blob: 4a0284cf212612aca39ac8ab8fc32cc3f1c75a09 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <drm_fourcc.h>
#include "anv_private.h"
#include "util/debug.h"
#include "vk_util.h"
#include "util/u_math.h"
#include "vk_format_info.h"
static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
VkImageUsageFlags vk_usage,
isl_surf_usage_flags_t isl_extra_usage,
VkImageAspectFlagBits aspect)
{
isl_surf_usage_flags_t isl_usage = isl_extra_usage;
if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
/* Even if we're only using it for transfer operations, clears to depth and
* stencil images happen as depth and stencil so they need the right ISL
* usage bits or else things will fall apart.
*/
switch (aspect) {
case VK_IMAGE_ASPECT_DEPTH_BIT:
isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
break;
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
break;
default:
unreachable("bad VkImageAspect");
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
/* blorp implements transfers by sampling from the source image. */
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
/* blorp implements transfers by rendering into the destination image.
* Only request this with color images, as we deal with depth/stencil
* formats differently. */
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
return isl_usage;
}
static isl_tiling_flags_t
choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
const struct isl_drm_modifier_info *isl_mod_info,
bool legacy_scanout)
{
const VkImageCreateInfo *base_info = anv_info->vk_info;
isl_tiling_flags_t flags = 0;
switch (base_info->tiling) {
default:
unreachable("bad VkImageTiling");
case VK_IMAGE_TILING_OPTIMAL:
flags = ISL_TILING_ANY_MASK;
break;
case VK_IMAGE_TILING_LINEAR:
flags = ISL_TILING_LINEAR_BIT;
break;
}
if (anv_info->isl_tiling_flags)
flags &= anv_info->isl_tiling_flags;
if (legacy_scanout)
flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
if (isl_mod_info)
flags &= 1 << isl_mod_info->tiling;
assert(flags);
return flags;
}
static struct anv_surface *
get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
return &image->planes[plane].surface;
}
static void
add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
{
assert(surf->isl.size_B > 0); /* isl surface must be initialized */
if (image->disjoint) {
surf->offset = align_u32(image->planes[plane].size,
surf->isl.alignment_B);
/* Plane offset is always 0 when it's disjoint. */
} else {
surf->offset = align_u32(image->size, surf->isl.alignment_B);
/* Determine plane's offset only once when the first surface is added. */
if (image->planes[plane].size == 0)
image->planes[plane].offset = image->size;
}
image->size = surf->offset + surf->isl.size_B;
image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset;
image->alignment = MAX2(image->alignment, surf->isl.alignment_B);
image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
surf->isl.alignment_B);
}
static bool
all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
const struct VkImageCreateInfo *vk_info)
{
enum isl_format format =
anv_get_isl_format(devinfo, vk_info->format,
VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
if (!isl_format_supports_ccs_e(devinfo, format))
return false;
if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return true;
const VkImageFormatListCreateInfoKHR *fmt_list =
vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
if (!fmt_list || fmt_list->viewFormatCount == 0)
return false;
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
enum isl_format view_format =
anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
return false;
}
return true;
}
/**
* For color images that have an auxiliary surface, request allocation for an
* additional buffer that mainly stores fast-clear values. Use of this buffer
* allows us to access the image's subresources while being aware of their
* fast-clear values in non-trivial cases (e.g., outside of a render pass in
* which a fast clear has occurred).
*
* In order to avoid having multiple clear colors for a single plane of an
* image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
* the first slice (level 0, layer 0). At the time of our testing (Jan 17,
* 2018), there were no known applications which would benefit from fast-
* clearing more than just the first slice.
*
* The fast clear portion of the image is laid out in the following order:
*
* * 1 or 4 dwords (depending on hardware generation) for the clear color
* * 1 dword for the anv_fast_clear_type of the clear color
* * On gen9+, 1 dword per level and layer of the image (3D levels count
* multiple layers) in level-major order for compression state.
*
* For the purpose of discoverability, the algorithm used to manage
* compression and fast-clears is described here:
*
* * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
* all of the values in the fast clear portion of the image are initialized
* to default values.
*
* * On fast-clear, the clear value is written into surface state and also
* into the buffer and the fast clear type is set appropriately. Both
* setting the fast-clear value in the buffer and setting the fast-clear
* type happen from the GPU using MI commands.
*
* * Whenever a render or blorp operation is performed with CCS_E, we call
* genX(cmd_buffer_mark_image_written) to set the compression state to
* true (which is represented by UINT32_MAX).
*
* * On pipeline barrier transitions, the worst-case transition is computed
* from the image layouts. The command streamer inspects the fast clear
* type and compression state dwords and constructs a predicate. The
* worst-case resolve is performed with the given predicate and the fast
* clear and compression state is set accordingly.
*
* See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
* details on exactly what is allowed in what layouts.
