blob: 7a31e242d11612c005d6f14a848b607f75eeeb30 [file] [log] [blame]
/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "v3d_compiler.h"
/* We don't do any address packing. */
#define __gen_user_data void
#define __gen_address_type uint32_t
#define __gen_address_offset(reloc) (*reloc)
#define __gen_emit_reloc(cl, reloc)
#include "cle/v3d_packet_v33_pack.h"
static struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i);
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
resize_qreg_array(struct v3d_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static struct qreg
vir_SFU(struct v3d_compile *c, int waddr, struct qreg src)
{
vir_FMOV_dest(c, vir_reg(QFILE_MAGIC, waddr), src);
return vir_FMOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4));
}
static struct qreg
vir_LDTMU(struct v3d_compile *c)
{
vir_NOP(c)->qpu.sig.ldtmu = true;
return vir_MOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4));
}
static struct qreg
indirect_uniform_load(struct v3d_compile *c, nir_intrinsic_instr *intr)
{
struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
uint32_t offset = nir_intrinsic_base(intr);
struct v3d_ubo_range *range = NULL;
unsigned i;
for (i = 0; i < c->num_ubo_ranges; i++) {
range = &c->ubo_ranges[i];
if (offset >= range->src_offset &&
offset < range->src_offset + range->size) {
break;
}
}
/* The driver-location-based offset always has to be within a declared
* uniform range.
*/
assert(i != c->num_ubo_ranges);
if (!c->ubo_range_used[i]) {
c->ubo_range_used[i] = true;
range->dst_offset = c->next_ubo_dst_offset;
c->next_ubo_dst_offset += range->size;
}
offset -= range->src_offset;
if (range->dst_offset + offset != 0) {
indirect_offset = vir_ADD(c, indirect_offset,
vir_uniform_ui(c, range->dst_offset +
offset));
}
/* Adjust for where we stored the TGSI register base. */
vir_ADD_dest(c,
vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA),
vir_uniform(c, QUNIFORM_UBO_ADDR, 0),
indirect_offset);
return vir_LDTMU(c);
}
static struct qreg *
ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
/**
* This function is responsible for getting VIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous VIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
static void
ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert(result.file == QFILE_UNIF ||
(result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* Insert a MOV if the source wasn't an SSA def in the
* previous instruction.
*/
if (result.file == QFILE_UNIF) {
result = vir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (c->execute.file != QFILE_NULL) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask. To insert
* the flags push, we temporarily remove our SSA
* instruction.
*/
list_del(&last_inst->link);
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
list_addtail(&last_inst->link,
&c->cur_block->instructions);
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
last_inst->cond_is_exec_mask = true;
}
}
}
static struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static inline struct qreg
vir_SAT(struct v3d_compile *c, struct qreg val)
{
return vir_FMAX(c,
vir_FMIN(c, val, vir_uniform_f(c, 1.0)),
vir_uniform_f(c, 0.0));
}
static struct qreg
ntq_umul(struct v3d_compile *c, struct qreg src0, struct qreg src1)
{
vir_MULTOP(c, src0, src1);
return vir_UMUL24(c, src0, src1);
}
static struct qreg
ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
{
return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
}
static void
ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
int dest_size = nir_tex_instr_dest_size(instr);
struct qreg lod = c->undef;
if (lod_index != -1)
lod = ntq_get_src(c, instr->src[lod_index].src, 0);
for (int i = 0; i < dest_size; i++) {
assert(i < 3);
enum quniform_contents contents;
if (instr->is_array && i == dest_size - 1)
contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
else
contents = QUNIFORM_TEXTURE_WIDTH + i;
struct qreg size = vir_uniform(c, contents, unit);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
/* Don't minify the array size. */
if (!(instr->is_array && i == dest_size - 1)) {
size = ntq_minify(c, size, lod);
}
break;
case GLSL_SAMPLER_DIM_RECT:
/* There's no LOD field for rects */
break;
default:
unreachable("Bad sampler type");
}
ntq_store_dest(c, &instr->dest, i, size);
}
}
static void
ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
/* Since each texture sampling op requires uploading uniforms to
* reference the texture, there's no HW support for texture size and
* you just upload uniforms containing the size.
