blob: df589b87c79c4f6b440118430105324928aa75bb [file] [log] [blame]
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_vs.h"
#include "brw_dead_control_flow.h"
extern "C" {
#include "main/macros.h"
#include "main/shaderobj.h"
#include "program/prog_print.h"
#include "program/prog_parameter.h"
}
#define MAX_INSTRUCTION (1 << 30)
using namespace brw;
namespace brw {
/**
* Common helper for constructing swizzles. When only a subset of
* channels of a vec4 are used, we don't want to reference the other
* channels, as that will tell optimization passes that those other
* channels are used.
*/
unsigned
swizzle_for_size(int size)
{
static const unsigned size_swizzles[4] = {
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
void
src_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
}
src_reg::src_reg(register_file file, int reg, const glsl_type *type)
{
init();
this->file = file;
this->reg = reg;
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
this->swizzle = swizzle_for_size(type->vector_elements);
else
this->swizzle = BRW_SWIZZLE_XYZW;
}
/** Generic unset register constructor. */
src_reg::src_reg()
{
init();
}
src_reg::src_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->fixed_hw_reg.dw1.f = f;
}
src_reg::src_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->fixed_hw_reg.dw1.ud = u;
}
src_reg::src_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->fixed_hw_reg.dw1.d = i;
}
src_reg::src_reg(struct brw_reg reg)
{
init();
this->file = HW_REG;
this->fixed_hw_reg = reg;
this->type = reg.type;
}
src_reg::src_reg(dst_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
int swizzles[4];
int next_chan = 0;
int last = 0;
for (int i = 0; i < 4; i++) {
if (!(reg.writemask & (1 << i)))
continue;
swizzles[next_chan++] = last = i;
}
for (; next_chan < 4; next_chan++) {
swizzles[next_chan] = last;
}
this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
void
dst_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
this->writemask = WRITEMASK_XYZW;
}
dst_reg::dst_reg()
{
init();
}
dst_reg::dst_reg(register_file file, int reg)
{
init();
this->file = file;
this->reg = reg;
}
dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
int writemask)
{
init();
this->file = file;
this->reg = reg;
this->type = brw_type_for_base_type(type);
this->writemask = writemask;
}
dst_reg::dst_reg(struct brw_reg reg)
{
init();
this->file = HW_REG;
this->fixed_hw_reg = reg;
this->type = reg.type;
}
dst_reg::dst_reg(src_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
/* How should we do writemasking when converting from a src_reg? It seems
* pretty obvious that for src.xxxx the caller wants to write to src.x, but
* what about for src.wx? Just special-case src.xxxx for now.
*/
if (reg.swizzle == BRW_SWIZZLE_XXXX)
this->writemask = WRITEMASK_X;
else
this->writemask = WRITEMASK_XYZW;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
}
bool
vec4_instruction::is_send_from_grf()
{
switch (opcode) {
case SHADER_OPCODE_SHADER_TIME_ADD:
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
return true;
default:
return false;
}
}
bool
vec4_instruction::can_do_source_mods(struct brw_context *brw)
{
if (brw->gen == 6 && is_math())
return false;
if (is_send_from_grf())
return false;
if (!backend_instruction::can_do_source_mods())
return false;
return true;
}
/**
* Returns how many MRFs an opcode will write over.
*
* Note that this is not the 0 or 1 implied writes in an actual gen
* instruction -- the generate_* functions generate additional MOVs
* for setup.
*/
int
vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
{
if (inst->mlen == 0)
return 0;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
return 1;
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
case SHADER_OPCODE_POW:
return 2;
case VS_OPCODE_URB_WRITE:
return 1;
case VS_OPCODE_PULL_CONSTANT_LOAD:
return 2;
case SHADER_OPCODE_GEN4_SCRATCH_READ:
return 2;
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return 3;
case GS_OPCODE_URB_WRITE:
case GS_OPCODE_URB_WRITE_ALLOCATE:
case GS_OPCODE_THREAD_END:
return 0;
case GS_OPCODE_FF_SYNC:
return 1;
case SHADER_OPCODE_SHADER_TIME_ADD:
return 0;
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXF_MCS:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_TG4_OFFSET:
return inst->header_present ? 1 : 0;
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
return 0;
default:
unreachable("not reached");
}
}
bool
src_reg::equals(const src_reg &r) const
{
return (file == r.file &&
reg == r.reg &&
reg_offset == r.reg_offset &&
type == r.type &&
negate == r.negate &&
abs == r.abs &&
swizzle == r.swizzle &&
!reladdr && !r.reladdr &&
memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
sizeof(fixed_hw_reg)) == 0);
}
/* Replaces unused channels of a swizzle with channels that are used.
*
* For instance, this pass transforms
*
* mov vgrf4.yz, vgrf5.wxzy
*
* into
*
* mov vgrf4.yz, vgrf5.xxzx
*
* This eliminates false uses of some channels, letting dead code elimination
* remove the instructions that wrote them.
*/
bool
vec4_visitor::opt_reduce_swizzle()
{
bool progress = false;
foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
continue;
int swizzle[4];
/* Determine which channels of the sources are read. */
switch (inst->opcode) {
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
* but all four of src1.
