blob: 18978afd2197585c1de0a89c89a7cfe0d57e947b [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_meta.h"
#include "anv_meta_clear.h"
#include "anv_private.h"
#include "glsl/nir/nir_builder.h"
struct anv_render_pass anv_meta_dummy_renderpass = {0};
static nir_shader *
build_nir_vertex_shader(bool attr_flat)
{
nir_builder b;
const struct glsl_type *vertex_type = glsl_vec4_type();
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vertex_type, "a_pos");
pos_in->data.location = VERT_ATTRIB_GENERIC0;
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vertex_type, "gl_Position");
pos_out->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, pos_out, pos_in);
/* Add one more pass-through attribute. For clear shaders, this is used
* to store the color and for blit shaders it's the texture coordinate.
*/
const struct glsl_type *attr_type = glsl_vec4_type();
nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
attr_type, "a_attr");
attr_in->data.location = VERT_ATTRIB_GENERIC1;
nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
attr_type, "v_attr");
attr_out->data.location = VARYING_SLOT_VAR0;
attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
INTERP_QUALIFIER_SMOOTH;
nir_copy_var(&b, attr_out, attr_in);
return b.shader;
}
static nir_shader *
build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
{
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
const struct glsl_type *color_type = glsl_vec4_type();
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
glsl_vec4_type(), "v_attr");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
const struct glsl_type *sampler_type =
glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
sampler_type, "s_tex");
sampler->data.descriptor_set = 0;
sampler->data.binding = 0;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
tex->sampler_dim = tex_dim;
tex->op = nir_texop_tex;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
tex->dest_type = nir_type_float; /* TODO */
if (tex_dim != GLSL_SAMPLER_DIM_3D)
tex->is_array = true;
tex->coord_components = 3;
tex->sampler = nir_deref_var_create(tex, sampler);
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
color_type, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_store_var(&b, color_out, &tex->dest.ssa, 4);
return b.shader;
}
void
anv_meta_save(struct anv_meta_saved_state *state,
const struct anv_cmd_buffer *cmd_buffer,
uint32_t dynamic_mask)
{
state->old_pipeline = cmd_buffer->state.pipeline;
state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
sizeof(state->old_vertex_bindings));
state->dynamic_mask = dynamic_mask;
anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
dynamic_mask);
}
void
anv_meta_restore(const struct anv_meta_saved_state *state,
struct anv_cmd_buffer *cmd_buffer)
{
cmd_buffer->state.pipeline = state->old_pipeline;
cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
sizeof(state->old_vertex_bindings));
cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
state->dynamic_mask);
cmd_buffer->state.dirty |= state->dynamic_mask;
/* Since we've used the pipeline with the VS disabled, set
* need_query_wa. See CmdBeginQuery.
*/
cmd_buffer->state.need_query_wa = true;
}
VkImageViewType
anv_meta_get_view_type(const struct anv_image *image)
{
switch (image->type) {
case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
default:
unreachable("bad VkImageViewType");
}
}
static uint32_t
meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
const VkImageSubresourceLayers *dest_subresource,
const VkOffset3D *dest_offset)
{
switch (dest_image->type) {
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
return dest_subresource->baseArrayLayer;
case VK_IMAGE_TYPE_3D:
/* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
* but meta does it anyway. When doing so, we translate the
* destination's z offset into an array offset.
*/
return dest_offset->z;
default:
assert(!"bad VkImageType");
return 0;
}
}
static VkResult
anv_device_init_meta_blit_state(struct anv_device *device)
{
VkResult result;
result = anv_CreateRenderPass(anv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.preserveAttachmentCount = 1,
.pPreserveAttachments = (uint32_t[]) { 0 },
},
.dependencyCount = 0,
}, NULL, &device->meta_state.blit.render_pass);
if (result != VK_SUCCESS)
goto fail;
/* We don't use a vertex shader for clearing, but instead build and pass
* the VUEs directly to the rasterization backend. However, we do need
* to provide GLSL source for the vertex shader so that the compiler
* does not dead-code our inputs.