*/
switch (instr->op) {
case nir_texop_query_levels:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
return;
case nir_texop_txs:
ntq_emit_txs(c, instr);
return;
default:
break;
}
struct V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1 p0_unpacked = {
V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1_header,
.fetch_sample_mode = instr->op == nir_texop_txf,
};
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
if (instr->is_array)
p0_unpacked.lookup_type = TEXTURE_1D_ARRAY;
else
p0_unpacked.lookup_type = TEXTURE_1D;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
if (instr->is_array)
p0_unpacked.lookup_type = TEXTURE_2D_ARRAY;
else
p0_unpacked.lookup_type = TEXTURE_2D;
break;
case GLSL_SAMPLER_DIM_3D:
p0_unpacked.lookup_type = TEXTURE_3D;
break;
case GLSL_SAMPLER_DIM_CUBE:
p0_unpacked.lookup_type = TEXTURE_CUBE_MAP;
break;
default:
unreachable("Bad sampler type");
}
struct qreg coords[5];
int next_coord = 0;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
for (int j = 0; j < instr->coord_components; j++) {
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, j);
}
if (instr->coord_components < 2)
coords[next_coord++] = vir_uniform_f(c, 0.5);
break;
case nir_tex_src_bias:
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, 0);
p0_unpacked.bias_supplied = true;
break;
case nir_tex_src_lod:
coords[next_coord++] =
vir_FADD(c,
ntq_get_src(c, instr->src[i].src, 0),
vir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL,
unit));
if (instr->op != nir_texop_txf &&
instr->op != nir_texop_tg4) {
p0_unpacked.disable_autolod_use_bias_only = true;
}
break;
case nir_tex_src_comparator:
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, 0);
p0_unpacked.shadow = true;
break;
case nir_tex_src_offset: {
nir_const_value *offset =
nir_src_as_const_value(instr->src[i].src);
p0_unpacked.texel_offset_for_s_coordinate =
offset->i32[0];
if (instr->coord_components >= 2)
p0_unpacked.texel_offset_for_t_coordinate =
offset->i32[1];
if (instr->coord_components >= 3)
p0_unpacked.texel_offset_for_r_coordinate =
offset->i32[2];
break;
}
default:
unreachable("unknown texture source");
}
}
uint32_t p0_packed;
V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1_pack(NULL,
(uint8_t *)&p0_packed,
&p0_unpacked);
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
coords[0] = vir_FMUL(c, coords[0],
vir_uniform(c, QUNIFORM_TEXRECT_SCALE_X,
unit));
coords[1] = vir_FMUL(c, coords[1],
vir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y,
unit));
}
struct qreg texture_u[] = {
vir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0_0 + unit, p0_packed),
vir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
};
uint32_t next_texture_u = 0;
for (int i = 0; i < next_coord; i++) {
struct qreg dst;
if (i == next_coord - 1)
dst = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUL);
else
dst = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMU);
struct qinst *tmu = vir_MOV_dest(c, dst, coords[i]);
if (i < 2) {
tmu->has_implicit_uniform = true;
tmu->src[vir_get_implicit_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
}
bool return_16 = (c->key->tex[unit].return_size == 16 ||
p0_unpacked.shadow);
struct qreg return_values[4];
for (int i = 0; i < c->key->tex[unit].return_channels; i++)
return_values[i] = vir_LDTMU(c);
/* Swizzling .zw of an RG texture should give undefined results, not
* crash the compiler.
*/
for (int i = c->key->tex[unit].return_channels; i < 4; i++)
return_values[i] = c->undef;
for (int i = 0; i < nir_tex_instr_dest_size(instr); i++) {
struct qreg chan;
if (return_16) {
STATIC_ASSERT(PIPE_SWIZZLE_X == 0);
chan = return_values[i / 2];
if (nir_alu_type_get_base_type(instr->dest_type) ==
nir_type_float) {
enum v3d_qpu_input_unpack unpack;
if (i & 1)
unpack = V3D_QPU_UNPACK_H;
else
unpack = V3D_QPU_UNPACK_L;
chan = vir_FMOV(c, chan);
vir_set_unpack(c->defs[chan.index], 0, unpack);
} else {
/* If we're unpacking the low field, shift it
* up to the top first.