*/
swizzle[0] = 0;
swizzle[1] = 1;
swizzle[2] = 2;
swizzle[3] = 3;
break;
case BRW_OPCODE_DP3:
swizzle[0] = 0;
swizzle[1] = 1;
swizzle[2] = 2;
swizzle[3] = -1;
break;
case BRW_OPCODE_DP2:
swizzle[0] = 0;
swizzle[1] = 1;
swizzle[2] = -1;
swizzle[3] = -1;
break;
default:
swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
break;
}
/* Resolve unread channels (-1) by assigning them the swizzle of the
* first channel that is used.
*/
int first_used_channel = 0;
for (int i = 0; i < 4; i++) {
if (swizzle[i] != -1) {
first_used_channel = swizzle[i];
break;
}
}
for (int i = 0; i < 4; i++) {
if (swizzle[i] == -1) {
swizzle[i] = first_used_channel;
}
}
/* Update sources' swizzles. */
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != GRF &&
inst->src[i].file != ATTR &&
inst->src[i].file != UNIFORM)
continue;
int swiz[4];
for (int j = 0; j < 4; j++) {
swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
}
unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
if (inst->src[i].swizzle != new_swizzle) {
inst->src[i].swizzle = new_swizzle;
progress = true;
}
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
static bool
try_eliminate_instruction(vec4_instruction *inst, int new_writemask,
const struct brw_context *brw)
{
if (inst->has_side_effects())
return false;
if (new_writemask == 0) {
/* Don't dead code eliminate instructions that write to the
* accumulator as a side-effect. Instead just set the destination
* to the null register to free it.
*/
if (inst->writes_accumulator || inst->writes_flag()) {
inst->dst = dst_reg(retype(brw_null_reg(), inst->dst.type));
} else {
inst->opcode = BRW_OPCODE_NOP;
}
return true;
} else if (inst->dst.writemask != new_writemask) {
switch (inst->opcode) {
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_GEN4_SCRATCH_READ:
case VS_OPCODE_PULL_CONSTANT_LOAD:
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
break;
default:
/* Do not set a writemask on Gen6 for math instructions, those are
* executed using align1 mode that does not support a destination mask.
*/
if (!(brw->gen == 6 && inst->is_math()) && !inst->is_tex()) {
inst->dst.writemask = new_writemask;
return true;
}
}
}
return false;
}
/**
* Must be called after calculate_live_intervals() to remove unused
* writes to registers -- register allocation will fail otherwise
* because something deffed but not used won't be considered to
* interfere with other regs.
*/
bool
vec4_visitor::dead_code_eliminate()
{
bool progress = false;
int pc = -1;
calculate_live_intervals();
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
pc++;
bool inst_writes_flag = false;
if (inst->dst.file != GRF) {
if (inst->dst.is_null() && inst->writes_flag()) {
inst_writes_flag = true;
} else {
continue;
}
}
if (inst->dst.file == GRF) {
int write_mask = inst->dst.writemask;
for (int c = 0; c < 4; c++) {
if (write_mask & (1 << c)) {
assert(this->virtual_grf_end[inst->dst.reg * 4 + c] >= pc);
if (this->virtual_grf_end[inst->dst.reg * 4 + c] == pc) {
write_mask &= ~(1 << c);
}
}
}
progress = try_eliminate_instruction(inst, write_mask, brw) ||
progress;
}
if (inst->predicate || inst->prev == NULL)
continue;
int dead_channels;
if (inst_writes_flag) {
/* Arbitrarily chosen, other than not being an xyzw writemask. */
#define FLAG_WRITEMASK (1 << 5)
dead_channels = inst->reads_flag() ? 0 : FLAG_WRITEMASK;
} else {
dead_channels = inst->dst.writemask;
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != GRF ||
inst->src[i].reg != inst->dst.reg)
continue;
for (int j = 0; j < 4; j++) {
int swiz = BRW_GET_SWZ(inst->src[i].swizzle, j);
dead_channels &= ~(1 << swiz);
}
}
}
foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
inst, block) {
if (dead_channels == 0)
break;
if (inst_writes_flag) {
if (scan_inst->dst.is_null() && scan_inst->writes_flag()) {
scan_inst->opcode = BRW_OPCODE_NOP;
progress = true;
continue;
} else if (scan_inst->reads_flag()) {
break;
}
}
if (inst->dst.file == scan_inst->dst.file &&
inst->dst.reg == scan_inst->dst.reg &&
inst->dst.reg_offset == scan_inst->dst.reg_offset) {
int new_writemask = scan_inst->dst.writemask & ~dead_channels;
progress = try_eliminate_instruction(scan_inst, new_writemask, brw) ||
progress;
}
for (int i = 0; i < 3; i++) {
if (scan_inst->src[i].file != inst->dst.file ||
scan_inst->src[i].reg != inst->dst.reg)
continue;
for (int j = 0; j < 4; j++) {
int swiz = BRW_GET_SWZ(scan_inst->src[i].swizzle, j);
dead_channels &= ~(1 << swiz);
}
}
}
}
if (progress) {
foreach_block_and_inst_safe (block, backend_instruction, inst, cfg) {
if (inst->opcode == BRW_OPCODE_NOP) {
inst->remove(block);
}
}
invalidate_live_intervals();
}
return progress;
}
void
vec4_visitor::split_uniform_registers()
{
/* Prior to this, uniforms have been in an array sized according to
* the number of vector uniforms present, sparsely filled (so an
* aggregate results in reg indices being skipped over). Now we're
* going to cut those aggregates up so each .reg index is one
* vector. The goal is to make elimination of unused uniform
* components easier later.