*/
struct anv_shader_module vs = {
.nir = build_nir_vertex_shader(false),
};
struct anv_shader_module fs_1d = {
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
};
struct anv_shader_module fs_2d = {
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
};
struct anv_shader_module fs_3d = {
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
};
VkPipelineVertexInputStateCreateInfo vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 2,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = 0,
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
{
.binding = 1,
.stride = 5 * sizeof(float),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 3,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* VUE Header */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_UINT,
.offset = 0
},
{
/* Position */
.location = 1,
.binding = 1,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = 0
},
{
/* Texture Coordinate */
.location = 2,
.binding = 1,
.format = VK_FORMAT_R32G32B32_SFLOAT,
.offset = 8
}
}
};
VkDescriptorSetLayoutCreateInfo ds_layout_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL
},
}
};
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
&ds_layout_info, NULL,
&device->meta_state.blit.ds_layout);
if (result != VK_SUCCESS)
goto fail_render_pass;
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.blit.ds_layout,
},
NULL, &device->meta_state.blit.pipeline_layout);
if (result != VK_SUCCESS)
goto fail_descriptor_set_layout;
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = anv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
.pName = "main",
.pSpecializationInfo = NULL
},
};
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = &vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{ .colorWriteMask =
VK_COLOR_COMPONENT_A_BIT |
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT },
}
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.blit.pipeline_layout,
.renderPass = device->meta_state.blit.render_pass,
.subpass = 0,
};
const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
.use_repclear = false,
.disable_viewport = true,
.disable_scissor = true,
.disable_vs = true,
.use_rectlist = true
};
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
VK_NULL_HANDLE,
&vk_pipeline_info, &anv_pipeline_info,
NULL, &device->meta_state.blit.pipeline_1d_src);
if (result != VK_SUCCESS)
goto fail_pipeline_layout;
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
VK_NULL_HANDLE,
&vk_pipeline_info, &anv_pipeline_info,
NULL, &device->meta_state.blit.pipeline_2d_src);
if (result != VK_SUCCESS)
goto fail_pipeline_1d;
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
VK_NULL_HANDLE,
&vk_pipeline_info, &anv_pipeline_info,
NULL, &device->meta_state.blit.pipeline_3d_src);
if (result != VK_SUCCESS)
goto fail_pipeline_2d;
ralloc_free(vs.nir);
ralloc_free(fs_1d.nir);
ralloc_free(fs_2d.nir);
ralloc_free(fs_3d.nir);
return VK_SUCCESS;
fail_pipeline_2d:
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit.pipeline_2d_src, NULL);
fail_pipeline_1d:
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit.pipeline_1d_src, NULL);
fail_pipeline_layout:
anv_DestroyPipelineLayout(anv_device_to_handle(device),
device->meta_state.blit.pipeline_layout, NULL);
fail_descriptor_set_layout:
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
device->meta_state.blit.ds_layout, NULL);
fail_render_pass:
anv_DestroyRenderPass(anv_device_to_handle(device),
device->meta_state.blit.render_pass, NULL);
ralloc_free(vs.nir);
ralloc_free(fs_1d.nir);
ralloc_free(fs_2d.nir);
ralloc_free(fs_3d.nir);
fail:
return result;
}
static void
meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *saved_state)
{
anv_meta_save(saved_state, cmd_buffer,
(1 << VK_DYNAMIC_STATE_VIEWPORT));
}
struct blit_region {
VkOffset3D src_offset;
VkExtent3D src_extent;
VkOffset3D dest_offset;
VkExtent3D dest_extent;
};
static void
meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
struct anv_image *src_image,
struct anv_image_view *src_iview,
VkOffset3D src_offset,
VkExtent3D src_extent,
struct anv_image *dest_image,
struct anv_image_view *dest_iview,
VkOffset3D dest_offset,
VkExtent3D dest_extent,
VkFilter blit_filter)
{
struct anv_device *device = cmd_buffer->device;
VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1;
struct blit_vb_data {
float pos[2];
float tex_coord[3];
} *vb_data;
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
struct anv_state vb_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
vb_data = vb_state.map + sizeof(struct anv_vue_header);
vb_data[0] = (struct blit_vb_data) {
.pos = {
dest_offset.x + dest_extent.width,
dest_offset.y + dest_extent.height,
},
.tex_coord = {
(float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
(float)src_offset.z / (float)src_iview->extent.depth,
},
};
vb_data[1] = (struct blit_vb_data) {
.pos = {
dest_offset.x,
dest_offset.y + dest_extent.height,