*/
if ((i & 1) == 0) {
chan = vir_SHL(c, chan,
vir_uniform_ui(c, 16));
}
/* Do proper sign extension to a 32-bit int. */
if (nir_alu_type_get_base_type(instr->dest_type) ==
nir_type_int) {
chan = vir_ASR(c, chan,
vir_uniform_ui(c, 16));
} else {
chan = vir_SHR(c, chan,
vir_uniform_ui(c, 16));
}
}
} else {
chan = vir_MOV(c, return_values[i]);
}
ntq_store_dest(c, &instr->dest, i, chan);
}
}
static struct qreg
ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
{
struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
if (is_cos)
input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
struct qreg periods = vir_FROUND(c, input);
struct qreg sin_output = vir_SFU(c, V3D_QPU_WADDR_SIN,
vir_FSUB(c, input, periods));
return vir_XOR(c, sin_output, vir_SHL(c,
vir_FTOIN(c, periods),
vir_uniform_ui(c, -1)));
}
static struct qreg
ntq_fsign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
vir_PF(c, vir_FMOV(c, src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
vir_PF(c, vir_FMOV(c, src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
return vir_MOV(c, t);
}
static struct qreg
ntq_isign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_ui(c, 0));
vir_PF(c, vir_MOV(c, src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_ui(c, 1));
vir_PF(c, vir_MOV(c, src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_ui(c, -1));
return vir_MOV(c, t);
}
static void
emit_fragcoord_input(struct v3d_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = vir_FXCD(c);
c->inputs[attr * 4 + 1] = vir_FYCD(c);
c->inputs[attr * 4 + 2] = c->payload_z;
c->inputs[attr * 4 + 3] = vir_SFU(c, V3D_QPU_WADDR_RECIP,
c->payload_w);
}
static struct qreg
emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
uint8_t swizzle)
{
struct qreg vary = vir_reg(QFILE_VARY, ~0);
struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
/* For gl_PointCoord input or distance along a line, we'll be called
* with no nir_variable, and we don't count toward VPM size so we
* don't track an input slot.
*/
if (!var) {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
int i = c->num_inputs++;
c->input_slots[i] = v3d_slot_from_slot_and_component(var->data.location,
swizzle);
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
/* If a gl_FrontColor or gl_BackColor input has no interp
* qualifier, then flag it for glShadeModel() handling by the
* driver.
*/
switch (var->data.location) {
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
BITSET_SET(c->shade_model_flags, i);
break;
default:
break;
}
/* FALLTHROUGH */
case INTERP_MODE_SMOOTH:
if (var->data.centroid) {
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w_centroid), r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
case INTERP_MODE_NOPERSPECTIVE:
/* C appears after the mov from the varying.
XXX: improve ldvary setup.
*/
return vir_FADD(c, vir_MOV(c, vary), r5);
case INTERP_MODE_FLAT:
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
default:
unreachable("Bad interp mode");
}
}
static void
emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var)
{
for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
c->inputs[attr * 4 + i] =
emit_fragment_varying(c, var, i);
}
}
static void
add_output(struct v3d_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct v3d_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset] =
v3d_slot_from_slot_and_component(slot, swizzle);
}
static void
declare_uniform_range(struct v3d_compile *c, uint32_t start, uint32_t size)
{
unsigned array_id = c->num_ubo_ranges++;
if (array_id >= c->ubo_ranges_array_size) {
c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
array_id + 1);
c->ubo_ranges = reralloc(c, c->ubo_ranges,
struct v3d_ubo_range,
c->ubo_ranges_array_size);
c->ubo_range_used = reralloc(c, c->ubo_range_used,
bool,
c->ubo_ranges_array_size);
}
c->ubo_ranges[array_id].dst_offset = 0;
c->ubo_ranges[array_id].src_offset = start;
c->ubo_ranges[array_id].size = size;
c->ubo_range_used[array_id] = false;
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct v3d_compile *c, struct qreg *dest,
nir_alu_instr *compare_instr,
nir_alu_instr *sel_instr)
{
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
bool cond_invert = false;
switch (compare_instr->op) {
case nir_op_feq:
case nir_op_seq:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_ieq:
vir_PF(c, vir_XOR(c, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_fne:
case nir_op_sne:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_ine:
vir_PF(c, vir_XOR(c, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_fge:
case nir_op_sge:
vir_PF(c, vir_FCMP(c, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ige:
vir_PF(c, vir_MIN(c, src1, src0), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_uge:
vir_PF(c, vir_SUB(c, src0, src1), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_slt:
case nir_op_flt:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHN);
break;
case nir_op_ilt:
vir_PF(c, vir_MIN(c, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ult:
vir_PF(c, vir_SUB(c, src0, src1), V3D_QPU_PF_PUSHC);
break;
default:
return false;
}
enum v3d_qpu_cond cond = (cond_invert ?
