| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file linker.cpp |
| * GLSL linker implementation |
| * |
| * Given a set of shaders that are to be linked to generate a final program, |
| * there are three distinct stages. |
| * |
| * In the first stage shaders are partitioned into groups based on the shader |
| * type. All shaders of a particular type (e.g., vertex shaders) are linked |
| * together. |
| * |
| * - Undefined references in each shader are resolve to definitions in |
| * another shader. |
| * - Types and qualifiers of uniforms, outputs, and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * - Initializers for uniforms and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * |
| * The result, in the terminology of the GLSL spec, is a set of shader |
| * executables for each processing unit. |
| * |
| * After the first stage is complete, a series of semantic checks are performed |
| * on each of the shader executables. |
| * |
| * - Each shader executable must define a \c main function. |
| * - Each vertex shader executable must write to \c gl_Position. |
| * - Each fragment shader executable must write to either \c gl_FragData or |
| * \c gl_FragColor. |
| * |
| * In the final stage individual shader executables are linked to create a |
| * complete exectuable. |
| * |
| * - Types of uniforms defined in multiple shader stages with the same name |
| * are verified to be the same. |
| * - Initializers for uniforms defined in multiple shader stages with the |
| * same name are verified to be the same. |
| * - Types and qualifiers of outputs defined in one stage are verified to |
| * be the same as the types and qualifiers of inputs defined with the same |
| * name in a later stage. |
| * |
| * \author Ian Romanick <ian.d.romanick@intel.com> |
| */ |
| #include <cstdlib> |
| #include <cstdio> |
| #include <cstdarg> |
| #include <climits> |
| |
| extern "C" { |
| #include <talloc.h> |
| } |
| |
| #include "main/mtypes.h" |
| #include "main/macros.h" |
| #include "main/shaderobj.h" |
| #include "glsl_symbol_table.h" |
| #include "ir.h" |
| #include "program.h" |
| #include "hash_table.h" |
| #include "linker.h" |
| #include "ir_optimization.h" |
| |
| /** |
| * Visitor that determines whether or not a variable is ever written. |
| */ |
| class find_assignment_visitor : public ir_hierarchical_visitor { |
| public: |
| find_assignment_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_assignment *ir) |
| { |
| ir_variable *const var = ir->lhs->variable_referenced(); |
| |
| if (strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| bool variable_found() |
| { |
| return found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| void |
| linker_error_printf(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: "); |
| va_start(ap, fmt); |
| prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap); |
| va_end(ap); |
| } |
| |
| |
| void |
| invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode, |
| int generic_base) |
| { |
| foreach_list(node, sh->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != (unsigned) mode)) |
| continue; |
| |
| /* Only assign locations for generic attributes / varyings / etc. |
| */ |
| if (var->location >= generic_base) |
| var->location = -1; |
| } |
| } |
| |
| |
| /** |
| * Determine the number of attribute slots required for a particular type |
| * |
| * This code is here because it implements the language rules of a specific |
| * GLSL version. Since it's a property of the language and not a property of |
| * types in general, it doesn't really belong in glsl_type. |
| */ |
| unsigned |
| count_attribute_slots(const glsl_type *t) |
| { |
| /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: |
| * |
| * "A scalar input counts the same amount against this limit as a vec4, |
| * so applications may want to consider packing groups of four |
| * unrelated float inputs together into a vector to better utilize the |
| * capabilities of the underlying hardware. A matrix input will use up |
| * multiple locations. The number of locations used will equal the |
| * number of columns in the matrix." |
| * |
| * The spec does not explicitly say how arrays are counted. However, it |
| * should be safe to assume the total number of slots consumed by an array |
| * is the number of entries in the array multiplied by the number of slots |
| * consumed by a single element of the array. |
| */ |
| |
| if (t->is_array()) |
| return t->array_size() * count_attribute_slots(t->element_type()); |
| |
| if (t->is_matrix()) |
| return t->matrix_columns; |
| |
| return 1; |
| } |
| |
| |
| /** |
| * Verify that a vertex shader executable meets all semantic requirements |
| * |
| * \param shader Vertex shader executable to be verified |
| */ |
| bool |
