| /* |
| * Copyright 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "genxml/genX_bits.h" |
| |
| #include "isl.h" |
| #include "isl_gen4.h" |
| #include "isl_gen6.h" |
| #include "isl_gen7.h" |
| #include "isl_gen8.h" |
| #include "isl_gen9.h" |
| #include "isl_gen12.h" |
| #include "isl_priv.h" |
| |
| void |
| isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2, |
| uint32_t yt1, uint32_t yt2, |
| char *dst, const char *src, |
| uint32_t dst_pitch, int32_t src_pitch, |
| bool has_swizzling, |
| enum isl_tiling tiling, |
| isl_memcpy_type copy_type) |
| { |
| #ifdef USE_SSE41 |
| if (copy_type == ISL_MEMCPY_STREAMING_LOAD) { |
| _isl_memcpy_linear_to_tiled_sse41( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| return; |
| } |
| #endif |
| |
| _isl_memcpy_linear_to_tiled( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| } |
| |
| void |
| isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2, |
| uint32_t yt1, uint32_t yt2, |
| char *dst, const char *src, |
| int32_t dst_pitch, uint32_t src_pitch, |
| bool has_swizzling, |
| enum isl_tiling tiling, |
| isl_memcpy_type copy_type) |
| { |
| #ifdef USE_SSE41 |
| if (copy_type == ISL_MEMCPY_STREAMING_LOAD) { |
| _isl_memcpy_tiled_to_linear_sse41( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| return; |
| } |
| #endif |
| |
| _isl_memcpy_tiled_to_linear( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| } |
| |
| void PRINTFLIKE(3, 4) UNUSED |
| __isl_finishme(const char *file, int line, const char *fmt, ...) |
| { |
| va_list ap; |
| char buf[512]; |
| |
| va_start(ap, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, ap); |
| va_end(ap); |
| |
| fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf); |
| } |
| |
| static void |
| isl_device_setup_mocs(struct isl_device *dev) |
| { |
| if (dev->info->gen >= 12) { |
| if (dev->info->is_dg1) { |
| /* L3CC=WB */ |
| dev->mocs.internal = 5 << 1; |
| /* Displayables on DG1 are free to cache in L3 since L3 is transient |
| * and flushed at bottom of each submission. |
| */ |
| dev->mocs.external = 5 << 1; |
| } else { |
| /* TODO: Set PTE to MOCS 61 when the kernel is ready */ |
| /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */ |
| dev->mocs.external = 3 << 1; |
| /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ |
| dev->mocs.internal = 2 << 1; |
| } |
| } else if (dev->info->gen >= 9) { |
| /* TC=LLC/eLLC, LeCC=PTE, LRUM=3, L3CC=WB */ |
| dev->mocs.external = 1 << 1; |
| /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ |
| dev->mocs.internal = 2 << 1; |
| } else if (dev->info->gen >= 8) { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle, |
| * .TargetCache = L3DefertoPATforLLCeLLCselection, |
| * .AgeforQUADLRU = 0 |
| */ |
| dev->mocs.external = 0x18; |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryTypeLLCeLLCCacheabilityControl = WB, |
| * .TargetCache = L3DefertoPATforLLCeLLCselection, |
| * .AgeforQUADLRU = 0 |
| */ |
| dev->mocs.internal = 0x78; |
| } else if (dev->info->gen >= 7) { |
| if (dev->info->is_haswell) { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .LLCeLLCCacheabilityControlLLCCC = 0, |
| * .L3CacheabilityControlL3CC = 1, |
| */ |
| dev->mocs.internal = 1; |
| dev->mocs.external = 1; |
| } else { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .GraphicsDataTypeGFDT = 0, |
| * .LLCCacheabilityControlLLCCC = 0, |
| * .L3CacheabilityControlL3CC = 1, |
| */ |
| dev->mocs.internal = 1; |
| dev->mocs.external = 1; |
| } |
| } else { |
| dev->mocs.internal = 0; |
| dev->mocs.external = 0; |
| } |
| } |
| |
| void |
| isl_device_init(struct isl_device *dev, |
| const struct gen_device_info *info, |
| bool has_bit6_swizzling) |
| { |
| /* Gen8+ don't have bit6 swizzling, ensure callsite is not confused. */ |
| assert(!(has_bit6_swizzling && info->gen >= 8)); |
| |
| dev->info = info; |
| dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6; |
| dev->has_bit6_swizzling = has_bit6_swizzling; |
| |
| /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some |
| * device properties at buildtime. Verify that the macros with the device |
| * properties chosen during runtime. |
| */ |
| ISL_DEV_GEN_SANITIZE(dev); |
| ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev); |
| |
| /* Did we break hiz or stencil? */ |
| if (ISL_DEV_USE_SEPARATE_STENCIL(dev)) |
| assert(info->has_hiz_and_separate_stencil); |
| if (info->must_use_separate_stencil) |
| assert(ISL_DEV_USE_SEPARATE_STENCIL(dev)); |
| |
| dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4; |
| dev->ss.align = isl_align(dev->ss.size, 32); |
| |
| dev->ss.clear_color_state_size = |
| isl_align(CLEAR_COLOR_length(info) * 4, 64); |
| dev->ss.clear_color_state_offset = |
| RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4; |
| |
| dev->ss.clear_value_size = |
| isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) + |
| RENDER_SURFACE_STATE_GreenClearColor_bits(info) + |
| RENDER_SURFACE_STATE_BlueClearColor_bits(info) + |
| RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8; |
| |
| dev->ss.clear_value_offset = |
| RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4; |
| |
| assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ss.addr_offset = |
| RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8; |
| |
| /* The "Auxiliary Surface Base Address" field starts a bit higher up |
| * because the bottom 12 bits are used for other things. Round down to |
| * the nearest dword before. |
| */ |
| dev->ss.aux_addr_offset = |
| (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8; |
| |
| dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4; |
| assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.depth_offset = |
| _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| |
| if (dev->use_separate_stencil) { |
| dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 + |
| _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_CLEAR_PARAMS_length(info) * 4; |
| |
| assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.stencil_offset = |
| _3DSTATE_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| |
| assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.hiz_offset = |
| _3DSTATE_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_STENCIL_BUFFER_length(info) * 4 + |
| _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| } else { |
| dev->ds.stencil_offset = 0; |
| dev->ds.hiz_offset = 0; |
| } |
| |
| if (ISL_DEV_GEN(dev) >= 12) { |
| dev->ds.size += GEN12_MI_LOAD_REGISTER_IMM_length * 4 * 2; |
| } |
| |
| isl_device_setup_mocs(dev); |
| } |
| |
| /** |
| * @brief Query the set of multisamples supported by the device. |
| * |
| * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always |
| * supported. |
| */ |
| isl_sample_count_mask_t ATTRIBUTE_CONST |
| isl_device_get_sample_counts(struct isl_device *dev) |
| { |
| if (ISL_DEV_GEN(dev) >= 9) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_2_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT | |
| ISL_SAMPLE_COUNT_16_BIT; |
| } else if (ISL_DEV_GEN(dev) >= 8) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_2_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT; |
| } else if (ISL_DEV_GEN(dev) >= 7) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT; |
| } else if (ISL_DEV_GEN(dev) >= 6) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_4_BIT; |
| } else { |
| return ISL_SAMPLE_COUNT_1_BIT; |
| } |
| } |
| |
| /** |
| * @param[out] info is written only on success |
| */ |
| static void |
| isl_tiling_get_info(enum isl_tiling tiling, |
| uint32_t format_bpb, |
| struct isl_tile_info *tile_info) |
| { |
| const uint32_t bs = format_bpb / 8; |
| struct isl_extent2d logical_el, phys_B; |
| |
| if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) { |
| /* It is possible to have non-power-of-two formats in a tiled buffer. |
| * The easiest way to handle this is to treat the tile as if it is three |
| * times as wide. This way no pixel will ever cross a tile boundary. |
| * This really only works on legacy X and Y tiling formats. |
| */ |
| assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0); |
| assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3)); |
| isl_tiling_get_info(tiling, format_bpb / 3, tile_info); |
| return; |
| } |
| |
| switch (tiling) { |
| case ISL_TILING_LINEAR: |
| assert(bs > 0); |
| logical_el = isl_extent2d(1, 1); |
| phys_B = isl_extent2d(bs, 1); |
| break; |
| |
| case ISL_TILING_X: |
| assert(bs > 0); |
| logical_el = isl_extent2d(512 / bs, 8); |
| phys_B = isl_extent2d(512, 8); |
| break; |
| |
| case ISL_TILING_Y0: |
| assert(bs > 0); |
| logical_el = isl_extent2d(128 / bs, 32); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_W: |
| assert(bs == 1); |
| logical_el = isl_extent2d(64, 64); |
| /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch: |
| * |
| * "If the surface is a stencil buffer (and thus has Tile Mode set |
| * to TILEMODE_WMAJOR), the pitch must be set to 2x the value |
| * computed based on width, as the stencil buffer is stored with two |
| * rows interleaved." |
| * |
| * This, together with the fact that stencil buffers are referred to as |
| * being Y-tiled in the PRMs for older hardware implies that the |
| * physical size of a W-tile is actually the same as for a Y-tile. |
| */ |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_Yf: |
| case ISL_TILING_Ys: { |
| bool is_Ys = tiling == ISL_TILING_Ys; |
| |
| assert(bs > 0); |
| unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys)); |
| unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys)); |
| |
| logical_el = isl_extent2d(width / bs, height); |
| phys_B = isl_extent2d(width, height); |
| break; |
| } |
| |
| case ISL_TILING_HIZ: |
| /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4 |
| * 128bpb format. The tiling has the same physical dimensions as |
| * Y-tiling but actually has two HiZ columns per Y-tiled column. |
| */ |
| assert(bs == 16); |
| logical_el = isl_extent2d(16, 16); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_CCS: |
| /* CCS surfaces are required to have one of the GENX_CCS_* formats which |
| * have a block size of 1 or 2 bits per block and each CCS element |
| * corresponds to one cache-line pair in the main surface. From the Sky |
| * Lake PRM Vol. 12 in the section on planes: |
| * |
| * "The Color Control Surface (CCS) contains the compression status |
| * of the cache-line pairs. The compression state of the cache-line |
| * pair is specified by 2 bits in the CCS. Each CCS cache-line |
| * represents an area on the main surface of 16x16 sets of 128 byte |
| * Y-tiled cache-line-pairs. CCS is always Y tiled." |
| * |
| * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines. |
| * Since each cache line corresponds to a 16x16 set of cache-line pairs, |
| * that yields total tile area of 128x128 cache-line pairs or CCS |
| * elements. On older hardware, each CCS element is 1 bit and the tile |
| * is 128x256 elements. |
| */ |
| assert(format_bpb == 1 || format_bpb == 2); |
| logical_el = isl_extent2d(128, 256 / format_bpb); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_GEN12_CCS: |
| /* From the Bspec, Gen Graphics > Gen12 > Memory Data Formats > Memory |
| * Compression > Memory Compression - Gen12: |
| * |
| * 4 bits of auxiliary plane data are required for 2 cachelines of |