*/
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
assert(!inst->src[i].reladdr);
inst->src[i].reg += inst->src[i].reg_offset;
inst->src[i].reg_offset = 0;
}
}
/* Update that everything is now vector-sized. */
for (int i = 0; i < this->uniforms; i++) {
this->uniform_size[i] = 1;
}
}
void
vec4_visitor::pack_uniform_registers()
{
bool uniform_used[this->uniforms];
int new_loc[this->uniforms];
int new_chan[this->uniforms];
memset(uniform_used, 0, sizeof(uniform_used));
memset(new_loc, 0, sizeof(new_loc));
memset(new_chan, 0, sizeof(new_chan));
/* Find which uniform vectors are actually used by the program. We
* expect unused vector elements when we've moved array access out
* to pull constants, and from some GLSL code generators like wine.
*/
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
uniform_used[inst->src[i].reg] = true;
}
}
int new_uniform_count = 0;
/* Now, figure out a packing of the live uniform vectors into our
* push constants.
*/
for (int src = 0; src < uniforms; src++) {
assert(src < uniform_array_size);
int size = this->uniform_vector_size[src];
if (!uniform_used[src]) {
this->uniform_vector_size[src] = 0;
continue;
}
int dst;
/* Find the lowest place we can slot this uniform in. */
for (dst = 0; dst < src; dst++) {
if (this->uniform_vector_size[dst] + size <= 4)
break;
}
if (src == dst) {
new_loc[src] = dst;
new_chan[src] = 0;
} else {
new_loc[src] = dst;
new_chan[src] = this->uniform_vector_size[dst];
/* Move the references to the data */
for (int j = 0; j < size; j++) {
stage_prog_data->param[dst * 4 + new_chan[src] + j] =
stage_prog_data->param[src * 4 + j];
}
this->uniform_vector_size[dst] += size;
this->uniform_vector_size[src] = 0;
}
new_uniform_count = MAX2(new_uniform_count, dst + 1);
}
this->uniforms = new_uniform_count;
/* Now, update the instructions for our repacked uniforms. */
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (int i = 0 ; i < 3; i++) {
int src = inst->src[i].reg;
if (inst->src[i].file != UNIFORM)
continue;
inst->src[i].reg = new_loc[src];
int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
}
}
}
/**
* Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
*
* While GLSL IR also performs this optimization, we end up with it in
* our instruction stream for a couple of reasons. One is that we
* sometimes generate silly instructions, for example in array access
* where we'll generate "ADD offset, index, base" even if base is 0.
* The other is that GLSL IR's constant propagation doesn't track the
* components of aggregates, so some VS patterns (initialize matrix to
* 0, accumulate in vertex blending factors) end up breaking down to
* instructions involving 0.
*/
bool
vec4_visitor::opt_algebraic()
{
bool progress = false;
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
switch (inst->opcode) {
case BRW_OPCODE_ADD:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
case BRW_OPCODE_MUL:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
switch (inst->src[0].type) {
case BRW_REGISTER_TYPE_F:
inst->src[0] = src_reg(0.0f);
break;
case BRW_REGISTER_TYPE_D:
inst->src[0] = src_reg(0);
break;
case BRW_REGISTER_TYPE_UD:
inst->src[0] = src_reg(0u);
break;
default:
unreachable("not reached");
}
inst->src[1] = src_reg();
progress = true;
} else if (inst->src[1].is_one()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
case SHADER_OPCODE_RCP: {
vec4_instruction *prev = (vec4_instruction *)inst->prev;
if (prev->opcode == SHADER_OPCODE_SQRT) {
if (inst->src[0].equals(src_reg(prev->dst))) {
inst->opcode = SHADER_OPCODE_RSQ;
inst->src[0] = prev->src[0];
progress = true;
}
}
break;
}
default:
break;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
/**
* Only a limited number of hardware registers may be used for push
* constants, so this turns access to the overflowed constants into
* pull constants.
*/
void
vec4_visitor::move_push_constants_to_pull_constants()
{
int pull_constant_loc[this->uniforms];
/* Only allow 32 registers (256 uniform components) as push constants,
* which is the limit on gen6.
*
* If changing this value, note the limitation about total_regs in
* brw_curbe.c.
*/
int max_uniform_components = 32 * 8;
if (this->uniforms * 4 <= max_uniform_components)
return;
/* Make some sort of choice as to which uniforms get sent to pull
* constants. We could potentially do something clever here like
* look for the most infrequently used uniform vec4s, but leave
* that for later.
*/
for (int i = 0; i < this->uniforms * 4; i += 4) {
pull_constant_loc[i / 4] = -1;
if (i >= max_uniform_components) {
const gl_constant_value **values = &stage_prog_data->param[i];
/* Try to find an existing copy of this uniform in the pull
* constants if it was part of an array access already.
*/
for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
int matches;
for (matches = 0; matches < 4; matches++) {
if (stage_prog_data->pull_param[j + matches] != values[matches])
break;
}
if (matches == 4) {
pull_constant_loc[i / 4] = j / 4;
break;
}
}
if (pull_constant_loc[i / 4] == -1) {
assert(stage_prog_data->nr_pull_params % 4 == 0);
pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
for (int j = 0; j < 4; j++) {
stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
values[j];
}
}
}
}
/* Now actually rewrite usage of the things we've moved to pull
* constants.