| validate_vertex_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return true; |
| |
| find_assignment_visitor find("gl_Position"); |
| find.run(shader->ir); |
| if (!find.variable_found()) { |
| linker_error_printf(prog, |
| "vertex shader does not write to `gl_Position'\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Verify that a fragment shader executable meets all semantic requirements |
| * |
| * \param shader Fragment shader executable to be verified |
| */ |
| bool |
| validate_fragment_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return true; |
| |
| find_assignment_visitor frag_color("gl_FragColor"); |
| find_assignment_visitor frag_data("gl_FragData"); |
| |
| frag_color.run(shader->ir); |
| frag_data.run(shader->ir); |
| |
| if (frag_color.variable_found() && frag_data.variable_found()) { |
| linker_error_printf(prog, "fragment shader writes to both " |
| "`gl_FragColor' and `gl_FragData'\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Generate a string describing the mode of a variable |
| */ |
| static const char * |
| mode_string(const ir_variable *var) |
| { |
| switch (var->mode) { |
| case ir_var_auto: |
| return (var->read_only) ? "global constant" : "global variable"; |
| |
| case ir_var_uniform: return "uniform"; |
| case ir_var_in: return "shader input"; |
| case ir_var_out: return "shader output"; |
| case ir_var_inout: return "shader inout"; |
| |
| case ir_var_temporary: |
| default: |
| assert(!"Should not get here."); |
| return "invalid variable"; |
| } |
| } |
| |
| |
| /** |
| * Perform validation of global variables used across multiple shaders |
| */ |
| bool |
| cross_validate_globals(struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders, |
| bool uniforms_only) |
| { |
| /* Examine all of the uniforms in all of the shaders and cross validate |
| * them. |
| */ |
| glsl_symbol_table variables; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| foreach_list(node, shader_list[i]->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| if (uniforms_only && (var->mode != ir_var_uniform)) |
| continue; |
| |
| /* Don't cross validate temporaries that are at global scope. These |
| * will eventually get pulled into the shaders 'main'. |
| */ |
| if (var->mode == ir_var_temporary) |
| continue; |
| |
| /* If a global with this name has already been seen, verify that the |
| * new instance has the same type. In addition, if the globals have |
| * initializers, the values of the initializers must be the same. |
| */ |
| ir_variable *const existing = variables.get_variable(var->name); |
| if (existing != NULL) { |
| if (var->type != existing->type) { |
| linker_error_printf(prog, "%s `%s' declared as type " |
| "`%s' and type `%s'\n", |
| mode_string(var), |
| var->name, var->type->name, |
| existing->type->name); |
| return false; |
| } |
| |
| /* FINISHME: Handle non-constant initializers. |
| */ |
| if (var->constant_value != NULL) { |
| if (existing->constant_value != NULL) { |
| if (!var->constant_value->has_value(existing->constant_value)) { |
| linker_error_printf(prog, "initializers for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return false; |
| } |
| } else |
| /* If the first-seen instance of a particular uniform did not |
| * have an initializer but a later instance does, copy the |
| * initializer to the version stored in the symbol table. |
| */ |
| /* FINISHME: This is wrong. The constant_value field should |
| * FINISHME: not be modified! Imagine a case where a shader |
| * FINISHME: without an initializer is linked in two different |
| * FINISHME: programs with shaders that have differing |
| * FINISHME: initializers. Linking with the first will |
| * FINISHME: modify the shader, and linking with the second |
| * FINISHME: will fail. |
| */ |
| existing->constant_value = var->constant_value->clone(NULL); |
| } |
| } else |
| variables.add_variable(var->name, var); |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Perform validation of uniforms used across multiple shader stages |
| */ |
| bool |
| cross_validate_uniforms(struct gl_shader_program *prog) |
| { |
| return cross_validate_globals(prog, prog->_LinkedShaders, |
| prog->_NumLinkedShaders, true); |
| } |
| |
| |
| /** |
| * Validate that outputs from one stage match inputs of another |
| */ |
| bool |
| cross_validate_outputs_to_inputs(struct gl_shader_program *prog, |
| gl_shader *producer, gl_shader *consumer) |
| { |
| glsl_symbol_table parameters; |
| /* FINISHME: Figure these out dynamically. */ |
| const char *const producer_stage = "vertex"; |
| const char *const consumer_stage = "fragment"; |
| |
| /* Find all shader outputs in the "producer" stage. |
| */ |
| foreach_list(node, producer->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| /* FINISHME: For geometry shaders, this should also look for inout |
