blob: 77b570df3cd547eb12a579f77e6085d30dc4af94 [file] [log] [blame]
/*
* Copyright 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include "isl.h"
#include "isl_gen4.h"
#include "isl_gen6.h"
#include "isl_gen7.h"
#include "isl_gen8.h"
#include "isl_gen9.h"
#include "isl_priv.h"
void PRINTFLIKE(3, 4) UNUSED
__isl_finishme(const char *file, int line, const char *fmt, ...)
{
va_list ap;
char buf[512];
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
}
void
isl_device_init(struct isl_device *dev,
const struct brw_device_info *info,
bool has_bit6_swizzling)
{
dev->info = info;
dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
dev->has_bit6_swizzling = has_bit6_swizzling;
/* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
* device properties at buildtime. Verify that the macros with the device
* properties chosen during runtime.
*/
ISL_DEV_GEN_SANITIZE(dev);
ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
/* Did we break hiz or stencil? */
if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
assert(info->has_hiz_and_separate_stencil);
if (info->must_use_separate_stencil)
assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
}
/**
* @brief Query the set of multisamples supported by the device.
*
* This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
* supported.
*/
isl_sample_count_mask_t ATTRIBUTE_CONST
isl_device_get_sample_counts(struct isl_device *dev)
{
if (ISL_DEV_GEN(dev) >= 9) {
return ISL_SAMPLE_COUNT_1_BIT |
ISL_SAMPLE_COUNT_2_BIT |
ISL_SAMPLE_COUNT_4_BIT |
ISL_SAMPLE_COUNT_8_BIT |
ISL_SAMPLE_COUNT_16_BIT;
} else if (ISL_DEV_GEN(dev) >= 8) {
return ISL_SAMPLE_COUNT_1_BIT |
ISL_SAMPLE_COUNT_2_BIT |
ISL_SAMPLE_COUNT_4_BIT |
ISL_SAMPLE_COUNT_8_BIT;
} else if (ISL_DEV_GEN(dev) >= 7) {
return ISL_SAMPLE_COUNT_1_BIT |
ISL_SAMPLE_COUNT_4_BIT |
ISL_SAMPLE_COUNT_8_BIT;
} else if (ISL_DEV_GEN(dev) >= 6) {
return ISL_SAMPLE_COUNT_1_BIT |
ISL_SAMPLE_COUNT_4_BIT;
} else {
return ISL_SAMPLE_COUNT_1_BIT;
}
}
/**
* @param[out] info is written only on success
*/
bool
isl_tiling_get_info(const struct isl_device *dev,
enum isl_tiling tiling,
uint32_t format_block_size,
struct isl_tile_info *tile_info)
{
const uint32_t bs = format_block_size;
uint32_t width, height;
assert(bs > 0);
switch (tiling) {
case ISL_TILING_LINEAR:
width = 1;
height = 1;
break;
case ISL_TILING_X:
width = 1 << 9;
height = 1 << 3;
break;
case ISL_TILING_Y0:
width = 1 << 7;
height = 1 << 5;
break;
case ISL_TILING_W:
/* XXX: Should W tile be same as Y? */
width = 1 << 6;
height = 1 << 6;
break;
case ISL_TILING_Yf:
case ISL_TILING_Ys: {
if (ISL_DEV_GEN(dev) < 9)
return false;
if (!isl_is_pow2(bs))
return false;
bool is_Ys = tiling == ISL_TILING_Ys;
width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
break;
}
default:
unreachable("not reached");
} /* end switch */
*tile_info = (struct isl_tile_info) {
.tiling = tiling,
.width = width,
.height = height,
.size = width * height,
};
return true;
}
void
isl_tiling_get_extent(const struct isl_device *dev,
enum isl_tiling tiling,
uint32_t format_block_size,
struct isl_extent2d *e)
{
struct isl_tile_info tile_info;
isl_tiling_get_info(dev, tiling, format_block_size, &tile_info);
*e = isl_extent2d(tile_info.width, tile_info.height);
}
/**
* @param[out] tiling is set only on success
*/
bool
isl_surf_choose_tiling(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_tiling *tiling)
{
isl_tiling_flags_t tiling_flags = info->tiling_flags;
/* Filter if multiple tiling options are given */
if (!isl_is_pow2(tiling_flags)) {
if (ISL_DEV_GEN(dev) >= 7) {
gen7_filter_tiling(dev, info, &tiling_flags);
} else {
isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
gen7_filter_tiling(dev, info, &tiling_flags);
}
}
#define CHOOSE(__tiling) \
do { \
if (tiling_flags & (1u << (__tiling))) { \
*tiling = (__tiling); \
return true; \
} \
} while (0)
/* Of the tiling modes remaining, choose the one that offers the best
* performance.
*/
if (info->dim == ISL_SURF_DIM_1D) {
/* Prefer linear for 1D surfaces because they do not benefit from
* tiling. To the contrary, tiling leads to wasted memory and poor
* memory locality due to the swizzling and alignment restrictions
* required in tiled surfaces.
*/
CHOOSE(ISL_TILING_LINEAR);
}
CHOOSE(ISL_TILING_Ys);
CHOOSE(ISL_TILING_Yf);
CHOOSE(ISL_TILING_Y0);
CHOOSE(ISL_TILING_X);
CHOOSE(ISL_TILING_W);
CHOOSE(ISL_TILING_LINEAR);
#undef CHOOSE
/* No tiling mode accomodates the inputs. */
return false;
}
static bool
isl_choose_msaa_layout(const struct isl_device *dev,
const struct isl_surf_init_info *info,
enum isl_tiling tiling,
enum isl_msaa_layout *msaa_layout)
{
if (ISL_DEV_GEN(dev) >= 8) {
return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
} else if (ISL_DEV_GEN(dev) >= 7) {
return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
} else if (ISL_DEV_GEN(dev) >= 6) {
return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
} else {
return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
}
}
static void
isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
uint32_t *width, uint32_t *height)
{
assert(isl_is_pow2(samples));
/* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
* Sizes (p133):
*
* If the surface is multisampled and it is a depth or stencil surface
* or Multisampled Surface StorageFormat in SURFACE_STATE is
* MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
* proceeding: [...]
*/
if (width)
*width = isl_align(*width, 2) << ((ffs(samples) - 0) / 2);
if (height)
*height = isl_align(*height, 2) << ((ffs(samples) - 1) / 2);
}
static enum isl_array_pitch_span
isl_choose_array_pitch_span(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_dim_layout dim_layout,
const struct isl_extent4d *phys_level0_sa)
{
switch (dim_layout) {
case ISL_DIM_LAYOUT_GEN9_1D:
case ISL_DIM_LAYOUT_GEN4_2D:
if (ISL_DEV_GEN(dev) >= 8) {
/* QPitch becomes programmable in Broadwell. So choose the
* most compact QPitch possible in order to conserve memory.
*
* From the Broadwell PRM >> Volume 2d: Command Reference: Structures
* >> RENDER_SURFACE_STATE Surface QPitch (p325):
*
* - Software must ensure that this field is set to a value
* sufficiently large such that the array slices in the surface
* do not overlap. Refer to the Memory Data Formats section for
* information on how surfaces are stored in memory.
*
* - This field specifies the distance in rows between array
* slices. It is used only in the following cases:
*
* - Surface Array is enabled OR
* - Number of Mulitsamples is not NUMSAMPLES_1 and
* Multisampled Surface Storage Format set to MSFMT_MSS OR
* - Surface Type is SURFTYPE_CUBE
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
} else if (ISL_DEV_GEN(dev) >= 7) {
/* Note that Ivybridge introduces
* RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
* driver more control over the QPitch.
*/
if (phys_level0_sa->array_len == 1) {
/* The hardware will never use the QPitch. So choose the most
* compact QPitch possible in order to conserve memory.
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
if (isl_surf_usage_is_depth_or_stencil(info->usage)) {
/* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
* Section 6.18.4.7: Surface Arrays (p112):
*
* If Surface Array Spacing is set to ARYSPC_FULL (note that
* the depth buffer and stencil buffer have an implied value of
* ARYSPC_FULL):
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
if (info->levels == 1) {
/* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
* to ARYSPC_LOD0.
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
return ISL_ARRAY_PITCH_SPAN_FULL;
} else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
isl_surf_usage_is_stencil(info->usage)) {
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
*
* The separate stencil buffer does not support mip mapping, thus
* the storage for LODs other than LOD 0 is not needed.
*/
assert(info->levels == 1);
assert(phys_level0_sa->array_len == 1);
return ISL_ARRAY_PITCH_SPAN_COMPACT;
} else {
if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
isl_surf_usage_is_stencil(info->usage)) {
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
*
* The separate stencil buffer does not support mip mapping,
* thus the storage for LODs other than LOD 0 is not needed.
*/
assert(info->levels == 1);
assert(phys_level0_sa->array_len == 1);
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
if (phys_level0_sa->array_len == 1) {
/* The hardware will never use the QPitch. So choose the most
* compact QPitch possible in order to conserve memory.
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
return ISL_ARRAY_PITCH_SPAN_FULL;
}
case ISL_DIM_LAYOUT_GEN4_3D:
/* The hardware will never use the QPitch. So choose the most
* compact QPitch possible in order to conserve memory.
*/
return ISL_ARRAY_PITCH_SPAN_COMPACT;
}
unreachable("bad isl_dim_layout");
return ISL_ARRAY_PITCH_SPAN_FULL;
}
static void
isl_choose_image_alignment_el(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_tiling tiling,
enum isl_msaa_layout msaa_layout,
struct isl_extent3d *image_align_el)
{
if (ISL_DEV_GEN(dev) >= 9) {
gen9_choose_image_alignment_el(dev, info, tiling, msaa_layout,
image_align_el);
} else if (ISL_DEV_GEN(dev) >= 8) {
gen8_choose_image_alignment_el(dev, info, tiling, msaa_layout,
image_align_el);
} else if (ISL_DEV_GEN(dev) >= 7) {
gen7_choose_image_alignment_el(dev, info, tiling, msaa_layout,
image_align_el);
} else if (ISL_DEV_GEN(dev) >= 6) {
gen6_choose_image_alignment_el(dev, info, tiling, msaa_layout,
image_align_el);
} else {
gen4_choose_image_alignment_el(dev, info, tiling, msaa_layout,
image_align_el);
}
}
static enum isl_dim_layout
isl_surf_choose_dim_layout(const struct isl_device *dev,
enum isl_surf_dim logical_dim)
{
if (ISL_DEV_GEN(dev) >= 9) {
switch (logical_dim) {
case ISL_SURF_DIM_1D:
return ISL_DIM_LAYOUT_GEN9_1D;
case ISL_SURF_DIM_2D:
case ISL_SURF_DIM_3D:
return ISL_DIM_LAYOUT_GEN4_2D;
}
} else {
switch (logical_dim) {
case ISL_SURF_DIM_1D:
case ISL_SURF_DIM_2D:
return ISL_DIM_LAYOUT_GEN4_2D;
case ISL_SURF_DIM_3D:
return ISL_DIM_LAYOUT_GEN4_3D;
}
}
unreachable("bad isl_surf_dim");
return ISL_DIM_LAYOUT_GEN4_2D;
}
/**
* Calculate the physical extent of the surface's first level, in units of
* surface samples. The result is aligned to the format's compression block.
*/
static void
isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_dim_layout dim_layout,
enum isl_tiling tiling,
enum isl_msaa_layout msaa_layout,
struct isl_extent4d *phys_level0_sa)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
if (isl_format_is_yuv(info->format))
isl_finishme("%s:%s: YUV format", __FILE__, __func__);
switch (info->dim) {
case ISL_SURF_DIM_1D:
assert(info->height == 1);
assert(info->depth == 1);
assert(info->samples == 1);
assert(!isl_format_is_compressed(info->format));
switch (dim_layout) {
case ISL_DIM_LAYOUT_GEN4_3D:
unreachable("bad isl_dim_layout");
case ISL_DIM_LAYOUT_GEN9_1D:
case ISL_DIM_LAYOUT_GEN4_2D:
*phys_level0_sa = (struct isl_extent4d) {
.w = info->width,
.h = 1,
.d = 1,
.a = info->array_len,
};
break;
}
break;
case ISL_SURF_DIM_2D:
assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
if (tiling == ISL_TILING_Ys && info->samples > 1)
isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
switch (msaa_layout) {
case ISL_MSAA_LAYOUT_NONE:
assert(info->depth == 1);
assert(info->samples == 1);
*phys_level0_sa = (struct isl_extent4d) {
.w = isl_align_npot(info->width, fmtl->bw),
.h = isl_align_npot(info->height, fmtl->bh),
.d = 1,
.a = info->array_len,
};
break;
case ISL_MSAA_LAYOUT_ARRAY:
assert(info->depth == 1);
assert(info->array_len == 1);
assert(!isl_format_is_compressed(info->format));
*phys_level0_sa = (struct isl_extent4d) {
.w = info->width,
.h = info->height,
.d = 1,
.a = info->samples,
};
break;
case ISL_MSAA_LAYOUT_INTERLEAVED:
assert(info->depth == 1);
assert(info->array_len == 1);
assert(!isl_format_is_compressed(info->format));
*phys_level0_sa = (struct isl_extent4d) {
.w = info->width,
.h = info->height,
.d = 1,
.a = 1,
};
isl_msaa_interleaved_scale_px_to_sa(info->samples,
&phys_level0_sa->w,
&phys_level0_sa->h);
break;
}
break;
case ISL_SURF_DIM_3D:
assert(info->array_len == 1);
assert(info->samples == 1);
if (fmtl->bd > 1) {
isl_finishme("%s:%s: compression block with depth > 1",
__FILE__, __func__);
}
switch (dim_layout) {
case ISL_DIM_LAYOUT_GEN9_1D:
unreachable("bad isl_dim_layout");
case ISL_DIM_LAYOUT_GEN4_2D:
assert(ISL_DEV_GEN(dev) >= 9);
*phys_level0_sa = (struct isl_extent4d) {
.w = isl_align_npot(info->width, fmtl->bw),
.h = isl_align_npot(info->height, fmtl->bh),
.d = 1,
.a = info->depth,
};
break;
case ISL_DIM_LAYOUT_GEN4_3D:
assert(ISL_DEV_GEN(dev) < 9);
*phys_level0_sa = (struct isl_extent4d) {
.w = isl_align(info->width, fmtl->bw),
.h = isl_align(info->height, fmtl->bh),
.d = info->depth,
.a = 1,
};
break;
}
break;
}
}
/**
* A variant of isl_calc_phys_slice0_extent_sa() specific to
* ISL_DIM_LAYOUT_GEN4_2D.
*/
static void
isl_calc_phys_slice0_extent_sa_gen4_2d(
const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_msaa_layout msaa_layout,
const struct isl_extent3d *image_align_sa,
const struct isl_extent4d *phys_level0_sa,
struct isl_extent2d *phys_slice0_sa)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
assert(phys_level0_sa->depth == 1);
if (info->levels == 1 && msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED) {
/* Do not pad the surface to the image alignment. Instead, pad it only
* to the pixel format's block alignment.
*
* For tiled surfaces, using a reduced alignment here avoids wasting CPU
* cycles on the below mipmap layout caluclations. Reducing the
* alignment here is safe because we later align the row pitch and array
* pitch to the tile boundary. It is safe even for
* ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
* to accomodate the interleaved samples.
*
* For linear surfaces, reducing the alignment here permits us to later
* choose an arbitrary, non-aligned row pitch. If the surface backs
* a VkBuffer, then an arbitrary pitch may be needed to accomodate
* VkBufferImageCopy::bufferRowLength.
*/
*phys_slice0_sa = (struct isl_extent2d) {
.w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
.h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
};
return;
}
uint32_t slice_top_w = 0;
uint32_t slice_bottom_w = 0;
uint32_t slice_left_h = 0;
uint32_t slice_right_h = 0;
uint32_t W0 = phys_level0_sa->w;
uint32_t H0 = phys_level0_sa->h;
for (uint32_t l = 0; l < info->levels; ++l) {
uint32_t W = isl_minify(W0, l);
uint32_t H = isl_minify(H0, l);
if (msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
/* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
* Sizes (p133):
*
* If the surface is multisampled and it is a depth or stencil
* surface or Multisampled Surface StorageFormat in
* SURFACE_STATE is MSFMT_DEPTH_STENCIL, W_L and H_L must be
* adjusted as follows before proceeding: [...]
*/
isl_msaa_interleaved_scale_px_to_sa(info->samples, &W, &H);
}
uint32_t w = isl_align_npot(W, image_align_sa->w);
uint32_t h = isl_align_npot(H, image_align_sa->h);
if (l == 0) {
slice_top_w = w;
slice_left_h = h;
slice_right_h = h;
} else if (l == 1) {
slice_bottom_w = w;
slice_left_h += h;
} else if (l == 2) {
slice_bottom_w += w;
slice_right_h += h;
} else {
slice_right_h += h;
}
}
*phys_slice0_sa = (struct isl_extent2d) {
.w = MAX(slice_top_w, slice_bottom_w),
.h = MAX(slice_left_h, slice_right_h),
};
}
/**
* A variant of isl_calc_phys_slice0_extent_sa() specific to
* ISL_DIM_LAYOUT_GEN4_3D.
*/
static void
isl_calc_phys_slice0_extent_sa_gen4_3d(
const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
const struct isl_extent3d *image_align_sa,
const struct isl_extent4d *phys_level0_sa,
struct isl_extent2d *phys_slice0_sa)
{
assert(info->samples == 1);
assert(phys_level0_sa->array_len == 1);
uint32_t slice_w = 0;
uint32_t slice_h = 0;
uint32_t W0 = phys_level0_sa->w;
uint32_t H0 = phys_level0_sa->h;
uint32_t D0 = phys_level0_sa->d;
for (uint32_t l = 0; l < info->levels; ++l) {
uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
uint32_t max_layers_horiz = MIN(level_d, 1u << l);
uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
slice_w = MAX(slice_w, level_w * max_layers_horiz);
slice_h += level_h * max_layers_vert;
}
*phys_slice0_sa = (struct isl_extent2d) {
.w = slice_w,
.h = slice_h,
};
}
/**
* A variant of isl_calc_phys_slice0_extent_sa() specific to
* ISL_DIM_LAYOUT_GEN9_1D.
*/
static void
isl_calc_phys_slice0_extent_sa_gen9_1d(
const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
const struct isl_extent3d *image_align_sa,
const struct isl_extent4d *phys_level0_sa,
struct isl_extent2d *phys_slice0_sa)
{
MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
assert(phys_level0_sa->height == 1);
assert(phys_level0_sa->depth == 1);
assert(info->samples == 1);
assert(image_align_sa->w >= fmtl->bw);
uint32_t slice_w = 0;
const uint32_t W0 = phys_level0_sa->w;
for (uint32_t l = 0; l < info->levels; ++l) {
uint32_t W = isl_minify(W0, l);
uint32_t w = isl_align_npot(W, image_align_sa->w);
slice_w += w;
}
*phys_slice0_sa = isl_extent2d(slice_w, 1);
}
/**
* Calculate the physical extent of the surface's first array slice, in units
* of surface samples. If the surface is multi-leveled, then the result will
* be aligned to \a image_align_sa.
*/
static void
isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
enum isl_dim_layout dim_layout,
enum isl_msaa_layout msaa_layout,
const struct isl_extent3d *image_align_sa,
const struct isl_extent4d *phys_level0_sa,
struct isl_extent2d *phys_slice0_sa)
{
switch (dim_layout) {
case ISL_DIM_LAYOUT_GEN9_1D:
isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
image_align_sa, phys_level0_sa,
phys_slice0_sa);
return;
case ISL_DIM_LAYOUT_GEN4_2D:
isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
image_align_sa, phys_level0_sa,
phys_slice0_sa);
return;
case ISL_DIM_LAYOUT_GEN4_3D:
isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
phys_level0_sa, phys_slice0_sa);
return;
}
}
/**
* Calculate the pitch between physical array slices, in units of rows of
* surface elements.
*/
static uint32_t
isl_calc_array_pitch_el_rows(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
const struct isl_tile_info *tile_info,
enum isl_dim_layout dim_layout,
enum isl_array_pitch_span array_pitch_span,
const struct isl_extent3d *image_align_sa,
const struct isl_extent4d *phys_level0_sa,
const struct isl_extent2d *phys_slice0_sa)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
uint32_t pitch_sa_rows = 0;
switch (dim_layout) {
case ISL_DIM_LAYOUT_GEN9_1D:
/* Each row is an array slice */
pitch_sa_rows = 1;
break;
case ISL_DIM_LAYOUT_GEN4_2D:
switch (array_pitch_span) {
case ISL_ARRAY_PITCH_SPAN_COMPACT:
pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
break;
case ISL_ARRAY_PITCH_SPAN_FULL: {
/* The QPitch equation is found in the Broadwell PRM >> Volume 5:
* Memory Views >> Common Surface Formats >> Surface Layout >> 2D
* Surfaces >> Surface Arrays.
*/
uint32_t H0_sa = phys_level0_sa->h;
uint32_t H1_sa = isl_minify(H0_sa, 1);
uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
uint32_t m;
if (ISL_DEV_GEN(dev) >= 7) {
/* The QPitch equation changed slightly in Ivybridge. */
m = 12;
} else {
m = 11;
}
pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
(info->height % 4 == 1)) {
/* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
*
* [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
* the value calculated in the equation above , for every
* other odd Surface Height starting from 1 i.e. 1,5,9,13.
*
* XXX(chadv): Is the errata natural corollary of the physical
* layout of interleaved samples?
*/
pitch_sa_rows += 4;
}
pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
} /* end case */
break;
}
break;
case ISL_DIM_LAYOUT_GEN4_3D:
assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
break;
default:
unreachable("bad isl_dim_layout");
break;
}
assert(pitch_sa_rows % fmtl->bh == 0);
uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
if (ISL_DEV_GEN(dev) >= 9 &&
info->dim == ISL_SURF_DIM_3D &&
tile_info->tiling != ISL_TILING_LINEAR) {
/* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
*
* Tile Mode != Linear: This field must be set to an integer multiple
* of the tile height
*/
pitch_el_rows = isl_align(pitch_el_rows, tile_info->height);
}
return pitch_el_rows;
}
/**
* Calculate the pitch of each surface row, in bytes.
*/
static uint32_t
isl_calc_row_pitch(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
const struct isl_tile_info *tile_info,
const struct isl_extent3d *image_align_sa,
const struct isl_extent2d *phys_slice0_sa)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
uint32_t row_pitch = info->min_pitch;
/* First, align the surface to a cache line boundary, as the PRM explains
* below.
*
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
* Formats >> Surface Padding Requirements >> Render Target and Media
* Surfaces:
*
* The data port accesses data (pixels) outside of the surface if they
* are contained in the same cache request as pixels that are within the
* surface. These pixels will not be returned by the requesting message,
* however if these pixels lie outside of defined pages in the GTT,
* a GTT error will result when the cache request is processed. In order
* to avoid these GTT errors, “padding” at the bottom of the surface is
* sometimes necessary.
*
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
* Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
*
* The sampling engine accesses texels outside of the surface if they
* are contained in the same cache line as texels that are within the
* surface. These texels will not participate in any calculation
* performed by the sampling engine and will not affect the result of
* any sampling engine operation, however if these texels lie outside of
* defined pages in the GTT, a GTT error will result when the cache line
* is accessed. In order to avoid these GTT errors, “padding” at the
* bottom and right side of a sampling engine surface is sometimes
* necessary.
*
* It is possible that a cache line will straddle a page boundary if the
* base address or pitch is not aligned. All pages included in the cache
* lines that are part of the surface must map to valid GTT entries to
* avoid errors. To determine the necessary padding on the bottom and
* right side of the surface, refer to the table in Alignment Unit Size
* section for the i and j parameters for the surface format in use. The
* surface must then be extended to the next multiple of the alignment
* unit size in each dimension, and all texels contained in this
* extended surface must have valid GTT entries.
*
* For example, suppose the surface size is 15 texels by 10 texels and
* the alignment parameters are i=4 and j=2. In this case, the extended
* surface would be 16 by 10. Note that these calculations are done in
* texels, and must be converted to bytes based on the surface format
* being used to determine whether additional pages need to be defined.
*/
assert(phys_slice0_sa->w % fmtl->bw == 0);
row_pitch = MAX(row_pitch, fmtl->bs * (phys_slice0_sa->w / fmtl->bw));
switch (tile_info->tiling) {
case ISL_TILING_LINEAR:
/* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
* RENDER_SURFACE_STATE Surface Pitch (p349):
*
* - For linear render target surfaces and surfaces accessed with the
* typed data port messages, the pitch must be a multiple of the
* element size for non-YUV surface formats. Pitch must be
* a multiple of 2 * element size for YUV surface formats.
*
* - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
* ignore because isl doesn't do buffers.]
*
* - For other linear surfaces, the pitch can be any multiple of
* bytes.
*/
if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
if (isl_format_is_yuv(info->format)) {
row_pitch = isl_align_npot(row_pitch, 2 * fmtl->bs);
} else {
row_pitch = isl_align_npot(row_pitch, fmtl->bs);
}
}
break;
default:
/* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
* RENDER_SURFACE_STATE Surface Pitch (p349):
*
* - For tiled surfaces, the pitch must be a multiple of the tile
* width.
