate_ps_inputs(pipeline); |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (pipeline->shaders[i]) { |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; |
| } |
| } |
| |
| uint32_t stages = 0; |
| if (radv_pipeline_has_tess(pipeline)) { |
| stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | |
| S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); |
| |
| if (radv_pipeline_has_gs(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | |
| S_028B54_GS_EN(1) | |
| S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| else |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); |
| |
| } else if (radv_pipeline_has_gs(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | |
| S_028B54_GS_EN(1) | |
| S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9) |
| stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); |
| |
| pipeline->graphics.vgt_shader_stages_en = stages; |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| calculate_gs_ring_sizes(pipeline); |
| if (device->physical_device->rad_info.chip_class >= GFX9) |
| calculate_gfx9_gs_info(pCreateInfo, pipeline); |
| } |
| |
| if (radv_pipeline_has_tess(pipeline)) { |
| if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) { |
| pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints; |
| pipeline->graphics.prim_vertex_count.incr = 1; |
| } |
| calculate_tess_state(pipeline, pCreateInfo); |
| } |
| |
| if (radv_pipeline_has_tess(pipeline)) |
| pipeline->graphics.primgroup_size = pipeline->graphics.tess.num_patches; |
| else if (radv_pipeline_has_gs(pipeline)) |
| pipeline->graphics.primgroup_size = 64; |
| else |
| pipeline->graphics.primgroup_size = 128; /* recommended without a GS */ |
| |
| pipeline->graphics.partial_es_wave = false; |
| if (pipeline->device->has_distributed_tess) { |
| if (radv_pipeline_has_gs(pipeline)) { |
| if (device->physical_device->rad_info.chip_class <= VI) |
| pipeline->graphics.partial_es_wave = true; |
| } |
| } |
| /* GS requirement. */ |
| if (SI_GS_PER_ES / pipeline->graphics.primgroup_size >= pipeline->device->gs_table_depth - 3) |
| pipeline->graphics.partial_es_wave = true; |
| |
| pipeline->graphics.wd_switch_on_eop = false; |
| if (device->physical_device->rad_info.chip_class >= CIK) { |
| unsigned prim = pipeline->graphics.prim; |
| /* WD_SWITCH_ON_EOP has no effect on GPUs with less than |
| * 4 shader engines. Set 1 to pass the assertion below. |
| * The other cases are hardware requirements. */ |
| if (device->physical_device->rad_info.max_se < 4 || |
| prim == V_008958_DI_PT_POLYGON || |
| prim == V_008958_DI_PT_LINELOOP || |
| prim == V_008958_DI_PT_TRIFAN || |
| prim == V_008958_DI_PT_TRISTRIP_ADJ || |
| (pipeline->graphics.prim_restart_enable && |
| (device->physical_device->rad_info.family < CHIP_POLARIS10 || |
| (prim != V_008958_DI_PT_POINTLIST && |
| prim != V_008958_DI_PT_LINESTRIP && |
| prim != V_008958_DI_PT_TRISTRIP)))) |
| pipeline->graphics.wd_switch_on_eop = true; |
| } |
| |
| pipeline->graphics.ia_switch_on_eoi = false; |
| if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input) |
| pipeline->graphics.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_gs(pipeline) && |
| pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.uses_prim_id) |
| pipeline->graphics.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_tess(pipeline)) { |
| /* SWITCH_ON_EOI must be set if PrimID is used. */ |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.uses_prim_id || |
| radv_get_tess_eval_shader(pipeline)->info.tes.uses_prim_id) |
| pipeline->graphics.ia_switch_on_eoi = true; |
| } |
| |
| pipeline->graphics.partial_vs_wave = false; |
| if (radv_pipeline_has_tess(pipeline)) { |
| /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ |
| if ((device->physical_device->rad_info.family == CHIP_TAHITI || |
| device->physical_device->rad_info.family == CHIP_PITCAIRN || |
| device->physical_device->rad_info.family == CHIP_BONAIRE) && |
| radv_pipeline_has_gs(pipeline)) |
| pipeline->graphics.partial_vs_wave = true; |
| /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ |
| if (device->has_distributed_tess) { |
| if (radv_pipeline_has_gs(pipeline)) { |
| if (device->physical_device->rad_info.family == CHIP_TONGA || |
| device->physical_device->rad_info.family == CHIP_FIJI || |
| device->physical_device->rad_info.family == CHIP_POLARIS10 || |
| device->physical_device->rad_info.family == CHIP_POLARIS11 || |
| device->physical_device->rad_info.family == CHIP_POLARIS12) |
| pipeline->graphics.partial_vs_wave = true; |
| } else { |
| pipeline->graphics.partial_vs_wave = true; |
| } |
| } |
| } |
| |