| * main surface data. This results in a single cacheline of auxiliary |
| * plane data mapping to 4 4K pages of main surface data for the 4K |
| * pages (tile Y ) and 1 64K Tile Ys page. |
| * |
| * The Y-tiled pairing bit of 9 shown in the table below that Bspec |
| * section expresses that the 2 cachelines of main surface data are |
| * horizontally adjacent. |
| * |
| * TODO: Handle Ys, Yf and their pairing bits. |
| * |
| * Therefore, each CCS cacheline represents a 512Bx32 row area and each |
| * element represents a 32Bx4 row area. |
| */ |
| assert(format_bpb == 4); |
| logical_el = isl_extent2d(16, 8); |
| phys_B = isl_extent2d(64, 1); |
| break; |
| |
| default: |
| unreachable("not reached"); |
| } /* end switch */ |
| |
| *tile_info = (struct isl_tile_info) { |
| .tiling = tiling, |
| .format_bpb = format_bpb, |
| .logical_extent_el = logical_el, |
| .phys_extent_B = phys_B, |
| }; |
| } |
| |
| bool |
| isl_color_value_is_zero(union isl_color_value value, |
| enum isl_format format) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| #define RETURN_FALSE_IF_NOT_0(c, i) \ |
| if (fmtl->channels.c.bits && value.u32[i] != 0) \ |
| return false |
| |
| RETURN_FALSE_IF_NOT_0(r, 0); |
| RETURN_FALSE_IF_NOT_0(g, 1); |
| RETURN_FALSE_IF_NOT_0(b, 2); |
| RETURN_FALSE_IF_NOT_0(a, 3); |
| |
| #undef RETURN_FALSE_IF_NOT_0 |
| |
| return true; |
| } |
| |
| bool |
| isl_color_value_is_zero_one(union isl_color_value value, |
| enum isl_format format) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \ |
| if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \ |
| return false |
| |
| if (isl_format_has_int_channel(format)) { |
| RETURN_FALSE_IF_NOT_0_1(r, 0, u32); |
| RETURN_FALSE_IF_NOT_0_1(g, 1, u32); |
| RETURN_FALSE_IF_NOT_0_1(b, 2, u32); |
| RETURN_FALSE_IF_NOT_0_1(a, 3, u32); |
| } else { |
| RETURN_FALSE_IF_NOT_0_1(r, 0, f32); |
| RETURN_FALSE_IF_NOT_0_1(g, 1, f32); |
| RETURN_FALSE_IF_NOT_0_1(b, 2, f32); |
| RETURN_FALSE_IF_NOT_0_1(a, 3, f32); |
| } |
| |
| #undef RETURN_FALSE_IF_NOT_0_1 |
| |
| return true; |
| } |
| |
| /** |
| * @param[out] tiling is set only on success |
| */ |
| static bool |
| isl_surf_choose_tiling(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_tiling *tiling) |
| { |
| isl_tiling_flags_t tiling_flags = info->tiling_flags; |
| |
| /* HiZ surfaces always use the HiZ tiling */ |
| if (info->usage & ISL_SURF_USAGE_HIZ_BIT) { |
| assert(info->format == ISL_FORMAT_HIZ); |
| assert(tiling_flags == ISL_TILING_HIZ_BIT); |
| *tiling = isl_tiling_flag_to_enum(tiling_flags); |
| return true; |
| } |
| |
| /* CCS surfaces always use the CCS tiling */ |
| if (info->usage & ISL_SURF_USAGE_CCS_BIT) { |
| assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS); |
| UNUSED bool ivb_ccs = ISL_DEV_GEN(dev) < 12 && |
| tiling_flags == ISL_TILING_CCS_BIT; |
| UNUSED bool tgl_ccs = ISL_DEV_GEN(dev) >= 12 && |
| tiling_flags == ISL_TILING_GEN12_CCS_BIT; |
| assert(ivb_ccs != tgl_ccs); |
| *tiling = isl_tiling_flag_to_enum(tiling_flags); |
| return true; |
| } |
| |
| if (ISL_DEV_GEN(dev) >= 6) { |
| isl_gen6_filter_tiling(dev, info, &tiling_flags); |
| } else { |
| isl_gen4_filter_tiling(dev, info, &tiling_flags); |
| } |
| |
| #define CHOOSE(__tiling) \ |
| do { \ |
| if (tiling_flags & (1u << (__tiling))) { \ |
| *tiling = (__tiling); \ |
| return true; \ |
| } \ |
| } while (0) |
| |
| /* Of the tiling modes remaining, choose the one that offers the best |
| * performance. |
| */ |
| |
| if (info->dim == ISL_SURF_DIM_1D) { |
| /* Prefer linear for 1D surfaces because they do not benefit from |
| * tiling. To the contrary, tiling leads to wasted memory and poor |
| * memory locality due to the swizzling and alignment restrictions |
| * required in tiled surfaces. |
| */ |
| CHOOSE(ISL_TILING_LINEAR); |
| } |
| |
| CHOOSE(ISL_TILING_Ys); |
| CHOOSE(ISL_TILING_Yf); |
| CHOOSE(ISL_TILING_Y0); |
| CHOOSE(ISL_TILING_X); |
| CHOOSE(ISL_TILING_W); |
| CHOOSE(ISL_TILING_LINEAR); |
| |
| #undef CHOOSE |
| |
| /* No tiling mode accomodates the inputs. */ |
| return false; |
| } |
| |
| static bool |
| isl_choose_msaa_layout(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| enum isl_tiling tiling, |
| enum isl_msaa_layout *msaa_layout) |
| { |
| if (ISL_DEV_GEN(dev) >= 8) { |
| return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else if (ISL_DEV_GEN(dev) >= 7) { |
| return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else if (ISL_DEV_GEN(dev) >= 6) { |
| return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else { |
| return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } |
| } |
| |
| struct isl_extent2d |
| isl_get_interleaved_msaa_px_size_sa(uint32_t samples) |
| { |
| assert(isl_is_pow2(samples)); |
| |
| /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level |
| * Sizes (p133): |
| * |
| * If the surface is multisampled and it is a depth or stencil surface |
| * or Multisampled Surface StorageFormat in SURFACE_STATE is |
| * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before |
| * proceeding: [...] |
| */ |
| return (struct isl_extent2d) { |
| .width = 1 << ((ffs(samples) - 0) / 2), |
| .height = 1 << ((ffs(samples) - 1) / 2), |
| }; |
| } |
| |
| static void |
| isl_msaa_interleaved_scale_px_to_sa(uint32_t samples, |
| uint32_t *width, uint32_t *height) |
| { |
| const struct isl_extent2d px_size_sa = |
| isl_get_interleaved_msaa_px_size_sa(samples); |
| |
| if (width) |
| *width = isl_align(*width, 2) * px_size_sa.width; |
| if (height) |
| *height = isl_align(*height, 2) * px_size_sa.height; |
| } |
| |
| static enum isl_array_pitch_span |
| isl_choose_array_pitch_span(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_dim_layout dim_layout, |
| const struct isl_extent4d *phys_level0_sa) |
| { |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GEN9_1D: |
| case ISL_DIM_LAYOUT_GEN4_2D: |
| if (ISL_DEV_GEN(dev) >= 8) { |
| /* QPitch becomes programmable in Broadwell. So choose the |
| * most compact QPitch possible in order to conserve memory. |
| * |
| * From the Broadwell PRM >> Volume 2d: Command Reference: Structures |
| * >> RENDER_SURFACE_STATE Surface QPitch (p325): |
| * |
| * - Software must ensure that this field is set to a value |
| * sufficiently large such that the array slices in the surface |
| * do not overlap. Refer to the Memory Data Formats section for |
| * information on how surfaces are stored in memory. |
| * |
| * - This field specifies the distance in rows between array |
| * slices. It is used only in the following cases: |
| * |
| * - Surface Array is enabled OR |
| * - Number of Mulitsamples is not NUMSAMPLES_1 and |
| * Multisampled Surface Storage Format set to MSFMT_MSS OR |
| * - Surface Type is SURFTYPE_CUBE |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } else if (ISL_DEV_GEN(dev) >= 7) { |
| /* Note that Ivybridge introduces |
| * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the |
| * driver more control over the QPitch. |
| */ |
| |
| if (phys_level0_sa->array_len == 1) { |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| if (isl_surf_usage_is_depth_or_stencil(info->usage) || |
| (info->usage & ISL_SURF_USAGE_HIZ_BIT)) { |
| /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >> |
| * Section 6.18.4.7: Surface Arrays (p112): |
| * |
| * If Surface Array Spacing is set to ARYSPC_FULL (note that |
| * the depth buffer and stencil buffer have an implied value of |
| * ARYSPC_FULL): |
| */ |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| if (info->levels == 1) { |
| /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing |
| * to ARYSPC_LOD0. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) && |
| ISL_DEV_USE_SEPARATE_STENCIL(dev) && |
| isl_surf_usage_is_stencil(info->usage)) { |
| /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * The separate stencil buffer does not support mip mapping, thus |
| * the storage for LODs other than LOD 0 is not needed. |
| */ |
| assert(info->levels == 1); |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } else { |
| if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) && |
| ISL_DEV_USE_SEPARATE_STENCIL(dev) && |
| isl_surf_usage_is_stencil(info->usage)) { |
| /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * The separate stencil buffer does not support mip mapping, |
| * thus the storage for LODs other than LOD 0 is not needed. |
| */ |
| assert(info->levels == 1); |
| assert(phys_level0_sa->array_len == 1); |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| if (phys_level0_sa->array_len == 1) { |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| case ISL_DIM_LAYOUT_GEN4_3D: |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| |
| case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ: |
| /* Each array image in the gen6 stencil of HiZ surface is compact in the |
| * sense that every LOD is a compact array of the same size as LOD0. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| unreachable("bad isl_dim_layout"); |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| static void |
| isl_choose_image_alignment_el(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_tiling tiling, |
| enum isl_dim_layout dim_layout, |
| enum isl_msaa_layout msaa_layout, |
| struct isl_extent3d *image_align_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| if (fmtl->txc == ISL_TXC_MCS) { |
| assert(tiling == ISL_TILING_Y0); |
| |
| /* |
| * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)": |
| * |
| * Height, width, and layout of MCS buffer in this case must match with |
| * Render Target height, width, and layout. MCS buffer is tiledY. |
| * |
| * To avoid wasting memory, choose the smallest alignment possible: |
| * HALIGN_4 and VALIGN_4. |
| */ |
| *image_align_el = isl_extent3d(4, 4, 1); |
| return; |
| } else if (info->format == ISL_FORMAT_HIZ) { |
| assert(ISL_DEV_GEN(dev) >= 6); |
| if (ISL_DEV_GEN(dev) == 6) { |
| /* HiZ surfaces on Sandy Bridge are packed tightly. */ |
| *image_align_el = isl_extent3d(1, 1, 1); |
| } else if (ISL_DEV_GEN(dev) < 12) { |
| /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the |
| * primary surface which works out to 2x2 HiZ elments. |
| */ |
| *image_align_el = isl_extent3d(2, 2, 1); |
| } else { |
| /* On gen12+, HiZ surfaces are always aligned to 16x16 pixels in the |
| * primary surface which works out to 2x4 HiZ elments. |
| * TODO: Verify |
| */ |
| *image_align_el = isl_extent3d(2, 4, 1); |
| } |
| return; |
| } |
| |
| if (ISL_DEV_GEN(dev) >= 12) { |
| isl_gen12_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_DEV_GEN(dev) >= 9) { |
| isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_DEV_GEN(dev) >= 8) { |
| isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_DEV_GEN(dev) >= 7) { |
| isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_DEV_GEN(dev) >= 6) { |
| isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else { |
| isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } |
| } |
| |
| static enum isl_dim_layout |
| isl_surf_choose_dim_layout(const struct isl_device *dev, |
| enum isl_surf_dim logical_dim, |
| enum isl_tiling tiling, |
| isl_surf_usage_flags_t usage) |
| { |
| /* Sandy bridge needs a special layout for HiZ and stencil. */ |
| if (ISL_DEV_GEN(dev) == 6 && |