*/
foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM ||
pull_constant_loc[inst->src[i].reg] == -1)
continue;
int uniform = inst->src[i].reg;
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
emit_pull_constant_load(block, inst, temp, inst->src[i],
pull_constant_loc[uniform]);
inst->src[i].file = temp.file;
inst->src[i].reg = temp.reg;
inst->src[i].reg_offset = temp.reg_offset;
inst->src[i].reladdr = NULL;
}
}
/* Repack push constants to remove the now-unused ones. */
pack_uniform_registers();
}
/**
* Sets the dependency control fields on instructions after register
* allocation and before the generator is run.
*
* When you have a sequence of instructions like:
*
* DP4 temp.x vertex uniform[0]
* DP4 temp.y vertex uniform[0]
* DP4 temp.z vertex uniform[0]
* DP4 temp.w vertex uniform[0]
*
* The hardware doesn't know that it can actually run the later instructions
* while the previous ones are in flight, producing stalls. However, we have
* manual fields we can set in the instructions that let it do so.
*/
void
vec4_visitor::opt_set_dependency_control()
{
vec4_instruction *last_grf_write[BRW_MAX_GRF];
uint8_t grf_channels_written[BRW_MAX_GRF];
vec4_instruction *last_mrf_write[BRW_MAX_GRF];
uint8_t mrf_channels_written[BRW_MAX_GRF];
assert(prog_data->total_grf ||
!"Must be called after register allocation");
foreach_block (block, cfg) {
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
foreach_inst_in_block (vec4_instruction, inst, block) {
/* If we read from a register that we were doing dependency control
* on, don't do dependency control across the read.
*/
for (int i = 0; i < 3; i++) {
int reg = inst->src[i].reg + inst->src[i].reg_offset;
if (inst->src[i].file == GRF) {
last_grf_write[reg] = NULL;
} else if (inst->src[i].file == HW_REG) {
memset(last_grf_write, 0, sizeof(last_grf_write));
break;
}
assert(inst->src[i].file != MRF);
}
/* In the presence of send messages, totally interrupt dependency
* control. They're long enough that the chance of dependency
* control around them just doesn't matter.
*/
if (inst->mlen) {
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
continue;
}
/* It looks like setting dependency control on a predicated
* instruction hangs the GPU.
*/
if (inst->predicate) {
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
continue;
}
/* Dependency control does not work well over math instructions.
*/
if (inst->is_math()) {
memset(last_grf_write, 0, sizeof(last_grf_write));
memset(last_mrf_write, 0, sizeof(last_mrf_write));
continue;
}
/* Now, see if we can do dependency control for this instruction
* against a previous one writing to its destination.
*/
int reg = inst->dst.reg + inst->dst.reg_offset;
if (inst->dst.file == GRF) {
if (last_grf_write[reg] &&
!(inst->dst.writemask & grf_channels_written[reg])) {
last_grf_write[reg]->no_dd_clear = true;
inst->no_dd_check = true;
} else {
grf_channels_written[reg] = 0;
}
last_grf_write[reg] = inst;
grf_channels_written[reg] |= inst->dst.writemask;
} else if (inst->dst.file == MRF) {
if (last_mrf_write[reg] &&
!(inst->dst.writemask & mrf_channels_written[reg])) {
last_mrf_write[reg]->no_dd_clear = true;
inst->no_dd_check = true;
} else {
mrf_channels_written[reg] = 0;
}
last_mrf_write[reg] = inst;
mrf_channels_written[reg] |= inst->dst.writemask;
} else if (inst->dst.reg == HW_REG) {
if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
memset(last_grf_write, 0, sizeof(last_grf_write));
if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
memset(last_mrf_write, 0, sizeof(last_mrf_write));
}
}
}
}
bool
vec4_instruction::can_reswizzle(int dst_writemask,
int swizzle,
int swizzle_mask)
{
/* If this instruction sets anything not referenced by swizzle, then we'd
* totally break it when we reswizzle.
*/
if (dst.writemask & ~swizzle_mask)
return false;
if (mlen > 0)
return false;
return true;
}
/**
* For any channels in the swizzle's source that were populated by this
* instruction, rewrite the instruction to put the appropriate result directly
* in those channels.
*
* e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
*/
void
vec4_instruction::reswizzle(int dst_writemask, int swizzle)
{
int new_writemask = 0;
int new_swizzle[4] = { 0 };
/* Dot product instructions write a single result into all channels. */
if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
for (int i = 0; i < 3; i++) {
if (src[i].file == BAD_FILE || src[i].file == IMM)
continue;
for (int c = 0; c < 4; c++) {
new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
}
src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
new_swizzle[2], new_swizzle[3]);
}
}
for (int c = 0; c < 4; c++) {
int bit = 1 << BRW_GET_SWZ(swizzle, c);
/* Skip components of the swizzle not used by the dst. */
if (!(dst_writemask & (1 << c)))
continue;
/* If we were populating this component, then populate the
* corresponding channel of the new dst.