| pipeline->graphics.base_ia_multi_vgt_param = |
| S_028AA8_PRIMGROUP_SIZE(pipeline->graphics.primgroup_size - 1) | |
| /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ |
| S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == VI ? 2 : 0) | |
| S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) | |
| S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9); |
| |
| const VkPipelineVertexInputStateCreateInfo *vi_info = |
| pCreateInfo->pVertexInputState; |
| struct radv_vertex_elements_info *velems = &pipeline->vertex_elements; |
| |
| for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { |
| const VkVertexInputAttributeDescription *desc = |
| &vi_info->pVertexAttributeDescriptions[i]; |
| unsigned loc = desc->location; |
| const struct vk_format_description *format_desc; |
| int first_non_void; |
| uint32_t num_format, data_format; |
| format_desc = vk_format_description(desc->format); |
| first_non_void = vk_format_get_first_non_void_channel(desc->format); |
| |
| num_format = radv_translate_buffer_numformat(format_desc, first_non_void); |
| data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); |
| |
| velems->rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) | |
| S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) | |
| S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) | |
| S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) | |
| S_008F0C_NUM_FORMAT(num_format) | |
| S_008F0C_DATA_FORMAT(data_format); |
| velems->format_size[loc] = format_desc->block.bits / 8; |
| velems->offset[loc] = desc->offset; |
| velems->binding[loc] = desc->binding; |
| velems->count = MAX2(velems->count, loc + 1); |
| } |
| |
| for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *desc = |
| &vi_info->pVertexBindingDescriptions[i]; |
| |
| pipeline->binding_stride[desc->binding] = desc->stride; |
| } |
| |
| struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, |
| AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| if (loc->sgpr_idx != -1) { |
| pipeline->graphics.vtx_base_sgpr = radv_shader_stage_to_user_data_0(MESA_SHADER_VERTEX, device->physical_device->rad_info.chip_class, radv_pipeline_has_gs(pipeline), radv_pipeline_has_tess(pipeline)); |
| pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4; |
| if (radv_get_vertex_shader(pipeline)->info.info.vs.needs_draw_id) |
| pipeline->graphics.vtx_emit_num = 3; |
| else |
| pipeline->graphics.vtx_emit_num = 2; |
| } |
| |
| pipeline->graphics.vtx_reuse_depth = 30; |
| if (radv_pipeline_has_tess(pipeline) && |
| radv_get_tess_eval_shader(pipeline)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { |
| pipeline->graphics.vtx_reuse_depth = 14; |
| } |
| |
| if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { |
| radv_dump_pipeline_stats(device, pipeline); |
| } |
| |
| result = radv_pipeline_scratch_init(device, pipeline); |
| return result; |
| } |
| |
| VkResult |
| radv_graphics_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *pAllocator, |
| VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| memset(pipeline, 0, sizeof(*pipeline)); |
| result = radv_pipeline_init(pipeline, device, cache, |
| pCreateInfo, extra, pAllocator); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult radv_CreateGraphicsPipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkGraphicsPipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| unsigned i = 0; |
| |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_graphics_pipeline_create(_device, |
| pipelineCache, |
| &pCreateInfos[i], |
| NULL, pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |
| |
| static VkResult radv_compute_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkComputePipelineCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| memset(pipeline, 0, sizeof(*pipeline)); |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| |
| pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage; |
| radv_create_shaders(pipeline, device, cache, (struct radv_pipeline_key) {0}, pStages); |
| |
| |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; |
| result = radv_pipeline_scratch_init(device, pipeline); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { |
| radv_dump_pipeline_stats(device, pipeline); |
| } |
| return VK_SUCCESS; |
| } |
| VkResult radv_CreateComputePipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkComputePipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| unsigned i = 0; |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_compute_pipeline_create(_device, pipelineCache, |
| &pCreateInfos[i], |
| pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |