blob: 7f25a21f0d14a941b01cde6c139938b2874e80d3 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs.cpp
*
* This file drives the GLSL IR -> LIR translation, contains the
* optimizations on the LIR, and drives the generation of native code
* from the LIR.
*/
#include <sys/types.h>
#include "util/hash_table.h"
#include "main/macros.h"
#include "main/shaderobj.h"
#include "main/fbobject.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "util/register_allocate.h"
#include "program/hash_table.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "brw_dead_control_flow.h"
#include "main/uniforms.h"
#include "brw_fs_live_variables.h"
#include "glsl/glsl_types.h"
#include "program/sampler.h"
using namespace brw;
void
fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg *src, unsigned sources)
{
memset(this, 0, sizeof(*this));
this->src = new fs_reg[MAX2(sources, 3)];
for (unsigned i = 0; i < sources; i++)
this->src[i] = src[i];
this->opcode = opcode;
this->dst = dst;
this->sources = sources;
this->exec_size = exec_size;
assert(dst.file != IMM && dst.file != UNIFORM);
assert(this->exec_size != 0);
this->conditional_mod = BRW_CONDITIONAL_NONE;
/* This will be the case for almost all instructions. */
switch (dst.file) {
case GRF:
case HW_REG:
case MRF:
case ATTR:
this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
REG_SIZE);
break;
case BAD_FILE:
this->regs_written = 0;
break;
case IMM:
case UNIFORM:
unreachable("Invalid destination register file");
default:
unreachable("Invalid register file");
}
this->writes_accumulator = false;
}
fs_inst::fs_inst()
{
init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
{
init(opcode, exec_size, reg_undef, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
{
init(opcode, exec_size, dst, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0)
{
const fs_reg src[1] = { src0 };
init(opcode, exec_size, dst, src, 1);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1)
{
const fs_reg src[2] = { src0, src1 };
init(opcode, exec_size, dst, src, 2);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
{
const fs_reg src[3] = { src0, src1, src2 };
init(opcode, exec_size, dst, src, 3);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
const fs_reg src[], unsigned sources)
{
init(opcode, exec_width, dst, src, sources);
}
fs_inst::fs_inst(const fs_inst &that)
{
memcpy(this, &that, sizeof(that));
this->src = new fs_reg[MAX2(that.sources, 3)];
for (unsigned i = 0; i < that.sources; i++)
this->src[i] = that.src[i];
}
fs_inst::~fs_inst()
{
delete[] this->src;
}
void
fs_inst::resize_sources(uint8_t num_sources)
{
if (this->sources != num_sources) {
fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
src[i] = this->src[i];
delete[] this->src;
this->src = src;
this->sources = num_sources;
}
}
void
fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
const fs_reg &dst,
const fs_reg &surf_index,
const fs_reg &varying_offset,
uint32_t const_offset)
{
/* We have our constant surface use a pitch of 4 bytes, so our index can
* be any component of a vector, and then we load 4 contiguous
* components starting from that.
*
* We break down the const_offset to a portion added to the variable
* offset and a portion done using reg_offset, which means that if you
* have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
* a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
* CSE can later notice that those loads are all the same and eliminate
* the redundant ones.
*/
fs_reg vec4_offset = vgrf(glsl_type::int_type);
bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
int scale = 1;
if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
/* Pre-gen5, we can either use a SIMD8 message that requires (header,
* u, v, r) as parameters, or we can just use the SIMD16 message
* consisting of (header, u). We choose the second, at the cost of a
* longer return length.
*/
scale = 2;
}
enum opcode op;
if (devinfo->gen >= 7)
op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
else
op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written), dst.type);
fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
inst->regs_written = regs_written;
if (devinfo->gen < 7) {
inst->base_mrf = 13;
inst->header_size = 1;
if (devinfo->gen == 4)
inst->mlen = 3;
else
inst->mlen = 1 + bld.dispatch_width() / 8;
}
bld.MOV(dst, offset(vec4_result, bld, (const_offset & 3) * scale));
}
/**
* A helper for MOV generation for fixing up broken hardware SEND dependency
* handling.
*/
void
fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
{
/* The caller always wants uncompressed to emit the minimal extra
* dependencies, and to avoid having to deal with aligning its regs to 2.
*/
const fs_builder ubld = bld.annotate("send dependency resolve")
.half(0);
ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
}
bool
fs_inst::equals(fs_inst *inst) const
{
return (opcode == inst->opcode &&
dst.equals(inst->dst) &&
src[0].equals(inst->src[0]) &&
src[1].equals(inst->src[1]) &&
src[2].equals(inst->src[2]) &&
saturate == inst->saturate &&
predicate == inst->predicate &&
conditional_mod == inst->conditional_mod &&
mlen == inst->mlen &&
base_mrf == inst->base_mrf &&
target == inst->target &&
eot == inst->eot &&
header_size == inst->header_size &&
shadow_compare == inst->shadow_compare &&
exec_size == inst->exec_size &&
offset == inst->offset);
}
bool
fs_inst::overwrites_reg(const fs_reg &reg) const
{
return reg.in_range(dst, regs_written);
}
bool
fs_inst::is_send_from_grf() const
{
switch (opcode) {
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
case SHADER_OPCODE_SHADER_TIME_ADD:
case FS_OPCODE_INTERPOLATE_AT_CENTROID:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_SURFACE_READ:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
return true;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return src[1].file == GRF;
case FS_OPCODE_FB_WRITE:
return src[0].file == GRF;
default:
if (is_tex())
return src[0].file == GRF;
return false;
}
}
bool
fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
{
if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
return false;
fs_reg reg = this->src[0];
if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
return false;
if (grf_alloc.sizes[reg.reg] != this->regs_written)
return false;
for (int i = 0; i < this->sources; i++) {
reg.type = this->src[i].type;
if (!this->src[i].equals(reg))
return false;
if (i < this->header_size) {
reg.reg_offset += 1;
} else {
reg.reg_offset += this->exec_size / 8;
}
}
return true;
}
bool
fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
{
if (devinfo->gen == 6 && is_math())
return false;
if (is_send_from_grf())
return false;
if (!backend_instruction::can_do_source_mods())
return false;
return true;
}
bool
fs_inst::has_side_effects() const
{
return this->eot || backend_instruction::has_side_effects();
}
void
fs_reg::init()
{
memset(this, 0, sizeof(*this));
stride = 1;
}
/** Generic unset register constructor. */
fs_reg::fs_reg()
{
init();
this->file = BAD_FILE;
}
/** Immediate value constructor. */
fs_reg::fs_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->stride = 0;
this->fixed_hw_reg.dw1.f = f;
}
/** Immediate value constructor. */
fs_reg::fs_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->stride = 0;
this->fixed_hw_reg.dw1.d = i;
}
/** Immediate value constructor. */
fs_reg::fs_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->stride = 0;
this->fixed_hw_reg.dw1.ud = u;
}
/** Vector float immediate value constructor. */
fs_reg::fs_reg(uint8_t vf[4])
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_VF;
memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
}
/** Vector float immediate value constructor. */
fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_VF;
this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
(vf1 << 8) |
(vf2 << 16) |
(vf3 << 24);
}
/** Fixed brw_reg. */
fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
{
init();
this->file = HW_REG;
this->fixed_hw_reg = fixed_hw_reg;
this->type = fixed_hw_reg.type;
}
bool
fs_reg::equals(const fs_reg &r) const
{
return (file == r.file &&
reg == r.reg &&
reg_offset == r.reg_offset &&
subreg_offset == r.subreg_offset &&
type == r.type &&
negate == r.negate &&
abs == r.abs &&
!reladdr && !r.reladdr &&
memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
stride == r.stride);
}
fs_reg &
fs_reg::set_smear(unsigned subreg)
{
assert(file != HW_REG && file != IMM);
subreg_offset = subreg * type_sz(type);
stride = 0;
return *this;
}
bool
fs_reg::is_contiguous() const
{
return stride == 1;
}
unsigned
fs_reg::component_size(unsigned width) const
{
const unsigned stride = (file != HW_REG ? this->stride :
fixed_hw_reg.hstride == 0 ? 0 :
1 << (fixed_hw_reg.hstride - 1));
return MAX2(width * stride, 1) * type_sz(type);
}
int
fs_visitor::type_size(const struct glsl_type *type)
{
unsigned int size, i;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return type->components();
case GLSL_TYPE_ARRAY:
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up no register space, since they're baked in at
* link time.
*/
return 0;
case GLSL_TYPE_ATOMIC_UINT:
return 0;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_DOUBLE:
unreachable("not reached");
}
return 0;
}
/**
* Create a MOV to read the timestamp register.
*
* The caller is responsible for emitting the MOV. The return value is
* the destination of the MOV, with extra parameters set.
*/
fs_reg
fs_visitor::get_timestamp(const fs_builder &bld)
{
assert(devinfo->gen >= 7);
fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
BRW_ARF_TIMESTAMP,
0),
BRW_REGISTER_TYPE_UD));
fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
/* We want to read the 3 fields we care about even if it's not enabled in
* the dispatch.
*/
bld.group(4, 0).exec_all().MOV(dst, ts);
/* The caller wants the low 32 bits of the timestamp. Since it's running
* at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
* which is plenty of time for our purposes. It is identical across the
* EUs, but since it's tracking GPU core speed it will increment at a
* varying rate as render P-states change.
*
* The caller could also check if render P-states have changed (or anything
* else that might disrupt timing) by setting smear to 2 and checking if
* that field is != 0.
*/
dst.set_smear(0);
return dst;
}
void
fs_visitor::emit_shader_time_begin()
{
shader_start_time = get_timestamp(bld.annotate("shader time start"));
}
void
fs_visitor::emit_shader_time_end()
{
/* Insert our code just before the final SEND with EOT. */
exec_node *end = this->instructions.get_tail();
assert(end && ((fs_inst *) end)->eot);
const fs_builder ibld = bld.annotate("shader time end")
.exec_all().at(NULL, end);
fs_reg shader_end_time = get_timestamp(ibld);
/* Check that there weren't any timestamp reset events (assuming these
* were the only two timestamp reads that happened).
*/
fs_reg reset = shader_end_time;
reset.set_smear(2);
set_condmod(BRW_CONDITIONAL_Z,
ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
ibld.IF(BRW_PREDICATE_NORMAL);
fs_reg start = shader_start_time;
start.negate = true;
fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
diff.set_smear(0);
const fs_builder cbld = ibld.group(1, 0);
cbld.group(1, 0).ADD(diff, start, shader_end_time);
/* If there were no instructions between the two timestamp gets, the diff
* is 2 cycles. Remove that overhead, so I can forget about that when
* trying to determine the time taken for single instructions.
*/
cbld.ADD(diff, diff, fs_reg(-2u));
SHADER_TIME_ADD(cbld, 0, diff);
SHADER_TIME_ADD(cbld, 1, fs_reg(1u));
ibld.emit(BRW_OPCODE_ELSE);
SHADER_TIME_ADD(cbld, 2, fs_reg(1u));
ibld.emit(BRW_OPCODE_ENDIF);
}
void
fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
int shader_time_subindex,
fs_reg value)
{
int index = shader_time_index * 3 + shader_time_subindex;
fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
fs_reg payload;
if (dispatch_width == 8)
payload = vgrf(glsl_type::uvec2_type);
else
payload = vgrf(glsl_type::uint_type);
bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
}
void
fs_visitor::vfail(const char *format, va_list va)
{
char *msg;
if (failed)
return;
failed = true;
msg = ralloc_vasprintf(mem_ctx, format, va);
msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
this->fail_msg = msg;
if (debug_enabled) {
fprintf(stderr, "%s", msg);
}
}
void
fs_visitor::fail(const char *format, ...)
{
va_list va;
va_start(va, format);
vfail(format, va);
va_end(va);
}
/**
* Mark this program as impossible to compile in SIMD16 mode.
*
* During the SIMD8 compile (which happens first), we can detect and flag
* things that are unsupported in SIMD16 mode, so the compiler can skip
* the SIMD16 compile altogether.
*
* During a SIMD16 compile (if one happens anyway), this just calls fail().
*/
void
fs_visitor::no16(const char *msg)
{
if (dispatch_width == 16) {
fail("%s", msg);
} else {
simd16_unsupported = true;
compiler->shader_perf_log(log_data,
"SIMD16 shader failed to compile: %s", msg);
}
}
/**
* Returns true if the instruction has a flag that means it won't
* update an entire destination register.
*
* For example, dead code elimination and live variable analysis want to know
* when a write to a variable screens off any preceding values that were in
* it.
*/
bool
fs_inst::is_partial_write() const
{
return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
(this->exec_size * type_sz(this->dst.type)) < 32 ||
!this->dst.is_contiguous());
}
int
fs_inst::regs_read(int arg) const
{
unsigned components = 1;
switch (opcode) {
case FS_OPCODE_FB_WRITE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_SURFACE_READ:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
if (arg == 0)
return mlen;
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
/* The payload is actually stored in src1 */
if (arg == 1)
return mlen;
break;
case FS_OPCODE_LINTERP:
if (arg == 0)
return exec_size / 4;
else
return 1;
case FS_OPCODE_PIXEL_X:
case FS_OPCODE_PIXEL_Y:
if (arg == 0)
components = 2;
break;
case SHADER_OPCODE_LOAD_PAYLOAD:
if (arg < this->header_size)
return 1;
break;
case CS_OPCODE_CS_TERMINATE:
return 1;
default:
if (is_tex() && arg == 0 && src[0].file == GRF)
return mlen;
break;
}
switch (src[arg].file) {
case BAD_FILE:
case UNIFORM:
case IMM:
return 1;
case GRF:
case HW_REG:
return DIV_ROUND_UP(components * src[arg].component_size(exec_size),
REG_SIZE);
case MRF:
unreachable("MRF registers are not allowed as sources");
default:
unreachable("Invalid register file");
}
}
bool
fs_inst::reads_flag() const
{
return predicate;
}
bool
fs_inst::writes_flag() const
{
return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
opcode != BRW_OPCODE_IF &&
opcode != BRW_OPCODE_WHILE)) ||
opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
}
/**
* Returns how many MRFs an FS opcode will write over.
*
* Note that this is not the 0 or 1 implied writes in an actual gen
* instruction -- the FS opcodes often generate MOVs in addition.
*/
int
fs_visitor::implied_mrf_writes(fs_inst *inst)
{
if (inst->mlen == 0)
return 0;
if (inst->base_mrf == -1)
return 0;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
return 1 * dispatch_width / 8;
case SHADER_OPCODE_POW:
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
return 2 * dispatch_width / 8;
case SHADER_OPCODE_TEX:
case FS_OPCODE_TXB:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXF_MCS:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_TG4_OFFSET:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_LOD:
return 1;
case FS_OPCODE_FB_WRITE:
return 2;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case SHADER_OPCODE_GEN4_SCRATCH_READ:
return 1;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
return inst->mlen;
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return inst->mlen;
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_SURFACE_READ:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
case FS_OPCODE_INTERPOLATE_AT_CENTROID:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return 0;
default:
unreachable("not reached");
}
}
fs_reg
fs_visitor::vgrf(const glsl_type *const type)
{
int reg_width = dispatch_width / 8;
return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
brw_type_for_base_type(type));
}
/** Fixed HW reg constructor. */
fs_reg::fs_reg(enum register_file file, int reg)
{
init();
this->file = file;
this->reg = reg;
this->type = BRW_REGISTER_TYPE_F;
this->stride = (file == UNIFORM ? 0 : 1);
}
/** Fixed HW reg constructor. */
fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
{
init();
this->file = file;
this->reg = reg;
this->type = type;
this->stride = (file == UNIFORM ? 0 : 1);
}
/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
* This brings in those uniform definitions
*/
void
fs_visitor::import_uniforms(fs_visitor *v)
{
this->push_constant_loc = v->push_constant_loc;
this->pull_constant_loc = v->pull_constant_loc;
this->uniforms = v->uniforms;
this->param_size = v->param_size;
}
fs_reg *
fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
bool origin_upper_left)
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
fs_reg wpos = *reg;
bool flip = !origin_upper_left ^ key->render_to_fbo;
/* gl_FragCoord.x */
if (pixel_center_integer) {
bld.MOV(wpos, this->pixel_x);
} else {
bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
}
wpos = offset(wpos, bld, 1);
/* gl_FragCoord.y */
if (!flip && pixel_center_integer) {
bld.MOV(wpos, this->pixel_y);
} else {
fs_reg pixel_y = this->pixel_y;
float offset = (pixel_center_integer ? 0.0 : 0.5);
if (flip) {
pixel_y.negate = true;
offset += key->drawable_height - 1.0;
}
bld.ADD(wpos, pixel_y, fs_reg(offset));
}
wpos = offset(wpos, bld, 1);
/* gl_FragCoord.z */
if (devinfo->gen >= 6) {
bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
} else {
bld.emit(FS_OPCODE_LINTERP, wpos,
this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
interp_reg(VARYING_SLOT_POS, 2));
}
wpos = offset(wpos, bld, 1);
/* gl_FragCoord.w: Already set up in emit_interpolation */
bld.MOV(wpos, this->wpos_w);
return reg;
}
fs_inst *
fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
glsl_interp_qualifier interpolation_mode,
bool is_centroid, bool is_sample)
{
brw_wm_barycentric_interp_mode barycoord_mode;
if (devinfo->gen >= 6) {
if (is_centroid) {
if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
else
barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
} else if (is_sample) {
if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
else
barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
} else {
if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
else
barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
}
} else {
/* On Ironlake and below, there is only one interpolation mode.
* Centroid interpolation doesn't mean anything on this hardware --
* there is no multisampling.
*/
barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
}
return bld.emit(FS_OPCODE_LINTERP, attr,
this->delta_xy[barycoord_mode], interp);
}
void
fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
const glsl_type *type,
glsl_interp_qualifier interpolation_mode,
int location, bool mod_centroid,
bool mod_sample)
{
attr.type = brw_type_for_base_type(type->get_scalar_type());
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
unsigned int array_elements;
if (type->is_array()) {
array_elements = type->length;
if (array_elements == 0) {
fail("dereferenced array '%s' has length 0\n", name);
}
type = type->fields.array;
} else {
array_elements = 1;
}
if (interpolation_mode == INTERP_QUALIFIER_NONE) {
bool is_gl_Color =
location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
if (key->flat_shade && is_gl_Color) {
interpolation_mode = INTERP_QUALIFIER_FLAT;
} else {
interpolation_mode = INTERP_QUALIFIER_SMOOTH;
}
}
for (unsigned int i = 0; i < array_elements; i++) {
for (unsigned int j = 0; j < type->matrix_columns; j++) {
if (prog_data->urb_setup[location] == -1) {
/* If there's no incoming setup data for this slot, don't
* emit interpolation for it.
*/
attr = offset(attr, bld, type->vector_elements);
location++;
continue;
}
if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
/* Constant interpolation (flat shading) case. The SF has
* handed us defined values in only the constant offset
* field of the setup reg.
*/
for (unsigned int k = 0; k < type->vector_elements; k++) {
struct brw_reg interp = interp_reg(location, k);
interp = suboffset(interp, 3);
interp.type = attr.type;
bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
attr = offset(attr, bld, 1);
}
} else {
/* Smooth/noperspective interpolation case. */
for (unsigned int k = 0; k < type->vector_elements; k++) {
struct brw_reg interp = interp_reg(location, k);
if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
/* Get the pixel/sample mask into f0 so that we know
* which pixels are lit. Then, for each channel that is
* unlit, replace the centroid data with non-centroid
* data.
*/
bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
fs_inst *inst;
inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
false, false);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->predicate_inverse = true;
if (devinfo->has_pln)
inst->no_dd_clear = true;
inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
mod_centroid && !key->persample_shading,
mod_sample || key->persample_shading);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->predicate_inverse = false;
if (devinfo->has_pln)
inst->no_dd_check = true;
} else {
emit_linterp(attr, fs_reg(interp), interpolation_mode,
mod_centroid && !key->persample_shading,
mod_sample || key->persample_shading);
}
if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
bld.MUL(attr, attr, this->pixel_w);
}
attr = offset(attr, bld, 1);
}
}
location++;
}
}
}
fs_reg *
fs_visitor::emit_frontfacing_interpolation()
{
fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
if (devinfo->gen >= 6) {
/* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
* a boolean result from this (~0/true or 0/false).
*
* We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
* this task in only one instruction:
* - a negation source modifier will flip the bit; and
* - a W -> D type conversion will sign extend the bit into the high
* word of the destination.
*
* An ASR 15 fills the low word of the destination.
*/
fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
g0.negate = true;
bld.ASR(*reg, g0, fs_reg(15));
} else {
/* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
* a boolean result from this (1/true or 0/false).
*
* Like in the above case, since the bit is the MSB of g1.6:UD we can use
* the negation source modifier to flip it. Unfortunately the SHR
* instruction only operates on UD (or D with an abs source modifier)
* sources without negation.
*
* Instead, use ASR (which will give ~0/true or 0/false).
*/
fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
g1_6.negate = true;
bld.ASR(*reg, g1_6, fs_reg(31));
}
return reg;
}
void
fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
assert(dst.type == BRW_REGISTER_TYPE_F);
if (key->compute_pos_offset) {
/* Convert int_sample_pos to floating point */
bld.MOV(dst, int_sample_pos);
/* Scale to the range [0, 1] */
bld.MUL(dst, dst, fs_reg(1 / 16.0f));
}
else {
/* From ARB_sample_shading specification:
* "When rendering to a non-multisample buffer, or if multisample
* rasterization is disabled, gl_SamplePosition will always be
* (0.5, 0.5).
*/
bld.MOV(dst, fs_reg(0.5f));
}
}
fs_reg *
fs_visitor::emit_samplepos_setup()
{
assert(devinfo->gen >= 6);
const fs_builder abld = bld.annotate("compute sample position");
fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
fs_reg pos = *reg;
fs_reg int_sample_x = vgrf(glsl_type::int_type);
fs_reg int_sample_y = vgrf(glsl_type::int_type);
/* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
* mode will be enabled.
*
* From the Ivy Bridge PRM, volume 2 part 1, page 344:
* R31.1:0 Position Offset X/Y for Slot[3:0]
* R31.3:2 Position Offset X/Y for Slot[7:4]
* .....
*
* The X, Y sample positions come in as bytes in thread payload. So, read
* the positions using vstride=16, width=8, hstride=2.
*/
struct brw_reg sample_pos_reg =
stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
BRW_REGISTER_TYPE_B), 16, 8, 2);
if (dispatch_width == 8) {
abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
} else {
abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
abld.half(1).MOV(half(int_sample_x, 1),
fs_reg(suboffset(sample_pos_reg, 16)));
}
/* Compute gl_SamplePosition.x */
compute_sample_position(pos, int_sample_x);
pos = offset(pos, abld, 1);
if (dispatch_width == 8) {
abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
} else {
abld.half(0).MOV(half(int_sample_y, 0),
fs_reg(suboffset(sample_pos_reg, 1)));
abld.half(1).MOV(half(int_sample_y, 1),
fs_reg(suboffset(sample_pos_reg, 17)));
}
/* Compute gl_SamplePosition.y */
compute_sample_position(pos, int_sample_y);
return reg;
}
fs_reg *
fs_visitor::emit_sampleid_setup()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
assert(devinfo->gen >= 6);
const fs_builder abld = bld.annotate("compute sample id");
fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
if (key->compute_sample_id) {
fs_reg t1 = vgrf(glsl_type::int_type);
fs_reg t2 = vgrf(glsl_type::int_type);
t2.type = BRW_REGISTER_TYPE_UW;
/* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
* 8x multisampling, subspan 0 will represent sample N (where N
* is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
* 7. We can find the value of N by looking at R0.0 bits 7:6
* ("Starting Sample Pair Index (SSPI)") and multiplying by two
* (since samples are always delivered in pairs). That is, we
* compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
* we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
* case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
* 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
* populating a temporary variable with the sequence (0, 1, 2, 3),
* and then reading from it using vstride=1, width=4, hstride=0.
* These computations hold good for 4x multisampling as well.
*
* For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
* the first four slots are sample 0 of subspan 0; the next four
* are sample 1 of subspan 0; the third group is sample 0 of
* subspan 1, and finally sample 1 of subspan 1.
*/
abld.exec_all()
.AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
fs_reg(0xc0));
abld.exec_all().SHR(t1, t1, fs_reg(5));
/* This works for both SIMD8 and SIMD16 */
abld.exec_all()
.MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
/* This special instruction takes care of setting vstride=1,
* width=4, hstride=0 of t2 during an ADD instruction.
*/
abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
} else {
/* As per GL_ARB_sample_shading specification:
* "When rendering to a non-multisample buffer, or if multisample
* rasterization is disabled, gl_SampleID will always be zero."
*/
abld.MOV(*reg, fs_reg(0));
}
return reg;
}
void
fs_visitor::resolve_source_modifiers(fs_reg *src)
{
if (!src->abs && !src->negate)
return;
fs_reg temp = bld.vgrf(src->type);
bld.MOV(temp, *src);
*src = temp;
}
void
fs_visitor::emit_discard_jump()
{
assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
/* For performance, after a discard, jump to the end of the
* shader if all relevant channels have been discarded.
*/
fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
discard_jump->flag_subreg = 1;
discard_jump->predicate = (dispatch_width == 8)
? BRW_PREDICATE_ALIGN1_ANY8H
: BRW_PREDICATE_ALIGN1_ANY16H;
discard_jump->predicate_inverse = true;
}
void
fs_visitor::assign_curb_setup()
{
if (dispatch_width == 8) {
prog_data->dispatch_grf_start_reg = payload.num_regs;
} else {
if (stage == MESA_SHADER_FRAGMENT) {
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
} else if (stage == MESA_SHADER_COMPUTE) {
brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
} else {
unreachable("Unsupported shader type!");
}
}
prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
/* Map the offsets in the UNIFORM file to fixed HW regs. */
foreach_block_and_inst(block, fs_inst, inst, cfg) {
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == UNIFORM) {
int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
int constant_nr;
if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
constant_nr = push_constant_loc[uniform_nr];
} else {
/* Section 5.11 of the OpenGL 4.1 spec says:
* "Out-of-bounds reads return undefined values, which include
* values from other variables of the active program or zero."
* Just return the first push constant.
*/
constant_nr = 0;
}
struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
constant_nr / 8,
constant_nr % 8);
assert(inst->src[i].stride == 0);
inst->src[i].file = HW_REG;
inst->src[i].fixed_hw_reg = byte_offset(
retype(brw_reg, inst->src[i].type),
inst->src[i].subreg_offset);
}
}
}
}
void
fs_visitor::calculate_urb_setup()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
memset(prog_data->urb_setup, -1,
sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
int urb_next = 0;
/* Figure out where each of the incoming setup attributes lands. */
if (devinfo->gen >= 6) {
if (_mesa_bitcount_64(prog->InputsRead &
BRW_FS_VARYING_INPUT_MASK) <= 16) {
/* The SF/SBE pipeline stage can do arbitrary rearrangement of the
* first 16 varying inputs, so we can put them wherever we want.
* Just put them in order.
*
* This is useful because it means that (a) inputs not used by the
* fragment shader won't take up valuable register space, and (b) we
* won't have to recompile the fragment shader if it gets paired with
* a different vertex (or geometry) shader.
*/
for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
BITFIELD64_BIT(i)) {
prog_data->urb_setup[i] = urb_next++;
}
}
} else {
/* We have enough input varyings that the SF/SBE pipeline stage can't
* arbitrarily rearrange them to suit our whim; we have to put them
* in an order that matches the output of the previous pipeline stage
* (geometry or vertex shader).
*/
struct brw_vue_map prev_stage_vue_map;
brw_compute_vue_map(devinfo, &prev_stage_vue_map,
key->input_slots_valid);
int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
assert(prev_stage_vue_map.num_slots <= first_slot + 32);
for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
slot++) {
int varying = prev_stage_vue_map.slot_to_varying[slot];
/* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
* unused.
*/
if (varying != BRW_VARYING_SLOT_COUNT &&
(prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
BITFIELD64_BIT(varying))) {
prog_data->urb_setup[varying] = slot - first_slot;
}
}
urb_next = prev_stage_vue_map.num_slots - first_slot;
}
} else {
/* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
/* Point size is packed into the header, not as a general attribute */
if (i == VARYING_SLOT_PSIZ)
continue;
if (key->input_slots_valid & BITFIELD64_BIT(i)) {
/* The back color slot is skipped when the front color is
* also written to. In addition, some slots can be
* written in the vertex shader and not read in the
* fragment shader. So the register number must always be
* incremented, mapped or not.
*/
if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
prog_data->urb_setup[i] = urb_next;
urb_next++;
}
}
/*
* It's a FS only attribute, and we did interpolation for this attribute
* in SF thread. So, count it here, too.
*
* See compile_sf_prog() for more info.
*/
if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
}
prog_data->num_varying_inputs = urb_next;
}
void
fs_visitor::assign_urb_setup()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
int urb_start = payload.num_regs + prog_data->base.curb_read_length;
/* Offset all the urb_setup[] index by the actual position of the
* setup regs, now that the location of the constants has been chosen.
*/
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->opcode == FS_OPCODE_LINTERP) {
assert(inst->src[1].file == HW_REG);
inst->src[1].fixed_hw_reg.nr += urb_start;
}
if (inst->opcode == FS_OPCODE_CINTERP) {
assert(inst->src[0].file == HW_REG);
inst->src[0].fixed_hw_reg.nr += urb_start;
}
}
/* Each attribute is 4 setup channels, each of which is half a reg. */
this->first_non_payload_grf =
urb_start + prog_data->num_varying_inputs * 2;
}
void
fs_visitor::assign_vs_urb_setup()
{
brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
int grf, count, slot, channel, attr;
assert(stage == MESA_SHADER_VERTEX);
count = _mesa_bitcount_64(vs_prog_data->inputs_read);
if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
count++;
/* Each attribute is 4 regs. */
this->first_non_payload_grf =
payload.num_regs + prog_data->curb_read_length + count * 4;
unsigned vue_entries =
MAX2(count, vs_prog_data->base.vue_map.num_slots);
vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
vs_prog_data->base.urb_read_length = (count + 1) / 2;
assert(vs_prog_data->base.urb_read_length <= 15);
/* Rewrite all ATTR file references to the hw grf that they land in. */
foreach_block_and_inst(block, fs_inst, inst, cfg) {
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == ATTR) {
if (inst->src[i].reg == VERT_ATTRIB_MAX) {
slot = count - 1;
} else {
/* Attributes come in in a contiguous block, ordered by their
* gl_vert_attrib value. That means we can compute the slot
* number for an attribute by masking out the enabled
* attributes before it and counting the bits.
*/
attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
BITFIELD64_MASK(attr));
}
channel = inst->src[i].reg_offset & 3;
grf = payload.num_regs +
prog_data->curb_read_length +
slot * 4 + channel;
inst->src[i].file = HW_REG;
inst->src[i].fixed_hw_reg =
retype(brw_vec8_grf(grf, 0), inst->src[i].type);
}
}
}
}
/**
* Split large virtual GRFs into separate components if we can.
*
* This is mostly duplicated with what brw_fs_vector_splitting does,
* but that's really conservative because it's afraid of doing
* splitting that doesn't result in real progress after the rest of
* the optimization phases, which would cause infinite looping in
* optimization. We can do it once here, safely. This also has the
* opportunity to split interpolated values, or maybe even uniforms,
* which we don't have at the IR level.
*
* We want to split, because virtual GRFs are what we register
* allocate and spill (due to contiguousness requirements for some
* instructions), and they're what we naturally generate in the
* codegen process, but most virtual GRFs don't actually need to be
* contiguous sets of GRFs. If we split, we'll end up with reduced
* live intervals and better dead code elimination and coalescing.
*/
void
fs_visitor::split_virtual_grfs()
{
int num_vars = this->alloc.count;
/* Count the total number of registers */
int reg_count = 0;
int vgrf_to_reg[num_vars];
for (int i = 0; i < num_vars; i++) {
vgrf_to_reg[i] = reg_count;
reg_count += alloc.sizes[i];
}
/* An array of "split points". For each register slot, this indicates
* if this slot can be separated from the previous slot. Every time an
* instruction uses multiple elements of a register (as a source or
* destination), we mark the used slots as inseparable. Then we go
* through and split the registers into the smallest pieces we can.
*/
bool split_points[reg_count];
memset(split_points, 0, sizeof(split_points));
/* Mark all used registers as fully splittable */
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->dst.file == GRF) {
int reg = vgrf_to_reg[inst->dst.reg];
for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
split_points[reg + j] = true;
}
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
int reg = vgrf_to_reg[inst->src[i].reg];
for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
split_points[reg + j] = true;
}
}
}
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->dst.file == GRF) {
int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
for (int j = 1; j < inst->regs_written; j++)
split_points[reg + j] = false;
}
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
for (int j = 1; j < inst->regs_read(i); j++)
split_points[reg + j] = false;
}
}
}
int new_virtual_grf[reg_count];
int new_reg_offset[reg_count];
int reg = 0;
for (int i = 0; i < num_vars; i++) {
/* The first one should always be 0 as a quick sanity check. */
assert(split_points[reg] == false);
/* j = 0 case */
new_reg_offset[reg] = 0;
reg++;
int offset = 1;
/* j > 0 case */
for (unsigned j = 1; j < alloc.sizes[i]; j++) {
/* If this is a split point, reset the offset to 0 and allocate a
* new virtual GRF for the previous offset many registers
*/
if (split_points[reg]) {
assert(offset <= MAX_VGRF_SIZE);
int grf = alloc.allocate(offset);
for (int k = reg - offset; k < reg; k++)
new_virtual_grf[k] = grf;
offset = 0;
}
new_reg_offset[reg] = offset;
offset++;
reg++;
}
/* The last one gets the original register number */
assert(offset <= MAX_VGRF_SIZE);
alloc.sizes[i] = offset;
for (int k = reg - offset; k < reg; k++)
new_virtual_grf[k] = i;
}
assert(reg == reg_count);
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->dst.file == GRF) {
reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
inst->dst.reg = new_virtual_grf[reg];
inst->dst.reg_offset = new_reg_offset[reg];
assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
}
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF) {
reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
inst->src[i].reg = new_virtual_grf[reg];
inst->src[i].reg_offset = new_reg_offset[reg];
assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
}
}
}
invalidate_live_intervals();
}
/**
* Remove unused virtual GRFs and compact the virtual_grf_* arrays.
*
* During code generation, we create tons of temporary variables, many of
* which get immediately killed and are never used again. Yet, in later
* optimization and analysis passes, such as compute_live_intervals, we need
* to loop over all the virtual GRFs. Compacting them can save a lot of
* overhead.
*/
bool
fs_visitor::compact_virtual_grfs()
{
bool progress = false;
int remap_table[this->alloc.count];
memset(remap_table, -1, sizeof(remap_table));
/* Mark which virtual GRFs are used. */
foreach_block_and_inst(block, const fs_inst, inst, cfg) {
if (inst->dst.file == GRF)
remap_table[inst->dst.reg] = 0;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF)
remap_table[inst->src[i].reg] = 0;
}
}
/* Compact the GRF arrays. */
int new_index = 0;
for (unsigned i = 0; i < this->alloc.count; i++) {
if (remap_table[i] == -1) {
/* We just found an unused register. This means that we are
* actually going to compact something.
*/
progress = true;
} else {
remap_table[i] = new_index;
alloc.sizes[new_index] = alloc.sizes[i];
invalidate_live_intervals();
++new_index;
}
}
this->alloc.count = new_index;
/* Patch all the instructions to use the newly renumbered registers */
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->dst.file == GRF)
inst->dst.reg = remap_table[inst->dst.reg];
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF)
inst->src[i].reg = remap_table[inst->src[i].reg];
}
}
/* Patch all the references to delta_xy, since they're used in register
* allocation. If they're unused, switch them to BAD_FILE so we don't
* think some random VGRF is delta_xy.
*/
for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
if (delta_xy[i].file == GRF) {
if (remap_table[delta_xy[i].reg] != -1) {
delta_xy[i].reg = remap_table[delta_xy[i].reg];
} else {
delta_xy[i].file = BAD_FILE;
}
}
}
return progress;
}
/*
* Implements array access of uniforms by inserting a
* PULL_CONSTANT_LOAD instruction.
*
* Unlike temporary GRF array access (where we don't support it due to
* the difficulty of doing relative addressing on instruction
* destinations), we could potentially do array access of uniforms
* that were loaded in GRF space as push constants. In real-world
* usage we've seen, though, the arrays being used are always larger
* than we could load as push constants, so just always move all
* uniform array access out to a pull constant buffer.
*/
void
fs_visitor::move_uniform_array_access_to_pull_constants()
{
if (dispatch_width != 8)
return;
pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
/* Walk through and find array access of uniforms. Put a copy of that
* uniform in the pull constant buffer.
*
* Note that we don't move constant-indexed accesses to arrays. No
* testing has been done of the performance impact of this choice.
*/
foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
for (int i = 0 ; i < inst->sources; i++) {
if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
continue;
int uniform = inst->src[i].reg;
/* If this array isn't already present in the pull constant buffer,
* add it.
*/
if (pull_constant_loc[uniform] == -1) {
const gl_constant_value **values = &stage_prog_data->param[uniform];
assert(param_size[uniform]);
for (int j = 0; j < param_size[uniform]; j++) {
pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
values[j];
}
}
}
}
}
/**
* Assign UNIFORM file registers to either push constants or pull constants.
*
* We allow a fragment shader to have more than the specified minimum
* maximum number of fragment shader uniform components (64). If
* there are too many of these, they'd fill up all of register space.
* So, this will push some of them out to the pull constant buffer and
* update the program to load them.
*/
void
fs_visitor::assign_constant_locations()
{
/* Only the first compile (SIMD8 mode) gets to decide on locations. */
if (dispatch_width != 8)
return;
/* Find which UNIFORM registers are still in use. */
bool is_live[uniforms];
for (unsigned int i = 0; i < uniforms; i++) {
is_live[i] = false;
}
foreach_block_and_inst(block, fs_inst, inst, cfg) {
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != UNIFORM)
continue;
int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
if (constant_nr >= 0 && constant_nr < (int) uniforms)
is_live[constant_nr] = true;
}
}
/* Only allow 16 registers (128 uniform components) as push constants.
*
* Just demote the end of the list. We could probably do better
* here, demoting things that are rarely used in the program first.
*
* If changing this value, note the limitation about total_regs in
* brw_curbe.c.
*/
unsigned int max_push_components = 16 * 8;
unsigned int num_push_constants = 0;
push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
for (unsigned int i = 0; i < uniforms; i++) {
if (!is_live[i] || pull_constant_loc[i] != -1) {
/* This UNIFORM register is either dead, or has already been demoted
* to a pull const. Mark it as no longer living in the param[] array.
*/
push_constant_loc[i] = -1;
continue;
}
if (num_push_constants < max_push_components) {
/* Retain as a push constant. Record the location in the params[]
* array.
*/
push_constant_loc[i] = num_push_constants++;
} else {
/* Demote to a pull constant. */
push_constant_loc[i] = -1;
int pull_index = stage_prog_data->nr_pull_params++;
stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
pull_constant_loc[i] = pull_index;
}
}
stage_prog_data->nr_params = num_push_constants;
/* Up until now, the param[] array has been indexed by reg + reg_offset
* of UNIFORM registers. Condense it to only contain the uniforms we
* chose to upload as push constants.
*/
for (unsigned int i = 0; i < uniforms; i++) {
int remapped = push_constant_loc[i];
if (remapped == -1)
continue;
assert(remapped <= (int)i);
stage_prog_data->param[remapped] = stage_prog_data->param[i];
}
}
/**
* Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
* or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
*/
void
fs_visitor::demote_pull_constants()
{
foreach_block_and_inst (block, fs_inst, inst, cfg) {
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != UNIFORM)
continue;
int pull_index;
unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
if (location >= uniforms) /* Out of bounds access */
pull_index = -1;
else
pull_index = pull_constant_loc[location];
if (pull_index == -1)
continue;
/* Set up the annotation tracking for new generated instructions. */
const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
.at(block, inst);
fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
fs_reg dst = vgrf(glsl_type::float_type);
assert(inst->src[i].stride == 0);
/* Generate a pull load into dst. */
if (inst->src[i].reladdr) {
VARYING_PULL_CONSTANT_LOAD(ibld, dst,
surf_index,
*inst->src[i].reladdr,
pull_index);
inst->src[i].reladdr = NULL;
inst->src[i].stride = 1;
} else {
fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
dst, surf_index, offset);
inst->src[i].set_smear(pull_index & 3);
}
/* Rewrite the instruction to use the temporary VGRF. */
inst->src[i].file = GRF;
inst->src[i].reg = dst.reg;
inst->src[i].reg_offset = 0;
}
}
invalidate_live_intervals();
}
bool
fs_visitor::opt_algebraic()
{
bool progress = false;
foreach_block_and_inst(block, fs_inst, inst, cfg) {
switch (inst->opcode) {
case BRW_OPCODE_MOV:
if (inst->src[0].file != IMM)
break;
if (inst->saturate) {
if (inst->dst.type != inst->src[0].type)
assert(!"unimplemented: saturate mixed types");
if (brw_saturate_immediate(inst->dst.type,
&inst->src[0].fixed_hw_reg)) {
inst->saturate = false;
progress = true;
}
}
break;
case BRW_OPCODE_MUL:
if (inst->src[1].file != IMM)
continue;
/* a * 1.0 = a */
if (inst->src[1].is_one()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
progress = true;
break;
}
/* a * -1.0 = -a */
if (inst->src[1].is_negative_one()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0].negate = !inst->src[0].negate;
inst->src[1] = reg_undef;
progress = true;
break;
}
/* a * 0.0 = 0.0 */
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0] = inst->src[1];
inst->src[1] = reg_undef;
progress = true;
break;
}
if (inst->src[0].file == IMM) {
assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
inst->opcode = BRW_OPCODE_MOV;
inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case BRW_OPCODE_ADD:
if (inst->src[1].file != IMM)
continue;
/* a + 0.0 = a */
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
progress = true;
break;
}
if (inst->src[0].file == IMM) {
assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
inst->opcode = BRW_OPCODE_MOV;
inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case BRW_OPCODE_OR:
if (inst->src[0].equals(inst->src[1])) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
progress = true;
break;
}
break;
case BRW_OPCODE_LRP:
if (inst->src[1].equals(inst->src[2])) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0] = inst->src[1];
inst->src[1] = reg_undef;
inst->src[2] = reg_undef;
progress = true;
break;
}
break;
case BRW_OPCODE_CMP:
if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
inst->src[0].abs &&
inst->src[0].negate &&
inst->src[1].is_zero()) {
inst->src[0].abs = false;
inst->src[0].negate = false;
inst->conditional_mod = BRW_CONDITIONAL_Z;
progress = true;
break;
}
break;
case BRW_OPCODE_SEL:
if (inst->src[0].equals(inst->src[1])) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
inst->predicate = BRW_PREDICATE_NONE;
inst->predicate_inverse = false;
progress = true;
} else if (inst->saturate && inst->src[1].file == IMM) {
switch (inst->conditional_mod) {
case BRW_CONDITIONAL_LE:
case BRW_CONDITIONAL_L:
switch (inst->src[1].type) {
case BRW_REGISTER_TYPE_F:
if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
inst->conditional_mod = BRW_CONDITIONAL_NONE;
progress = true;
}
break;
default:
break;
}
break;
case BRW_CONDITIONAL_GE:
case BRW_CONDITIONAL_G:
switch (inst->src[1].type) {
case BRW_REGISTER_TYPE_F:
if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
inst->conditional_mod = BRW_CONDITIONAL_NONE;
progress = true;
}
break;
default:
break;
}
default:
break;
}
}
break;
case BRW_OPCODE_MAD:
if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = reg_undef;
inst->src[2] = reg_undef;
progress = true;
} else if (inst->src[0].is_zero()) {
inst->opcode = BRW_OPCODE_MUL;
inst->src[0] = inst->src[2];
inst->src[2] = reg_undef;
progress = true;
} else if (inst->src[1].is_one()) {
inst->opcode = BRW_OPCODE_ADD;
inst->src[1] = inst->src[2];
inst->src[2] = reg_undef;
progress = true;
} else if (inst->src[2].is_one()) {
inst->opcode = BRW_OPCODE_ADD;
inst->src[2] = reg_undef;
progress = true;
} else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
inst->opcode = BRW_OPCODE_ADD;
inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
inst->src[2] = reg_undef;
progress = true;
}
break;
case SHADER_OPCODE_RCP: {
fs_inst *prev = (fs_inst *)inst->prev;
if (prev->opcode == SHADER_OPCODE_SQRT) {
if (inst->src[0].equals(prev->dst)) {
inst->opcode = SHADER_OPCODE_RSQ;
inst->src[0] = prev->src[0];
progress = true;
}
}
break;
}
case SHADER_OPCODE_BROADCAST:
if (is_uniform(inst->src[0])) {
inst->opcode = BRW_OPCODE_MOV;
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
} else if (inst->src[1].file == IMM) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0] = component(inst->src[0],
inst->src[1].fixed_hw_reg.dw1.ud);
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
}
break;
default:
break;
}
/* Swap if src[0] is immediate. */
if (progress && inst->is_commutative()) {
if (inst->src[0].file == IMM) {
fs_reg tmp = inst->src[1];
inst->src[1] = inst->src[0];
inst->src[0] = tmp;
}
}
}
return progress;
}
/**
* Optimize sample messages that have constant zero values for the trailing
* texture coordinates. We can just reduce the message length for these
* instructions instead of reserving a register for it. Trailing parameters
* that aren't sent default to zero anyway. This will cause the dead code
* eliminator to remove the MOV instruction that would otherwise be emitted to
* set up the zero value.
*/
bool
fs_visitor::opt_zero_samples()
{
/* Gen4 infers the texturing opcode based on the message length so we can't
* change it.
*/
if (devinfo->gen < 5)
return false;
bool progress = false;
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (!inst->is_tex())
continue;
fs_inst *load_payload = (fs_inst *) inst->prev;
if (load_payload->is_head_sentinel() ||
load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
continue;
/* We don't want to remove the message header or the first parameter.