*/
if (dst.writemask & bit)
new_writemask |= (1 << c);
}
dst.writemask = new_writemask;
}
/*
* Tries to reduce extra MOV instructions by taking temporary GRFs that get
* just written and then MOVed into another reg and making the original write
* of the GRF write directly to the final destination instead.
*/
bool
vec4_visitor::opt_register_coalesce()
{
bool progress = false;
int next_ip = 0;
calculate_live_intervals();
foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
int ip = next_ip;
next_ip++;
if (inst->opcode != BRW_OPCODE_MOV ||
(inst->dst.file != GRF && inst->dst.file != MRF) ||
inst->predicate ||
inst->src[0].file != GRF ||
inst->dst.type != inst->src[0].type ||
inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
continue;
bool to_mrf = (inst->dst.file == MRF);
/* Can't coalesce this GRF if someone else was going to
* read it later.
*/
if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
continue;
/* We need to check interference with the final destination between this
* instruction and the earliest instruction involved in writing the GRF
* we're eliminating. To do that, keep track of which of our source
* channels we've seen initialized.
*/
bool chans_needed[4] = {false, false, false, false};
int chans_remaining = 0;
int swizzle_mask = 0;
for (int i = 0; i < 4; i++) {
int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
if (!(inst->dst.writemask & (1 << i)))
continue;
swizzle_mask |= (1 << chan);
if (!chans_needed[chan]) {
chans_needed[chan] = true;
chans_remaining++;
}
}
/* Now walk up the instruction stream trying to see if we can rewrite
* everything writing to the temporary to write into the destination
* instead.
*/
vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
inst, block) {
_scan_inst = scan_inst;
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
/* Found something writing to the reg we want to coalesce away. */
if (to_mrf) {
/* SEND instructions can't have MRF as a destination. */
if (scan_inst->mlen)
break;
if (brw->gen == 6) {
/* gen6 math instructions must have the destination be
* GRF, so no compute-to-MRF for them.
*/
if (scan_inst->is_math()) {
break;
}
}
}
/* If we can't handle the swizzle, bail. */
if (!scan_inst->can_reswizzle(inst->dst.writemask,
inst->src[0].swizzle,
swizzle_mask)) {
break;
}
/* Mark which channels we found unconditional writes for. */
if (!scan_inst->predicate) {
for (int i = 0; i < 4; i++) {
if (scan_inst->dst.writemask & (1 << i) &&
chans_needed[i]) {
chans_needed[i] = false;
chans_remaining--;
}
}
}
if (chans_remaining == 0)
break;
}
/* You can't read from an MRF, so if someone else reads our MRF's
* source GRF that we wanted to rewrite, that stops us. If it's a
* GRF we're trying to coalesce to, we don't actually handle
* rewriting sources so bail in that case as well.
*/
bool interfered = false;
for (int i = 0; i < 3; i++) {
if (scan_inst->src[i].file == GRF &&
scan_inst->src[i].reg == inst->src[0].reg &&
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
interfered = true;
}
}
if (interfered)
break;
/* If somebody else writes our destination here, we can't coalesce
* before that.
*/
if (scan_inst->dst.file == inst->dst.file &&
scan_inst->dst.reg == inst->dst.reg) {
break;
}
/* Check for reads of the register we're trying to coalesce into. We
* can't go rewriting instructions above that to put some other value
* in the register instead.
*/
if (to_mrf && scan_inst->mlen > 0) {
if (inst->dst.reg >= scan_inst->base_mrf &&
inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
break;
}
} else {
for (int i = 0; i < 3; i++) {
if (scan_inst->src[i].file == inst->dst.file &&
scan_inst->src[i].reg == inst->dst.reg &&
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
interfered = true;
}
}
if (interfered)
break;
}
}
if (chans_remaining == 0) {
/* If we've made it here, we have an MOV we want to coalesce out, and
* a scan_inst pointing to the earliest instruction involved in
* computing the value. Now go rewrite the instruction stream
* between the two.
*/
vec4_instruction *scan_inst = _scan_inst;
while (scan_inst != inst) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
scan_inst->reswizzle(inst->dst.writemask,
inst->src[0].swizzle);
scan_inst->dst.file = inst->dst.file;
scan_inst->dst.reg = inst->dst.reg;
scan_inst->dst.reg_offset = inst->dst.reg_offset;
scan_inst->saturate |= inst->saturate;
}
scan_inst = (vec4_instruction *)scan_inst->next;
}
inst->remove(block);
progress = true;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
/**
* Splits virtual GRFs requesting more than one contiguous physical register.
*
* We initially create large virtual GRFs for temporary structures, arrays,
* and matrices, so that the dereference visitor functions can add reg_offsets
* to work their way down to the actual member being accessed. But when it
* comes to optimization, we'd like to treat each register as individual
* storage if possible.
*
* So far, the only thing that might prevent splitting is a send message from
* a GRF on IVB.
*/
void
vec4_visitor::split_virtual_grfs()
{
int num_vars = this->virtual_grf_count;
int new_virtual_grf[num_vars];
bool split_grf[num_vars];
memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
/* Try to split anything > 0 sized. */
for (int i = 0; i < num_vars; i++) {
split_grf[i] = this->virtual_grf_sizes[i] != 1;
}
/* Check that the instructions are compatible with the registers we're trying
* to split.
*/
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
/* If there's a SEND message loading from a GRF on gen7+, it needs to be
* contiguous.