| (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ)) |
| return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ; |
| |
| if (ISL_DEV_GEN(dev) >= 9) { |
| switch (logical_dim) { |
| case ISL_SURF_DIM_1D: |
| /* From the Sky Lake PRM Vol. 5, "1D Surfaces": |
| * |
| * One-dimensional surfaces use a tiling mode of linear. |
| * Technically, they are not tiled resources, but the Tiled |
| * Resource Mode field in RENDER_SURFACE_STATE is still used to |
| * indicate the alignment requirements for this linear surface |
| * (See 1D Alignment requirements for how 4K and 64KB Tiled |
| * Resource Modes impact alignment). Alternatively, a 1D surface |
| * can be defined as a 2D tiled surface (e.g. TileY or TileX) with |
| * a height of 0. |
| * |
| * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear |
| * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used. |
| */ |
| if (tiling == ISL_TILING_LINEAR) |
| return ISL_DIM_LAYOUT_GEN9_1D; |
| else |
| return ISL_DIM_LAYOUT_GEN4_2D; |
| case ISL_SURF_DIM_2D: |
| case ISL_SURF_DIM_3D: |
| return ISL_DIM_LAYOUT_GEN4_2D; |
| } |
| } else { |
| switch (logical_dim) { |
| case ISL_SURF_DIM_1D: |
| case ISL_SURF_DIM_2D: |
| /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout": |
| * |
| * The cube face textures are stored in the same way as 3D surfaces |
| * are stored (see section 6.17.5 for details). For cube surfaces, |
| * however, the depth is equal to the number of faces (always 6) and |
| * is not reduced for each MIP. |
| */ |
| if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT)) |
| return ISL_DIM_LAYOUT_GEN4_3D; |
| |
| return ISL_DIM_LAYOUT_GEN4_2D; |
| case ISL_SURF_DIM_3D: |
| return ISL_DIM_LAYOUT_GEN4_3D; |
| } |
| } |
| |
| unreachable("bad isl_surf_dim"); |
| return ISL_DIM_LAYOUT_GEN4_2D; |
| } |
| |
| /** |
| * Calculate the physical extent of the surface's first level, in units of |
| * surface samples. |
| */ |
| static void |
| isl_calc_phys_level0_extent_sa(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_dim_layout dim_layout, |
| enum isl_tiling tiling, |
| enum isl_msaa_layout msaa_layout, |
| struct isl_extent4d *phys_level0_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| if (isl_format_is_planar(info->format)) |
| unreachable("Planar formats unsupported"); |
| |
| switch (info->dim) { |
| case ISL_SURF_DIM_1D: |
| assert(info->height == 1); |
| assert(info->depth == 1); |
| assert(info->samples == 1); |
| |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GEN4_3D: |
| unreachable("bad isl_dim_layout"); |
| |
| case ISL_DIM_LAYOUT_GEN9_1D: |
| case ISL_DIM_LAYOUT_GEN4_2D: |
| case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ: |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = 1, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| break; |
| } |
| break; |
| |
| case ISL_SURF_DIM_2D: |
| if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT)) |
| assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D); |
| else |
| assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D || |
| dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ); |
| |
| if (tiling == ISL_TILING_Ys && info->samples > 1) |
| isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__); |
| |
| switch (msaa_layout) { |
| case ISL_MSAA_LAYOUT_NONE: |
| assert(info->depth == 1); |
| assert(info->samples == 1); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| break; |
| |
| case ISL_MSAA_LAYOUT_ARRAY: |
| assert(info->depth == 1); |
| assert(info->levels == 1); |
| assert(isl_format_supports_multisampling(dev->info, info->format)); |
| assert(fmtl->bw == 1 && fmtl->bh == 1); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len * info->samples, |
| }; |
| break; |
| |
| case ISL_MSAA_LAYOUT_INTERLEAVED: |
| assert(info->depth == 1); |
| assert(info->levels == 1); |
| assert(isl_format_supports_multisampling(dev->info, info->format)); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| |
| isl_msaa_interleaved_scale_px_to_sa(info->samples, |
| &phys_level0_sa->w, |
| &phys_level0_sa->h); |
| break; |
| } |
| break; |
| |
| case ISL_SURF_DIM_3D: |
| assert(info->array_len == 1); |
| assert(info->samples == 1); |
| |
| if (fmtl->bd > 1) { |
| isl_finishme("%s:%s: compression block with depth > 1", |
| __FILE__, __func__); |
| } |
| |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GEN9_1D: |
| case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ: |
| unreachable("bad isl_dim_layout"); |
| |
| case ISL_DIM_LAYOUT_GEN4_2D: |
| assert(ISL_DEV_GEN(dev) >= 9); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->depth, |
| }; |
| break; |
| |
| case ISL_DIM_LAYOUT_GEN4_3D: |
| assert(ISL_DEV_GEN(dev) < 9); |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = info->depth, |
| .a = 1, |
| }; |
| break; |
| } |
| break; |
| } |
| } |
| |
| /** |
| * Calculate the pitch between physical array slices, in units of rows of |
| * surface elements. |
| */ |
| static uint32_t |
| isl_calc_array_pitch_el_rows_gen4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| const struct isl_extent2d *phys_slice0_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| uint32_t pitch_sa_rows = 0; |
| |
| switch (array_pitch_span) { |
| case ISL_ARRAY_PITCH_SPAN_COMPACT: |
| pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h); |
| break; |
| case ISL_ARRAY_PITCH_SPAN_FULL: { |
| /* The QPitch equation is found in the Broadwell PRM >> Volume 5: |
| * Memory Views >> Common Surface Formats >> Surface Layout >> 2D |
| * Surfaces >> Surface Arrays. |
| */ |
| uint32_t H0_sa = phys_level0_sa->h; |
| uint32_t H1_sa = isl_minify(H0_sa, 1); |
| |
| uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h); |
| uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h); |
| |
| uint32_t m; |
| if (ISL_DEV_GEN(dev) >= 7) { |
| /* The QPitch equation changed slightly in Ivybridge. */ |
| m = 12; |
| } else { |
| m = 11; |
| } |
| |
| pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h); |
| |
| if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 && |
| (info->height % 4 == 1)) { |
| /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than |
| * the value calculated in the equation above , for every |
| * other odd Surface Height starting from 1 i.e. 1,5,9,13. |
| * |
| * XXX(chadv): Is the errata natural corollary of the physical |
| * layout of interleaved samples? |
| */ |
| pitch_sa_rows += 4; |
| } |
| |
| pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh); |
| } /* end case */ |
| break; |
| } |
| |
| assert(pitch_sa_rows % fmtl->bh == 0); |
| uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh; |
| |
| if (ISL_DEV_GEN(dev) >= 9 && ISL_DEV_GEN(dev) <= 11 && |
| fmtl->txc == ISL_TXC_CCS) { |
| /* |
| * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632): |
| * |
| * "Mip-mapped and arrayed surfaces are supported with MCS buffer |
| * layout with these alignments in the RT space: Horizontal |
| * Alignment = 128 and Vertical Alignment = 64." |
| * |
| * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435): |
| * |
| * "For non-multisampled render target's CCS auxiliary surface, |
| * QPitch must be computed with Horizontal Alignment = 128 and |
| * Surface Vertical Alignment = 256. These alignments are only for |
| * CCS buffer and not for associated render target." |
| * |
| * The first restriction is already handled by isl_choose_image_alignment_el |
| * but the second restriction, which is an extension of the first, only |
| * applies to qpitch and must be applied here. |
| * |
| * The second restriction disappears on Gen12. |
| */ |
| assert(fmtl->bh == 4); |
| pitch_el_rows = isl_align(pitch_el_rows, 256 / 4); |
| } |
| |
| if (ISL_DEV_GEN(dev) >= 9 && |
| info->dim == ISL_SURF_DIM_3D && |
| tile_info->tiling != ISL_TILING_LINEAR) { |
| /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch: |
| * |
| * Tile Mode != Linear: This field must be set to an integer multiple |
| * of the tile height |
| */ |
| pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height); |
| } |
| |
| return pitch_el_rows; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GEN4_2D. |
| */ |
| static void |
| isl_calc_phys_slice0_extent_sa_gen4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| struct isl_extent2d *phys_slice0_sa) |
| { |
| assert(phys_level0_sa->depth == 1); |
| |
| if (info->levels == 1) { |
| /* Do not pad the surface to the image alignment. |
| * |
| * For tiled surfaces, using a reduced alignment here avoids wasting CPU |
| * cycles on the below mipmap layout caluclations. Reducing the |
| * alignment here is safe because we later align the row pitch and array |
| * pitch to the tile boundary. It is safe even for |
| * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled |
| * to accomodate the interleaved samples. |
| * |
| * For linear surfaces, reducing the alignment here permits us to later |
| * choose an arbitrary, non-aligned row pitch. If the surface backs |
| * a VkBuffer, then an arbitrary pitch may be needed to accomodate |
| * VkBufferImageCopy::bufferRowLength. |
| */ |
| *phys_slice0_sa = (struct isl_extent2d) { |
| .w = phys_level0_sa->w, |
| .h = phys_level0_sa->h, |
| }; |
| return; |
| } |
| |
| uint32_t slice_top_w = 0; |
| uint32_t slice_bottom_w = 0; |
| uint32_t slice_left_h = 0; |
| uint32_t slice_right_h = 0; |
| |
| uint32_t W0 = phys_level0_sa->w; |
| uint32_t H0 = phys_level0_sa->h; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t H = isl_minify(H0, l); |
| |
| uint32_t w = isl_align_npot(W, image_align_sa->w); |
| uint32_t h = isl_align_npot(H, image_align_sa->h); |
| |
| if (l == 0) { |
| slice_top_w = w; |
| slice_left_h = h; |
| slice_right_h = h; |
| } else if (l == 1) { |
| slice_bottom_w = w; |
| slice_left_h += h; |
| } else if (l == 2) { |
| slice_bottom_w += w; |
| slice_right_h += h; |
| } else { |
| slice_right_h += h; |
| } |
| } |
| |
| *phys_slice0_sa = (struct isl_extent2d) { |
| .w = MAX(slice_top_w, slice_bottom_w), |
| .h = MAX(slice_left_h, slice_right_h), |
| }; |
| } |
| |
| static void |
| isl_calc_phys_total_extent_el_gen4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent2d *total_extent_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| struct isl_extent2d phys_slice0_sa; |
| isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout, |
| image_align_sa, phys_level0_sa, |
| &phys_slice0_sa); |
| *array_pitch_el_rows = |
| isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_span, |
| &phys_slice0_sa); |
| *total_extent_el = (struct isl_extent2d) { |
| .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw), |
| .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) + |
| isl_align_div_npot(phys_slice0_sa.h, fmtl->bh), |
| }; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GEN4_3D. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gen4_3d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent2d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| assert(info->samples == 1); |
| |
| if (info->dim != ISL_SURF_DIM_3D) { |
| /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout": |
| * |
| * The cube face textures are stored in the same way as 3D surfaces |
| * are stored (see section 6.17.5 for details). For cube surfaces, |
| * however, the depth is equal to the number of faces (always 6) and |