* Removing the first parameter is not allowed, see the Haswell PRM
* volume 7, page 149:
*
* "Parameter 0 is required except for the sampleinfo message, which
* has no parameter 0"
*/
while (inst->mlen > inst->header_size + dispatch_width / 8 &&
load_payload->src[(inst->mlen - inst->header_size) /
(dispatch_width / 8) +
inst->header_size - 1].is_zero()) {
inst->mlen -= dispatch_width / 8;
progress = true;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
/**
* Optimize sample messages which are followed by the final RT write.
*
* CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
* results sent directly to the framebuffer, bypassing the EU. Recognize the
* final texturing results copied to the framebuffer write payload and modify
* them to write to the framebuffer directly.
*/
bool
fs_visitor::opt_sampler_eot()
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
if (stage != MESA_SHADER_FRAGMENT)
return false;
if (devinfo->gen < 9 && !devinfo->is_cherryview)
return false;
/* FINISHME: It should be possible to implement this optimization when there
* are multiple drawbuffers.
*/
if (key->nr_color_regions != 1)
return false;
/* Look for a texturing instruction immediately before the final FB_WRITE. */
fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
assert(fb_write->eot);
assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
fs_inst *tex_inst = (fs_inst *) fb_write->prev;
/* There wasn't one; nothing to do. */
if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
return false;
/* This optimisation doesn't seem to work for textureGather for some
* reason. I can't find any documentation or known workarounds to indicate
* that this is expected, but considering that it is probably pretty
* unlikely that a shader would directly write out the results from
* textureGather we might as well just disable it.
*/
if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
return false;
/* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
* It's very likely to be the previous instruction.
*/
fs_inst *load_payload = (fs_inst *) tex_inst->prev;
if (load_payload->is_head_sentinel() ||
load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
return false;
assert(!tex_inst->eot); /* We can't get here twice */
assert((tex_inst->offset & (0xff << 24)) == 0);
tex_inst->offset |= fb_write->target << 24;
tex_inst->eot = true;
tex_inst->dst = bld.null_reg_ud();
fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
/* If a header is present, marking the eot is sufficient. Otherwise, we need
* to create a new LOAD_PAYLOAD command with the same sources and a space
* saved for the header. Using a new destination register not only makes sure
* we have enough space, but it will make sure the dead code eliminator kills
* the instruction that this will replace.
*/
if (tex_inst->header_size != 0)
return true;
fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
load_payload->sources + 1);
fs_reg *new_sources =
ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
new_sources[0] = fs_reg();
for (int i = 0; i < load_payload->sources; i++)
new_sources[i+1] = load_payload->src[i];
/* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
* requires a lot of information about the sources to appropriately figure
* out the number of registers needed to be used. Given this stage in our
* optimization, we may not have the appropriate GRFs required by
* LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
* manually emit the instruction.
*/
fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
load_payload->exec_size,
send_header,
new_sources,
load_payload->sources + 1);
new_load_payload->regs_written = load_payload->regs_written + 1;
new_load_payload->header_size = 1;
tex_inst->mlen++;
tex_inst->header_size = 1;
tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
tex_inst->src[0] = send_header;
return true;
}
bool
fs_visitor::opt_register_renaming()
{
bool progress = false;
int depth = 0;
int remap[alloc.count];
memset(remap, -1, sizeof(int) * alloc.count);
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
depth++;
} else if (inst->opcode == BRW_OPCODE_ENDIF ||
inst->opcode == BRW_OPCODE_WHILE) {
depth--;
}
/* Rewrite instruction sources. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == GRF &&
remap[inst->src[i].reg] != -1 &&
remap[inst->src[i].reg] != inst->src[i].reg) {
inst->src[i].reg = remap[inst->src[i].reg];
progress = true;
}
}
const int dst = inst->dst.reg;
if (depth == 0 &&
inst->dst.file == GRF &&
alloc.sizes[inst->dst.reg] == inst->exec_size / 8 &&
!inst->is_partial_write()) {
if (remap[dst] == -1) {
remap[dst] = dst;
} else {
remap[dst] = alloc.allocate(inst->exec_size / 8);
inst->dst.reg = remap[dst];
progress = true;
}
} else if (inst->dst.file == GRF &&
remap[dst] != -1 &&
remap[dst] != dst) {
inst->dst.reg = remap[dst];
progress = true;
}
}
if (progress) {
invalidate_live_intervals();
for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
delta_xy[i].reg = remap[delta_xy[i].reg];
}
}
}
return progress;
}
/**
* Remove redundant or useless discard jumps.
*
* For example, we can eliminate jumps in the following sequence:
*
* discard-jump (redundant with the next jump)
* discard-jump (useless; jumps to the next instruction)
* placeholder-halt
*/
bool
fs_visitor::opt_redundant_discard_jumps()
{
bool progress = false;
bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
fs_inst *placeholder_halt = NULL;
foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
placeholder_halt = inst;
break;
}
}
if (!placeholder_halt)
return false;
/* Delete any HALTs immediately before the placeholder halt. */
for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
!prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
prev = (fs_inst *) placeholder_halt->prev) {
prev->remove(last_bblock);
progress = true;
}
if (progress)
invalidate_live_intervals();
return progress;
}
bool
fs_visitor::compute_to_mrf()
{
bool progress = false;
int next_ip = 0;
/* No MRFs on Gen >= 7. */
if (devinfo->gen >= 7)
return false;
calculate_live_intervals();
foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
int ip = next_ip;
next_ip++;
if (inst->opcode != BRW_OPCODE_MOV ||
inst->is_partial_write() ||
inst->dst.file != MRF || inst->src[0].file != GRF ||
inst->dst.type != inst->src[0].type ||
inst->src[0].abs || inst->src[0].negate ||
!inst->src[0].is_contiguous() ||
inst->src[0].subreg_offset)
continue;
/* Work out which hardware MRF registers are written by this
* instruction.
*/
int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
int mrf_high;
if (inst->dst.reg & BRW_MRF_COMPR4) {
mrf_high = mrf_low + 4;
} else if (inst->exec_size == 16) {
mrf_high = mrf_low + 1;
} else {
mrf_high = mrf_low;
}
/* Can't compute-to-MRF this GRF if someone else was going to
* read it later.
*/
if (this->virtual_grf_end[inst->src[0].reg] > ip)
continue;
/* Found a move of a GRF to a MRF. Let's see if we can go
* rewrite the thing that made this GRF to write into the MRF.
*/
foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg) {
/* Found the last thing to write our reg we want to turn
* into a compute-to-MRF.
*/
/* If this one instruction didn't populate all the
* channels, bail. We might be able to rewrite everything
* that writes that reg, but it would require smarter
* tracking to delay the rewriting until complete success.
*/
if (scan_inst->is_partial_write())
break;
/* Things returning more than one register would need us to
* understand coalescing out more than one MOV at a time.
*/
if (scan_inst->regs_written > scan_inst->exec_size / 8)
break;
/* SEND instructions can't have MRF as a destination. */
if (scan_inst->mlen)
break;
if (devinfo->gen == 6) {
/* gen6 math instructions must have the destination be
* GRF, so no compute-to-MRF for them.
*/
if (scan_inst->is_math()) {
break;
}
}
if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
/* Found the creator of our MRF's source value. */
scan_inst->dst.file = MRF;
scan_inst->dst.reg = inst->dst.reg;
scan_inst->saturate |= inst->saturate;
inst->remove(block);
progress = true;
}
break;
}
/* We don't handle control flow here. Most computation of
* values that end up in MRFs are shortly before the MRF
* write anyway.
*/
if (block->start() == scan_inst)
break;
/* You can't read from an MRF, so if someone else reads our
* MRF's source GRF that we wanted to rewrite, that stops us.
*/
bool interfered = false;
for (int i = 0; i < scan_inst->sources; i++) {
if (scan_inst->src[i].file == GRF &&
scan_inst->src[i].reg == inst->src[0].reg &&
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
interfered = true;
}
}
if (interfered)
break;
if (scan_inst->dst.file == MRF) {
/* If somebody else writes our MRF here, we can't
* compute-to-MRF before that.
*/
int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
int scan_mrf_high;
if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
scan_mrf_high = scan_mrf_low + 4;
} else if (scan_inst->exec_size == 16) {
scan_mrf_high = scan_mrf_low + 1;
} else {
scan_mrf_high = scan_mrf_low;
}
if (mrf_low == scan_mrf_low ||
mrf_low == scan_mrf_high ||
mrf_high == scan_mrf_low ||
mrf_high == scan_mrf_high) {
break;
}
}
if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
/* Found a SEND instruction, which means that there are
* live values in MRFs from base_mrf to base_mrf +
* scan_inst->mlen - 1. Don't go pushing our MRF write up
* above it.
*/
if (mrf_low >= scan_inst->base_mrf &&
mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
break;
}
if (mrf_high >= scan_inst->base_mrf &&
mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
break;
}
}
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
/**
* Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
* flow. We could probably do better here with some form of divergence
* analysis.
*/
bool
fs_visitor::eliminate_find_live_channel()
{
bool progress = false;
unsigned depth = 0;
foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
switch (inst->opcode) {
case BRW_OPCODE_IF:
case BRW_OPCODE_DO:
depth++;
break;
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_WHILE:
depth--;
break;
case FS_OPCODE_DISCARD_JUMP:
/* This can potentially make control flow non-uniform until the end
* of the program.
*/
return progress;
case SHADER_OPCODE_FIND_LIVE_CHANNEL:
if (depth == 0) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0] = fs_reg(0);
inst->sources = 1;
inst->force_writemask_all = true;
progress = true;
}
break;
default:
break;
}
}
return progress;
}
/**
* Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
* instructions to FS_OPCODE_REP_FB_WRITE.
*/
void
fs_visitor::emit_repclear_shader()
{
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
int base_mrf = 1;
int color_mrf = base_mrf + 2;
fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
fs_inst *write;
if (key->nr_color_regions == 1) {
write = bld.emit(FS_OPCODE_REP_FB_WRITE);
write->saturate = key->clamp_fragment_color;
write->base_mrf = color_mrf;
write->target = 0;
write->header_size = 0;
write->mlen = 1;
} else {
assume(key->nr_color_regions > 0);
for (int i = 0; i < key->nr_color_regions; ++i) {
write = bld.emit(FS_OPCODE_REP_FB_WRITE);
write->saturate = key->clamp_fragment_color;
write->base_mrf = base_mrf;
write->target = i;
write->header_size = 2;
write->mlen = 3;
}
}
write->eot = true;
calculate_cfg();
assign_constant_locations();
assign_curb_setup();
/* Now that we have the uniform assigned, go ahead and force it to a vec4. */
assert(mov->src[0].file == HW_REG);
mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
}
/**
* Walks through basic blocks, looking for repeated MRF writes and
* removing the later ones.
*/
bool
fs_visitor::remove_duplicate_mrf_writes()
{
fs_inst *last_mrf_move[16];
bool progress = false;
/* Need to update the MRF tracking for compressed instructions. */
if (dispatch_width == 16)
return false;
memset(last_mrf_move, 0, sizeof(last_mrf_move));
foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
if (inst->is_control_flow()) {
memset(last_mrf_move, 0, sizeof(last_mrf_move));
}
if (inst->opcode == BRW_OPCODE_MOV &&
inst->dst.file == MRF) {
fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
if (prev_inst && inst->equals(prev_inst)) {
inst->remove(block);
progress = true;
continue;
}
}
/* Clear out the last-write records for MRFs that were overwritten. */
if (inst->dst.file == MRF) {
last_mrf_move[inst->dst.reg] = NULL;
}
if (inst->mlen > 0 && inst->base_mrf != -1) {
/* Found a SEND instruction, which will include two or fewer
* implied MRF writes. We could do better here.