},
.tex_coord = {
(float)src_offset.x / (float)src_iview->extent.width,
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
(float)src_offset.z / (float)src_iview->extent.depth,
},
};
vb_data[2] = (struct blit_vb_data) {
.pos = {
dest_offset.x,
dest_offset.y,
},
.tex_coord = {
(float)src_offset.x / (float)src_iview->extent.width,
(float)src_offset.y / (float)src_iview->extent.height,
(float)src_offset.z / (float)src_iview->extent.depth,
},
};
anv_state_clflush(vb_state);
struct anv_buffer vertex_buffer = {
.device = device,
.size = vb_size,
.bo = &device->dynamic_state_block_pool.bo,
.offset = vb_state.offset,
};
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
(VkBuffer[]) {
anv_buffer_to_handle(&vertex_buffer),
anv_buffer_to_handle(&vertex_buffer)
},
(VkDeviceSize[]) {
0,
sizeof(struct anv_vue_header),
});
VkSampler sampler;
ANV_CALL(CreateSampler)(anv_device_to_handle(device),
&(VkSamplerCreateInfo) {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = blit_filter,
.minFilter = blit_filter,
}, &cmd_buffer->pool->alloc, &sampler);
VkDescriptorSet set;
anv_AllocateDescriptorSets(anv_device_to_handle(device),
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = dummy_desc_pool,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.blit.ds_layout
}, &set);
anv_UpdateDescriptorSets(anv_device_to_handle(device),
1, /* writeCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = set,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = sampler,
.imageView = anv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
}, 0, NULL);
VkFramebuffer fb;
anv_CreateFramebuffer(anv_device_to_handle(device),
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
anv_image_view_to_handle(dest_iview),
},
.width = dest_iview->extent.width,
.height = dest_iview->extent.height,
.layers = 1
}, &cmd_buffer->pool->alloc, &fb);
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit.render_pass,
.framebuffer = fb,
.renderArea = {
.offset = { dest_offset.x, dest_offset.y },
.extent = { dest_extent.width, dest_extent.height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
VkPipeline pipeline;
switch (src_image->type) {
case VK_IMAGE_TYPE_1D:
pipeline = device->meta_state.blit.pipeline_1d_src;
break;
case VK_IMAGE_TYPE_2D:
pipeline = device->meta_state.blit.pipeline_2d_src;
break;
case VK_IMAGE_TYPE_3D:
pipeline = device->meta_state.blit.pipeline_3d_src;
break;
default:
unreachable(!"bad VkImageType");
}
if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport) {
.x = 0.0f,
.y = 0.0f,
.width = dest_iview->extent.width,
.height = dest_iview->extent.height,
.minDepth = 0.0f,
.maxDepth = 1.0f,
});
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.blit.pipeline_layout, 0, 1,
&set, 0, NULL);
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
/* At the point where we emit the draw call, all data from the
* descriptor sets, etc. has been used. We are free to delete it.
*/
anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
anv_DestroySampler(anv_device_to_handle(device), sampler,
&cmd_buffer->pool->alloc);
anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
&cmd_buffer->pool->alloc);
}
static void
meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
const struct anv_meta_saved_state *saved_state)
{
anv_meta_restore(saved_state, cmd_buffer);
}
static VkFormat
vk_format_for_size(int bs)
{
/* Note: We intentionally use the 4-channel formats whenever we can.
* This is so that, when we do a RGB <-> RGBX copy, the two formats will
* line up even though one of them is 3/4 the size of the other.
*/
switch (bs) {
case 1: return VK_FORMAT_R8_UINT;
case 2: return VK_FORMAT_R8G8_UINT;
case 3: return VK_FORMAT_R8G8B8_UINT;
case 4: return VK_FORMAT_R8G8B8A8_UINT;
case 6: return VK_FORMAT_R16G16B16_UINT;
case 8: return VK_FORMAT_R16G16B16A16_UINT;
case 12: return VK_FORMAT_R32G32B32_UINT;
case 16: return VK_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Invalid format block size");
}
}
static void
do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *src, uint64_t src_offset,
struct anv_bo *dest, uint64_t dest_offset,
int width, int height, VkFormat copy_format)
{
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
VkImageCreateInfo image_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = copy_format,
.extent = {
.width = width,
.height = height,
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = VK_IMAGE_TILING_LINEAR,
.usage = 0,
.flags = 0,
};
VkImage src_image;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
anv_CreateImage(vk_device, &image_info,
&cmd_buffer->pool->alloc, &src_image);
VkImage dest_image;
image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
anv_CreateImage(vk_device, &image_info,
&cmd_buffer->pool->alloc, &dest_image);
/* We could use a vk call to bind memory, but that would require
* creating a dummy memory object etc. so there's really no point.
*/
anv_image_from_handle(src_image)->bo = src;
anv_image_from_handle(src_image)->offset = src_offset;
anv_image_from_handle(dest_image)->bo = dest;
anv_image_from_handle(dest_image)->offset = dest_offset;
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = src_image,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = copy_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
},
},
cmd_buffer);
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = dest_image,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = copy_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
cmd_buffer);
meta_emit_blit(cmd_buffer,
anv_image_from_handle(src_image),
&src_iview,
(VkOffset3D) { 0, 0, 0 },
(VkExtent3D) { width, height, 1 },
anv_image_from_handle(dest_image),
&dest_iview,
(VkOffset3D) { 0, 0, 0 },
(VkExtent3D) { width, height, 1 },
VK_FILTER_NEAREST);
anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc);
}
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
struct anv_meta_saved_state saved_state;
meta_prepare_blit(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
uint64_t copy_size = pRegions[r].size;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
int fs = ffs(src_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(src_offset % bs == 0);
fs = ffs(dest_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(dest_offset % bs == 0);
fs = ffs(pRegions[r].size) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(pRegions[r].size % bs == 0);
VkFormat copy_format = vk_format_for_size(bs);
/* This is maximum possible width/height our HW can handle */
uint64_t max_surface_dim = 1 << 14;
/* First, we make a bunch of max-sized copies */
uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
while (copy_size > max_copy_size) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, max_surface_dim, copy_format);
copy_size -= max_copy_size;
src_offset += max_copy_size;
dest_offset += max_copy_size;
}
uint64_t height = copy_size / (max_surface_dim * bs);
assert(height < max_surface_dim);
if (height != 0) {
uint64_t rect_copy_size = height * max_surface_dim * bs;
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, height, copy_format);
copy_size -= rect_copy_size;
src_offset += rect_copy_size;
dest_offset += rect_copy_size;
}
if (copy_size != 0) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
copy_size / bs, 1, copy_format);
}
}
meta_finish_blit(cmd_buffer, &saved_state);
}
static VkFormat
choose_iview_format(struct anv_image *image, VkImageAspectFlagBits aspect)
{
assert(__builtin_popcount(aspect) == 1);
struct isl_surf *surf =
&anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
/* vkCmdCopyImage behaves like memcpy. Therefore we choose identical UINT
* formats for the source and destination image views.
*
* From the Vulkan spec (2015-12-30):
*
* vkCmdCopyImage performs image copies in a similar manner to a host
* memcpy. It does not perform general-purpose conversions such as
* scaling, resizing, blending, color-space conversion, or format
* conversions. Rather, it simply copies raw image data. vkCmdCopyImage
* can copy between images with different formats, provided the formats
* are compatible as defined below.
*
* [The spec later defines compatibility as having the same number of
* bytes per block].
*/
return vk_format_for_size(isl_format_layouts[surf->format].bs);
}
static VkFormat
choose_buffer_format(struct anv_image *image, VkImageAspectFlagBits aspect)
{
assert(__builtin_popcount(aspect) == 1);
/* vkCmdCopy* commands behave like memcpy. Therefore we choose
* compatable UINT formats for the source and destination image views.
*
* For the buffer, we go back to the original image format and get a
* the format as if it were linear. This way, for RGB formats, we get
* an RGB format here even if the tiled image is RGBA. XXX: This doesn't
* work if the buffer is the destination.