| * FINISHME: variables. |
| */ |
| if ((var == NULL) || (var->mode != ir_var_out)) |
| continue; |
| |
| parameters.add_variable(var->name, var); |
| } |
| |
| |
| /* Find all shader inputs in the "consumer" stage. Any variables that have |
| * matching outputs already in the symbol table must have the same type and |
| * qualifiers. |
| */ |
| foreach_list(node, consumer->ir) { |
| ir_variable *const input = ((ir_instruction *) node)->as_variable(); |
| |
| /* FINISHME: For geometry shaders, this should also look for inout |
| * FINISHME: variables. |
| */ |
| if ((input == NULL) || (input->mode != ir_var_in)) |
| continue; |
| |
| ir_variable *const output = parameters.get_variable(input->name); |
| if (output != NULL) { |
| /* Check that the types match between stages. |
| */ |
| if (input->type != output->type) { |
| linker_error_printf(prog, |
| "%s shader output `%s' delcared as " |
| "type `%s', but %s shader input declared " |
| "as type `%s'\n", |
| producer_stage, output->name, |
| output->type->name, |
| consumer_stage, input->type->name); |
| return false; |
| } |
| |
| /* Check that all of the qualifiers match between stages. |
| */ |
| if (input->centroid != output->centroid) { |
| linker_error_printf(prog, |
| "%s shader output `%s' %s centroid qualifier, " |
| "but %s shader input %s centroid qualifier\n", |
| producer_stage, |
| output->name, |
| (output->centroid) ? "has" : "lacks", |
| consumer_stage, |
| (input->centroid) ? "has" : "lacks"); |
| return false; |
| } |
| |
| if (input->invariant != output->invariant) { |
| linker_error_printf(prog, |
| "%s shader output `%s' %s invariant qualifier, " |
| "but %s shader input %s invariant qualifier\n", |
| producer_stage, |
| output->name, |
| (output->invariant) ? "has" : "lacks", |
| consumer_stage, |
| (input->invariant) ? "has" : "lacks"); |
| return false; |
| } |
| |
| if (input->interpolation != output->interpolation) { |
| linker_error_printf(prog, |
| "%s shader output `%s' specifies %s " |
| "interpolation qualifier, " |
| "but %s shader input specifies %s " |
| "interpolation qualifier\n", |
| producer_stage, |
| output->name, |
| output->interpolation_string(), |
| consumer_stage, |
| input->interpolation_string()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Populates a shaders symbol table with all global declarations |
| */ |
| static void |
| populate_symbol_table(gl_shader *sh) |
| { |
| sh->symbols = new(sh) glsl_symbol_table; |
| |
| foreach_list(node, sh->ir) { |
| ir_instruction *const inst = (ir_instruction *) node; |
| ir_variable *var; |
| ir_function *func; |
| |
| if ((func = inst->as_function()) != NULL) { |
| sh->symbols->add_function(func->name, func); |
| } else if ((var = inst->as_variable()) != NULL) { |
| sh->symbols->add_variable(var->name, var); |
| } |
| } |
| } |
| |
| |
| /** |
| * Remap variables referenced in an instruction tree |
| * |
| * This is used when instruction trees are cloned from one shader and placed in |
| * another. These trees will contain references to \c ir_variable nodes that |
| * do not exist in the target shader. This function finds these \c ir_variable |
| * references and replaces the references with matching variables in the target |
| * shader. |
| * |
| * If there is no matching variable in the target shader, a clone of the |
| * \c ir_variable is made and added to the target shader. The new variable is |
| * added to \b both the instruction stream and the symbol table. |
| * |
| * \param inst IR tree that is to be processed. |
| * \param symbols Symbol table containing global scope symbols in the |
| * linked shader. |
| * \param instructions Instruction stream where new variable declarations |
| * should be added. |
| */ |
| void |
| remap_variables(ir_instruction *inst, glsl_symbol_table *symbols, |
| exec_list *instructions, hash_table *temps) |
| { |
| class remap_visitor : public ir_hierarchical_visitor { |
| public: |
| remap_visitor(glsl_symbol_table *symbols, exec_list *instructions, |
| hash_table *temps) |
| { |
| this->symbols = symbols; |
| this->instructions = instructions; |
| this->temps = temps; |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (ir->var->mode == ir_var_temporary) { |
| ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var); |
| |
| assert(var != NULL); |
| ir->var = var; |
| return visit_continue; |
| } |
| |
| ir_variable *const existing = |
| this->symbols->get_variable(ir->var->name); |
| if (existing != NULL) |
| ir->var = existing; |
| else { |
| ir_variable *copy = ir->var->clone(NULL); |
| |
| this->symbols->add_variable(copy->name, copy); |
| this->instructions->push_head(copy); |
| ir->var = copy; |
| } |
| |
| return visit_continue; |
| } |
| |
| private: |
| glsl_symbol_table *symbols; |