V3D_QPU_COND_IFNA :
V3D_QPU_COND_IFA);
switch (sel_instr->op) {
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
*dest = vir_SEL(c, cond,
vir_uniform_f(c, 1.0), vir_uniform_f(c, 0.0));
break;
case nir_op_bcsel:
*dest = vir_SEL(c, cond,
ntq_get_alu_src(c, sel_instr, 1),
ntq_get_alu_src(c, sel_instr, 2));
break;
default:
*dest = vir_SEL(c, cond,
vir_uniform_ui(c, ~0), vir_uniform_ui(c, 0));
break;
}
/* Make the temporary for nir_store_dest(). */
*dest = vir_MOV(c, *dest);
return true;
}
/**
* Attempts to fold a comparison generating a boolean result into the
* condition code for selecting between two values, instead of comparing the
* boolean result against 0 to generate the condition code.
*/
static struct qreg ntq_emit_bcsel(struct v3d_compile *c, nir_alu_instr *instr,
struct qreg *src)
{
if (!instr->src[0].src.is_ssa)
goto out;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
goto out;
nir_alu_instr *compare =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (!compare)
goto out;
struct qreg dest;
if (ntq_emit_comparison(c, &dest, compare, instr))
return dest;
out:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
return vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA, src[1], src[2]));
}
static void
ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for V3D. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
vir_MOV(c, srcs[i]));
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_fmov:
case nir_op_imov:
result = vir_MOV(c, src[0]);
break;
case nir_op_fneg:
result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
break;
case nir_op_ineg:
result = vir_NEG(c, src[0]);
break;
case nir_op_fmul:
result = vir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = vir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = vir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = vir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = vir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32:
result = vir_FTOIZ(c, src[0]);
break;
case nir_op_f2u32:
result = vir_FTOUZ(c, src[0]);
break;
case nir_op_i2f32:
result = vir_ITOF(c, src[0]);
break;
case nir_op_u2f32:
result = vir_UTOF(c, src[0]);
break;
case nir_op_b2f:
result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
break;
case nir_op_b2i:
result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
break;
case nir_op_i2b:
case nir_op_f2b:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
case nir_op_iadd:
result = vir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = vir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = vir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = vir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = vir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = vir_MIN(c, src[0], src[1]);
break;
case nir_op_umin:
result = vir_UMIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = vir_MAX(c, src[0], src[1]);
break;
case nir_op_umax:
result = vir_UMAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = vir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = vir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = vir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = vir_NOT(c, src[0]);
break;
case nir_op_imul:
result = ntq_umul(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
case nir_op_feq:
case nir_op_fne:
case nir_op_fge:
case nir_op_flt:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ige:
case nir_op_uge:
case nir_op_ilt:
case nir_op_ult:
if (!ntq_emit_comparison(c, &result, instr, instr)) {
fprintf(stderr, "Bad comparison instruction\n");
}
break;
case nir_op_bcsel:
result = ntq_emit_bcsel(c, instr, src);
break;
case nir_op_fcsel:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
src[1], src[2]));
break;
case nir_op_frcp:
result = vir_SFU(c, V3D_QPU_WADDR_RECIP, src[0]);
break;
case nir_op_frsq:
result = vir_SFU(c, V3D_QPU_WADDR_RSQRT, src[0]);
break;
case nir_op_fexp2:
result = vir_SFU(c, V3D_QPU_WADDR_EXP, src[0]);
break;
case nir_op_flog2:
result = vir_SFU(c, V3D_QPU_WADDR_LOG, src[0]);
break;
case nir_op_fceil:
result = vir_FCEIL(c, src[0]);
break;
case nir_op_ffloor:
result = vir_FFLOOR(c, src[0]);
break;
case nir_op_fround_even:
result = vir_FROUND(c, src[0]);
break;
case nir_op_ftrunc:
result = vir_FTRUNC(c, src[0]);
break;
case nir_op_ffract:
result = vir_FSUB(c, src[0], vir_FFLOOR(c, src[0]));
break;
case nir_op_fsin:
result = ntq_fsincos(c, src[0], false);
break;
case nir_op_fcos:
result = ntq_fsincos(c, src[0], true);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_isign:
result = ntq_isign(c, src[0]);
break;
case nir_op_fabs: {
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
break;
}
case nir_op_iabs:
result = vir_MAX(c, src[0],
vir_SUB(c, vir_uniform_ui(c, 0), src[0]));
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = vir_FDX(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = vir_FDY(c, src[0]);
break;
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
/* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
* specifier. They come from a register that's preloaded with 0xffffffff
* (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
* 8 bits are shifted off the bottom and 0xff shifted in from the top.
*/
#define TLB_TYPE_F16_COLOR (3 << 6)
#define TLB_TYPE_I32_COLOR (1 << 6)
#define TLB_TYPE_F32_COLOR (0 << 6)
#define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
#define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
#define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
#define TLB_F16_SWAP_HI_LO (1 << 1)
#define TLB_VEC_SIZE_4_F16 (1 << 0)
#define TLB_VEC_SIZE_2_F16 (0 << 0)
#define TLB_VEC_SIZE_MINUS_1_SHIFT 0
/* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
* flag is set.
*/
#define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
#define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
#define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
/* Stencil is a single 32-bit write. */
#define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
static void
emit_frag_end(struct v3d_compile *c)
{
/* XXX
if (c->output_sample_mask_index != -1) {
vir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
}
*/
bool has_any_tlb_color_write = false;
for (int rt = 0; rt < c->fs_key->nr_cbufs; rt++) {
if (c->output_color_var[rt])
has_any_tlb_color_write = true;
}
if (c->output_position_index != -1) {
struct qinst *inst = vir_MOV_dest(c,
vir_reg(QFILE_TLBU, 0),
c->outputs[c->output_position_index]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c,
TLB_TYPE_DEPTH |
TLB_DEPTH_TYPE_PER_PIXEL |
0xffffff00);
} else if (c->s->info.fs.uses_discard || !has_any_tlb_color_write) {
/* Emit passthrough Z if it needed to be delayed until shader
* end due to potential discards.
*
* Since (single-threaded) fragment shaders always need a TLB
* write, emit passthrouh Z if we didn't have any color
* buffers and flag us as potentially discarding, so that we
* can use Z as the TLB write.
*/
c->s->info.fs.uses_discard = true;
struct qinst *inst = vir_MOV_dest(c,
vir_reg(QFILE_TLBU, 0),
vir_reg(QFILE_NULL, 0));
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c,
TLB_TYPE_DEPTH |
TLB_DEPTH_TYPE_INVARIANT |
0xffffff00);
}
/* XXX: Performance improvement: Merge Z write and color writes TLB
* uniform setup
*/
for (int rt = 0; rt < c->fs_key->nr_cbufs; rt++) {
if (!c->output_color_var[rt])
continue;
nir_variable *var = c->output_color_var[rt];
struct qreg *color = &c->outputs[var->data.driver_location * 4];
int num_components = glsl_get_vector_elements(var->type);
uint32_t conf = 0xffffff00;
struct qinst *inst;
conf |= TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
assert(num_components != 0);
switch (glsl_get_base_type(var->type)) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
conf |= TLB_TYPE_I32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
inst = vir_MOV_dest(c, vir_reg(QFILE_TLBU, 0), color[0]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
for (int i = 1; i < num_components; i++) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLB, 0),
color[i]);
}
break;
default: {
struct qreg r = color[0];
struct qreg g = color[1];
struct qreg b = color[2];
struct qreg a = color[3];
if (c->fs_key->f32_color_rb) {
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
if (c->fs_key->swap_color_rb & (1 << rt)) {
r = color[2];
b = color[0];
}
if (c->fs_key->f32_color_rb & (1 << rt)) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLBU, 0), color[0]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
for (int i = 1; i < num_components; i++) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLB, 0),
color[i]);
}
} else {
inst = vir_VFPACK_dest(c, vir_reg(QFILE_TLB, 0), r, g);
if (conf != ~0) {
inst->dst.file = QFILE_TLBU;
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
}
inst = vir_VFPACK_dest(c, vir_reg(QFILE_TLB, 0), b, a);
}
break;
}
}
}
}
static void
emit_scaled_viewport_write(struct v3d_compile *c, struct qreg rcp_w)
{
for (int i = 0; i < 2; i++) {
struct qreg coord = c->outputs[c->output_position_index + i];
coord = vir_FMUL(c, coord,
vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i,
0));
coord = vir_FMUL(c, coord, rcp_w);
vir_FTOIN_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM),
coord);
}
}
static void
emit_zs_write(struct v3d_compile *c, struct qreg rcp_w)
{
struct qreg zscale = vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
vir_FADD_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM),
vir_FMUL(c, vir_FMUL(c,
c->outputs[c->output_position_index + 2],
zscale),
rcp_w),
zoffset);
}
static void
emit_rcp_wc_write(struct v3d_compile *c, struct qreg rcp_w)
{
vir_VPM_WRITE(c, rcp_w);
}
static void
emit_point_size_write(struct v3d_compile *c)
{
struct qreg point_size;
if (c->output_point_size_index != -1)
point_size = c->outputs[c->output_point_size_index];
else
point_size = vir_uniform_f(c, 1.0);
/* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
* BCM21553).
*/
point_size = vir_FMAX(c, point_size, vir_uniform_f(c, .125));
vir_VPM_WRITE(c, point_size);
}
static void
emit_vpm_write_setup(struct v3d_compile *c)
{
uint32_t packed;
struct V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP unpacked = {
V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP_header,
.horiz = true,
.laned = false,
.segs = true,
.stride = 1,
.size = VPM_SETUP_SIZE_32_BIT,
.addr = 0,
};
V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP_pack(NULL,
(uint8_t *)&packed,
&unpacked);
vir_VPMSETUP(c, vir_uniform_ui(c, packed));
}
static void
emit_vert_end(struct v3d_compile *c)
{
struct qreg rcp_w = vir_SFU(c, V3D_QPU_WADDR_RECIP,
c->outputs[c->output_position_index + 3]);
emit_vpm_write_setup(c);
if (c->vs_key->is_coord) {
for (int i = 0; i < 4; i++)
vir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
emit_scaled_viewport_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size) {
emit_point_size_write(c);
/* emit_rcp_wc_write(c, rcp_w); */
}
/* XXX: Z-only rendering */
if (0)
emit_zs_write(c, rcp_w);
} else {
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
}
for (int i = 0; i < c->vs_key->num_fs_inputs; i++) {
struct v3d_varying_slot input = c->vs_key->fs_inputs[i];
int j;
for (j = 0; j < c->num_outputs; j++) {
struct v3d_varying_slot output = c->output_slots[j];
if (!memcmp(&input, &output, sizeof(input))) {
vir_VPM_WRITE(c, c->outputs[j]);
break;
}
}
/* Emit padding if we didn't find a declared VS output for
* this FS input.
*/
if (j == c->num_outputs)
vir_VPM_WRITE(c, vir_uniform_f(c, 0.0));
}
}
void
v3d_optimize_nir(struct nir_shader *s)
{
bool progress;
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
NIR_PASS(progress, s, nir_opt_undef);
} while (progress);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static struct qreg
ntq_emit_vpm_read(struct v3d_compile *c,
uint32_t *num_components_queued,
uint32_t *remaining,
uint32_t vpm_index)
{
struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
if (*num_components_queued != 0) {
(*num_components_queued)--;
c->num_inputs++;
return vir_MOV(c, vpm);
}
uint32_t num_components = MIN2(*remaining, 32);
struct V3D33_VPM_GENERIC_BLOCK_READ_SETUP unpacked = {
V3D33_VPM_GENERIC_BLOCK_READ_SETUP_header,
.horiz = true,
.laned = false,
/* If the field is 0, that means a read count of 32. */
.num = num_components & 31,
.segs = true,
.stride = 1,
.size = VPM_SETUP_SIZE_32_BIT,
.addr = c->num_inputs,
};
uint32_t packed;
V3D33_VPM_GENERIC_BLOCK_READ_SETUP_pack(NULL,
(uint8_t *)&packed,
&unpacked);
vir_VPMSETUP(c, vir_uniform_ui(c, packed));
*num_components_queued = num_components - 1;
*remaining -= num_components;
c->num_inputs++;
return vir_MOV(c, vpm);
}
static void
ntq_setup_inputs(struct v3d_compile *c)
{
unsigned num_entries = 0;
unsigned num_components = 0;
nir_foreach_variable(var, &c->s->inputs) {
num_entries++;
num_components += glsl_get_components(var->type);
}
nir_variable *vars[num_entries];
unsigned i = 0;
nir_foreach_variable(var, &c->s->inputs)
vars[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
uint32_t vpm_components_queued = 0;
if (c->s->info.stage == MESA_SHADER_VERTEX) {
bool uses_iid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID);
bool uses_vid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID);
num_components += uses_iid;
num_components += uses_vid;
if (uses_iid) {
c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_vid) {
c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
}
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
assert(array_len == 1);
(void)array_len;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (var->data.location == VARYING_SLOT_PNTC ||
(var->data.location >= VARYING_SLOT_VAR0 &&
(c->fs_key->point_sprite_mask &
(1 << (var->data.location -
VARYING_SLOT_VAR0))))) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else {
emit_fragment_input(c, loc, var);
}
} else {
int var_components = glsl_get_components(var->type);
for (int i = 0; i < var_components; i++) {
c->inputs[loc * 4 + i] =
ntq_emit_vpm_read(c,
&vpm_components_queued,
&num_components,
loc * 4 + i);
}
c->vattr_sizes[loc] = var_components;
}
}
if (c->s->info.stage == MESA_SHADER_VERTEX) {
assert(vpm_components_queued == 0);
assert(num_components == 0);
}
}
static void
ntq_setup_outputs(struct v3d_compile *c)
{
nir_foreach_variable(var, &c->s->outputs) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4; i++)
add_output(c, loc + i, var->data.location, i);
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
c->output_color_var[0] = var;
c->output_color_var[1] = var;
c->output_color_var[2] = var;
c->output_color_var[3] = var;
break;
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
c->output_color_var[var->data.location -
FRAG_RESULT_DATA0] = var;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
} else {
switch (var->data.location) {
case VARYING_SLOT_POS:
c->output_position_index = loc;
break;
case VARYING_SLOT_PSIZ:
c->output_point_size_index = loc;
break;
}
}
}
}
static void
ntq_setup_uniforms(struct v3d_compile *c)
{
nir_foreach_variable(var, &c->s->uniforms) {
uint32_t vec4_count = glsl_count_attribute_slots(var->type,
false);
unsigned vec4_size = 4 * sizeof(float);
declare_uniform_range(c, var->data.driver_location * vec4_size,
vec4_count * vec4_size);
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = vir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, instr->value.u32[i]);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* VIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, 0);
}
static void
ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
nir_const_value *const_offset;
unsigned offset;
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
assert(instr->num_components == 1);
const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_ubo:
for (int i = 0; i < instr->num_components; i++) {
int ubo = nir_src_as_const_value(instr->src[0])->u32[0];
/* Adjust for where we stored the TGSI register base. */
vir_ADD_dest(c,
vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA),
vir_uniform(c, QUNIFORM_UBO_ADDR, 1 + ubo),
vir_ADD(c,
ntq_get_src(c, instr->src[1], 0),
vir_uniform_ui(c, i * 4)));
ntq_store_dest(c, &instr->dest, i, vir_LDTMU(c));
}
break;
const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < instr->num_components; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
vir_ADD(c,
vir_uniform_ui(c, -1),
vir_REVF(c)));
break;
case nir_intrinsic_load_instance_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