| * is not reduced for each MIP. |
| */ |
| assert(ISL_DEV_GEN(dev) == 4); |
| assert(info->usage & ISL_SURF_USAGE_CUBE_BIT); |
| assert(phys_level0_sa->array_len == 6); |
| } else { |
| assert(phys_level0_sa->array_len == 1); |
| } |
| |
| uint32_t total_w = 0; |
| uint32_t total_h = 0; |
| |
| uint32_t W0 = phys_level0_sa->w; |
| uint32_t H0 = phys_level0_sa->h; |
| uint32_t D0 = phys_level0_sa->d; |
| uint32_t A0 = phys_level0_sa->a; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w); |
| uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h); |
| uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0; |
| |
| uint32_t max_layers_horiz = MIN(level_d, 1u << l); |
| uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); |
| |
| total_w = MAX(total_w, level_w * max_layers_horiz); |
| total_h += level_h * max_layers_vert; |
| } |
| |
| /* GEN4_3D layouts don't really have an array pitch since each LOD has a |
| * different number of horizontal and vertical layers. We have to set it |
| * to something, so at least make it true for LOD0. |
| */ |
| *array_pitch_el_rows = |
| isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw; |
| *phys_total_el = (struct isl_extent2d) { |
| .w = isl_assert_div(total_w, fmtl->bw), |
| .h = isl_assert_div(total_h, fmtl->bh), |
| }; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gen6_stencil_hiz( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent2d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| const struct isl_extent2d tile_extent_sa = { |
| .w = tile_info->logical_extent_el.w * fmtl->bw, |
| .h = tile_info->logical_extent_el.h * fmtl->bh, |
| }; |
| /* Tile size is a multiple of image alignment */ |
| assert(tile_extent_sa.w % image_align_sa->w == 0); |
| assert(tile_extent_sa.h % image_align_sa->h == 0); |
| |
| const uint32_t W0 = phys_level0_sa->w; |
| const uint32_t H0 = phys_level0_sa->h; |
| |
| /* Each image has the same height as LOD0 because the hardware thinks |
| * everything is LOD0 |
| */ |
| const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a; |
| |
| uint32_t total_top_w = 0; |
| uint32_t total_bottom_w = 0; |
| uint32_t total_h = 0; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| const uint32_t W = isl_minify(W0, l); |
| |
| const uint32_t w = isl_align(W, tile_extent_sa.w); |
| const uint32_t h = isl_align(H, tile_extent_sa.h); |
| |
| if (l == 0) { |
| total_top_w = w; |
| total_h = h; |
| } else if (l == 1) { |
| total_bottom_w = w; |
| total_h += h; |
| } else { |
| total_bottom_w += w; |
| } |
| } |
| |
| *array_pitch_el_rows = |
| isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh); |
| *phys_total_el = (struct isl_extent2d) { |
| .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw), |
| .h = isl_assert_div(total_h, fmtl->bh), |
| }; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GEN9_1D. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gen9_1d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent2d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| assert(phys_level0_sa->height == 1); |
| assert(phys_level0_sa->depth == 1); |
| assert(info->samples == 1); |
| assert(image_align_sa->w >= fmtl->bw); |
| |
| uint32_t slice_w = 0; |
| const uint32_t W0 = phys_level0_sa->w; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t w = isl_align_npot(W, image_align_sa->w); |
| |
| slice_w += w; |
| } |
| |
| *array_pitch_el_rows = 1; |
| *phys_total_el = (struct isl_extent2d) { |
| .w = isl_assert_div(slice_w, fmtl->bw), |
| .h = phys_level0_sa->array_len, |
| }; |
| } |
| |
| /** |
| * Calculate the two-dimensional total physical extent of the surface, in |
| * units of surface elements. |
| */ |
| static void |
| isl_calc_phys_total_extent_el(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_dim_layout dim_layout, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent2d *total_extent_el) |
| { |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GEN9_1D: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gen9_1d(dev, info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_el_rows, |
| total_extent_el); |
| return; |
| case ISL_DIM_LAYOUT_GEN4_2D: |
| isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout, |
| image_align_sa, phys_level0_sa, |
| array_pitch_span, |
| array_pitch_el_rows, |
| total_extent_el); |
| return; |
| case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info, |
| image_align_sa, |
| phys_level0_sa, |
| array_pitch_el_rows, |
| total_extent_el); |
| return; |
| case ISL_DIM_LAYOUT_GEN4_3D: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gen4_3d(dev, info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_el_rows, |
| total_extent_el); |
| return; |
| } |
| |
| unreachable("invalid value for dim_layout"); |
| } |
| |
| static uint32_t |
| isl_calc_row_pitch_alignment(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info) |
| { |
| if (tile_info->tiling != ISL_TILING_LINEAR) { |
| /* According to BSpec: 44930, Gen12's CCS-compressed surface pitches must |
| * be 512B-aligned. CCS is only support on Y tilings. |
| * |
| * Only consider 512B alignment when : |
| * - AUX is not explicitly disabled |
| * - the caller has specified no pitch |
| * |
| * isl_surf_get_ccs_surf() will check that the main surface alignment |
| * matches CCS expectations. |
| */ |
| if (ISL_DEV_GEN(dev) >= 12 && |
| isl_format_supports_ccs_e(dev->info, surf_info->format) && |
| tile_info->tiling != ISL_TILING_X && |
| !(surf_info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) && |
| surf_info->row_pitch_B == 0) { |
| return isl_align(tile_info->phys_extent_B.width, 512); |
| } |
| |
| return tile_info->phys_extent_B.width; |
| } |
| |
| /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >> |
| * RENDER_SURFACE_STATE Surface Pitch (p349): |
| * |
| * - For linear render target surfaces and surfaces accessed with the |
| * typed data port messages, the pitch must be a multiple of the |
| * element size for non-YUV surface formats. Pitch must be |
| * a multiple of 2 * element size for YUV surface formats. |
| * |
| * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we |
| * ignore because isl doesn't do buffers.] |
| * |
| * - For other linear surfaces, the pitch can be any multiple of |
| * bytes. |
| */ |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format); |
| const uint32_t bs = fmtl->bpb / 8; |
| uint32_t alignment; |
| |
| if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) { |
| if (isl_format_is_yuv(surf_info->format)) { |
| alignment = 2 * bs; |
| } else { |
| alignment = bs; |
| } |
| } else { |
| alignment = 1; |
| } |
| |
| /* From the Broadwell PRM >> Volume 2c: Command Reference: Registers >> |
| * PRI_STRIDE Stride (p1254): |
| * |
| * "When using linear memory, this must be at least 64 byte aligned." |
| */ |
| if (surf_info->usage & ISL_SURF_USAGE_DISPLAY_BIT) |
| alignment = isl_align(alignment, 64); |
| |
| return alignment; |
| } |
| |
| static uint32_t |
| isl_calc_linear_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| const struct isl_extent2d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| const uint32_t bs = fmtl->bpb / 8; |
| |
| return isl_align_npot(bs * phys_total_el->w, alignment_B); |
| } |
| |
| static uint32_t |
| isl_calc_tiled_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent2d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format); |
| |
| assert(fmtl->bpb % tile_info->format_bpb == 0); |
| |
| const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb; |
| const uint32_t total_w_tl = |
| isl_align_div(phys_total_el->w * tile_el_scale, |
| tile_info->logical_extent_el.width); |
| |
| /* In some cases the alignment of the pitch might be > to the tile size |
| * (for example Gen12 CCS requires 512B alignment while the tile's width |
| * can be 128B), so align the row pitch to the alignment. |
| */ |
| assert(alignment_B >= tile_info->phys_extent_B.width); |
| return isl_align(total_w_tl * tile_info->phys_extent_B.width, alignment_B); |
| } |
| |
| static uint32_t |
| isl_calc_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent2d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| if (tile_info->tiling == ISL_TILING_LINEAR) { |
| return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el, |
| alignment_B); |
| } else { |
| return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info, |
| phys_total_el, alignment_B); |
| } |
| } |
| |
| /** |
| * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's |
| * size is `bits` bits? |
| * |
| * Hardware pitch fields are offset by 1. For example, if the size of |
| * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid |
| * pitches is [1, 2^b] inclusive. If the surface pitch is N, then |
| * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1. |
| */ |
| static bool |
| pitch_in_range(uint32_t n, uint32_t bits) |
| { |
| assert(n != 0); |
| return likely(bits != 0 && 1 <= n && n <= (1 << bits)); |
| } |
| |
| static bool |
| isl_calc_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| enum isl_dim_layout dim_layout, |
| const struct isl_extent2d *phys_total_el, |
| uint32_t *out_row_pitch_B) |
| { |
| uint32_t alignment_B = |
| isl_calc_row_pitch_alignment(dev, surf_info, tile_info); |
| |
| const uint32_t min_row_pitch_B = |
| isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el, |
| alignment_B); |
| |
| if (surf_info->row_pitch_B != 0) { |
| if (surf_info->row_pitch_B < min_row_pitch_B) |
| return false; |
| |
| if (surf_info->row_pitch_B % alignment_B != 0) |
| return false; |
| } |
| |
| const uint32_t row_pitch_B = |
| surf_info->row_pitch_B != 0 ? surf_info->row_pitch_B : min_row_pitch_B; |
| |
| const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width; |
| |
| if (row_pitch_B == 0) |
| return false; |
| |
| if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) { |
| /* SurfacePitch is ignored for this layout. */ |
| goto done; |
| } |
| |
| if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT | |
| ISL_SURF_USAGE_TEXTURE_BIT | |
| ISL_SURF_USAGE_STORAGE_BIT)) && |
| !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info))) |
| return false; |
| |
| if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT | |
| ISL_SURF_USAGE_MCS_BIT)) && |
| !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info))) |
| return false; |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) |
| return false; |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) && |
| !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) |
| return false; |
| |
| const uint32_t stencil_pitch_bits = dev->use_separate_stencil ? |
| _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) : |
| _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info); |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) && |
| !pitch_in_range(row_pitch_B, stencil_pitch_bits)) |
| return false; |
| |
| done: |
| *out_row_pitch_B = row_pitch_B; |
| return true; |
| } |
| |
| bool |
| isl_surf_init_s(const struct isl_device *dev, |
| struct isl_surf *surf, |
| const struct isl_surf_init_info *restrict info) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| const struct isl_extent4d logical_level0_px = { |
| .w = info->width, |
| .h = info->height, |
| .d = info->depth, |
| .a = info->array_len, |
| }; |
| |
| enum isl_tiling tiling; |
