| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "ir_builder.h" |
| #include "program/prog_instruction.h" |
| |
| using namespace ir_builder; |
| |
| namespace ir_builder { |
| |
| void |
| ir_factory::emit(ir_instruction *ir) |
| { |
| instructions->push_tail(ir); |
| } |
| |
| ir_variable * |
| ir_factory::make_temp(const glsl_type *type, const char *name) |
| { |
| ir_variable *var; |
| |
| var = new(mem_ctx) ir_variable(type, name, ir_var_temporary); |
| emit(var); |
| |
| return var; |
| } |
| |
| ir_assignment * |
| assign(deref lhs, operand rhs, operand condition, int writemask) |
| { |
| void *mem_ctx = ralloc_parent(lhs.val); |
| |
| ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val, |
| rhs.val, |
| condition.val, |
| writemask); |
| |
| return assign; |
| } |
| |
| ir_assignment * |
| assign(deref lhs, operand rhs) |
| { |
| return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1); |
| } |
| |
| ir_assignment * |
| assign(deref lhs, operand rhs, int writemask) |
| { |
| return assign(lhs, rhs, (ir_rvalue *) NULL, writemask); |
| } |
| |
| ir_assignment * |
| assign(deref lhs, operand rhs, operand condition) |
| { |
| return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1); |
| } |
| |
| ir_return * |
| ret(operand retval) |
| { |
| void *mem_ctx = ralloc_parent(retval.val); |
| return new(mem_ctx) ir_return(retval.val); |
| } |
| |
| ir_swizzle * |
| swizzle(operand a, int swizzle, int components) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| |
| return new(mem_ctx) ir_swizzle(a.val, |
| GET_SWZ(swizzle, 0), |
| GET_SWZ(swizzle, 1), |
| GET_SWZ(swizzle, 2), |
| GET_SWZ(swizzle, 3), |
| components); |
| } |
| |
| ir_swizzle * |
| swizzle_for_size(operand a, unsigned components) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| |
| if (a.val->type->vector_elements < components) |
| components = a.val->type->vector_elements; |
| |
| unsigned s[4] = { 0, 1, 2, 3 }; |
| for (int i = components; i < 4; i++) |
| s[i] = components - 1; |
| |
| return new(mem_ctx) ir_swizzle(a.val, s, components); |
| } |
| |
| ir_swizzle * |
| swizzle_xxxx(operand a) |
| { |
| return swizzle(a, SWIZZLE_XXXX, 4); |
| } |
| |
| ir_swizzle * |
| swizzle_yyyy(operand a) |
| { |
| return swizzle(a, SWIZZLE_YYYY, 4); |
| } |
| |
| ir_swizzle * |
| swizzle_zzzz(operand a) |
| { |
| return swizzle(a, SWIZZLE_ZZZZ, 4); |
| } |
| |
| ir_swizzle * |
| swizzle_wwww(operand a) |
| { |
| return swizzle(a, SWIZZLE_WWWW, 4); |
| } |
| |
| ir_swizzle * |
| swizzle_x(operand a) |
| { |
| return swizzle(a, SWIZZLE_XXXX, 1); |
| } |
| |
| ir_swizzle * |
| swizzle_y(operand a) |
| { |
| return swizzle(a, SWIZZLE_YYYY, 1); |
| } |
| |
| ir_swizzle * |
| swizzle_z(operand a) |
| { |
| return swizzle(a, SWIZZLE_ZZZZ, 1); |
| } |
| |
| ir_swizzle * |
| swizzle_w(operand a) |
| { |
| return swizzle(a, SWIZZLE_WWWW, 1); |
| } |
| |
| ir_swizzle * |
| swizzle_xy(operand a) |
| { |
| return swizzle(a, SWIZZLE_XYZW, 2); |
| } |
| |
| ir_swizzle * |
| swizzle_xyz(operand a) |
| { |
| return swizzle(a, SWIZZLE_XYZW, 3); |
| } |
| |
| ir_swizzle * |
| swizzle_xyzw(operand a) |
| { |
| return swizzle(a, SWIZZLE_XYZW, 4); |
| } |
| |
| ir_expression * |
| expr(ir_expression_operation op, operand a) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| |
| return new(mem_ctx) ir_expression(op, a.val); |
| } |
| |
| ir_expression * |
| expr(ir_expression_operation op, operand a, operand b) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| |
| return new(mem_ctx) ir_expression(op, a.val, b.val); |
| } |
| |
| ir_expression * |
| expr(ir_expression_operation op, operand a, operand b, operand c) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| |
| return new(mem_ctx) ir_expression(op, a.val, b.val, c.val); |
| } |
| |