*/
if (inst->is_send_from_grf()) {
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
split_grf[inst->src[i].reg] = false;
}
}
}
}
/* Allocate new space for split regs. Note that the virtual
* numbers will be contiguous.
*/
for (int i = 0; i < num_vars; i++) {
if (!split_grf[i])
continue;
new_virtual_grf[i] = virtual_grf_alloc(1);
for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
int reg = virtual_grf_alloc(1);
assert(reg == new_virtual_grf[i] + j - 1);
(void) reg;
}
this->virtual_grf_sizes[i] = 1;
}
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
inst->dst.reg_offset != 0) {
inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
inst->dst.reg_offset - 1);
inst->dst.reg_offset = 0;
}
for (int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
inst->src[i].reg_offset != 0) {
inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
inst->src[i].reg_offset - 1);
inst->src[i].reg_offset = 0;
}
}
}
invalidate_live_intervals();
}
void
vec4_visitor::dump_instruction(backend_instruction *be_inst)
{
dump_instruction(be_inst, stderr);
}
void
vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
{
vec4_instruction *inst = (vec4_instruction *)be_inst;
if (inst->predicate) {
fprintf(file, "(%cf0) ",
inst->predicate_inverse ? '-' : '+');
}
fprintf(file, "%s", brw_instruction_name(inst->opcode));
if (inst->conditional_mod) {
fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
}
fprintf(file, " ");
switch (inst->dst.file) {
case GRF:
fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
break;
case MRF:
fprintf(file, "m%d", inst->dst.reg);
break;
case HW_REG:
if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
switch (inst->dst.fixed_hw_reg.nr) {
case BRW_ARF_NULL:
fprintf(file, "null");
break;
case BRW_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
break;
case BRW_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
break;
case BRW_ARF_FLAG:
fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
inst->dst.fixed_hw_reg.subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
inst->dst.fixed_hw_reg.subnr);
break;
}
} else {
fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
}
if (inst->dst.fixed_hw_reg.subnr)
fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
default:
fprintf(file, "???");
break;
}
if (inst->dst.writemask != WRITEMASK_XYZW) {
fprintf(file, ".");
if (inst->dst.writemask & 1)
fprintf(file, "x");
if (inst->dst.writemask & 2)
fprintf(file, "y");
if (inst->dst.writemask & 4)
fprintf(file, "z");
if (inst->dst.writemask & 8)
fprintf(file, "w");
}
fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
if (inst->src[0].file != BAD_FILE)
fprintf(file, ", ");
for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
if (inst->src[i].negate)
fprintf(file, "-");
if (inst->src[i].abs)
fprintf(file, "|");
switch (inst->src[i].file) {
case GRF:
fprintf(file, "vgrf%d", inst->src[i].reg);
break;
case ATTR:
fprintf(file, "attr%d", inst->src[i].reg);
break;
case UNIFORM:
fprintf(file, "u%d", inst->src[i].reg);
break;
case IMM:
switch (inst->src[i].type) {
case BRW_REGISTER_TYPE_F:
fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
break;
case BRW_REGISTER_TYPE_D:
fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
break;
case BRW_REGISTER_TYPE_UD:
fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
break;
default:
fprintf(file, "???");
break;
}
break;
case HW_REG:
if (inst->src[i].fixed_hw_reg.negate)
fprintf(file, "-");
if (inst->src[i].fixed_hw_reg.abs)
fprintf(file, "|");
if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
switch (inst->src[i].fixed_hw_reg.nr) {
case BRW_ARF_NULL:
fprintf(file, "null");
break;
case BRW_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
break;
case BRW_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
break;
case BRW_ARF_FLAG:
fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
inst->src[i].fixed_hw_reg.subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
inst->src[i].fixed_hw_reg.subnr);
break;
}
} else {
fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
}
if (inst->src[i].fixed_hw_reg.subnr)
fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
if (inst->src[i].fixed_hw_reg.abs)
fprintf(file, "|");
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
default:
fprintf(file, "???");
break;
}
/* Don't print .0; and only VGRFs have reg_offsets and sizes */
if (inst->src[i].reg_offset != 0 &&
inst->src[i].file == GRF &&
virtual_grf_sizes[inst->src[i].reg] != 1)
fprintf(file, ".%d", inst->src[i].reg_offset);
if (inst->src[i].file != IMM) {
static const char *chans[4] = {"x", "y", "z", "w"};
fprintf(file, ".");
for (int c = 0; c < 4; c++) {
fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
}
}
if (inst->src[i].abs)
fprintf(file, "|");
if (inst->src[i].file != IMM) {
fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
}
if (i < 2 && inst->src[i + 1].file != BAD_FILE)
fprintf(file, ", ");
}
fprintf(file, "\n");
}
static inline struct brw_reg
attribute_to_hw_reg(int attr, bool interleaved)
{
if (interleaved)
return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
else
return brw_vec8_grf(attr, 0);
}
/**
* Replace each register of type ATTR in this->instructions with a reference
* to a fixed HW register.
*
* If interleaved is true, then each attribute takes up half a register, with
* register N containing attribute 2*N in its first half and attribute 2*N+1
* in its second half (this corresponds to the payload setup used by geometry
* shaders in "single" or "dual instanced" dispatch mode). If interleaved is
* false, then each attribute takes up a whole register, with register N
* containing attribute N (this corresponds to the payload setup used by
* vertex shaders, and by geometry shaders in "dual object" dispatch mode).