| if (!isl_surf_choose_tiling(dev, info, &tiling)) |
| return false; |
| |
| struct isl_tile_info tile_info; |
| isl_tiling_get_info(tiling, fmtl->bpb, &tile_info); |
| |
| const enum isl_dim_layout dim_layout = |
| isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage); |
| |
| enum isl_msaa_layout msaa_layout; |
| if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout)) |
| return false; |
| |
| struct isl_extent3d image_align_el; |
| isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout, |
| &image_align_el); |
| |
| struct isl_extent3d image_align_sa = |
| isl_extent3d_el_to_sa(info->format, image_align_el); |
| |
| struct isl_extent4d phys_level0_sa; |
| isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout, |
| &phys_level0_sa); |
| |
| enum isl_array_pitch_span array_pitch_span = |
| isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa); |
| |
| uint32_t array_pitch_el_rows; |
| struct isl_extent2d phys_total_el; |
| isl_calc_phys_total_extent_el(dev, info, &tile_info, |
| dim_layout, msaa_layout, |
| &image_align_sa, &phys_level0_sa, |
| array_pitch_span, &array_pitch_el_rows, |
| &phys_total_el); |
| |
| uint32_t row_pitch_B; |
| if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout, |
| &phys_total_el, &row_pitch_B)) |
| return false; |
| |
| uint32_t base_alignment_B; |
| uint64_t size_B; |
| if (tiling == ISL_TILING_LINEAR) { |
| size_B = (uint64_t) row_pitch_B * phys_total_el.h; |
| |
| /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress: |
| * |
| * "The Base Address for linear render target surfaces and surfaces |
| * accessed with the typed surface read/write data port messages must |
| * be element-size aligned, for non-YUV surface formats, or a |
| * multiple of 2 element-sizes for YUV surface formats. Other linear |
| * surfaces have no alignment requirements (byte alignment is |
| * sufficient.)" |
| */ |
| base_alignment_B = MAX(1, info->min_alignment_B); |
| if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) { |
| if (isl_format_is_yuv(info->format)) { |
| base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 4); |
| } else { |
| base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 8); |
| } |
| } |
| base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B); |
| |
| /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride: |
| * |
| * "For Linear memory, this field specifies the stride in chunks of |
| * 64 bytes (1 cache line)." |
| */ |
| if (isl_surf_usage_is_display(info->usage)) |
| base_alignment_B = MAX(base_alignment_B, 64); |
| } else { |
| const uint32_t total_h_tl = |
| isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height); |
| |
| size_B = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch_B; |
| |
| const uint32_t tile_size_B = tile_info.phys_extent_B.width * |
| tile_info.phys_extent_B.height; |
| assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B)); |
| base_alignment_B = MAX(info->min_alignment_B, tile_size_B); |
| |
| /* The diagram in the Bspec section Memory Compression - Gen12, shows |
| * that the CCS is indexed in 256B chunks. However, the |
| * PLANE_AUX_DIST::Auxiliary Surface Distance field is in units of 4K |
| * pages. We currently don't assign the usage field like we do for main |
| * surfaces, so just use 4K for now. |
| */ |
| if (tiling == ISL_TILING_GEN12_CCS) |
| base_alignment_B = MAX(base_alignment_B, 4096); |
| |
| /* Gen12+ requires that images be 64K-aligned if they're going to used |
| * with CCS. This is because the Aux translation table maps main |
| * surface addresses to aux addresses at a 64K (in the main surface) |
| * granularity. Because we don't know for sure in ISL if a surface will |
| * use CCS, we have to guess based on the DISABLE_AUX usage bit. The |
| * one thing we do know is that we haven't enable CCS on linear images |
| * yet so we can avoid the extra alignment there. |
| */ |
| if (ISL_DEV_GEN(dev) >= 12 && |
| !(info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)) { |
| base_alignment_B = MAX(base_alignment_B, 64 * 1024); |
| } |
| } |
| |
| if (ISL_DEV_GEN(dev) < 9) { |
| /* From the Broadwell PRM Vol 5, Surface Layout: |
| * |
| * "In addition to restrictions on maximum height, width, and depth, |
| * surfaces are also restricted to a maximum size in bytes. This |
| * maximum is 2 GB for all products and all surface types." |
| * |
| * This comment is applicable to all Pre-gen9 platforms. |
| */ |
| if (size_B > (uint64_t) 1 << 31) |
| return false; |
| } else if (ISL_DEV_GEN(dev) < 11) { |
| /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes: |
| * "In addition to restrictions on maximum height, width, and depth, |
| * surfaces are also restricted to a maximum size of 2^38 bytes. |
| * All pixels within the surface must be contained within 2^38 bytes |
| * of the base address." |
| */ |
| if (size_B > (uint64_t) 1 << 38) |
| return false; |
| } else { |
| /* gen11+ platforms raised this limit to 2^44 bytes. */ |
| if (size_B > (uint64_t) 1 << 44) |
| return false; |
| } |
| |
| *surf = (struct isl_surf) { |
| .dim = info->dim, |
| .dim_layout = dim_layout, |
| .msaa_layout = msaa_layout, |
| .tiling = tiling, |
| .format = info->format, |
| |
| .levels = info->levels, |
| .samples = info->samples, |
| |
| .image_alignment_el = image_align_el, |
| .logical_level0_px = logical_level0_px, |
| .phys_level0_sa = phys_level0_sa, |
| |
| .size_B = size_B, |
| .alignment_B = base_alignment_B, |
| .row_pitch_B = row_pitch_B, |
| .array_pitch_el_rows = array_pitch_el_rows, |
| .array_pitch_span = array_pitch_span, |
| |
| .usage = info->usage, |
| }; |
| |
| return true; |
| } |
| |
| void |
| isl_surf_get_tile_info(const struct isl_surf *surf, |
| struct isl_tile_info *tile_info) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info); |
| } |
| |
| bool |
| isl_surf_get_hiz_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *hiz_surf) |
| { |
| assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev)); |
| |
| if (!isl_surf_usage_is_depth(surf->usage)) |
| return false; |
| |
| /* HiZ only works with Y-tiled depth buffers */ |
| if (!isl_tiling_is_any_y(surf->tiling)) |
| return false; |
| |
| /* On SNB+, compressed depth buffers cannot be interleaved with stencil. */ |
| switch (surf->format) { |
| case ISL_FORMAT_R24_UNORM_X8_TYPELESS: |
| if (isl_surf_usage_is_depth_and_stencil(surf->usage)) { |
| assert(ISL_DEV_GEN(dev) == 5); |
| unreachable("This should work, but is untested"); |
| } |
| /* Fall through */ |
| case ISL_FORMAT_R16_UNORM: |
| case ISL_FORMAT_R32_FLOAT: |
| break; |
| case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS: |
| if (ISL_DEV_GEN(dev) == 5) { |
| assert(isl_surf_usage_is_depth_and_stencil(surf->usage)); |
| unreachable("This should work, but is untested"); |
| } |
| /* Fall through */ |
| default: |
| return false; |
| } |
| |
| /* Multisampled depth is always interleaved */ |
| assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE || |
| surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED); |
| |
| /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer": |
| * |
| * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render |
| * Target View Extent, and Depth Coordinate Offset X/Y of the |
| * hierarchical depth buffer are inherited from the depth buffer. The |
| * height and width of the hierarchical depth buffer that must be |
| * allocated are computed by the following formulas, where HZ is the |
| * hierarchical depth buffer and Z is the depth buffer. The Z_Height, |
| * Z_Width, and Z_Depth values given in these formulas are those present |
| * in 3DSTATE_DEPTH_BUFFER incremented by one. |
| * |
| * "The value of Z_Height and Z_Width must each be multiplied by 2 before |
| * being applied to the table below if Number of Multisamples is set to |
| * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and |
| * Z_Width must be multiplied by 4 before being applied to the table |
| * below if Number of Multisamples is set to NUMSAMPLES_8." |
| * |
| * In the Sky Lake PRM, the second paragraph is replaced with this: |
| * |
| * "The Z_Height and Z_Width values must equal those present in |
| * 3DSTATE_DEPTH_BUFFER incremented by one." |
| * |
| * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ |
| * block corresponds to a region of 8x4 samples in the primary depth |
| * surface. On Sky Lake, on the other hand, each HiZ block corresponds to |
| * a region of 8x4 pixels in the primary depth surface regardless of the |
| * number of samples. The dimensions of a HiZ block in both pixels and |
| * samples are given in the table below: |
| * |
| * | SNB - BDW | SKL+ |
| * ------+-----------+------------- |
| * 1x | 8 x 4 sa | 8 x 4 sa |
| * MSAA | 8 x 4 px | 8 x 4 px |
| * ------+-----------+------------- |
| * 2x | 8 x 4 sa | 16 x 4 sa |
| * MSAA | 4 x 4 px | 8 x 4 px |
| * ------+-----------+------------- |
| * 4x | 8 x 4 sa | 16 x 8 sa |
| * MSAA | 4 x 2 px | 8 x 4 px |
| * ------+-----------+------------- |
| * 8x | 8 x 4 sa | 32 x 8 sa |
| * MSAA | 2 x 2 px | 8 x 4 px |
| * ------+-----------+------------- |
| * 16x | N/A | 32 x 16 sa |
| * MSAA | N/A | 8 x 4 px |
| * ------+-----------+------------- |
| * |
| * There are a number of different ways that this discrepency could be |
| * handled. The way we have chosen is to simply make MSAA HiZ have the |
| * same number of samples as the parent surface pre-Sky Lake and always be |
| * single-sampled on Sky Lake and above. Since the block sizes of |
| * compressed formats are given in samples, this neatly handles everything |
| * without the need for additional HiZ formats with different block sizes |
| * on SKL+. |
| */ |
| const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples; |
| |
| return isl_surf_init(dev, hiz_surf, |
| .dim = surf->dim, |
| .format = ISL_FORMAT_HIZ, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = surf->logical_level0_px.depth, |
| .levels = surf->levels, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = samples, |
| .usage = ISL_SURF_USAGE_HIZ_BIT, |
| .tiling_flags = ISL_TILING_HIZ_BIT); |
| } |
| |
| bool |
| isl_surf_get_mcs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *mcs_surf) |
| { |
| /* It must be multisampled with an array layout */ |
| if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY) |
| return false; |
| |
| if (mcs_surf->size_B > 0) |
| return false; |
| |
| /* The following are true of all multisampled surfaces */ |
| assert(surf->samples > 1); |
| assert(surf->dim == ISL_SURF_DIM_2D); |
| assert(surf->levels == 1); |
| assert(surf->logical_level0_px.depth == 1); |
| |
| /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"): |
| * |
| * This field must be set to 0 for all SINT MSRTs when all RT channels |
| * are not written |
| * |
| * In practice this means that we have to disable MCS for all signed |
| * integer MSAA buffers. The alternative, to disable MCS only when one |
| * of the render target channels is disabled, is impractical because it |
| * would require converting between CMS and UMS MSAA layouts on the fly, |
| * which is expensive. |
| */ |
| if (ISL_DEV_GEN(dev) == 7 && isl_format_has_sint_channel(surf->format)) |
| return false; |
| |
| /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9 |