| exec_list *instructions; |
| hash_table *temps; |
| }; |
| |
| remap_visitor v(symbols, instructions, temps); |
| |
| inst->accept(&v); |
| } |
| |
| |
| /** |
| * Move non-declarations from one instruction stream to another |
| * |
| * The intended usage pattern of this function is to pass the pointer to the |
| * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node |
| * pointer) for \c last and \c false for \c make_copies on the first |
| * call. Successive calls pass the return value of the previous call for |
| * \c last and \c true for \c make_copies. |
| * |
| * \param instructions Source instruction stream |
| * \param last Instruction after which new instructions should be |
| * inserted in the target instruction stream |
| * \param make_copies Flag selecting whether instructions in \c instructions |
| * should be copied (via \c ir_instruction::clone) into the |
| * target list or moved. |
| * |
| * \return |
| * The new "last" instruction in the target instruction stream. This pointer |
| * is suitable for use as the \c last parameter of a later call to this |
| * function. |
| */ |
| exec_node * |
| move_non_declarations(exec_list *instructions, exec_node *last, |
| bool make_copies, gl_shader *target) |
| { |
| hash_table *temps = NULL; |
| |
| if (make_copies) |
| temps = hash_table_ctor(0, hash_table_pointer_hash, |
| hash_table_pointer_compare); |
| |
| foreach_list_safe(node, instructions) { |
| ir_instruction *inst = (ir_instruction *) node; |
| |
| if (inst->as_function()) |
| continue; |
| |
| ir_variable *var = inst->as_variable(); |
| if ((var != NULL) && (var->mode != ir_var_temporary)) |
| continue; |
| |
| assert(inst->as_assignment() |
| || ((var != NULL) && (var->mode == ir_var_temporary))); |
| |
| if (make_copies) { |
| inst = inst->clone(NULL); |
| |
| if (var != NULL) |
| hash_table_insert(temps, inst, var); |
| else |
| remap_variables(inst, target->symbols, target->ir, temps); |
| } else { |
| inst->remove(); |
| } |
| |
| last->insert_after(inst); |
| last = inst; |
| } |
| |
| if (make_copies) |
| hash_table_dtor(temps); |
| |
| return last; |
| } |
| |
| /** |
| * Get the function signature for main from a shader |
| */ |
| static ir_function_signature * |
| get_main_function_signature(gl_shader *sh) |
| { |
| ir_function *const f = sh->symbols->get_function("main"); |
| if (f != NULL) { |
| exec_list void_parameters; |
| |
| /* Look for the 'void main()' signature and ensure that it's defined. |
| * This keeps the linker from accidentally pick a shader that just |
| * contains a prototype for main. |
| * |
| * We don't have to check for multiple definitions of main (in multiple |
| * shaders) because that would have already been caught above. |
| */ |
| ir_function_signature *sig = f->matching_signature(&void_parameters); |
| if ((sig != NULL) && sig->is_defined) { |
| return sig; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| /** |
| * Combine a group of shaders for a single stage to generate a linked shader |
| * |
| * \note |
| * If this function is supplied a single shader, it is cloned, and the new |
| * shader is returned. |
| */ |
| static struct gl_shader * |
| link_intrastage_shaders(struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| /* Check that global variables defined in multiple shaders are consistent. |
| */ |
| if (!cross_validate_globals(prog, shader_list, num_shaders, false)) |
| return NULL; |
| |
| /* Check that there is only a single definition of each function signature |
| * across all shaders. |
| */ |
| for (unsigned i = 0; i < (num_shaders - 1); i++) { |
| foreach_list(node, shader_list[i]->ir) { |
| ir_function *const f = ((ir_instruction *) node)->as_function(); |
| |
| if (f == NULL) |
| continue; |
| |
| for (unsigned j = i + 1; j < num_shaders; j++) { |
| ir_function *const other = |
| shader_list[j]->symbols->get_function(f->name); |
| |
| /* If the other shader has no function (and therefore no function |
| * signatures) with the same name, skip to the next shader. |
| */ |
| if (other == NULL) |
| continue; |
| |
| foreach_iter (exec_list_iterator, iter, *f) { |
| ir_function_signature *sig = |
| (ir_function_signature *) iter.get(); |
| |
| if (!sig->is_defined || sig->is_built_in) |
| continue; |
| |
| ir_function_signature *other_sig = |
| other->exact_matching_signature(& sig->parameters); |
| |
| if ((other_sig != NULL) && other_sig->is_defined |
| && !other_sig->is_built_in) { |
| linker_error_printf(prog, |
| "function `%s' is multiply defined", |
| f->name); |
| return NULL; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Find the shader that defines main, and make a clone of it. |
| * |
| * Starting with the clone, search for undefined references. If one is |
| * found, find the shader that defines it. Clone the reference and add |