*/
row_pitch = isl_align(row_pitch, tile_info->width);
break;
}
return row_pitch;
}
/**
* Calculate the surface's total height, including padding, in units of
* surface elements.
*/
static uint32_t
isl_calc_total_height_el(const struct isl_device *dev,
const struct isl_surf_init_info *restrict info,
const struct isl_tile_info *tile_info,
uint32_t phys_array_len,
uint32_t row_pitch,
uint32_t array_pitch_el_rows)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
uint32_t total_h_el = phys_array_len * array_pitch_el_rows;
uint32_t pad_bytes = 0;
/* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
* Formats >> Surface Padding Requirements >> Render Target and Media
* Surfaces:
*
* The data port accesses data (pixels) outside of the surface if they
* are contained in the same cache request as pixels that are within the
* surface. These pixels will not be returned by the requesting message,
* however if these pixels lie outside of defined pages in the GTT,
* a GTT error will result when the cache request is processed. In
* order to avoid these GTT errors, “padding” at the bottom of the
* surface is sometimes necessary.
*
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
* Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
*
* ... Lots of padding requirements, all listed separately below.
*/
/* We can safely ignore the first padding requirement, quoted below,
* because isl doesn't do buffers.
*
* - [pre-BDW] For buffers, which have no inherent “height,” padding
* requirements are different. A buffer must be padded to the next
* multiple of 256 array elements, with an additional 16 bytes added
* beyond that to account for the L1 cache line.
*/
/*
* - For compressed textures [...], padding at the bottom of the surface
* is to an even compressed row.
*/
if (isl_format_is_compressed(info->format))
total_h_el = isl_align(total_h_el, 2);
/*
* - For cube surfaces, an additional two rows of padding are required
* at the bottom of the surface.
*/
if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
total_h_el += 2;
/*
* - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
* additional padding is required. These surfaces require an extra row
* plus 16 bytes of padding at the bottom in addition to the general
* padding requirements.
*/
if (isl_format_is_yuv(info->format) &&
(fmtl->bs == 96 || fmtl->bs == 48|| fmtl->bs == 24)) {
total_h_el += 1;
pad_bytes += 16;
}
/*
* - For linear surfaces, additional padding of 64 bytes is required at
* the bottom of the surface. This is in addition to the padding
* required above.
*/
if (tile_info->tiling == ISL_TILING_LINEAR)
pad_bytes += 64;
/* The below text weakens, not strengthens, the padding requirements for
* linear surfaces. Therefore we can safely ignore it.
*
* - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
* non-MSAA, non-mip-mapped surfaces in linear memory, the only
* padding requirement is to the next aligned 64-byte boundary beyond
* the end of the surface. The rest of the padding requirements
* documented above do not apply to these surfaces.
*/
/*
* - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
* height % 4 != 0, the surface must be padded with
* 4-(height % 4)*Surface Pitch # of bytes.
*/
if (ISL_DEV_GEN(dev) >= 9 &&
tile_info->tiling == ISL_TILING_LINEAR &&
(info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
total_h_el = isl_align(total_h_el, 4);
}
/*
* - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
* to 4 times the Surface Pitch # of bytes
*/
if (ISL_DEV_GEN(dev) >= 9 &&
tile_info->tiling == ISL_TILING_LINEAR &&
info->dim == ISL_SURF_DIM_1D) {
total_h_el += 4;
}
/* Be sloppy. Align any leftover padding to a row boundary. */
total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
return total_h_el;
}
bool
isl_surf_init_s(const struct isl_device *dev,
struct isl_surf *surf,
const struct isl_surf_init_info *restrict info)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
const struct isl_extent4d logical_level0_px = {
.w = info->width,
.h = info->height,
.d = info->depth,
.a = info->array_len,
};
enum isl_dim_layout dim_layout =
isl_surf_choose_dim_layout(dev, info->dim);
enum isl_tiling tiling;
if (!isl_surf_choose_tiling(dev, info, &tiling))
return false;
struct isl_tile_info tile_info;
if (!isl_tiling_get_info(dev, tiling, fmtl->bs, &tile_info))
return false;
enum isl_msaa_layout msaa_layout;
if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
return false;
struct isl_extent3d image_align_el;
isl_choose_image_alignment_el(dev, info, tiling, msaa_layout,
&image_align_el);
struct isl_extent3d image_align_sa =
isl_extent3d_el_to_sa(info->format, image_align_el);
struct isl_extent4d phys_level0_sa;
isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
&phys_level0_sa);
assert(phys_level0_sa.w % fmtl->bw == 0);
assert(phys_level0_sa.h % fmtl->bh == 0);
enum isl_array_pitch_span array_pitch_span =
isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
struct isl_extent2d phys_slice0_sa;
isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
&image_align_sa, &phys_level0_sa,
&phys_slice0_sa);
assert(phys_slice0_sa.w % fmtl->bw == 0);
assert(phys_slice0_sa.h % fmtl->bh == 0);
const uint32_t row_pitch = isl_calc_row_pitch(dev, info, &tile_info,
&image_align_sa,
&phys_slice0_sa);
const uint32_t array_pitch_el_rows =
isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
array_pitch_span, &image_align_sa,
&phys_level0_sa, &phys_slice0_sa);
const uint32_t total_h_el =
isl_calc_total_height_el(dev, info, &tile_info,
phys_level0_sa.array_len, row_pitch,
array_pitch_el_rows);
const uint32_t total_h_sa = total_h_el * fmtl->bh;
const uint32_t size = row_pitch * isl_align(total_h_sa, tile_info.height);
/* Alignment of surface base address, in bytes */
uint32_t base_alignment = MAX(1, info->min_alignment);
assert(isl_is_pow2(base_alignment) && isl_is_pow2(tile_info.size));
base_alignment = MAX(base_alignment, tile_info.size);
*surf = (struct isl_surf) {
.dim = info->dim,
.dim_layout = dim_layout,
.msaa_layout = msaa_layout,
.tiling = tiling,
.format = info->format,
.levels = info->levels,
.samples = info->samples,
.image_alignment_el = image_align_el,
.logical_level0_px = logical_level0_px,
.phys_level0_sa = phys_level0_sa,
.size = size,
.alignment = base_alignment,
.row_pitch = row_pitch,
.array_pitch_el_rows = array_pitch_el_rows,
.array_pitch_span = array_pitch_span,
.usage = info->usage,
};
return true;
}
void
isl_surf_get_tile_info(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_tile_info *tile_info)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
isl_tiling_get_info(dev, surf->tiling, fmtl->bs, tile_info);
}
void
isl_surf_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_surf_fill_state_info *restrict info)
{
#ifndef NDEBUG
isl_surf_usage_flags_t _base_usage =
info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_STORAGE_BIT);
/* They may only specify one of the above bits at a time */
assert(__builtin_popcount(_base_usage) == 1);
/* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
#endif
if (info->surf->dim == ISL_SURF_DIM_3D) {
assert(info->view->base_array_layer + info->view->array_len <=
info->surf->logical_level0_px.depth);
} else {
assert(info->view->base_array_layer + info->view->array_len <=
info->surf->logical_level0_px.array_len);
}
switch (ISL_DEV_GEN(dev)) {
case 7:
if (ISL_DEV_IS_HASWELL(dev)) {
isl_gen75_surf_fill_state_s(dev, state, info);
} else {
isl_gen7_surf_fill_state_s(dev, state, info);
}
break;
case 8:
isl_gen8_surf_fill_state_s(dev, state, info);
break;
case 9:
isl_gen9_surf_fill_state_s(dev, state, info);
break;
default:
assert(!"Cannot fill surface state for this gen");
}
}
void
isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_buffer_fill_state_info *restrict info)
{
switch (ISL_DEV_GEN(dev)) {
case 7:
if (ISL_DEV_IS_HASWELL(dev)) {
isl_gen75_buffer_fill_state_s(state, info);
} else {
isl_gen7_buffer_fill_state_s(state, info);
}
break;
case 8:
isl_gen8_buffer_fill_state_s(state, info);
break;
case 9:
isl_gen9_buffer_fill_state_s(state, info);
break;
default:
assert(!"Cannot fill surface state for this gen");
}
}
/**
* A variant of isl_surf_get_image_offset_sa() specific to
* ISL_DIM_LAYOUT_GEN4_2D.
*/
static void
get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
uint32_t level, uint32_t layer,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa)
{
assert(level < surf->levels);
assert(layer < surf->phys_level0_sa.array_len);
assert(surf->phys_level0_sa.depth == 1);
const struct isl_extent3d image_align_sa =
isl_surf_get_image_alignment_sa(surf);
const uint32_t W0 = surf->phys_level0_sa.width;
const uint32_t H0 = surf->phys_level0_sa.height;
uint32_t x = 0;
uint32_t y = layer * isl_surf_get_array_pitch_sa_rows(surf);
for (uint32_t l = 0; l < level; ++l) {
if (l == 1) {
uint32_t W = isl_minify(W0, l);
if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED)
isl_msaa_interleaved_scale_px_to_sa(surf->samples, &W, NULL);
x += isl_align_npot(W, image_align_sa.w);
} else {
uint32_t H = isl_minify(H0, l);
if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED)
isl_msaa_interleaved_scale_px_to_sa(surf->samples, NULL, &H);
y += isl_align_npot(H, image_align_sa.h);
}
}
*x_offset_sa = x;
*y_offset_sa = y;
}
/**
* A variant of isl_surf_get_image_offset_sa() specific to
* ISL_DIM_LAYOUT_GEN4_3D.
*/
static void
get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
uint32_t level, uint32_t logical_z_offset_px,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa)
{
assert(level < surf->levels);
assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
assert(surf->phys_level0_sa.array_len == 1);
const struct isl_extent3d image_align_sa =
isl_surf_get_image_alignment_sa(surf);
const uint32_t W0 = surf->phys_level0_sa.width;
const uint32_t H0 = surf->phys_level0_sa.height;
const uint32_t D0 = surf->phys_level0_sa.depth;
uint32_t x = 0;
uint32_t y = 0;
for (uint32_t l = 0; l < level; ++l) {
const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
y += level_h * max_layers_vert;
}
const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
x += level_w * (logical_z_offset_px % max_layers_horiz);
y += level_h * (logical_z_offset_px / max_layers_horiz);
*x_offset_sa = x;
*y_offset_sa = y;
}
/**
* A variant of isl_surf_get_image_offset_sa() specific to
* ISL_DIM_LAYOUT_GEN9_1D.