| * bits which means the maximum pitch of a compression surface is 512 |
| * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is |
| * 64bpp, this gives us a maximum width of 8192 pixels. We can create |
| * larger multisampled surfaces, we just can't compress them. For 2x, 4x, |
| * and 8x, we have enough room for the full 16k supported by the hardware. |
| */ |
| if (surf->samples == 16 && surf->logical_level0_px.width > 8192) |
| return false; |
| |
| enum isl_format mcs_format; |
| switch (surf->samples) { |
| case 2: mcs_format = ISL_FORMAT_MCS_2X; break; |
| case 4: mcs_format = ISL_FORMAT_MCS_4X; break; |
| case 8: mcs_format = ISL_FORMAT_MCS_8X; break; |
| case 16: mcs_format = ISL_FORMAT_MCS_16X; break; |
| default: |
| unreachable("Invalid sample count"); |
| } |
| |
| return isl_surf_init(dev, mcs_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = mcs_format, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = 1, |
| .levels = 1, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = 1, /* MCS surfaces are really single-sampled */ |
| .usage = ISL_SURF_USAGE_MCS_BIT, |
| .tiling_flags = ISL_TILING_Y0_BIT); |
| } |
| |
| bool |
| isl_surf_supports_ccs(const struct isl_device *dev, |
| const struct isl_surf *surf) |
| { |
| /* CCS support does not exist prior to Gen7 */ |
| if (ISL_DEV_GEN(dev) <= 6) |
| return false; |
| |
| if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) |
| return false; |
| |
| if (isl_format_is_compressed(surf->format)) |
| return false; |
| |
| if (!isl_is_pow2(isl_format_get_layout(surf->format)->bpb)) |
| return false; |
| |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "Fast Color Clear" bullet (p326): |
| * |
| * - Support is limited to tiled render targets. |
| * |
| * From the Skylake documentation, it is made clear that X-tiling is no |
| * longer supported: |
| * |
| * - MCS and Lossless compression is supported for |
| * TiledY/TileYs/TileYf non-MSRTs only. |
| * |
| * From the BSpec (44930) for Gen12: |
| * |
| * Linear CCS is only allowed for Untyped Buffers but only via HDC |
| * Data-Port messages. |
| * |
| * We never use untyped messages on surfaces created by ISL on Gen9+ so |
| * this means linear is out on Gen12+ as well. |
| */ |
| if (surf->tiling == ISL_TILING_LINEAR) |
| return false; |
| |
| if (ISL_DEV_GEN(dev) >= 12) { |
| if (isl_surf_usage_is_stencil(surf->usage) && surf->samples > 1) |
| return false; |
| |
| /* [TGL+] CCS can only be added to a non-D16-formatted depth buffer if |
| * it has HiZ. If not for GEN:BUG:1406512483 "deprecate compression |
| * enable states", D16 would be supported. Supporting D16 requires being |
| * able to specify that the control surface is present and |
| * simultaneously disabling compression. The above bug makes it so that |
| * it's not possible to specify this configuration. |
| * |
| * Note: ISL Doesn't currently support depth CCS without HiZ at all. |
| */ |
| if (isl_surf_usage_is_depth(surf->usage) && |
| surf->format == ISL_FORMAT_R16_UNORM) { |
| return false; |
| } |
| |
| /* On Gen12, 8BPP surfaces cannot be compressed if any level is not |
| * 32Bx4row-aligned. For now, just reject the cases where alignment |
| * matters. |
| */ |
| if (isl_format_get_layout(surf->format)->bpb == 8 && surf->levels >= 3) { |
| isl_finishme("%s:%s: CCS for 8BPP textures with 3+ miplevels is " |
| "disabled, but support for more levels is possible.", |
| __FILE__, __func__); |
| return false; |
| } |
| |
| /* On Gen12, all CCS-compressed surface pitches must be multiples of |
| * 512B. |
| */ |
| if (surf->row_pitch_B % 512 != 0) |
| return false; |
| |
| /* According to GEN:BUG:1406738321, 3D textures need a blit to a new |
| * surface in order to perform a resolve. For now, just disable CCS. |
| */ |
| if (surf->dim == ISL_SURF_DIM_3D) { |
| isl_finishme("%s:%s: CCS for 3D textures is disabled, but a workaround" |
| " is available.", __FILE__, __func__); |
| return false; |
| } |
| |
| /* GEN:BUG:1207137018 |
| * |
| * TODO: implement following workaround currently covered by the |
| * restriction above. If following conditions are met: |
| * |
| * - RENDER_SURFACE_STATE.Surface Type == 3D |
| * - RENDER_SURFACE_STATE.Auxiliary Surface Mode != AUX_NONE |
| * - RENDER_SURFACE_STATE.Tiled ResourceMode is TYF or TYS |
| * |
| * Set the value of RENDER_SURFACE_STATE.Mip Tail Start LOD to a mip |
| * that larger than those present in the surface (i.e. 15) |
| */ |
| |
| /* TODO: Handle the other tiling formats */ |
| if (surf->tiling != ISL_TILING_Y0) |
| return false; |
| } else { |
| /* ISL_DEV_GEN(dev) < 12 */ |
| if (surf->samples > 1) |
| return false; |
| |
| /* CCS is only for color images on Gen7-11 */ |
| if (isl_surf_usage_is_depth_or_stencil(surf->usage)) |
| return false; |
| |
| /* The PRM doesn't say this explicitly, but fast-clears don't appear to |
| * work for 3D textures until gen9 where the layout of 3D textures |
| * changes to match 2D array textures. |
| */ |
| if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D) |
| return false; |
| |
| /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of |
| * Non-MultiSampler Render Target Restrictions): |
| * |
| * "Support is for non-mip-mapped and non-array surface types only." |
| * |
| * This restriction is lifted on gen8+. Technically, it may be possible |
| * to create a CCS for an arrayed or mipmapped image and only enable |
| * CCS_D when rendering to the base slice. However, there is no |
| * documentation tell us what the hardware would do in that case or what |
| * it does if you walk off the bases slice. (Does it ignore CCS or does |
| * it start scribbling over random memory?) We play it safe and just |
| * follow the docs and don't allow CCS_D for arrayed or mip-mapped |
| * surfaces. |
| */ |
| if (ISL_DEV_GEN(dev) <= 7 && |
| (surf->levels > 1 || surf->logical_level0_px.array_len > 1)) |
| return false; |
| |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "Fast Color Clear" bullet (p326): |
| * |
| * - MCS buffer for non-MSRT is supported only for RT formats 32bpp, |
| * 64bpp, and 128bpp. |
| */ |
| if (isl_format_get_layout(surf->format)->bpb < 32) |
| return false; |
| |
| /* From the Skylake documentation, it is made clear that X-tiling is no |
| * longer supported: |
| * |
| * - MCS and Lossless compression is supported for |
| * TiledY/TileYs/TileYf non-MSRTs only. |
| */ |
| if (ISL_DEV_GEN(dev) >= 9 && !isl_tiling_is_any_y(surf->tiling)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| isl_surf_get_ccs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *aux_surf, |
| struct isl_surf *extra_aux_surf, |
| uint32_t row_pitch_B) |
| { |
| assert(aux_surf); |
| |
| /* An uninitialized surface is needed to get a CCS surface. */ |
| if (aux_surf->size_B > 0 && |
| (extra_aux_surf == NULL || extra_aux_surf->size_B > 0)) { |
| return false; |
| } |
| |
| /* A surface can't have two CCS surfaces. */ |
| if (aux_surf->usage & ISL_SURF_USAGE_CCS_BIT) |
| return false; |
| |
| if (!isl_surf_supports_ccs(dev, surf)) |
| return false; |
| |
| if (ISL_DEV_GEN(dev) >= 12) { |
| enum isl_format ccs_format; |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 8: ccs_format = ISL_FORMAT_GEN12_CCS_8BPP_Y0; break; |
| case 16: ccs_format = ISL_FORMAT_GEN12_CCS_16BPP_Y0; break; |
| case 32: ccs_format = ISL_FORMAT_GEN12_CCS_32BPP_Y0; break; |
| case 64: ccs_format = ISL_FORMAT_GEN12_CCS_64BPP_Y0; break; |
| case 128: ccs_format = ISL_FORMAT_GEN12_CCS_128BPP_Y0; break; |
| default: |
| return false; |
| } |
| |
| /* On Gen12, the CCS is a scaled-down version of the main surface. We |
| * model this as the CCS compressing a 2D-view of the entire surface. |
| */ |
| struct isl_surf *ccs_surf = |
| aux_surf->size_B > 0 ? extra_aux_surf : aux_surf; |
| const bool ok = |
| isl_surf_init(dev, ccs_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = ccs_format, |
| .width = isl_surf_get_row_pitch_el(surf), |
| .height = surf->size_B / surf->row_pitch_B, |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = 1, |
| .row_pitch_B = row_pitch_B, |
| .usage = ISL_SURF_USAGE_CCS_BIT, |
| .tiling_flags = ISL_TILING_GEN12_CCS_BIT); |
| assert(!ok || ccs_surf->size_B == surf->size_B / 256); |
| return ok; |
| } else { |
| enum isl_format ccs_format; |
| if (ISL_DEV_GEN(dev) >= 9) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break; |
| case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break; |
| case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break; |
| default: unreachable("Unsupported CCS format"); |
| return false; |
| } |
| } else if (surf->tiling == ISL_TILING_Y0) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break; |
| case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break; |
| case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break; |
| default: unreachable("Unsupported CCS format"); |
| } |
| } else if (surf->tiling == ISL_TILING_X) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break; |
| case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break; |
| case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break; |
| default: unreachable("Unsupported CCS format"); |
| } |
| } else { |
| unreachable("Invalid tiling format"); |
| } |
| |
| return isl_surf_init(dev, aux_surf, |
| .dim = surf->dim, |
| .format = ccs_format, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = surf->logical_level0_px.depth, |
| .levels = surf->levels, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = 1, |
| .row_pitch_B = row_pitch_B, |
| .usage = ISL_SURF_USAGE_CCS_BIT, |
| .tiling_flags = ISL_TILING_CCS_BIT); |
| } |
| } |
| |
| #define isl_genX_call(dev, func, ...) \ |
| switch (ISL_DEV_GEN(dev)) { \ |
| case 4: \ |
| /* G45 surface state is the same as gen5 */ \ |
| if (ISL_DEV_IS_G4X(dev)) { \ |
| isl_gen5_##func(__VA_ARGS__); \ |
| } else { \ |
| isl_gen4_##func(__VA_ARGS__); \ |
| } \ |
| break; \ |
| case 5: \ |
| isl_gen5_##func(__VA_ARGS__); \ |
| break; \ |
| case 6: \ |
| isl_gen6_##func(__VA_ARGS__); \ |
| break; \ |
| case 7: \ |
| if (ISL_DEV_IS_HASWELL(dev)) { \ |
| isl_gen75_##func(__VA_ARGS__); \ |
| } else { \ |
| isl_gen7_##func(__VA_ARGS__); \ |
| } \ |
| break; \ |
| case 8: \ |
| isl_gen8_##func(__VA_ARGS__); \ |
| break; \ |
| case 9: \ |
| isl_gen9_##func(__VA_ARGS__); \ |
| break; \ |
| case 10: \ |
| isl_gen10_##func(__VA_ARGS__); \ |
| break; \ |
| case 11: \ |
| isl_gen11_##func(__VA_ARGS__); \ |
| break; \ |
| case 12: \ |
| isl_gen12_##func(__VA_ARGS__); \ |
| break; \ |
| default: \ |
| assert(!"Unknown hardware generation"); \ |
| } |
| |
| void |
| isl_surf_fill_state_s(const struct isl_device *dev, void *state, |
| const struct isl_surf_fill_state_info *restrict info) |
| { |
| #ifndef NDEBUG |
| isl_surf_usage_flags_t _base_usage = |
| info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT | |
| ISL_SURF_USAGE_TEXTURE_BIT | |
| ISL_SURF_USAGE_STORAGE_BIT); |
| /* They may only specify one of the above bits at a time */ |
| assert(__builtin_popcount(_base_usage) == 1); |
| /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */ |
| assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage); |
| #endif |
| |
| if (info->surf->dim == ISL_SURF_DIM_3D) { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->surf->logical_level0_px.depth); |