*/
enum isl_format linear_format = anv_get_isl_format(image->vk_format, aspect,
VK_IMAGE_TILING_LINEAR);
return vk_format_for_size(isl_format_layouts[linear_format].bs);
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
struct anv_meta_saved_state saved_state;
meta_prepare_blit(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
VkFormat src_format = choose_iview_format(src_image, aspect);
VkFormat dst_format = choose_iview_format(dest_image, aspect);
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = srcImage,
.viewType = anv_meta_get_view_type(src_image),
.format = src_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = pRegions[r].srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
.layerCount = pRegions[r].dstSubresource.layerCount,
},
},
cmd_buffer);
const VkOffset3D dest_offset = {
.x = pRegions[r].dstOffset.x,
.y = pRegions[r].dstOffset.y,
.z = 0,
};
unsigned num_slices;
if (src_image->type == VK_IMAGE_TYPE_3D) {
assert(pRegions[r].srcSubresource.layerCount == 1 &&
pRegions[r].dstSubresource.layerCount == 1);
num_slices = pRegions[r].extent.depth;
} else {
assert(pRegions[r].srcSubresource.layerCount ==
pRegions[r].dstSubresource.layerCount);
assert(pRegions[r].extent.depth == 1);
num_slices = pRegions[r].dstSubresource.layerCount;
}
const uint32_t dest_base_array_slice =
meta_blit_get_dest_view_base_array_slice(dest_image,
&pRegions[r].dstSubresource,
&pRegions[r].dstOffset);
for (unsigned slice = 0; slice < num_slices; slice++) {
VkOffset3D src_offset = pRegions[r].srcOffset;
src_offset.z += slice;
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = destImage,
.viewType = anv_meta_get_view_type(dest_image),
.format = dst_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = pRegions[r].dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_array_slice + slice,
.layerCount = 1
},
},
cmd_buffer);
meta_emit_blit(cmd_buffer,
src_image, &src_iview,
src_offset,
pRegions[r].extent,
dest_image, &dest_iview,
dest_offset,
pRegions[r].extent,
VK_FILTER_NEAREST);
}
}
meta_finish_blit(cmd_buffer, &saved_state);
}
void anv_CmdBlitImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageBlit* pRegions,
VkFilter filter)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
struct anv_meta_saved_state saved_state;
anv_finishme("respect VkFilter");
meta_prepare_blit(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = srcImage,
.viewType = anv_meta_get_view_type(src_image),
.format = src_image->vk_format,
.subresourceRange = {
.aspectMask = pRegions[r].srcSubresource.aspectMask,
.baseMipLevel = pRegions[r].srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
.layerCount = 1
},
},
cmd_buffer);
const VkOffset3D dest_offset = {
.x = pRegions[r].dstOffset.x,
.y = pRegions[r].dstOffset.y,
.z = 0,
};
const uint32_t dest_array_slice =
meta_blit_get_dest_view_base_array_slice(dest_image,
&pRegions[r].dstSubresource,
&pRegions[r].dstOffset);
if (pRegions[r].srcSubresource.layerCount > 1)
anv_finishme("FINISHME: copy multiple array layers");
if (pRegions[r].dstExtent.depth > 1)
anv_finishme("FINISHME: copy multiple depth layers");
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = destImage,
.viewType = anv_meta_get_view_type(dest_image),
.format = dest_image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = pRegions[r].dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_array_slice,
.layerCount = 1
},
},
cmd_buffer);
meta_emit_blit(cmd_buffer,
src_image, &src_iview,
pRegions[r].srcOffset,
pRegions[r].srcExtent,
dest_image, &dest_iview,
dest_offset,
pRegions[r].dstExtent,
filter);
}
meta_finish_blit(cmd_buffer, &saved_state);
}
static struct anv_image *
make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
VkImageUsageFlags usage,
VkImageType image_type,
const VkAllocationCallbacks *alloc,
const VkBufferImageCopy *copy)
{
ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
VkExtent3D extent = copy->imageExtent;
if (copy->bufferRowLength)
extent.width = copy->bufferRowLength;
if (copy->bufferImageHeight)
extent.height = copy->bufferImageHeight;
extent.depth = 1;
VkImage vk_image;
VkResult result = anv_CreateImage(vk_device,
&(VkImageCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = format,
.extent = extent,
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = VK_IMAGE_TILING_LINEAR,
.usage = usage,
.flags = 0,
}, alloc, &vk_image);
assert(result == VK_SUCCESS);
ANV_FROM_HANDLE(anv_image, image, vk_image);
/* We could use a vk call to bind memory, but that would require
* creating a dummy memory object etc. so there's really no point.
*/
image->bo = buffer->bo;
image->offset = buffer->offset + copy->bufferOffset;
return image;
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
struct anv_meta_saved_state saved_state;
meta_prepare_blit(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
VkFormat image_format = choose_iview_format(dest_image, aspect);
VkFormat buffer_format = choose_buffer_format(dest_image, aspect);
struct anv_image *src_image =
make_image_for_buffer(vk_device, srcBuffer, buffer_format,
VK_IMAGE_USAGE_SAMPLED_BIT,
dest_image->type, &cmd_buffer->pool->alloc,
&pRegions[r]);
const uint32_t dest_base_array_slice =
meta_blit_get_dest_view_base_array_slice(dest_image,
&pRegions[r].imageSubresource,
&pRegions[r].imageOffset);
unsigned num_slices;
if (dest_image->type == VK_IMAGE_TYPE_3D) {
assert(pRegions[r].imageSubresource.layerCount == 1);
num_slices = pRegions[r].imageExtent.depth;
} else {
assert(pRegions[r].imageExtent.depth == 1);
num_slices = pRegions[r].imageSubresource.layerCount;
}
for (unsigned slice = 0; slice < num_slices; slice++) {
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = anv_image_to_handle(src_image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = buffer_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
cmd_buffer);
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = anv_image_to_handle(dest_image),
.viewType = anv_meta_get_view_type(dest_image),
.format = image_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = pRegions[r].imageSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_array_slice + slice,
.layerCount = 1
},
},
cmd_buffer);
VkOffset3D src_offset = { 0, 0, slice };
const VkOffset3D dest_offset = {
.x = pRegions[r].imageOffset.x,
.y = pRegions[r].imageOffset.y,
.z = 0,
};
meta_emit_blit(cmd_buffer,
src_image,
&src_iview,
src_offset,
pRegions[r].imageExtent,
dest_image,
&dest_iview,
dest_offset,
pRegions[r].imageExtent,
VK_FILTER_NEAREST);
/* Once we've done the blit, all of the actual information about
* the image is embedded in the command buffer so we can just
* increment the offset directly in the image effectively
* re-binding it to different backing memory.