| * it to the shader. Repeat until there are no undefined references or |
| * until a reference cannot be resolved. |
| */ |
| gl_shader *main = NULL; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (get_main_function_signature(shader_list[i]) != NULL) { |
| main = shader_list[i]; |
| break; |
| } |
| } |
| |
| if (main == NULL) { |
| linker_error_printf(prog, "%s shader lacks `main'\n", |
| (shader_list[0]->Type == GL_VERTEX_SHADER) |
| ? "vertex" : "fragment"); |
| return NULL; |
| } |
| |
| gl_shader *const linked = _mesa_new_shader(NULL, 0, main->Type); |
| linked->ir = new(linked) exec_list; |
| clone_ir_list(linked->ir, main->ir); |
| |
| populate_symbol_table(linked); |
| |
| /* The a pointer to the main function in the final linked shader (i.e., the |
| * copy of the original shader that contained the main function). |
| */ |
| ir_function_signature *const main_sig = get_main_function_signature(linked); |
| |
| /* Move any instructions other than variable declarations or function |
| * declarations into main. |
| */ |
| exec_node *insertion_point = |
| move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, |
| linked); |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == main) |
| continue; |
| |
| insertion_point = move_non_declarations(shader_list[i]->ir, |
| insertion_point, true, linked); |
| } |
| |
| /* Resolve initializers for global variables in the linked shader. |
| */ |
| unsigned num_linking_shaders = num_shaders; |
| for (unsigned i = 0; i < num_shaders; i++) |
| num_linking_shaders += shader_list[i]->num_builtins_to_link; |
| |
| gl_shader **linking_shaders = |
| (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *)); |
| |
| memcpy(linking_shaders, shader_list, |
| sizeof(linking_shaders[0]) * num_shaders); |
| |
| unsigned idx = num_shaders; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link, |
| sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link); |
| idx += shader_list[i]->num_builtins_to_link; |
| } |
| |
| assert(idx == num_linking_shaders); |
| |
| link_function_calls(prog, linked, linking_shaders, num_linking_shaders); |
| |
| free(linking_shaders); |
| |
| return linked; |
| } |
| |
| |
| struct uniform_node { |
| exec_node link; |
| struct gl_uniform *u; |
| unsigned slots; |
| }; |
| |
| void |
| assign_uniform_locations(struct gl_shader_program *prog) |
| { |
| /* */ |
| exec_list uniforms; |
| unsigned total_uniforms = 0; |
| hash_table *ht = hash_table_ctor(32, hash_table_string_hash, |
| hash_table_string_compare); |
| |
| for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) { |
| unsigned next_position = 0; |
| |
| foreach_list(node, prog->_LinkedShaders[i]->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != ir_var_uniform)) |
| continue; |
| |
| const unsigned vec4_slots = (var->component_slots() + 3) / 4; |
| assert(vec4_slots != 0); |
| |
| uniform_node *n = (uniform_node *) hash_table_find(ht, var->name); |
| if (n == NULL) { |
| n = (uniform_node *) calloc(1, sizeof(struct uniform_node)); |
| n->u = (gl_uniform *) calloc(vec4_slots, sizeof(struct gl_uniform)); |
| n->slots = vec4_slots; |
| |
| n->u[0].Name = strdup(var->name); |
| for (unsigned j = 1; j < vec4_slots; j++) |
| n->u[j].Name = n->u[0].Name; |
| |
| hash_table_insert(ht, n, n->u[0].Name); |
| uniforms.push_tail(& n->link); |
| total_uniforms += vec4_slots; |
| } |
| |
| if (var->constant_value != NULL) |
| for (unsigned j = 0; j < vec4_slots; j++) |
| n->u[j].Initialized = true; |
| |
| var->location = next_position; |
| |
| for (unsigned j = 0; j < vec4_slots; j++) { |
| switch (prog->_LinkedShaders[i]->Type) { |
| case GL_VERTEX_SHADER: |
| n->u[j].VertPos = next_position; |
| break; |
| case GL_FRAGMENT_SHADER: |
| n->u[j].FragPos = next_position; |
| break; |
| case GL_GEOMETRY_SHADER: |
| /* FINISHME: Support geometry shaders. */ |
| assert(prog->_LinkedShaders[i]->Type != GL_GEOMETRY_SHADER); |
| break; |
| } |
| |
| next_position++; |
| } |
| } |
| } |
| |
| gl_uniform_list *ul = (gl_uniform_list *) |
| calloc(1, sizeof(gl_uniform_list)); |
| |
| ul->Size = total_uniforms; |
| ul->NumUniforms = total_uniforms; |
| ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform)); |
| |
| unsigned idx = 0; |
| uniform_node *next; |
| for (uniform_node *node = (uniform_node *) uniforms.head |
| ; node->link.next != NULL |
| ; node = next) { |
| next = (uniform_node *) node->link.next; |
| |
| node->link.remove(); |
| memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform) * node->slots); |
| idx += node->slots; |
| |
| free(node->u); |
| free(node); |
| } |
| |
| hash_table_dtor(ht); |
| |
| prog->Uniforms = ul; |
| } |
| |
| |
| /** |
| * Find a contiguous set of available bits in a bitmask |
| * |
| * \param used_mask Bits representing used (1) and unused (0) locations |