| } else { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->surf->logical_level0_px.array_len); |
| } |
| |
| isl_genX_call(dev, surf_fill_state_s, dev, state, info); |
| } |
| |
| void |
| isl_buffer_fill_state_s(const struct isl_device *dev, void *state, |
| const struct isl_buffer_fill_state_info *restrict info) |
| { |
| isl_genX_call(dev, buffer_fill_state_s, dev, state, info); |
| } |
| |
| void |
| isl_null_fill_state(const struct isl_device *dev, void *state, |
| struct isl_extent3d size) |
| { |
| isl_genX_call(dev, null_fill_state, state, size); |
| } |
| |
| void |
| isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch, |
| const struct isl_depth_stencil_hiz_emit_info *restrict info) |
| { |
| if (info->depth_surf && info->stencil_surf) { |
| if (!dev->info->has_hiz_and_separate_stencil) { |
| assert(info->depth_surf == info->stencil_surf); |
| assert(info->depth_address == info->stencil_address); |
| } |
| assert(info->depth_surf->dim == info->stencil_surf->dim); |
| } |
| |
| if (info->depth_surf) { |
| assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT)); |
| if (info->depth_surf->dim == ISL_SURF_DIM_3D) { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->depth_surf->logical_level0_px.depth); |
| } else { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->depth_surf->logical_level0_px.array_len); |
| } |
| } |
| |
| if (info->stencil_surf) { |
| assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT)); |
| if (info->stencil_surf->dim == ISL_SURF_DIM_3D) { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->stencil_surf->logical_level0_px.depth); |
| } else { |
| assert(info->view->base_array_layer + info->view->array_len <= |
| info->stencil_surf->logical_level0_px.array_len); |
| } |
| } |
| |
| isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info); |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GEN4_2D. |
| */ |
| static void |
| get_image_offset_sa_gen4_2d(const struct isl_surf *surf, |
| uint32_t level, uint32_t logical_array_layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| if (surf->dim == ISL_SURF_DIM_3D) |
| assert(logical_array_layer < surf->logical_level0_px.depth); |
| else |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const uint32_t H0 = surf->phys_level0_sa.height; |
| |
| const uint32_t phys_layer = logical_array_layer * |
| (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1); |
| |
| uint32_t x = 0; |
| uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf); |
| |
| for (uint32_t l = 0; l < level; ++l) { |
| if (l == 1) { |
| uint32_t W = isl_minify(W0, l); |
| x += isl_align_npot(W, image_align_sa.w); |
| } else { |
| uint32_t H = isl_minify(H0, l); |
| y += isl_align_npot(H, image_align_sa.h); |
| } |
| } |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GEN4_3D. |
| */ |
| static void |
| get_image_offset_sa_gen4_3d(const struct isl_surf *surf, |
| uint32_t level, uint32_t logical_z_offset_px, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| if (surf->dim == ISL_SURF_DIM_3D) { |
| assert(surf->phys_level0_sa.array_len == 1); |
| assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level)); |
| } else { |
| assert(surf->dim == ISL_SURF_DIM_2D); |
| assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT); |
| assert(surf->phys_level0_sa.array_len == 6); |
| assert(logical_z_offset_px < surf->phys_level0_sa.array_len); |
| } |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const uint32_t H0 = surf->phys_level0_sa.height; |
| const uint32_t D0 = surf->phys_level0_sa.depth; |
| const uint32_t AL = surf->phys_level0_sa.array_len; |
| |
| uint32_t x = 0; |
| uint32_t y = 0; |
| |
| for (uint32_t l = 0; l < level; ++l) { |
| const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h); |
| const uint32_t level_d = |
| isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL, |
| image_align_sa.d); |
| const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); |
| |
| y += level_h * max_layers_vert; |
| } |
| |
| const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w); |
| const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h); |
| const uint32_t level_d = |
| isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL, |
| image_align_sa.d); |
| |
| const uint32_t max_layers_horiz = MIN(level_d, 1u << level); |
| |
| x += level_w * (logical_z_offset_px % max_layers_horiz); |
| y += level_h * (logical_z_offset_px / max_layers_horiz); |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| } |
| |
| static void |
| get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| assert(surf->logical_level0_px.depth == 1); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| struct isl_tile_info tile_info; |
| isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info); |
| const struct isl_extent2d tile_extent_sa = { |
| .w = tile_info.logical_extent_el.w * fmtl->bw, |
| .h = tile_info.logical_extent_el.h * fmtl->bh, |
| }; |
| /* Tile size is a multiple of image alignment */ |
| assert(tile_extent_sa.w % image_align_sa.w == 0); |
| assert(tile_extent_sa.h % image_align_sa.h == 0); |
| |
| const uint32_t W0 = surf->phys_level0_sa.w; |
| const uint32_t H0 = surf->phys_level0_sa.h; |
| |
| /* Each image has the same height as LOD0 because the hardware thinks |
| * everything is LOD0 |
| */ |
| const uint32_t H = isl_align(H0, image_align_sa.h); |
| |
| /* Quick sanity check for consistency */ |
| if (surf->phys_level0_sa.array_len > 1) |
| assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh)); |
| |
| uint32_t x = 0, y = 0; |
| for (uint32_t l = 0; l < level; ++l) { |
| const uint32_t W = isl_minify(W0, l); |
| |
| const uint32_t w = isl_align(W, tile_extent_sa.w); |
| const uint32_t h = isl_align(H * surf->phys_level0_sa.a, |
| tile_extent_sa.h); |
| |
| if (l == 0) { |
| y += h; |
| } else { |
| x += w; |
| } |
| } |
| |
| y += H * logical_array_layer; |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GEN9_1D. |
| */ |
| static void |
| get_image_offset_sa_gen9_1d(const struct isl_surf *surf, |
| uint32_t level, uint32_t layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| assert(layer < surf->phys_level0_sa.array_len); |
| assert(surf->phys_level0_sa.height == 1); |
| assert(surf->phys_level0_sa.depth == 1); |
| assert(surf->samples == 1); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| uint32_t x = 0; |
| |
| for (uint32_t l = 0; l < level; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t w = isl_align_npot(W, image_align_sa.w); |
| |
| x += w; |
| } |
| |
| *x_offset_sa = x; |
| *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf); |
| } |
| |
| /** |
| * Calculate the offset, in units of surface samples, to a subimage in the |
| * surface. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_offset_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| assert(logical_z_offset_px |
| < isl_minify(surf->logical_level0_px.depth, level)); |
| |
| switch (surf->dim_layout) { |
| case ISL_DIM_LAYOUT_GEN9_1D: |
| get_image_offset_sa_gen9_1d(surf, level, logical_array_layer, |
| x_offset_sa, y_offset_sa); |
| break; |
| case ISL_DIM_LAYOUT_GEN4_2D: |
| get_image_offset_sa_gen4_2d(surf, level, logical_array_layer |
| + logical_z_offset_px, |
| x_offset_sa, y_offset_sa); |
| break; |
| case ISL_DIM_LAYOUT_GEN4_3D: |
| get_image_offset_sa_gen4_3d(surf, level, logical_array_layer + |
| logical_z_offset_px, |
| x_offset_sa, y_offset_sa); |
| break; |
| case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ: |
| get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer + |
| logical_z_offset_px, |
| x_offset_sa, y_offset_sa); |
| break; |
| |
| default: |
| unreachable("not reached"); |
| } |
| } |
| |
| void |
| isl_surf_get_image_offset_el(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| assert(level < surf->levels); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| assert(logical_z_offset_px |
| < isl_minify(surf->logical_level0_px.depth, level)); |
| |
| uint32_t x_offset_sa, y_offset_sa; |
| isl_surf_get_image_offset_sa(surf, level, |
| logical_array_layer, |
| logical_z_offset_px, |
| &x_offset_sa, |
| &y_offset_sa); |
| |
| *x_offset_el = x_offset_sa / fmtl->bw; |
| *y_offset_el = y_offset_sa / fmtl->bh; |
| } |
| |
| void |
| isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| uint32_t total_x_offset_el, total_y_offset_el; |
| isl_surf_get_image_offset_el(surf, level, logical_array_layer, |
| logical_z_offset_px, |
| &total_x_offset_el, |
| &total_y_offset_el); |
| |
| uint32_t x_offset_el, y_offset_el; |
| isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb, |
| surf->row_pitch_B, |
| total_x_offset_el, |
| total_y_offset_el, |
| offset_B, |
| &x_offset_el, |
| &y_offset_el); |
| |
| if (x_offset_sa) { |
| *x_offset_sa = x_offset_el * fmtl->bw; |
| } else { |
| assert(x_offset_el == 0); |
| } |
| |
| if (y_offset_sa) { |
| *y_offset_sa = y_offset_el * fmtl->bh; |
| } else { |
| assert(y_offset_el == 0); |
| } |
| } |
| |
| void |
| isl_surf_get_image_range_B_tile(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *start_tile_B, |
| uint32_t *end_tile_B) |
| { |
| uint32_t start_x_offset_el, start_y_offset_el; |
| isl_surf_get_image_offset_el(surf, level, logical_array_layer, |
| logical_z_offset_px, |
| &start_x_offset_el, |
| &start_y_offset_el); |
| |
| /* Compute the size of the subimage in surface elements */ |
| const uint32_t subimage_w_sa = isl_minify(surf->phys_level0_sa.w, level); |
| const uint32_t subimage_h_sa = isl_minify(surf->phys_level0_sa.h, level); |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| const uint32_t subimage_w_el = isl_align_div_npot(subimage_w_sa, fmtl->bw); |
| const uint32_t subimage_h_el = isl_align_div_npot(subimage_h_sa, fmtl->bh); |
| |
| /* Find the last pixel */ |
| uint32_t end_x_offset_el = start_x_offset_el + subimage_w_el - 1; |
| uint32_t end_y_offset_el = start_y_offset_el + subimage_h_el - 1; |
| |
| UNUSED uint32_t x_offset_el, y_offset_el; |
| isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb, |
| surf->row_pitch_B, |
| start_x_offset_el, |
| start_y_offset_el, |
| start_tile_B, |
| &x_offset_el, |
| &y_offset_el); |
| |
| isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb, |
| surf->row_pitch_B, |
| end_x_offset_el, |
| end_y_offset_el, |
| end_tile_B, |
| &x_offset_el, |
| &y_offset_el); |
| |
| /* We want the range we return to be exclusive but the tile containing the |
| * last pixel (what we just calculated) is inclusive. Add one. |
| */ |
| (*end_tile_B)++; |
| |
| assert(*end_tile_B <= surf->size_B); |
| } |
| |
| void |
| isl_surf_get_image_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| struct isl_surf *image_surf, |
| uint32_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| isl_surf_get_image_offset_B_tile_sa(surf, |
| level, |
| logical_array_layer, |
| logical_z_offset_px, |
| offset_B, |
| x_offset_sa, |
| y_offset_sa); |
| |
| /* Even for cube maps there will be only single face, therefore drop the |
| * corresponding flag if present. |
| */ |
| const isl_surf_usage_flags_t usage = |
| surf->usage & (~ISL_SURF_USAGE_CUBE_BIT); |
| |
| bool ok UNUSED; |
| ok = isl_surf_init(dev, image_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = surf->format, |
| .width = isl_minify(surf->logical_level0_px.w, level), |