*/
src_image->offset += src_image->extent.width *
src_image->extent.height *
src_image->format->isl_layout->bs;
}
anv_DestroyImage(vk_device, anv_image_to_handle(src_image),
&cmd_buffer->pool->alloc);
}
meta_finish_blit(cmd_buffer, &saved_state);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
struct anv_meta_saved_state saved_state;
meta_prepare_blit(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
VkFormat image_format = choose_iview_format(src_image, aspect);
VkFormat buffer_format = choose_buffer_format(src_image, aspect);
struct anv_image_view src_iview;
anv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = srcImage,
.viewType = anv_meta_get_view_type(src_image),
.format = image_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = pRegions[r].imageSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer,
.layerCount = pRegions[r].imageSubresource.layerCount,
},
},
cmd_buffer);
struct anv_image *dest_image =
make_image_for_buffer(vk_device, destBuffer, buffer_format,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
src_image->type, &cmd_buffer->pool->alloc,
&pRegions[r]);
unsigned num_slices;
if (src_image->type == VK_IMAGE_TYPE_3D) {
assert(pRegions[r].imageSubresource.layerCount == 1);
num_slices = pRegions[r].imageExtent.depth;
} else {
assert(pRegions[r].imageExtent.depth == 1);
num_slices = pRegions[r].imageSubresource.layerCount;
}
for (unsigned slice = 0; slice < num_slices; slice++) {
VkOffset3D src_offset = pRegions[r].imageOffset;
src_offset.z += slice;
struct anv_image_view dest_iview;
anv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = anv_image_to_handle(dest_image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = buffer_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
},
},
cmd_buffer);
meta_emit_blit(cmd_buffer,
anv_image_from_handle(srcImage),
&src_iview,
src_offset,
pRegions[r].imageExtent,
dest_image,
&dest_iview,
(VkOffset3D) { 0, 0, 0 },
pRegions[r].imageExtent,
VK_FILTER_NEAREST);
/* Once we've done the blit, all of the actual information about
* the image is embedded in the command buffer so we can just
* increment the offset directly in the image effectively
* re-binding it to different backing memory.
*/
dest_image->offset += dest_image->extent.width *
dest_image->extent.height *
src_image->format->isl_layout->bs;
}
anv_DestroyImage(vk_device, anv_image_to_handle(dest_image),
&cmd_buffer->pool->alloc);
}
meta_finish_blit(cmd_buffer, &saved_state);
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize dataSize,
const uint32_t* pData)
{
stub();
}
void anv_CmdFillBuffer(
VkCommandBuffer commandBuffer,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize fillSize,
uint32_t data)
{
stub();
}
void anv_CmdResolveImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageResolve* pRegions)
{
stub();
}
VkResult
anv_device_init_meta(struct anv_device *device)
{
VkResult result;
result = anv_device_init_meta_clear_state(device);
if (result != VK_SUCCESS)
return result;
result = anv_device_init_meta_blit_state(device);
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
void
anv_device_finish_meta(struct anv_device *device)
{
anv_device_finish_meta_clear_state(device);
/* Blit */
anv_DestroyRenderPass(anv_device_to_handle(device),
device->meta_state.blit.render_pass, NULL);
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit.pipeline_1d_src, NULL);
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit.pipeline_2d_src, NULL);
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit.pipeline_3d_src, NULL);
anv_DestroyPipelineLayout(anv_device_to_handle(device),
device->meta_state.blit.pipeline_layout, NULL);
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
device->meta_state.blit.ds_layout, NULL);
}