*/
for (int i = 0; i < implied_mrf_writes(inst); i++) {
last_mrf_move[inst->base_mrf + i] = NULL;
}
}
/* Clear out any MRF move records whose sources got overwritten. */
if (inst->dst.file == GRF) {
for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
if (last_mrf_move[i] &&
last_mrf_move[i]->src[0].reg == inst->dst.reg) {
last_mrf_move[i] = NULL;
}
}
}
if (inst->opcode == BRW_OPCODE_MOV &&
inst->dst.file == MRF &&
inst->src[0].file == GRF &&
!inst->is_partial_write()) {
last_mrf_move[inst->dst.reg] = inst;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
static void
clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
{
/* Clear the flag for registers that actually got read (as expected). */
for (int i = 0; i < inst->sources; i++) {
int grf;
if (inst->src[i].file == GRF) {
grf = inst->src[i].reg;
} else if (inst->src[i].file == HW_REG &&
inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
grf = inst->src[i].fixed_hw_reg.nr;
} else {
continue;
}
if (grf >= first_grf &&
grf < first_grf + grf_len) {
deps[grf - first_grf] = false;
if (inst->exec_size == 16)
deps[grf - first_grf + 1] = false;
}
}
}
/**
* Implements this workaround for the original 965:
*
* "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
* check for post destination dependencies on this instruction, software
* must ensure that there is no destination hazard for the case of ‘write
* followed by a posted write’ shown in the following example.
*
* 1. mov r3 0
* 2. send r3.xy <rest of send instruction>
* 3. mov r2 r3
*
* Due to no post-destination dependency check on the ‘send’, the above
* code sequence could have two instructions (1 and 2) in flight at the
* same time that both consider ‘r3’ as the target of their final writes.
*/
void
fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
fs_inst *inst)
{
int write_len = inst->regs_written;
int first_write_grf = inst->dst.reg;
bool needs_dep[BRW_MAX_MRF];
assert(write_len < (int)sizeof(needs_dep) - 1);
memset(needs_dep, false, sizeof(needs_dep));
memset(needs_dep, true, write_len);
clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
/* Walk backwards looking for writes to registers we're writing which
* aren't read since being written. If we hit the start of the program,
* we assume that there are no outstanding dependencies on entry to the
* program.
*/
foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
/* If we hit control flow, assume that there *are* outstanding
* dependencies, and force their cleanup before our instruction.
*/
if (block->start() == scan_inst) {
for (int i = 0; i < write_len; i++) {
if (needs_dep[i])
DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
}
return;
}
/* We insert our reads as late as possible on the assumption that any
* instruction but a MOV that might have left us an outstanding
* dependency has more latency than a MOV.
*/
if (scan_inst->dst.file == GRF) {
for (int i = 0; i < scan_inst->regs_written; i++) {
int reg = scan_inst->dst.reg + i;
if (reg >= first_write_grf &&
reg < first_write_grf + write_len &&
needs_dep[reg - first_write_grf]) {
DEP_RESOLVE_MOV(bld.at(block, inst), reg);
needs_dep[reg - first_write_grf] = false;
if (scan_inst->exec_size == 16)
needs_dep[reg - first_write_grf + 1] = false;
}
}
}
/* Clear the flag for registers that actually got read (as expected). */
clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
/* Continue the loop only if we haven't resolved all the dependencies */
int i;
for (i = 0; i < write_len; i++) {
if (needs_dep[i])
break;
}
if (i == write_len)
return;
}
}
/**
* Implements this workaround for the original 965:
*
* "[DevBW, DevCL] Errata: A destination register from a send can not be
* used as a destination register until after it has been sourced by an
* instruction with a different destination register.
*/
void
fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
{
int write_len = inst->regs_written;
int first_write_grf = inst->dst.reg;
bool needs_dep[BRW_MAX_MRF];
assert(write_len < (int)sizeof(needs_dep) - 1);
memset(needs_dep, false, sizeof(needs_dep));
memset(needs_dep, true, write_len);
/* Walk forwards looking for writes to registers we're writing which aren't
* read before being written.
*/
foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
/* If we hit control flow, force resolve all remaining dependencies. */
if (block->end() == scan_inst) {
for (int i = 0; i < write_len; i++) {
if (needs_dep[i])
DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
}
return;
}
/* Clear the flag for registers that actually got read (as expected). */
clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
/* We insert our reads as late as possible since they're reading the
* result of a SEND, which has massive latency.
*/
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg >= first_write_grf &&
scan_inst->dst.reg < first_write_grf + write_len &&
needs_dep[scan_inst->dst.reg - first_write_grf]) {
DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
needs_dep[scan_inst->dst.reg - first_write_grf] = false;
}
/* Continue the loop only if we haven't resolved all the dependencies */
int i;
for (i = 0; i < write_len; i++) {
if (needs_dep[i])
break;
}
if (i == write_len)
return;
}
}
void
fs_visitor::insert_gen4_send_dependency_workarounds()
{
if (devinfo->gen != 4 || devinfo->is_g4x)
return;
bool progress = false;
/* Note that we're done with register allocation, so GRF fs_regs always
* have a .reg_offset of 0.
*/
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (inst->mlen != 0 && inst->dst.file == GRF) {
insert_gen4_pre_send_dependency_workarounds(block, inst);
insert_gen4_post_send_dependency_workarounds(block, inst);
progress = true;
}
}
if (progress)
invalidate_live_intervals();
}
/**
* Turns the generic expression-style uniform pull constant load instruction
* into a hardware-specific series of instructions for loading a pull
* constant.
*
* The expression style allows the CSE pass before this to optimize out
* repeated loads from the same offset, and gives the pre-register-allocation
* scheduling full flexibility, while the conversion to native instructions
* allows the post-register-allocation scheduler the best information
* possible.
*
* Note that execution masking for setting up pull constant loads is special:
* the channels that need to be written are unrelated to the current execution
* mask, since a later instruction will use one of the result channels as a
* source operand for all 8 or 16 of its channels.
*/
void
fs_visitor::lower_uniform_pull_constant_loads()
{
foreach_block_and_inst (block, fs_inst, inst, cfg) {
if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
continue;
if (devinfo->gen >= 7) {
/* The offset arg before was a vec4-aligned byte offset. We need to
* turn it into a dword offset.
*/
fs_reg const_offset_reg = inst->src[1];
assert(const_offset_reg.file == IMM &&
const_offset_reg.type == BRW_REGISTER_TYPE_UD);
const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
fs_reg payload, offset;
if (devinfo->gen >= 9) {
/* We have to use a message header on Skylake to get SIMD4x2
* mode. Reserve space for the register.
*/
offset = payload = fs_reg(GRF, alloc.allocate(2));
offset.reg_offset++;
inst->mlen = 2;
} else {
offset = payload = fs_reg(GRF, alloc.allocate(1));
inst->mlen = 1;
}
/* This is actually going to be a MOV, but since only the first dword
* is accessed, we have a special opcode to do just that one. Note
* that this needs to be an operation that will be considered a def
* by live variable analysis, or register allocation will explode.
*/
fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
8, offset, const_offset_reg);
setup->force_writemask_all = true;
setup->ir = inst->ir;
setup->annotation = inst->annotation;
inst->insert_before(block, setup);
/* Similarly, this will only populate the first 4 channels of the
* result register (since we only use smear values from 0-3), but we
* don't tell the optimizer.
*/
inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
inst->src[1] = payload;
inst->base_mrf = -1;
invalidate_live_intervals();
} else {
/* Before register allocation, we didn't tell the scheduler about the
* MRF we use. We know it's safe to use this MRF because nothing
* else does except for register spill/unspill, which generates and
* uses its MRF within a single IR instruction.
*/
inst->base_mrf = 14;
inst->mlen = 1;
}
}
}
bool
fs_visitor::lower_load_payload()
{
bool progress = false;
foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
continue;
assert(inst->dst.file == MRF || inst->dst.file == GRF);
assert(inst->saturate == false);
fs_reg dst = inst->dst;
/* Get rid of COMPR4. We'll add it back in if we need it */
if (dst.file == MRF)
dst.reg = dst.reg & ~BRW_MRF_COMPR4;
const fs_builder hbld = bld.exec_all().group(8, 0).at(block, inst);
for (uint8_t i = 0; i < inst->header_size; i++) {
if (inst->src[i].file != BAD_FILE) {
fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
hbld.MOV(mov_dst, mov_src);
}
dst = offset(dst, hbld, 1);
}
const fs_builder ibld = bld.exec_all(inst->force_writemask_all)
.group(inst->exec_size, inst->force_sechalf)
.at(block, inst);
if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
inst->exec_size > 8) {
/* In this case, the payload portion of the LOAD_PAYLOAD isn't
* a straightforward copy. Instead, the result of the
* LOAD_PAYLOAD is treated as interleaved and the first four
* non-header sources are unpacked as:
*
* m + 0: r0
* m + 1: g0
* m + 2: b0
* m + 3: a0
* m + 4: r1
* m + 5: g1
* m + 6: b1
* m + 7: a1
*
* This is used for gen <= 5 fb writes.
*/
assert(inst->exec_size == 16);
assert(inst->header_size + 4 <= inst->sources);
for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
if (inst->src[i].file != BAD_FILE) {
if (devinfo->has_compr4) {
fs_reg compr4_dst = retype(dst, inst->src[i].type);
compr4_dst.reg |= BRW_MRF_COMPR4;
ibld.MOV(compr4_dst, inst->src[i]);
} else {
/* Platform doesn't have COMPR4. We have to fake it */
fs_reg mov_dst = retype(dst, inst->src[i].type);
ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
mov_dst.reg += 4;
ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
}
}
dst.reg++;
}
/* The loop above only ever incremented us through the first set
* of 4 registers. However, thanks to the magic of COMPR4, we
* actually wrote to the first 8 registers, so we need to take
* that into account now.
*/
dst.reg += 4;
/* The COMPR4 code took care of the first 4 sources. We'll let
* the regular path handle any remaining sources. Yes, we are
* modifying the instruction but we're about to delete it so
* this really doesn't hurt anything.
*/
inst->header_size += 4;
}
for (uint8_t i = inst->header_size; i < inst->sources; i++) {
if (inst->src[i].file != BAD_FILE)
ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
dst = offset(dst, ibld, 1);
}
inst->remove(block);
progress = true;
}
if (progress)
invalidate_live_intervals();
return progress;
}
bool
fs_visitor::lower_integer_multiplication()
{
bool progress = false;
/* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
* directly, but Cherryview cannot.
*/
if (devinfo->gen >= 8 && !devinfo->is_cherryview)
return false;
foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
if (inst->opcode != BRW_OPCODE_MUL ||
inst->dst.is_accumulator() ||
(inst->dst.type != BRW_REGISTER_TYPE_D &&
inst->dst.type != BRW_REGISTER_TYPE_UD))
continue;
const fs_builder ibld = bld.at(block, inst);
/* The MUL instruction isn't commutative. On Gen <= 6, only the low
* 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
* src1 are used.
*
* If multiplying by an immediate value that fits in 16-bits, do a
* single MUL instruction with that value in the proper location.
*/
if (inst->src[1].file == IMM &&
inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
if (devinfo->gen < 7) {
fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
inst->dst.type);
ibld.MOV(imm, inst->src[1]);
ibld.MUL(inst->dst, imm, inst->src[0]);
} else {
ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
}
} else {
/* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
* do 32-bit integer multiplication in one instruction, but instead
* must do a sequence (which actually calculates a 64-bit result):
*
* mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
* mach(8) null g3<8,8,1>D g4<8,8,1>D
* mov(8) g2<1>D acc0<8,8,1>D
*
* But on Gen > 6, the ability to use second accumulator register
* (acc1) for non-float data types was removed, preventing a simple
* implementation in SIMD16. A 16-channel result can be calculated by
* executing the three instructions twice in SIMD8, once with quarter
* control of 1Q for the first eight channels and again with 2Q for
* the second eight channels.