*
* On gen7-9, we do not have a concept of indirect clear colors in hardware.
* In order to deal with this, we have to do some clear color management.
*
* * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
* value from the buffer into the surface state with MI commands.
*
* * For any blorp operations, we pass the address to the clear value into
* blorp and it knows to copy the clear color.
*/
static void
add_aux_state_tracking_buffer(struct anv_image *image,
uint32_t plane,
const struct anv_device *device)
{
assert(image && device);
assert(image->planes[plane].aux_surface.isl.size_B > 0 &&
image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
/* Compressed images must be tiled and therefore everything should be 4K
* aligned. The CCS has the same alignment requirements. This is good
* because we need at least dword-alignment for MI_LOAD/STORE operations.
*/
assert(image->alignment % 4 == 0);
assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
/* This buffer should be at the very end of the plane. */
if (image->disjoint) {
assert(image->planes[plane].size ==
(image->planes[plane].offset + image->planes[plane].size));
} else {
assert(image->size ==
(image->planes[plane].offset + image->planes[plane].size));
}
const unsigned clear_color_state_size = device->info.gen >= 10 ?
device->isl_dev.ss.clear_color_state_size :
device->isl_dev.ss.clear_value_size;
/* Clear color and fast clear type */
unsigned state_size = clear_color_state_size + 4;
/* We only need to track compression on CCS_E surfaces. */
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
if (image->type == VK_IMAGE_TYPE_3D) {
for (uint32_t l = 0; l < image->levels; l++)
state_size += anv_minify(image->extent.depth, l) * 4;
} else {
state_size += image->levels * image->array_size * 4;
}
}
image->planes[plane].fast_clear_state_offset =
image->planes[plane].offset + image->planes[plane].size;
image->planes[plane].size += state_size;
image->size += state_size;
}
/**
* Initialize the anv_image::*_surface selected by \a aspect. Then update the
* image's memory requirements (that is, the image's size and alignment).
*/
static VkResult
make_surface(const struct anv_device *dev,
struct anv_image *image,
const struct anv_image_create_info *anv_info,
isl_tiling_flags_t tiling_flags,
VkImageAspectFlagBits aspect)
{
const VkImageCreateInfo *vk_info = anv_info->vk_info;
bool ok;
static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
[VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
[VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
[VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
};
image->extent = anv_sanitize_image_extent(vk_info->imageType,
vk_info->extent);
const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
const struct anv_format_plane plane_format =
anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
struct anv_surface *anv_surf = &image->planes[plane].surface;
const isl_surf_usage_flags_t usage =
choose_isl_surf_usage(vk_info->flags, image->usage,
anv_info->isl_extra_usage_flags, aspect);
/* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
* fall back to linear on Broadwell and earlier because we aren't
* guaranteed that we can handle offsets correctly. On Sky Lake, the
* horizontal and vertical alignments are sufficiently high that we can
* just use RENDER_SURFACE_STATE::X/Y Offset.
*/
bool needs_shadow = false;
if (dev->info.gen <= 8 &&
(vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
assert(isl_format_is_compressed(plane_format.isl_format));
tiling_flags = ISL_TILING_LINEAR_BIT;
needs_shadow = true;
}
ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
.dim = vk_to_isl_surf_dim[vk_info->imageType],
.format = plane_format.isl_format,
.width = image->extent.width / plane_format.denominator_scales[0],
.height = image->extent.height / plane_format.denominator_scales[1],
.depth = image->extent.depth,
.levels = vk_info->mipLevels,
.array_len = vk_info->arrayLayers,
.samples = vk_info->samples,
.min_alignment_B = 0,
.row_pitch_B = anv_info->stride,
.usage = usage,
.tiling_flags = tiling_flags);
if (!ok)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
add_surface(image, anv_surf, plane);
/* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
* create an identical tiled shadow surface for use while texturing so we
* don't get garbage performance.
*/
if (needs_shadow) {
assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
assert(tiling_flags == ISL_TILING_LINEAR_BIT);
ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
.dim = vk_to_isl_surf_dim[vk_info->imageType],
.format = plane_format.isl_format,
.width = image->extent.width,
.height = image->extent.height,
.depth = image->extent.depth,
.levels = vk_info->mipLevels,
.array_len = vk_info->arrayLayers,
.samples = vk_info->samples,
.min_alignment_B = 0,
.row_pitch_B = anv_info->stride,
.usage = usage,
.tiling_flags = ISL_TILING_ANY_MASK);
/* isl_surf_init() will fail only if provided invalid input. Invalid input
* is illegal in Vulkan.
*/
assert(ok);
add_surface(image, &image->planes[plane].shadow_surface, plane);
}
/* Add a HiZ surface to a depth buffer that will be used for rendering.
*/
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
/* We don't advertise that depth buffers could be used as storage
* images.