*/
static void
get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
uint32_t level, uint32_t layer,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa)
{
assert(level < surf->levels);
assert(layer < surf->phys_level0_sa.array_len);
assert(surf->phys_level0_sa.height == 1);
assert(surf->phys_level0_sa.depth == 1);
assert(surf->samples == 1);
const uint32_t W0 = surf->phys_level0_sa.width;
const struct isl_extent3d image_align_sa =
isl_surf_get_image_alignment_sa(surf);
uint32_t x = 0;
for (uint32_t l = 0; l < level; ++l) {
uint32_t W = isl_minify(W0, l);
uint32_t w = isl_align_npot(W, image_align_sa.w);
x += w;
}
*x_offset_sa = x;
*y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
}
/**
* Calculate the offset, in units of surface samples, to a subimage in the
* surface.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
static void
get_image_offset_sa(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa)
{
assert(level < surf->levels);
assert(logical_array_layer < surf->logical_level0_px.array_len);
assert(logical_z_offset_px
< isl_minify(surf->logical_level0_px.depth, level));
switch (surf->dim_layout) {
case ISL_DIM_LAYOUT_GEN9_1D:
get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
x_offset_sa, y_offset_sa);
break;
case ISL_DIM_LAYOUT_GEN4_2D:
get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
+ logical_z_offset_px,
x_offset_sa, y_offset_sa);
break;
case ISL_DIM_LAYOUT_GEN4_3D:
get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
x_offset_sa, y_offset_sa);
break;
default:
unreachable("not reached");
}
}
void
isl_surf_get_image_offset_el(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_el,
uint32_t *y_offset_el)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
assert(level < surf->levels);
assert(logical_array_layer < surf->logical_level0_px.array_len);
assert(logical_z_offset_px
< isl_minify(surf->logical_level0_px.depth, level));
uint32_t x_offset_sa, y_offset_sa;
get_image_offset_sa(surf, level,
logical_array_layer,
logical_z_offset_px,
&x_offset_sa,
&y_offset_sa);
*x_offset_el = x_offset_sa / fmtl->bw;
*y_offset_el = y_offset_sa / fmtl->bh;
}
void
isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
enum isl_tiling tiling,
uint8_t bs,
uint32_t row_pitch,
uint32_t total_x_offset_el,
uint32_t total_y_offset_el,
uint32_t *base_address_offset,
uint32_t *x_offset_el,
uint32_t *y_offset_el)
{
struct isl_tile_info tile_info;
isl_tiling_get_info(dev, tiling, bs, &tile_info);
/* This function only really works for power-of-two surfaces. In
* theory, we could make it work for non-power-of-two surfaces by going
* to the left until we find a block that is bs-aligned. The Vulkan
* driver doesn't use non-power-of-two tiled surfaces so we'll leave
* this unimplemented for now.
*/
assert(tiling == ISL_TILING_LINEAR || isl_is_pow2(bs));
uint32_t small_y_offset_el = total_y_offset_el % tile_info.height;
uint32_t big_y_offset_el = total_y_offset_el - small_y_offset_el;
uint32_t big_y_offset_B = big_y_offset_el * row_pitch;
uint32_t total_x_offset_B = total_x_offset_el * bs;
uint32_t small_x_offset_B = total_x_offset_B % tile_info.width;
uint32_t small_x_offset_el = small_x_offset_B / bs;
uint32_t big_x_offset_B = (total_x_offset_B / tile_info.width) * tile_info.size;
*base_address_offset = big_y_offset_B + big_x_offset_B;
*x_offset_el = small_x_offset_el;
*y_offset_el = small_y_offset_el;
}
uint32_t
isl_surf_get_depth_format(const struct isl_device *dev,
const struct isl_surf *surf)
{
/* Support for separate stencil buffers began in gen5. Support for
* interleaved depthstencil buffers ceased in gen7. The intermediate gens,
* those that supported separate and interleaved stencil, were gen5 and
* gen6.
*
* For a list of all available formats, see the Sandybridge PRM >> Volume
* 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
* Format (p321).
*/
bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
if (has_stencil)
assert(ISL_DEV_GEN(dev) < 7);
switch (surf->format) {
default:
unreachable("bad isl depth format");
case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
assert(ISL_DEV_GEN(dev) < 7);
return 0; /* D32_FLOAT_S8X24_UINT */
case ISL_FORMAT_R32_FLOAT:
assert(!has_stencil);
return 1; /* D32_FLOAT */
case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
if (has_stencil) {
assert(ISL_DEV_GEN(dev) < 7);
return 2; /* D24_UNORM_S8_UINT */
} else {
assert(ISL_DEV_GEN(dev) >= 5);
return 3; /* D24_UNORM_X8_UINT */
}
case ISL_FORMAT_R16_UNORM:
assert(!has_stencil);
return 5; /* D16_UNORM */
}
}