*
* Which accumulator register is implicitly accessed (by AccWrEnable
* for instance) is determined by the quarter control. Unfortunately
* Ivybridge (and presumably Baytrail) has a hardware bug in which an
* implicit accumulator access by an instruction with 2Q will access
* acc1 regardless of whether the data type is usable in acc1.
*
* Specifically, the 2Q mach(8) writes acc1 which does not exist for
* integer data types.
*
* Since we only want the low 32-bits of the result, we can do two
* 32-bit x 16-bit multiplies (like the mul and mach are doing), and
* adjust the high result and add them (like the mach is doing):
*
* mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
* mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
* shl(8) g9<1>D g8<8,8,1>D 16D
* add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
*
* We avoid the shl instruction by realizing that we only want to add
* the low 16-bits of the "high" result to the high 16-bits of the
* "low" result and using proper regioning on the add:
*
* mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
* mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
* add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
*
* Since it does not use the (single) accumulator register, we can
* schedule multi-component multiplications much better.
*/
if (inst->conditional_mod && inst->dst.is_null()) {
inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
inst->dst.type);
}
fs_reg low = inst->dst;
fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
inst->dst.type);
if (devinfo->gen >= 7) {
fs_reg src1_0_w = inst->src[1];
fs_reg src1_1_w = inst->src[1];
if (inst->src[1].file == IMM) {
src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
} else {
src1_0_w.type = BRW_REGISTER_TYPE_UW;
if (src1_0_w.stride != 0) {
assert(src1_0_w.stride == 1);
src1_0_w.stride = 2;
}
src1_1_w.type = BRW_REGISTER_TYPE_UW;
if (src1_1_w.stride != 0) {
assert(src1_1_w.stride == 1);
src1_1_w.stride = 2;
}
src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
}
ibld.MUL(low, inst->src[0], src1_0_w);
ibld.MUL(high, inst->src[0], src1_1_w);
} else {
fs_reg src0_0_w = inst->src[0];
fs_reg src0_1_w = inst->src[0];
src0_0_w.type = BRW_REGISTER_TYPE_UW;
if (src0_0_w.stride != 0) {
assert(src0_0_w.stride == 1);
src0_0_w.stride = 2;
}
src0_1_w.type = BRW_REGISTER_TYPE_UW;
if (src0_1_w.stride != 0) {
assert(src0_1_w.stride == 1);
src0_1_w.stride = 2;
}
src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
ibld.MUL(low, src0_0_w, inst->src[1]);
ibld.MUL(high, src0_1_w, inst->src[1]);
}
fs_reg dst = inst->dst;
dst.type = BRW_REGISTER_TYPE_UW;
dst.subreg_offset = 2;
dst.stride = 2;
high.type = BRW_REGISTER_TYPE_UW;
high.stride = 2;
low.type = BRW_REGISTER_TYPE_UW;
low.subreg_offset = 2;
low.stride = 2;
ibld.ADD(dst, low, high);
if (inst->conditional_mod) {
fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
set_condmod(inst->conditional_mod,
ibld.MOV(null, inst->dst));
}
}
inst->remove(block);
progress = true;
}
if (progress)
invalidate_live_intervals();
return progress;
}
void
fs_visitor::dump_instructions()
{
dump_instructions(NULL);
}
void
fs_visitor::dump_instructions(const char *name)
{
FILE *file = stderr;
if (name && geteuid() != 0) {
file = fopen(name, "w");
if (!file)
file = stderr;
}
if (cfg) {
calculate_register_pressure();
int ip = 0, max_pressure = 0;
foreach_block_and_inst(block, backend_instruction, inst, cfg) {
max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
dump_instruction(inst, file);
ip++;
}
fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
} else {
int ip = 0;
foreach_in_list(backend_instruction, inst, &instructions) {
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
}
if (file != stderr) {
fclose(file);
}
}
void
fs_visitor::dump_instruction(backend_instruction *be_inst)
{
dump_instruction(be_inst, stderr);
}
void
fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
{
fs_inst *inst = (fs_inst *)be_inst;
if (inst->predicate) {
fprintf(file, "(%cf0.%d) ",
inst->predicate_inverse ? '-' : '+',
inst->flag_subreg);
}
fprintf(file, "%s", brw_instruction_name(inst->opcode));
if (inst->saturate)
fprintf(file, ".sat");
if (inst->conditional_mod) {
fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
if (!inst->predicate &&
(devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
inst->opcode != BRW_OPCODE_IF &&
inst->opcode != BRW_OPCODE_WHILE))) {
fprintf(file, ".f0.%d", inst->flag_subreg);
}
}
fprintf(file, "(%d) ", inst->exec_size);
if (inst->mlen) {
fprintf(file, "(mlen: %d) ", inst->mlen);
}
switch (inst->dst.file) {
case GRF:
fprintf(file, "vgrf%d", inst->dst.reg);
if (alloc.sizes[inst->dst.reg] != inst->regs_written ||
inst->dst.subreg_offset)
fprintf(file, "+%d.%d",
inst->dst.reg_offset, inst->dst.subreg_offset);
break;
case MRF:
fprintf(file, "m%d", inst->dst.reg);
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
case UNIFORM:
fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
break;
case ATTR:
fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
break;
case HW_REG:
if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
switch (inst->dst.fixed_hw_reg.nr) {
case BRW_ARF_NULL:
fprintf(file, "null");
break;
case BRW_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
break;
case BRW_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
break;
case BRW_ARF_FLAG:
fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
inst->dst.fixed_hw_reg.subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
inst->dst.fixed_hw_reg.subnr);
break;
}
} else {
fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
}
if (inst->dst.fixed_hw_reg.subnr)
fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
break;
default:
fprintf(file, "???");
break;
}
fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].negate)
fprintf(file, "-");
if (inst->src[i].abs)
fprintf(file, "|");
switch (inst->src[i].file) {
case GRF:
fprintf(file, "vgrf%d", inst->src[i].reg);
if (alloc.sizes[inst->src[i].reg] != (unsigned)inst->regs_read(i) ||
inst->src[i].subreg_offset)
fprintf(file, "+%d.%d", inst->src[i].reg_offset,
inst->src[i].subreg_offset);
break;
case MRF:
fprintf(file, "***m%d***", inst->src[i].reg);
break;
case ATTR:
fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
break;
case UNIFORM:
fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
if (inst->src[i].reladdr) {
fprintf(file, "+reladdr");
} else if (inst->src[i].subreg_offset) {
fprintf(file, "+%d.%d", inst->src[i].reg_offset,
inst->src[i].subreg_offset);
}
break;
case BAD_FILE:
fprintf(file, "(null)");
break;
case IMM:
switch (inst->src[i].type) {
case BRW_REGISTER_TYPE_F:
fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
break;
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_D:
fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
break;
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_UD:
fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
break;
case BRW_REGISTER_TYPE_VF:
fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
break;
default:
fprintf(file, "???");
break;
}
break;
case HW_REG:
if (inst->src[i].fixed_hw_reg.negate)
fprintf(file, "-");
if (inst->src[i].fixed_hw_reg.abs)
fprintf(file, "|");
if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
switch (inst->src[i].fixed_hw_reg.nr) {
case BRW_ARF_NULL:
fprintf(file, "null");
break;
case BRW_ARF_ADDRESS:
fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
break;
case BRW_ARF_ACCUMULATOR:
fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
break;
case BRW_ARF_FLAG:
fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
inst->src[i].fixed_hw_reg.subnr);
break;
default:
fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
inst->src[i].fixed_hw_reg.subnr);
break;
}
} else {
fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
}
if (inst->src[i].fixed_hw_reg.subnr)
fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
if (inst->src[i].fixed_hw_reg.abs)
fprintf(file, "|");
break;
default:
fprintf(file, "???");
break;
}
if (inst->src[i].abs)
fprintf(file, "|");
if (inst->src[i].file != IMM) {
fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
}
if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
fprintf(file, ", ");
}
fprintf(file, " ");
if (dispatch_width == 16 && inst->exec_size == 8) {
if (inst->force_sechalf)
fprintf(file, "2ndhalf ");
else
fprintf(file, "1sthalf ");
}
fprintf(file, "\n");
}
/**
* Possibly returns an instruction that set up @param reg.
*
* Sometimes we want to take the result of some expression/variable
* dereference tree and rewrite the instruction generating the result
* of the tree. When processing the tree, we know that the
* instructions generated are all writing temporaries that are dead
* outside of this tree. So, if we have some instructions that write
* a temporary, we're free to point that temp write somewhere else.
*
* Note that this doesn't guarantee that the instruction generated
* only reg -- it might be the size=4 destination of a texture instruction.
*/
fs_inst *
fs_visitor::get_instruction_generating_reg(fs_inst *start,
fs_inst *end,
const fs_reg &reg)
{
if (end == start ||
end->is_partial_write() ||
reg.reladdr ||
!reg.equals(end->dst)) {
return NULL;
} else {
return end;
}
}
void
fs_visitor::setup_payload_gen6()
{
bool uses_depth =
(prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
unsigned barycentric_interp_modes =
(stage == MESA_SHADER_FRAGMENT) ?
((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
assert(devinfo->gen >= 6);
/* R0-1: masks, pixel X/Y coordinates. */
payload.num_regs = 2;
/* R2: only for 32-pixel dispatch.*/
/* R3-26: barycentric interpolation coordinates. These appear in the
* same order that they appear in the brw_wm_barycentric_interp_mode
* enum. Each set of coordinates occupies 2 registers if dispatch width
* == 8 and 4 registers if dispatch width == 16. Coordinates only
* appear if they were enabled using the "Barycentric Interpolation
* Mode" bits in WM_STATE.
*/
for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
if (barycentric_interp_modes & (1 << i)) {
payload.barycentric_coord_reg[i] = payload.num_regs;
payload.num_regs += 2;
if (dispatch_width == 16) {
payload.num_regs += 2;
}
}
}
/* R27: interpolated depth if uses source depth */
if (uses_depth) {
payload.source_depth_reg = payload.num_regs;
payload.num_regs++;
if (dispatch_width == 16) {
/* R28: interpolated depth if not SIMD8. */
payload.num_regs++;
}
}
/* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
if (uses_depth) {
payload.source_w_reg = payload.num_regs;
payload.num_regs++;
if (dispatch_width == 16) {
/* R30: interpolated W if not SIMD8. */
payload.num_regs++;
}
}
if (stage == MESA_SHADER_FRAGMENT) {
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
prog_data->uses_pos_offset = key->compute_pos_offset;
/* R31: MSAA position offsets. */
if (prog_data->uses_pos_offset) {
payload.sample_pos_reg = payload.num_regs;
payload.num_regs++;
}
}
/* R32: MSAA input coverage mask */
if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
assert(devinfo->gen >= 7);
payload.sample_mask_in_reg = payload.num_regs;
payload.num_regs++;
if (dispatch_width == 16) {
/* R33: input coverage mask if not SIMD8. */
payload.num_regs++;
}
}
/* R34-: bary for 32-pixel. */
/* R58-59: interp W for 32-pixel. */
if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
source_depth_to_render_target = true;
}
}
void
fs_visitor::setup_vs_payload()
{
/* R0: thread header, R1: urb handles */
payload.num_regs = 2;
}
void
fs_visitor::setup_cs_payload()
{
assert(devinfo->gen >= 7);
payload.num_regs = 1;
}
void
fs_visitor::assign_binding_table_offsets()
{
assert(stage == MESA_SHADER_FRAGMENT);
brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
uint32_t next_binding_table_offset = 0;
/* If there are no color regions, we still perform an FB write to a null
* renderbuffer, which we place at surface index 0.