| ir_expression *add(operand a, operand b) |
| { |
| return expr(ir_binop_add, a, b); |
| } |
| |
| ir_expression *sub(operand a, operand b) |
| { |
| return expr(ir_binop_sub, a, b); |
| } |
| |
| ir_expression *min2(operand a, operand b) |
| { |
| return expr(ir_binop_min, a, b); |
| } |
| |
| ir_expression *max2(operand a, operand b) |
| { |
| return expr(ir_binop_max, a, b); |
| } |
| |
| ir_expression *mul(operand a, operand b) |
| { |
| return expr(ir_binop_mul, a, b); |
| } |
| |
| ir_expression *imul_high(operand a, operand b) |
| { |
| return expr(ir_binop_imul_high, a, b); |
| } |
| |
| ir_expression *div(operand a, operand b) |
| { |
| return expr(ir_binop_div, a, b); |
| } |
| |
| ir_expression *carry(operand a, operand b) |
| { |
| return expr(ir_binop_carry, a, b); |
| } |
| |
| ir_expression *borrow(operand a, operand b) |
| { |
| return expr(ir_binop_borrow, a, b); |
| } |
| |
| ir_expression *trunc(operand a) |
| { |
| return expr(ir_unop_trunc, a); |
| } |
| |
| ir_expression *round_even(operand a) |
| { |
| return expr(ir_unop_round_even, a); |
| } |
| |
| ir_expression *fract(operand a) |
| { |
| return expr(ir_unop_fract, a); |
| } |
| |
| /* dot for vectors, mul for scalars */ |
| ir_expression *dot(operand a, operand b) |
| { |
| assert(a.val->type == b.val->type); |
| |
| if (a.val->type->vector_elements == 1) |
| return expr(ir_binop_mul, a, b); |
| |
| return expr(ir_binop_dot, a, b); |
| } |
| |
| ir_expression* |
| clamp(operand a, operand b, operand c) |
| { |
| return expr(ir_binop_min, expr(ir_binop_max, a, b), c); |
| } |
| |
| ir_expression * |
| saturate(operand a) |
| { |
| return expr(ir_unop_saturate, a); |
| } |
| |
| ir_expression * |
| abs(operand a) |
| { |
| return expr(ir_unop_abs, a); |
| } |
| |
| ir_expression * |
| neg(operand a) |
| { |
| return expr(ir_unop_neg, a); |
| } |
| |
| ir_expression * |
| sin(operand a) |
| { |
| return expr(ir_unop_sin, a); |
| } |
| |
| ir_expression * |
| cos(operand a) |
| { |
| return expr(ir_unop_cos, a); |
| } |
| |
| ir_expression * |
| exp(operand a) |
| { |
| return expr(ir_unop_exp, a); |
| } |
| |
| ir_expression * |
| rsq(operand a) |
| { |
| return expr(ir_unop_rsq, a); |
| } |
| |
| ir_expression * |
| sqrt(operand a) |
| { |
| return expr(ir_unop_sqrt, a); |
| } |
| |
| ir_expression * |
| log(operand a) |
| { |
| return expr(ir_unop_log, a); |
| } |
| |
| ir_expression * |
| sign(operand a) |
| { |
| return expr(ir_unop_sign, a); |
| } |
| |
| ir_expression * |
| subr_to_int(operand a) |
| { |
| return expr(ir_unop_subroutine_to_int, a); |
| } |
| |
| ir_expression* |
| equal(operand a, operand b) |
| { |
| return expr(ir_binop_equal, a, b); |
| } |
| |
| ir_expression* |
| nequal(operand a, operand b) |
| { |
| return expr(ir_binop_nequal, a, b); |
| } |
| |
| ir_expression* |
| less(operand a, operand b) |
| { |
| return expr(ir_binop_less, a, b); |
| } |
| |
| ir_expression* |
| greater(operand a, operand b) |
| { |
| return expr(ir_binop_greater, a, b); |
| } |
| |
| ir_expression* |
| lequal(operand a, operand b) |
| { |
| return expr(ir_binop_lequal, a, b); |
| } |
| |
| ir_expression* |
| gequal(operand a, operand b) |
| { |
| return expr(ir_binop_gequal, a, b); |
| } |
| |
| ir_expression* |
| logic_not(operand a) |
| { |
| return expr(ir_unop_logic_not, a); |
| } |
| |
| ir_expression* |
| logic_and(operand a, operand b) |
| { |
| return expr(ir_binop_logic_and, a, b); |
| } |
| |
| ir_expression* |
| logic_or(operand a, operand b) |
| { |
| return expr(ir_binop_logic_or, a, b); |
| } |
| |
| ir_expression* |
| bit_not(operand a) |
| { |
| return expr(ir_unop_bit_not, a); |
| } |
| |
| ir_expression* |
| bit_and(operand a, operand b) |
| { |
| return expr(ir_binop_bit_and, a, b); |
| } |
| |
| ir_expression* |