break;
case nir_intrinsic_load_vertex_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
break;
case nir_intrinsic_load_input:
const_offset = nir_src_as_const_value(instr->src[0]);
assert(const_offset && "v3d doesn't support indirect inputs");
for (int i = 0; i < instr->num_components; i++) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
int comp = nir_intrinsic_component(instr) + i;
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, c->inputs[offset * 4 + comp]));
}
break;
case nir_intrinsic_store_output:
const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset && "v3d doesn't support indirect outputs");
offset = ((nir_intrinsic_base(instr) +
const_offset->u32[0]) * 4 +
nir_intrinsic_component(instr));
for (int i = 0; i < instr->num_components; i++) {
c->outputs[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
c->num_outputs = MAX2(c->num_outputs,
offset + instr->num_components);
break;
case nir_intrinsic_discard:
if (c->execute.file != QFILE_NULL) {
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0));
}
break;
case nir_intrinsic_discard_if: {
/* true (~0) if we're discarding */
struct qreg cond = ntq_get_src(c, instr->src[0], 0);
if (c->execute.file != QFILE_NULL) {
/* execute == 0 means the channel is active. Invert
* the condition so that we can use zero as "executing
* and discarding."
*/
vir_PF(c, vir_AND(c, c->execute, vir_NOT(c, cond)),
V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_PF(c, cond, V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFNA);
}
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*/
static void
ntq_activate_execute_for_block(struct v3d_compile *c)
{
vir_PF(c, vir_SUB(c, c->execute, vir_uniform_ui(c, c->cur_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
}
static void
ntq_emit_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_top_level = true;
}
/* Set A for executing (execute == 0) and jumping (if->condition ==
* 0) channels, and then update execute flags for those to point to
* the ELSE block.
*/
vir_PF(c, vir_OR(c,
c->execute,
ntq_get_src(c, if_stmt->condition, 0)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA,
c->execute,
vir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
vir_PF(c, vir_SUB(c, c->execute,
vir_uniform_ui(c, after_block->index)),
V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, after_block);
vir_link_blocks(c->cur_block, else_block);
vir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
if (was_top_level)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_break_block->index));
break;
case nir_jump_continue:
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_cont_block->index));
break;
case nir_jump_return:
unreachable("All returns shouold be lowered\n");
}
}
static void
ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct v3d_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
{
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_top_level = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* Re-enable any previous continues now, so our ANYA check below
* works.
*
* XXX: Use the .ORZ flags update, instead.
*/
vir_PF(c, vir_SUB(c,
c->execute,
vir_uniform_ui(c, c->loop_cont_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_link_blocks(c->cur_block, c->loop_break_block);
vir_set_emit_block(c, c->loop_break_block);
if (was_top_level)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
}
static void
ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_vir(struct v3d_compile *c)
{
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, NULL, 0);
c->point_y = emit_fragment_varying(c, NULL, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, NULL, 0);
}
}
ntq_setup_inputs(c);
ntq_setup_outputs(c);
ntq_setup_uniforms(c);
ntq_setup_registers(c, &c->s->registers);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
const nir_shader_compiler_options v3d_nir_options = {
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_bitfield_insert = true,
.lower_bitfield_extract = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_pack_snorm_4x8 = true,
.lower_unpack_unorm_4x8 = true,
.lower_unpack_snorm_4x8 = true,
.lower_fdiv = true,
.lower_ffma = true,
.lower_flrp32 = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.native_integers = true,
};
#if 0
static int
count_nir_instrs(nir_shader *nir)
{
int count = 0;
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block)
count++;
}
}
return count;
}
#endif
void
v3d_nir_to_vir(struct v3d_compile *c)
{
if (V3D_DEBUG & (V3D_DEBUG_NIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_vir(c);
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
emit_frag_end(c);
break;
case MESA_SHADER_VERTEX:
emit_vert_end(c);
break;
default:
unreachable("bad stage");
}
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
vir_optimize(c);
vir_lower_uniforms(c);
/* XXX: vir_schedule_instructions(c); */
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
v3d_vir_to_qpu(c);
}