| .height = isl_minify(surf->logical_level0_px.h, level), |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = surf->samples, |
| .row_pitch_B = surf->row_pitch_B, |
| .usage = usage, |
| .tiling_flags = (1 << surf->tiling)); |
| assert(ok); |
| } |
| |
| void |
| isl_tiling_get_intratile_offset_el(enum isl_tiling tiling, |
| uint32_t bpb, |
| uint32_t row_pitch_B, |
| uint32_t total_x_offset_el, |
| uint32_t total_y_offset_el, |
| uint32_t *base_address_offset, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el) |
| { |
| if (tiling == ISL_TILING_LINEAR) { |
| assert(bpb % 8 == 0); |
| *base_address_offset = total_y_offset_el * row_pitch_B + |
| total_x_offset_el * (bpb / 8); |
| *x_offset_el = 0; |
| *y_offset_el = 0; |
| return; |
| } |
| |
| struct isl_tile_info tile_info; |
| isl_tiling_get_info(tiling, bpb, &tile_info); |
| |
| assert(row_pitch_B % tile_info.phys_extent_B.width == 0); |
| |
| /* For non-power-of-two formats, we need the address to be both tile and |
| * element-aligned. The easiest way to achieve this is to work with a tile |
| * that is three times as wide as the regular tile. |
| * |
| * The tile info returned by get_tile_info has a logical size that is an |
| * integer number of tile_info.format_bpb size elements. To scale the |
| * tile, we scale up the physical width and then treat the logical tile |
| * size as if it has bpb size elements. |
| */ |
| const uint32_t tile_el_scale = bpb / tile_info.format_bpb; |
| tile_info.phys_extent_B.width *= tile_el_scale; |
| |
| /* Compute the offset into the tile */ |
| *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w; |
| *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h; |
| |
| /* Compute the offset of the tile in units of whole tiles */ |
| uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w; |
| uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h; |
| |
| *base_address_offset = |
| y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B + |
| x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w; |
| } |
| |
| uint32_t |
| isl_surf_get_depth_format(const struct isl_device *dev, |
| const struct isl_surf *surf) |
| { |
| /* Support for separate stencil buffers began in gen5. Support for |
| * interleaved depthstencil buffers ceased in gen7. The intermediate gens, |
| * those that supported separate and interleaved stencil, were gen5 and |
| * gen6. |
| * |
| * For a list of all available formats, see the Sandybridge PRM >> Volume |
| * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface |
| * Format (p321). |
| */ |
| |
| bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT; |
| |
| assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT); |
| |
| if (has_stencil) |
| assert(ISL_DEV_GEN(dev) < 7); |
| |
| switch (surf->format) { |
| default: |
| unreachable("bad isl depth format"); |
| case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS: |
| assert(ISL_DEV_GEN(dev) < 7); |
| return 0; /* D32_FLOAT_S8X24_UINT */ |
| case ISL_FORMAT_R32_FLOAT: |
| assert(!has_stencil); |
| return 1; /* D32_FLOAT */ |
| case ISL_FORMAT_R24_UNORM_X8_TYPELESS: |
| if (has_stencil) { |
| assert(ISL_DEV_GEN(dev) < 7); |
| return 2; /* D24_UNORM_S8_UINT */ |
| } else { |
| assert(ISL_DEV_GEN(dev) >= 5); |
| return 3; /* D24_UNORM_X8_UINT */ |
| } |
| case ISL_FORMAT_R16_UNORM: |
| assert(!has_stencil); |
| return 5; /* D16_UNORM */ |
| } |
| } |
| |
| bool |
| isl_swizzle_supports_rendering(const struct gen_device_info *devinfo, |
| struct isl_swizzle swizzle) |
| { |
| if (devinfo->is_haswell) { |
| /* From the Haswell PRM, |
| * RENDER_SURFACE_STATE::Shader Channel Select Red |
| * |
| * "The Shader channel selects also define which shader channels are |
| * written to which surface channel. If the Shader channel select is |
| * SCS_ZERO or SCS_ONE then it is not written to the surface. If the |
| * shader channel select is SCS_RED it is written to the surface red |
| * channel and so on. If more than one shader channel select is set |
| * to the same surface channel only the first shader channel in RGBA |
| * order will be written." |
| */ |
| return true; |
| } else if (devinfo->gen <= 7) { |
| /* Ivy Bridge and early doesn't have any swizzling */ |
| return isl_swizzle_is_identity(swizzle); |
| } else { |
| /* From the Sky Lake PRM Vol. 2d, |
| * RENDER_SURFACE_STATE::Shader Channel Select Red |
| * |
| * "For Render Target, Red, Green and Blue Shader Channel Selects |
| * MUST be such that only valid components can be swapped i.e. only |
| * change the order of components in the pixel. Any other values for |
| * these Shader Channel Select fields are not valid for Render |
| * Targets. This also means that there MUST not be multiple shader |
| * channels mapped to the same RT channel." |
| * |
| * From the Sky Lake PRM Vol. 2d, |
| * RENDER_SURFACE_STATE::Shader Channel Select Alpha |
| * |
| * "For Render Target, this field MUST be programmed to |
| * value = SCS_ALPHA." |
| */ |
| return (swizzle.r == ISL_CHANNEL_SELECT_RED || |
| swizzle.r == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.r == ISL_CHANNEL_SELECT_BLUE) && |
| (swizzle.g == ISL_CHANNEL_SELECT_RED || |
| swizzle.g == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.g == ISL_CHANNEL_SELECT_BLUE) && |
| (swizzle.b == ISL_CHANNEL_SELECT_RED || |
| swizzle.b == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.b == ISL_CHANNEL_SELECT_BLUE) && |
| swizzle.r != swizzle.g && |
| swizzle.r != swizzle.b && |
| swizzle.g != swizzle.b && |
| swizzle.a == ISL_CHANNEL_SELECT_ALPHA; |
| } |
| } |
| |
| static enum isl_channel_select |
| swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle) |
| { |
| switch (chan) { |
| case ISL_CHANNEL_SELECT_ZERO: |
| case ISL_CHANNEL_SELECT_ONE: |
| return chan; |
| case ISL_CHANNEL_SELECT_RED: |
| return swizzle.r; |
| case ISL_CHANNEL_SELECT_GREEN: |
| return swizzle.g; |
| case ISL_CHANNEL_SELECT_BLUE: |
| return swizzle.b; |
| case ISL_CHANNEL_SELECT_ALPHA: |
| return swizzle.a; |
| default: |
| unreachable("Invalid swizzle component"); |
| } |
| } |
| |
| /** |
| * Returns the single swizzle that is equivalent to applying the two given |
| * swizzles in sequence. |
| */ |
| struct isl_swizzle |
| isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second) |
| { |
| return (struct isl_swizzle) { |
| .r = swizzle_select(first.r, second), |
| .g = swizzle_select(first.g, second), |
| .b = swizzle_select(first.b, second), |
| .a = swizzle_select(first.a, second), |
| }; |
| } |
| |
| /** |
| * Returns a swizzle that is the pseudo-inverse of this swizzle. |
| */ |
| struct isl_swizzle |
| isl_swizzle_invert(struct isl_swizzle swizzle) |
| { |
| /* Default to zero for channels which do not show up in the swizzle */ |
| enum isl_channel_select chans[4] = { |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| }; |
| |
| /* We go in ABGR order so that, if there are any duplicates, the first one |
| * is taken if you look at it in RGBA order. This is what Haswell hardware |
| * does for render target swizzles. |
| */ |
| if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA; |
| if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE; |
| if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN; |
| if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED; |
| |
| return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] }; |
| } |
| |
| /** Applies an inverse swizzle to a color value */ |
| union isl_color_value |
| isl_color_value_swizzle_inv(union isl_color_value src, |
| struct isl_swizzle swizzle) |
| { |
| union isl_color_value dst = { .u32 = { 0, } }; |
| |
| /* We assign colors in ABGR order so that the first one will be taken in |
| * RGBA precedence order. According to the PRM docs for shader channel |
| * select, this matches Haswell hardware behavior. |
| */ |
| if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3]; |
| if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2]; |
| if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1]; |
| if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0]; |
| |
| return dst; |
| } |
| |
| uint8_t |
| isl_format_get_aux_map_encoding(enum isl_format format) |
| { |
| switch(format) { |
| case ISL_FORMAT_R32G32B32A32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32B32X32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32B32A32_SINT: return 0x12; |
| case ISL_FORMAT_R32G32B32A32_UINT: return 0x13; |
| case ISL_FORMAT_R16G16B16A16_UNORM: return 0x14; |
| case ISL_FORMAT_R16G16B16A16_SNORM: return 0x15; |
| case ISL_FORMAT_R16G16B16A16_SINT: return 0x16; |
| case ISL_FORMAT_R16G16B16A16_UINT: return 0x17; |
| case ISL_FORMAT_R16G16B16A16_FLOAT: return 0x10; |
| case ISL_FORMAT_R16G16B16X16_FLOAT: return 0x10; |
| case ISL_FORMAT_R32G32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32_SINT: return 0x12; |
| case ISL_FORMAT_R32G32_UINT: return 0x13; |
| case ISL_FORMAT_B8G8R8A8_UNORM: return 0xA; |
| case ISL_FORMAT_B8G8R8X8_UNORM: return 0xA; |
| case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R10G10B10A2_UNORM: return 0x18; |
| case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: return 0x18; |
| case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: return 0x19; |
| case ISL_FORMAT_R10G10B10A2_UINT: return 0x1A; |
| case ISL_FORMAT_R8G8B8A8_UNORM: return 0xA; |
| case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R8G8B8A8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8G8B8A8_SINT: return 0x1C; |
| case ISL_FORMAT_R8G8B8A8_UINT: return 0x1D; |
| case ISL_FORMAT_R16G16_UNORM: return 0x14; |
| case ISL_FORMAT_R16G16_SNORM: return 0x15; |
| case ISL_FORMAT_R16G16_SINT: return 0x16; |
| case ISL_FORMAT_R16G16_UINT: return 0x17; |
| case ISL_FORMAT_R16G16_FLOAT: return 0x10; |
| case ISL_FORMAT_B10G10R10A2_UNORM: return 0x18; |
| case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: return 0x18; |
| case ISL_FORMAT_R11G11B10_FLOAT: return 0x1E; |
| case ISL_FORMAT_R32_SINT: return 0x12; |
| case ISL_FORMAT_R32_UINT: return 0x13; |
| case ISL_FORMAT_R32_FLOAT: return 0x11; |
| case ISL_FORMAT_R24_UNORM_X8_TYPELESS: return 0x11; |
| case ISL_FORMAT_B5G6R5_UNORM: return 0xA; |
| case ISL_FORMAT_B5G6R5_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B5G5R5A1_UNORM: return 0xA; |
| case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B4G4R4A4_UNORM: return 0xA; |
| case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R8G8_UNORM: return 0xA; |
| case ISL_FORMAT_R8G8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8G8_SINT: return 0x1C; |
| case ISL_FORMAT_R8G8_UINT: return 0x1D; |
| case ISL_FORMAT_R16_UNORM: return 0x14; |
| case ISL_FORMAT_R16_SNORM: return 0x15; |
| case ISL_FORMAT_R16_SINT: return 0x16; |
| case ISL_FORMAT_R16_UINT: return 0x17; |
| case ISL_FORMAT_R16_FLOAT: return 0x10; |
| case ISL_FORMAT_B5G5R5X1_UNORM: return 0xA; |
| case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_A1B5G5R5_UNORM: return 0xA; |
| case ISL_FORMAT_A4B4G4R4_UNORM: return 0xA; |
| case ISL_FORMAT_R8_UNORM: return 0xA; |
| case ISL_FORMAT_R8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8_SINT: return 0x1C; |
| case ISL_FORMAT_R8_UINT: return 0x1D; |
| case ISL_FORMAT_A8_UNORM: return 0xA; |
| default: |
| unreachable("Unsupported aux-map format!"); |
| return 0; |
| } |
| } |