| * \param needed_count Number of contiguous bits needed. |
| * |
| * \return |
| * Base location of the available bits on success or -1 on failure. |
| */ |
| int |
| find_available_slots(unsigned used_mask, unsigned needed_count) |
| { |
| unsigned needed_mask = (1 << needed_count) - 1; |
| const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; |
| |
| /* The comparison to 32 is redundant, but without it GCC emits "warning: |
| * cannot optimize possibly infinite loops" for the loop below. |
| */ |
| if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) |
| return -1; |
| |
| for (int i = 0; i <= max_bit_to_test; i++) { |
| if ((needed_mask & ~used_mask) == needed_mask) |
| return i; |
| |
| needed_mask <<= 1; |
| } |
| |
| return -1; |
| } |
| |
| |
| bool |
| assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index) |
| { |
| /* Mark invalid attribute locations as being used. |
| */ |
| unsigned used_locations = (max_attribute_index >= 32) |
| ? ~0 : ~((1 << max_attribute_index) - 1); |
| |
| gl_shader *const sh = prog->_LinkedShaders[0]; |
| assert(sh->Type == GL_VERTEX_SHADER); |
| |
| /* Operate in a total of four passes. |
| * |
| * 1. Invalidate the location assignments for all vertex shader inputs. |
| * |
| * 2. Assign locations for inputs that have user-defined (via |
| * glBindVertexAttribLocation) locatoins. |
| * |
| * 3. Sort the attributes without assigned locations by number of slots |
| * required in decreasing order. Fragmentation caused by attribute |
| * locations assigned by the application may prevent large attributes |
| * from having enough contiguous space. |
| * |
| * 4. Assign locations to any inputs without assigned locations. |
| */ |
| |
| invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0); |
| |
| if (prog->Attributes != NULL) { |
| for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) { |
| ir_variable *const var = |
| sh->symbols->get_variable(prog->Attributes->Parameters[i].Name); |
| |
| /* Note: attributes that occupy multiple slots, such as arrays or |
| * matrices, may appear in the attrib array multiple times. |
| */ |
| if ((var == NULL) || (var->location != -1)) |
| continue; |
| |
| /* From page 61 of the OpenGL 4.0 spec: |
| * |
| * "LinkProgram will fail if the attribute bindings assigned by |
| * BindAttribLocation do not leave not enough space to assign a |
| * location for an active matrix attribute or an active attribute |
| * array, both of which require multiple contiguous generic |
| * attributes." |
| * |
| * Previous versions of the spec contain similar language but omit the |
| * bit about attribute arrays. |
| * |
| * Page 61 of the OpenGL 4.0 spec also says: |
| * |
| * "It is possible for an application to bind more than one |
| * attribute name to the same location. This is referred to as |
| * aliasing. This will only work if only one of the aliased |
| * attributes is active in the executable program, or if no path |
| * through the shader consumes more than one attribute of a set |
| * of attributes aliased to the same location. A link error can |
| * occur if the linker determines that every path through the |
| * shader consumes multiple aliased attributes, but |
| * implementations are not required to generate an error in this |
| * case." |
| * |
| * These two paragraphs are either somewhat contradictory, or I don't |
| * fully understand one or both of them. |
| */ |
| /* FINISHME: The code as currently written does not support attribute |
| * FINISHME: location aliasing (see comment above). |
| */ |
| const int attr = prog->Attributes->Parameters[i].StateIndexes[0]; |
| const unsigned slots = count_attribute_slots(var->type); |
| |
| /* Mask representing the contiguous slots that will be used by this |
| * attribute. |
| */ |
| const unsigned use_mask = (1 << slots) - 1; |
| |
| /* Generate a link error if the set of bits requested for this |
| * attribute overlaps any previously allocated bits. |
| */ |
| if ((~(use_mask << attr) & used_locations) != used_locations) { |
| linker_error_printf(prog, |
| "insufficient contiguous attribute locations " |
| "available for vertex shader input `%s'", |
| var->name); |
| return false; |
| } |
| |
| var->location = VERT_ATTRIB_GENERIC0 + attr; |
| used_locations |= (use_mask << attr); |
| } |
| } |
| |
| /* Temporary storage for the set of attributes that need locations assigned. |
| */ |
| struct temp_attr { |
| unsigned slots; |
| ir_variable *var; |
| |
| /* Used below in the call to qsort. */ |
| static int compare(const void *a, const void *b) |
| { |
| const temp_attr *const l = (const temp_attr *) a; |
| const temp_attr *const r = (const temp_attr *) b; |
| |
| /* Reversed because we want a descending order sort below. */ |
| return r->slots - l->slots; |
| } |