| bit_or(operand a, operand b) |
| { |
| return expr(ir_binop_bit_or, a, b); |
| } |
| |
| ir_expression* |
| lshift(operand a, operand b) |
| { |
| return expr(ir_binop_lshift, a, b); |
| } |
| |
| ir_expression* |
| rshift(operand a, operand b) |
| { |
| return expr(ir_binop_rshift, a, b); |
| } |
| |
| ir_expression* |
| f2i(operand a) |
| { |
| return expr(ir_unop_f2i, a); |
| } |
| |
| ir_expression* |
| bitcast_f2i(operand a) |
| { |
| return expr(ir_unop_bitcast_f2i, a); |
| } |
| |
| ir_expression* |
| i2f(operand a) |
| { |
| return expr(ir_unop_i2f, a); |
| } |
| |
| ir_expression* |
| bitcast_i2f(operand a) |
| { |
| return expr(ir_unop_bitcast_i2f, a); |
| } |
| |
| ir_expression* |
| i2u(operand a) |
| { |
| return expr(ir_unop_i2u, a); |
| } |
| |
| ir_expression* |
| u2i(operand a) |
| { |
| return expr(ir_unop_u2i, a); |
| } |
| |
| ir_expression* |
| f2u(operand a) |
| { |
| return expr(ir_unop_f2u, a); |
| } |
| |
| ir_expression* |
| bitcast_f2u(operand a) |
| { |
| return expr(ir_unop_bitcast_f2u, a); |
| } |
| |
| ir_expression* |
| u2f(operand a) |
| { |
| return expr(ir_unop_u2f, a); |
| } |
| |
| ir_expression* |
| bitcast_u2f(operand a) |
| { |
| return expr(ir_unop_bitcast_u2f, a); |
| } |
| |
| ir_expression* |
| i2b(operand a) |
| { |
| return expr(ir_unop_i2b, a); |
| } |
| |
| ir_expression* |
| b2i(operand a) |
| { |
| return expr(ir_unop_b2i, a); |
| } |
| |
| ir_expression * |
| f2b(operand a) |
| { |
| return expr(ir_unop_f2b, a); |
| } |
| |
| ir_expression * |
| b2f(operand a) |
| { |
| return expr(ir_unop_b2f, a); |
| } |
| |
| ir_expression * |
| interpolate_at_centroid(operand a) |
| { |
| return expr(ir_unop_interpolate_at_centroid, a); |
| } |
| |
| ir_expression * |
| interpolate_at_offset(operand a, operand b) |
| { |
| return expr(ir_binop_interpolate_at_offset, a, b); |
| } |
| |
| ir_expression * |
| interpolate_at_sample(operand a, operand b) |
| { |
| return expr(ir_binop_interpolate_at_sample, a, b); |
| } |
| |
| ir_expression * |
| f2d(operand a) |
| { |
| return expr(ir_unop_f2d, a); |
| } |
| |
| ir_expression * |
| i2d(operand a) |
| { |
| return expr(ir_unop_i2d, a); |
| } |
| |
| ir_expression * |
| u2d(operand a) |
| { |
| return expr(ir_unop_u2d, a); |
| } |
| |
| ir_expression * |
| fma(operand a, operand b, operand c) |
| { |
| return expr(ir_triop_fma, a, b, c); |
| } |
| |
| ir_expression * |
| lrp(operand x, operand y, operand a) |
| { |
| return expr(ir_triop_lrp, x, y, a); |
| } |
| |
| ir_expression * |
| csel(operand a, operand b, operand c) |
| { |
| return expr(ir_triop_csel, a, b, c); |
| } |
| |
| ir_expression * |
| bitfield_extract(operand a, operand b, operand c) |
| { |
| return expr(ir_triop_bitfield_extract, a, b, c); |
| } |
| |
| ir_expression * |
| bitfield_insert(operand a, operand b, operand c, operand d) |
| { |
| void *mem_ctx = ralloc_parent(a.val); |
| return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert, |
| a.val->type, a.val, b.val, c.val, d.val); |
| } |
| |
| ir_if* |
| if_tree(operand condition, |
| ir_instruction *then_branch) |
| { |
| assert(then_branch != NULL); |
| |
| void *mem_ctx = ralloc_parent(condition.val); |
| |
| ir_if *result = new(mem_ctx) ir_if(condition.val); |
| result->then_instructions.push_tail(then_branch); |
| return result; |
| } |
| |
| ir_if* |
| if_tree(operand condition, |
| ir_instruction *then_branch, |
| ir_instruction *else_branch) |
| { |
| assert(then_branch != NULL); |
| assert(else_branch != NULL); |
| |
| void *mem_ctx = ralloc_parent(condition.val); |
| |
| ir_if *result = new(mem_ctx) ir_if(condition.val); |
| result->then_instructions.push_tail(then_branch); |
| result->else_instructions.push_tail(else_branch); |
| return result; |
| } |
| |
| } /* namespace ir_builder */ |