*/
prog_data->binding_table.render_target_start = next_binding_table_offset;
next_binding_table_offset += MAX2(key->nr_color_regions, 1);
assign_common_binding_table_offsets(next_binding_table_offset);
}
void
fs_visitor::calculate_register_pressure()
{
invalidate_live_intervals();
calculate_live_intervals();
unsigned num_instructions = 0;
foreach_block(block, cfg)
num_instructions += block->instructions.length();
regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
for (unsigned reg = 0; reg < alloc.count; reg++) {
for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
regs_live_at_ip[ip] += alloc.sizes[reg];
}
}
void
fs_visitor::optimize()
{
/* bld is the common builder object pointing at the end of the program we
* used to translate it into i965 IR. For the optimization and lowering
* passes coming next, any code added after the end of the program without
* having explicitly called fs_builder::at() clearly points at a mistake.
* Ideally optimization passes wouldn't be part of the visitor so they
* wouldn't have access to bld at all, but they do, so just in case some
* pass forgets to ask for a location explicitly set it to NULL here to
* make it trip.
*/
bld = bld.at(NULL, NULL);
split_virtual_grfs();
move_uniform_array_access_to_pull_constants();
assign_constant_locations();
demote_pull_constants();
#define OPT(pass, args...) ({ \
pass_num++; \
bool this_progress = pass(args); \
\
if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
char filename[64]; \
snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
\
backend_shader::dump_instructions(filename); \
} \
\
progress = progress || this_progress; \
this_progress; \
})
if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
char filename[64];
snprintf(filename, 64, "%s%d-%04d-00-start",
stage_abbrev, dispatch_width,
shader_prog ? shader_prog->Name : 0);
backend_shader::dump_instructions(filename);
}
bool progress;
int iteration = 0;
int pass_num = 0;
do {
progress = false;
pass_num = 0;
iteration++;
OPT(remove_duplicate_mrf_writes);
OPT(opt_algebraic);
OPT(opt_cse);
OPT(opt_copy_propagate);
OPT(opt_peephole_predicated_break);
OPT(opt_cmod_propagation);
OPT(dead_code_eliminate);
OPT(opt_peephole_sel);
OPT(dead_control_flow_eliminate, this);
OPT(opt_register_renaming);
OPT(opt_redundant_discard_jumps);
OPT(opt_saturate_propagation);
OPT(opt_zero_samples);
OPT(register_coalesce);
OPT(compute_to_mrf);
OPT(eliminate_find_live_channel);
OPT(compact_virtual_grfs);
} while (progress);
pass_num = 0;
OPT(opt_sampler_eot);
if (OPT(lower_load_payload)) {
split_virtual_grfs();
OPT(register_coalesce);
OPT(compute_to_mrf);
OPT(dead_code_eliminate);
}
OPT(opt_combine_constants);
OPT(lower_integer_multiplication);
lower_uniform_pull_constant_loads();
}
/**
* Three source instruction must have a GRF/MRF destination register.
* ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
*/
void
fs_visitor::fixup_3src_null_dest()
{
foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
if (inst->is_3src() && inst->dst.is_null()) {
inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
inst->dst.type);
}
}
}
void
fs_visitor::allocate_registers()
{
bool allocated_without_spills;
static const enum instruction_scheduler_mode pre_modes[] = {
SCHEDULE_PRE,
SCHEDULE_PRE_NON_LIFO,
SCHEDULE_PRE_LIFO,
};
/* Try each scheduling heuristic to see if it can successfully register
* allocate without spilling. They should be ordered by decreasing
* performance but increasing likelihood of allocating.
*/
for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
schedule_instructions(pre_modes[i]);
if (0) {
assign_regs_trivial();
allocated_without_spills = true;
} else {
allocated_without_spills = assign_regs(false);
}
if (allocated_without_spills)
break;
}
if (!allocated_without_spills) {
/* We assume that any spilling is worse than just dropping back to
* SIMD8. There's probably actually some intermediate point where
* SIMD16 with a couple of spills is still better.
*/
if (dispatch_width == 16) {
fail("Failure to register allocate. Reduce number of "
"live scalar values to avoid this.");
} else {
compiler->shader_perf_log(log_data,
"%s shader triggered register spilling. "
"Try reducing the number of live scalar "
"values to improve performance.\n",
stage_name);
}
/* Since we're out of heuristics, just go spill registers until we
* get an allocation.
*/
while (!assign_regs(true)) {
if (failed)
break;
}
}
/* This must come after all optimization and register allocation, since
* it inserts dead code that happens to have side effects, and it does
* so based on the actual physical registers in use.
*/
insert_gen4_send_dependency_workarounds();
if (failed)
return;
if (!allocated_without_spills)
schedule_instructions(SCHEDULE_POST);
if (last_scratch > 0)
prog_data->total_scratch = brw_get_scratch_size(last_scratch);
}
bool
fs_visitor::run_vs(gl_clip_plane *clip_planes)
{
assert(stage == MESA_SHADER_VERTEX);
assign_common_binding_table_offsets(0);
setup_vs_payload();
if (shader_time_index >= 0)
emit_shader_time_begin();
emit_nir_code();
if (failed)
return false;
compute_clip_distance(clip_planes);
emit_urb_writes();
if (shader_time_index >= 0)
emit_shader_time_end();
calculate_cfg();
optimize();
assign_curb_setup();
assign_vs_urb_setup();
fixup_3src_null_dest();
allocate_registers();
return !failed;
}
bool
fs_visitor::run_fs(bool do_rep_send)
{
brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
assert(stage == MESA_SHADER_FRAGMENT);
sanity_param_count = prog->Parameters->NumParameters;
assign_binding_table_offsets();
if (devinfo->gen >= 6)
setup_payload_gen6();
else
setup_payload_gen4();
if (0) {
emit_dummy_fs();
} else if (do_rep_send) {
assert(dispatch_width == 16);
emit_repclear_shader();
} else {
if (shader_time_index >= 0)
emit_shader_time_begin();
calculate_urb_setup();
if (prog->InputsRead > 0) {
if (devinfo->gen < 6)
emit_interpolation_setup_gen4();
else
emit_interpolation_setup_gen6();
}
/* We handle discards by keeping track of the still-live pixels in f0.1.
* Initialize it with the dispatched pixels.
*/
if (wm_prog_data->uses_kill) {
fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
discard_init->flag_subreg = 1;
}
/* Generate FS IR for main(). (the visitor only descends into
* functions called "main").
*/
emit_nir_code();
if (failed)
return false;
if (wm_prog_data->uses_kill)
bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
if (wm_key->alpha_test_func)
emit_alpha_test();
emit_fb_writes();
if (shader_time_index >= 0)
emit_shader_time_end();
calculate_cfg();
optimize();
assign_curb_setup();
assign_urb_setup();
fixup_3src_null_dest();
allocate_registers();
if (failed)
return false;
}
if (dispatch_width == 8)
wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
else
wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
/* If any state parameters were appended, then ParameterValues could have
* been realloced, in which case the driver uniform storage set up by
* _mesa_associate_uniform_storage() would point to freed memory. Make
* sure that didn't happen.
*/
assert(sanity_param_count == prog->Parameters->NumParameters);
return !failed;
}
bool
fs_visitor::run_cs()
{
assert(stage == MESA_SHADER_COMPUTE);
assert(shader);
sanity_param_count = prog->Parameters->NumParameters;
assign_common_binding_table_offsets(0);
setup_cs_payload();
if (shader_time_index >= 0)
emit_shader_time_begin();
emit_nir_code();
if (failed)
return false;
emit_cs_terminate();
if (shader_time_index >= 0)
emit_shader_time_end();
calculate_cfg();
optimize();
assign_curb_setup();
fixup_3src_null_dest();
allocate_registers();
if (failed)
return false;
/* If any state parameters were appended, then ParameterValues could have
* been realloced, in which case the driver uniform storage set up by
* _mesa_associate_uniform_storage() would point to freed memory. Make
* sure that didn't happen.
*/
assert(sanity_param_count == prog->Parameters->NumParameters);
return !failed;
}
const unsigned *
brw_wm_fs_emit(struct brw_context *brw,
void *mem_ctx,
const struct brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
struct gl_fragment_program *fp,
struct gl_shader_program *prog,
unsigned *final_assembly_size)
{
bool start_busy = false;
double start_time = 0;
if (unlikely(brw->perf_debug)) {
start_busy = (brw->batch.last_bo &&
drm_intel_bo_busy(brw->batch.last_bo));
start_time = get_time();
}
struct brw_shader *shader = NULL;
if (prog)
shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
if (unlikely(INTEL_DEBUG & DEBUG_WM))
brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
int st_index8 = -1, st_index16 = -1;
if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
st_index8 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS8);
st_index16 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS16);
}
/* Now the main event: Visit the shader IR and generate our FS IR for it.
*/
fs_visitor v(brw->intelScreen->compiler, brw,
mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
prog, &fp->Base, 8, st_index8);
if (!v.run_fs(false /* do_rep_send */)) {
if (prog) {
prog->LinkStatus = false;
ralloc_strcat(&prog->InfoLog, v.fail_msg);
}
_mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
v.fail_msg);
return NULL;
}
cfg_t *simd16_cfg = NULL;
fs_visitor v2(brw->intelScreen->compiler, brw,
mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
prog, &fp->Base, 16, st_index16);
if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
if (!v.simd16_unsupported) {
/* Try a SIMD16 compile */
v2.import_uniforms(&v);
if (!v2.run_fs(brw->use_rep_send)) {
perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
} else {
simd16_cfg = v2.cfg;
}
}
}
cfg_t *simd8_cfg;
int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
simd8_cfg = NULL;
prog_data->no_8 = true;
} else {
simd8_cfg = v.cfg;
prog_data->no_8 = false;
}
fs_generator g(brw->intelScreen->compiler, brw,
mem_ctx, (void *) key, &prog_data->base,
&fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
char *name;
if (prog)
name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
prog->Label ? prog->Label : "unnamed",
prog->Name);
else
name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
g.enable_debug(name);
}
if (simd8_cfg)
g.generate_code(simd8_cfg, 8);
if (simd16_cfg)
prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
if (unlikely(brw->perf_debug) && shader) {
if (shader->compiled_once)
brw_wm_debug_recompile(brw, prog, key);
shader->compiled_once = true;
if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
perf_debug("FS compile took %.03f ms and stalled the GPU\n",
(get_time() - start_time) * 1000);
}
}
return g.get_assembly(final_assembly_size);
}
extern "C" bool
brw_fs_precompile(struct gl_context *ctx,
struct gl_shader_program *shader_prog,
struct gl_program *prog)
{
struct brw_context *brw = brw_context(ctx);
struct brw_wm_prog_key key;
struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
struct brw_fragment_program *bfp = brw_fragment_program(fp);
bool program_uses_dfdy = fp->UsesDFdy;
memset(&key, 0, sizeof(key));
if (brw->gen < 6) {
if (fp->UsesKill)
key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
/* Just assume depth testing. */
key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
}
if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
BRW_FS_VARYING_INPUT_MASK) > 16)
key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
if (fp->Base.InputsRead & VARYING_BIT_POS) {
key.drawable_height = ctx->DrawBuffer->Height;
}
key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
key.nr_color_regions > 1;
}
key.program_string_id = bfp->id;
uint32_t old_prog_offset = brw->wm.base.prog_offset;
struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
brw->wm.base.prog_offset = old_prog_offset;
brw->wm.prog_data = old_prog_data;
return success;
}
void
brw_setup_tex_for_precompile(struct brw_context *brw,
struct brw_sampler_prog_key_data *tex,
struct gl_program *prog)
{
const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
for (unsigned i = 0; i < sampler_count; i++) {
if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
/* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
tex->swizzles[i] =
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
} else {
/* Color sampler: assume no swizzling. */
tex->swizzles[i] = SWIZZLE_XYZW;
}
}
}