| } to_assign[16]; |
| |
| unsigned num_attr = 0; |
| |
| foreach_list(node, sh->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != ir_var_in)) |
| continue; |
| |
| /* The location was explicitly assigned, nothing to do here. |
| */ |
| if (var->location != -1) |
| continue; |
| |
| to_assign[num_attr].slots = count_attribute_slots(var->type); |
| to_assign[num_attr].var = var; |
| num_attr++; |
| } |
| |
| /* If all of the attributes were assigned locations by the application (or |
| * are built-in attributes with fixed locations), return early. This should |
| * be the common case. |
| */ |
| if (num_attr == 0) |
| return true; |
| |
| qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); |
| |
| /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only |
| * be explicitly assigned by via glBindAttribLocation. Mark it as reserved |
| * to prevent it from being automatically allocated below. |
| */ |
| used_locations |= (1 << 0); |
| |
| for (unsigned i = 0; i < num_attr; i++) { |
| /* Mask representing the contiguous slots that will be used by this |
| * attribute. |
| */ |
| const unsigned use_mask = (1 << to_assign[i].slots) - 1; |
| |
| int location = find_available_slots(used_locations, to_assign[i].slots); |
| |
| if (location < 0) { |
| linker_error_printf(prog, |
| "insufficient contiguous attribute locations " |
| "available for vertex shader input `%s'", |
| to_assign[i].var->name); |
| return false; |
| } |
| |
| to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location; |
| used_locations |= (use_mask << location); |
| } |
| |
| return true; |
| } |
| |
| |
| void |
| assign_varying_locations(struct gl_shader_program *prog, |
| gl_shader *producer, gl_shader *consumer) |
| { |
| /* FINISHME: Set dynamically when geometry shader support is added. */ |
| unsigned output_index = VERT_RESULT_VAR0; |
| unsigned input_index = FRAG_ATTRIB_VAR0; |
| |
| /* Operate in a total of three passes. |
| * |
| * 1. Assign locations for any matching inputs and outputs. |
| * |
| * 2. Mark output variables in the producer that do not have locations as |
| * not being outputs. This lets the optimizer eliminate them. |
| * |
| * 3. Mark input variables in the consumer that do not have locations as |
| * not being inputs. This lets the optimizer eliminate them. |
| */ |
| |
| invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0); |
| invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0); |
| |
| foreach_list(node, producer->ir) { |
| ir_variable *const output_var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((output_var == NULL) || (output_var->mode != ir_var_out) |
| || (output_var->location != -1)) |
| continue; |
| |
| ir_variable *const input_var = |
| consumer->symbols->get_variable(output_var->name); |
| |
| if ((input_var == NULL) || (input_var->mode != ir_var_in)) |
| continue; |
| |
| assert(input_var->location == -1); |
| |
| /* FINISHME: Location assignment will need some changes when arrays, |
| * FINISHME: matrices, and structures are allowed as shader inputs / |
| * FINISHME: outputs. |
| */ |
| output_var->location = output_index; |
| input_var->location = input_index; |
| |
| output_index++; |
| input_index++; |
| } |
| |
| foreach_list(node, producer->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != ir_var_out)) |
| continue; |
| |
| /* An 'out' variable is only really a shader output if its value is read |
| * by the following stage. |
| */ |
| if (var->location == -1) { |
| var->shader_out = false; |
| var->mode = ir_var_auto; |
| } |
| } |
| |
| foreach_list(node, consumer->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != ir_var_in)) |
| continue; |
| |
| if (var->location == -1) { |
| if (prog->Version <= 120) { |
| /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec: |
| * |
| * Only those varying variables used (i.e. read) in |
| * the fragment shader executable must be written to |
| * by the vertex shader executable; declaring |
| * superfluous varying variables in a vertex shader is |
| * permissible. |
| * |
| * We interpret this text as meaning that the VS must |
| * write the variable for the FS to read it. See |
| * "glsl1-varying read but not written" in piglit. |
| */ |
| |
| linker_error_printf(prog, "fragment shader varying %s not written " |
| "by vertex shader\n.", var->name); |
| prog->LinkStatus = false; |
| } |
| |
| /* An 'in' variable is only really a shader input if its |
| * value is written by the previous stage. |
| */ |
| var->shader_in = false; |
| var->mode = ir_var_auto; |
| } |
| } |
| } |
| |
| |
| void |
| link_shaders(struct gl_shader_program *prog) |
| { |
| prog->LinkStatus = false; |
| prog->Validated = false; |
| prog->_Used = false; |
| |
| if (prog->InfoLog != NULL) |
| talloc_free(prog->InfoLog); |
| |