*/
void
vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
bool interleaved)
{
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
/* We have to support ATTR as a destination for GL_FIXED fixup. */
if (inst->dst.file == ATTR) {
int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
/* All attributes used in the shader need to have been assigned a
* hardware register by the caller
*/
assert(grf != 0);
struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
reg.type = inst->dst.type;
reg.dw1.bits.writemask = inst->dst.writemask;
inst->dst.file = HW_REG;
inst->dst.fixed_hw_reg = reg;
}
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != ATTR)
continue;
int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
/* All attributes used in the shader need to have been assigned a
* hardware register by the caller
*/
assert(grf != 0);
struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
reg.dw1.bits.swizzle = inst->src[i].swizzle;
reg.type = inst->src[i].type;
if (inst->src[i].abs)
reg = brw_abs(reg);
if (inst->src[i].negate)
reg = negate(reg);
inst->src[i].file = HW_REG;
inst->src[i].fixed_hw_reg = reg;
}
}
}
int
vec4_vs_visitor::setup_attributes(int payload_reg)
{
int nr_attributes;
int attribute_map[VERT_ATTRIB_MAX + 1];
memset(attribute_map, 0, sizeof(attribute_map));
nr_attributes = 0;
for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
attribute_map[i] = payload_reg + nr_attributes;
nr_attributes++;
}
}
/* VertexID is stored by the VF as the last vertex element, but we
* don't represent it with a flag in inputs_read, so we call it
* VERT_ATTRIB_MAX.
*/
if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
nr_attributes++;
}
lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
/* The BSpec says we always have to read at least one thing from
* the VF, and it appears that the hardware wedges otherwise.
*/
if (nr_attributes == 0)
nr_attributes = 1;
prog_data->urb_read_length = (nr_attributes + 1) / 2;
unsigned vue_entries =
MAX2(nr_attributes, prog_data->vue_map.num_slots);
if (brw->gen == 6)
prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
else
prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
return payload_reg + nr_attributes;
}
int
vec4_visitor::setup_uniforms(int reg)
{
prog_data->base.dispatch_grf_start_reg = reg;
/* The pre-gen6 VS requires that some push constants get loaded no
* matter what, or the GPU would hang.
*/
if (brw->gen < 6 && this->uniforms == 0) {
assert(this->uniforms < this->uniform_array_size);
this->uniform_vector_size[this->uniforms] = 1;
stage_prog_data->param =
reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
for (unsigned int i = 0; i < 4; i++) {
unsigned int slot = this->uniforms * 4 + i;
static gl_constant_value zero = { 0.0 };
stage_prog_data->param[slot] = &zero;
}
this->uniforms++;
reg++;
} else {
reg += ALIGN(uniforms, 2) / 2;
}
stage_prog_data->nr_params = this->uniforms * 4;
prog_data->base.curb_read_length =
reg - prog_data->base.dispatch_grf_start_reg;
return reg;
}
void
vec4_vs_visitor::setup_payload(void)
{
int reg = 0;
/* The payload always contains important data in g0, which contains
* the URB handles that are passed on to the URB write at the end
* of the thread. So, we always start push constants at g1.
*/
reg++;
reg = setup_uniforms(reg);
reg = setup_attributes(reg);
this->first_non_payload_grf = reg;
}
void
vec4_visitor::assign_binding_table_offsets()
{
assign_common_binding_table_offsets(0);
}
src_reg
vec4_visitor::get_timestamp()
{
assert(brw->gen >= 7);
src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
BRW_ARF_TIMESTAMP,
0,
BRW_REGISTER_TYPE_UD,
BRW_VERTICAL_STRIDE_0,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_4,
BRW_SWIZZLE_XYZW,
WRITEMASK_XYZW));
dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
vec4_instruction *mov = emit(MOV(dst, ts));
/* We want to read the 3 fields we care about (mostly field 0, but also 2)
* even if it's not enabled in the dispatch.
*/
mov->force_writemask_all = true;
return src_reg(dst);
}
void
vec4_visitor::emit_shader_time_begin()
{
current_annotation = "shader time start";
shader_start_time = get_timestamp();
}
void
vec4_visitor::emit_shader_time_end()
{
current_annotation = "shader time end";
src_reg shader_end_time = get_timestamp();
/* Check that there weren't any timestamp reset events (assuming these
* were the only two timestamp reads that happened).
*/
src_reg reset_end = shader_end_time;
reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
test->conditional_mod = BRW_CONDITIONAL_Z;
emit(IF(BRW_PREDICATE_NORMAL));
/* Take the current timestamp and get the delta. */
shader_start_time.negate = true;
dst_reg diff = dst_reg(this, glsl_type::uint_type);
emit(ADD(diff, shader_start_time, shader_end_time));
/* If there were no instructions between the two timestamp gets, the diff
* is 2 cycles. Remove that overhead, so I can forget about that when
* trying to determine the time taken for single instructions.