| prog->InfoLog = talloc_strdup(NULL, ""); |
| |
| /* Separate the shaders into groups based on their type. |
| */ |
| struct gl_shader **vert_shader_list; |
| unsigned num_vert_shaders = 0; |
| struct gl_shader **frag_shader_list; |
| unsigned num_frag_shaders = 0; |
| |
| vert_shader_list = (struct gl_shader **) |
| calloc(2 * prog->NumShaders, sizeof(struct gl_shader *)); |
| frag_shader_list = &vert_shader_list[prog->NumShaders]; |
| |
| unsigned min_version = UINT_MAX; |
| unsigned max_version = 0; |
| for (unsigned i = 0; i < prog->NumShaders; i++) { |
| min_version = MIN2(min_version, prog->Shaders[i]->Version); |
| max_version = MAX2(max_version, prog->Shaders[i]->Version); |
| |
| switch (prog->Shaders[i]->Type) { |
| case GL_VERTEX_SHADER: |
| vert_shader_list[num_vert_shaders] = prog->Shaders[i]; |
| num_vert_shaders++; |
| break; |
| case GL_FRAGMENT_SHADER: |
| frag_shader_list[num_frag_shaders] = prog->Shaders[i]; |
| num_frag_shaders++; |
| break; |
| case GL_GEOMETRY_SHADER: |
| /* FINISHME: Support geometry shaders. */ |
| assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER); |
| break; |
| } |
| } |
| |
| /* Previous to GLSL version 1.30, different compilation units could mix and |
| * match shading language versions. With GLSL 1.30 and later, the versions |
| * of all shaders must match. |
| */ |
| assert(min_version >= 110); |
| assert(max_version <= 130); |
| if ((max_version >= 130) && (min_version != max_version)) { |
| linker_error_printf(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| prog->Version = max_version; |
| |
| /* Link all shaders for a particular stage and validate the result. |
| */ |
| prog->_NumLinkedShaders = 0; |
| if (num_vert_shaders > 0) { |
| gl_shader *const sh = |
| link_intrastage_shaders(prog, vert_shader_list, num_vert_shaders); |
| |
| if (sh == NULL) |
| goto done; |
| |
| if (!validate_vertex_shader_executable(prog, sh)) |
| goto done; |
| |
| prog->_LinkedShaders[prog->_NumLinkedShaders] = sh; |
| prog->_NumLinkedShaders++; |
| } |
| |
| if (num_frag_shaders > 0) { |
| gl_shader *const sh = |
| link_intrastage_shaders(prog, frag_shader_list, num_frag_shaders); |
| |
| if (sh == NULL) |
| goto done; |
| |
| if (!validate_fragment_shader_executable(prog, sh)) |
| goto done; |
| |
| prog->_LinkedShaders[prog->_NumLinkedShaders] = sh; |
| prog->_NumLinkedShaders++; |
| } |
| |
| /* Here begins the inter-stage linking phase. Some initial validation is |
| * performed, then locations are assigned for uniforms, attributes, and |
| * varyings. |
| */ |
| if (cross_validate_uniforms(prog)) { |
| /* Validate the inputs of each stage with the output of the preceeding |
| * stage. |
| */ |
| for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) { |
| if (!cross_validate_outputs_to_inputs(prog, |
| prog->_LinkedShaders[i - 1], |
| prog->_LinkedShaders[i])) |
| goto done; |
| } |
| |
| prog->LinkStatus = true; |
| } |
| |
| /* FINISHME: Perform whole-program optimization here. */ |
| for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) { |
| /* Optimization passes */ |
| bool progress; |
| exec_list *ir = prog->_LinkedShaders[i]->ir; |
| |
| /* Lowering */ |
| do_mat_op_to_vec(ir); |
| do_mod_to_fract(ir); |
| do_div_to_mul_rcp(ir); |
| |
| do { |
| progress = false; |
| |
| progress = do_function_inlining(ir) || progress; |
| progress = do_if_simplification(ir) || progress; |
| progress = do_copy_propagation(ir) || progress; |
| progress = do_dead_code_local(ir) || progress; |
| progress = do_dead_code(ir) || progress; |
| progress = do_constant_variable_unlinked(ir) || progress; |
| progress = do_constant_folding(ir) || progress; |
| progress = do_if_return(ir) || progress; |
| #if 0 |
| if (ctx->Shader.EmitNoIfs) |
| progress = do_if_to_cond_assign(ir) || progress; |
| #endif |
| |
| progress = do_vec_index_to_swizzle(ir) || progress; |
| /* Do this one after the previous to let the easier pass handle |
| * constant vector indexing. |
| */ |
| progress = do_vec_index_to_cond_assign(ir) || progress; |
| |
| progress = do_swizzle_swizzle(ir) || progress; |
| } while (progress); |
| } |
| |
| assign_uniform_locations(prog); |
| |
| if (prog->_LinkedShaders[0]->Type == GL_VERTEX_SHADER) |
| /* FINISHME: The value of the max_attribute_index parameter is |
| * FINISHME: implementation dependent based on the value of |
| * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be |
| * FINISHME: at least 16, so hardcode 16 for now. |
| */ |
| if (!assign_attribute_locations(prog, 16)) |
| goto done; |
| |
| for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) |
| assign_varying_locations(prog, |
| prog->_LinkedShaders[i - 1], |
| prog->_LinkedShaders[i]); |
| |
| /* FINISHME: Assign fragment shader output locations. */ |
| |
| done: |
| free(vert_shader_list); |
| } |