*/
emit(ADD(diff, src_reg(diff), src_reg(-2u)));
emit_shader_time_write(st_base, src_reg(diff));
emit_shader_time_write(st_written, src_reg(1u));
emit(BRW_OPCODE_ELSE);
emit_shader_time_write(st_reset, src_reg(1u));
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
src_reg value)
{
int shader_time_index =
brw_get_shader_time_index(brw, shader_prog, prog, type);
dst_reg dst =
dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
dst_reg offset = dst;
dst_reg time = dst;
time.reg_offset++;
offset.type = BRW_REGISTER_TYPE_UD;
emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
time.type = BRW_REGISTER_TYPE_UD;
emit(MOV(time, src_reg(value)));
emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
}
bool
vec4_visitor::run()
{
sanity_param_count = prog->Parameters->NumParameters;
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_begin();
assign_binding_table_offsets();
emit_prolog();
/* Generate VS IR for main(). (the visitor only descends into
* functions called "main").
*/
if (shader) {
visit_instructions(shader->base.ir);
} else {
emit_program_code();
}
base_ir = NULL;
if (key->userclip_active && !prog->UsesClipDistanceOut)
setup_uniform_clipplane_values();
emit_thread_end();
calculate_cfg();
/* Before any optimization, push array accesses out to scratch
* space where we need them to be. This pass may allocate new
* virtual GRFs, so we want to do it early. It also makes sure
* that we have reladdr computations available for CSE, since we'll
* often do repeated subexpressions for those.
*/
if (shader) {
move_grf_array_access_to_scratch();
move_uniform_array_access_to_pull_constants();
} else {
/* The ARB_vertex_program frontend emits pull constant loads directly
* rather than using reladdr, so we don't need to walk through all the
* instructions looking for things to move. There isn't anything.
*
* We do still need to split things to vec4 size.
*/
split_uniform_registers();
}
pack_uniform_registers();
move_push_constants_to_pull_constants();
split_virtual_grfs();
const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
#define OPT(pass, args...) do { \
pass_num++; \
bool this_progress = pass(args); \
\
if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
char filename[64]; \
snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
\
backend_visitor::dump_instructions(filename); \
} \
\
progress = progress || this_progress; \
} while (false)
if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
char filename[64];
snprintf(filename, 64, "%s-%04d-00-start",
stage_name, shader_prog ? shader_prog->Name : 0);
backend_visitor::dump_instructions(filename);
}
bool progress;
int iteration = 0;
do {
progress = false;
iteration++;
int pass_num = 0;
OPT(opt_reduce_swizzle);
OPT(dead_code_eliminate);
OPT(dead_control_flow_eliminate, this);
OPT(opt_copy_propagation);
OPT(opt_cse);
OPT(opt_algebraic);
OPT(opt_register_coalesce);
} while (progress);
if (failed)
return false;
setup_payload();
if (false) {
/* Debug of register spilling: Go spill everything. */
const int grf_count = virtual_grf_count;
float spill_costs[virtual_grf_count];
bool no_spill[virtual_grf_count];
evaluate_spill_costs(spill_costs, no_spill);
for (int i = 0; i < grf_count; i++) {
if (no_spill[i])
continue;
spill_reg(i);
}
}
while (!reg_allocate()) {
if (failed)
return false;
}
opt_schedule_instructions();
opt_set_dependency_control();
/* If any state parameters were appended, then ParameterValues could have
* been realloced, in which case the driver uniform storage set up by
* _mesa_associate_uniform_storage() would point to freed memory. Make
* sure that didn't happen.
*/
assert(sanity_param_count == prog->Parameters->NumParameters);
return !failed;
}
} /* namespace brw */
extern "C" {
/**
* Compile a vertex shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_vs_emit(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_vs_compile *c,
struct brw_vs_prog_data *prog_data,
void *mem_ctx,
unsigned *final_assembly_size)
{
bool start_busy = false;
double start_time = 0;
if (unlikely(brw->perf_debug)) {
start_busy = (brw->batch.last_bo &&
drm_intel_bo_busy(brw->batch.last_bo));
start_time = get_time();
}
struct brw_shader *shader = NULL;
if (prog)
shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
if (unlikely(INTEL_DEBUG & DEBUG_VS))
brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
if (!v.run()) {
if (prog) {
prog->LinkStatus = false;
ralloc_strcat(&prog->InfoLog, v.fail_msg);
}
_mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
v.fail_msg);
return NULL;
}
const unsigned *assembly = NULL;
vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
mem_ctx, INTEL_DEBUG & DEBUG_VS);
assembly = g.generate_assembly(v.cfg, final_assembly_size);
if (unlikely(brw->perf_debug) && shader) {
if (shader->compiled_once) {
brw_vs_debug_recompile(brw, prog, &c->key);
}
if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
perf_debug("VS compile took %.03f ms and stalled the GPU\n",
(get_time() - start_time) * 1000);
}
shader->compiled_once = true;
}
return assembly;
}
void
brw_vec4_setup_prog_key_for_precompile(struct gl_context *ctx,
struct brw_vec4_prog_key *key,
GLuint id, struct gl_program *prog)
{
key->program_string_id = id;
key->clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
for (unsigned i = 0; i < sampler_count; i++) {
if (prog->ShadowSamplers & (1 << i)) {
/* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
key->tex.swizzles[i] =
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
} else {
/* Color sampler: assume no swizzling. */
key->tex.swizzles[i] = SWIZZLE_XYZW;
}
}
}
} /* extern "C" */