*/
assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
/* Allow the user to control HiZ enabling. Disable by default on gen7
* because resolves are not currently implemented pre-BDW.
*/
if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
/* It will never be used as an attachment, HiZ is pointless. */
} else if (dev->info.gen == 7) {
anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
} else if (vk_info->mipLevels > 1) {
anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
} else if (vk_info->arrayLayers > 1) {
anv_perf_warn(dev->instance, image,
"Implement multi-arrayLayer HiZ clears and resolves");
} else if (dev->info.gen == 8 && vk_info->samples > 1) {
anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
} else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
assert(image->planes[plane].aux_surface.isl.size_B == 0);
ok = isl_surf_get_hiz_surf(&dev->isl_dev,
&image->planes[plane].surface.isl,
&image->planes[plane].aux_surface.isl);
assert(ok);
add_surface(image, &image->planes[plane].aux_surface, plane);
image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
}
} else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
/* TODO: Disallow compression with :
*
* 1) non multiplanar images (We appear to hit a sampler bug with
* CCS & R16G16 format. Putting the clear state a page/4096bytes
* further fixes the issue).
*
* 2) alias images, because they might be aliases of images
* described in 1)
*
* 3) compression disabled by debug
*/
const bool allow_compression =
image->n_planes == 1 &&
(vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 &&
likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
if (allow_compression) {
assert(image->planes[plane].aux_surface.isl.size_B == 0);
ok = isl_surf_get_ccs_surf(&dev->isl_dev,
&image->planes[plane].surface.isl,
&image->planes[plane].aux_surface.isl, 0);
if (ok) {
/* Disable CCS when it is not useful (i.e., when you can't render
* to the image with CCS enabled).
*/
if (!isl_format_supports_rendering(&dev->info,
plane_format.isl_format)) {
/* While it may be technically possible to enable CCS for this
* image, we currently don't have things hooked up to get it
* working.
*/
anv_perf_warn(dev->instance, image,
"This image format doesn't support rendering. "
"Not allocating an CCS buffer.");
image->planes[plane].aux_surface.isl.size_B = 0;
return VK_SUCCESS;
}
add_surface(image, &image->planes[plane].aux_surface, plane);
add_aux_state_tracking_buffer(image, plane, dev);
/* For images created without MUTABLE_FORMAT_BIT set, we know that
* they will always be used with the original format. In
* particular, they will always be used with a format that
* supports color compression. If it's never used as a storage
* image, then it will only be used through the sampler or the as
* a render target. This means that it's safe to just leave
* compression on at all times for these formats.
*/
if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
all_formats_ccs_e_compatible(&dev->info, vk_info)) {
image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
}
}
}
} else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
assert(image->planes[plane].aux_surface.isl.size_B == 0);
ok = isl_surf_get_mcs_surf(&dev->isl_dev,
&image->planes[plane].surface.isl,
&image->planes[plane].aux_surface.isl);
if (ok) {
add_surface(image, &image->planes[plane].aux_surface, plane);
add_aux_state_tracking_buffer(image, plane, dev);
image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
}
}
assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
/* Upper bound of the last surface should be smaller than the plane's
* size.
*/
assert((MAX2(image->planes[plane].surface.offset,
image->planes[plane].aux_surface.offset) +
(image->planes[plane].aux_surface.isl.size_B > 0 ?
image->planes[plane].aux_surface.isl.size_B :
image->planes[plane].surface.isl.size_B)) <=
(image->planes[plane].offset + image->planes[plane].size));
if (image->planes[plane].aux_surface.isl.size_B) {
/* assert(image->planes[plane].fast_clear_state_offset == */
/* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */
assert(image->planes[plane].fast_clear_state_offset <
(image->planes[plane].offset + image->planes[plane].size));
}
return VK_SUCCESS;
}
static uint32_t
score_drm_format_mod(uint64_t modifier)
{
switch (modifier) {
case DRM_FORMAT_MOD_LINEAR: return 1;
case I915_FORMAT_MOD_X_TILED: return 2;
case I915_FORMAT_MOD_Y_TILED: return 3;
case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
default: unreachable("bad DRM format modifier");
}
}
static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device *device,
uint32_t modifier_count, const uint64_t *modifiers)
{
uint64_t best_mod = UINT64_MAX;
uint32_t best_score = 0;
for (uint32_t i = 0; i < modifier_count; ++i) {
uint32_t score = score_drm_format_mod(modifiers[i]);
if (score > best_score) {
best_mod = modifiers[i];
best_score = score;
}
}
if (best_score > 0)
return isl_drm_modifier_get_info(best_mod);
else
return NULL;
}
VkResult
anv_image_create(VkDevice _device,
const struct anv_image_create_info *create_info,
const VkAllocationCallbacks* alloc,
VkImage *pImage)
{
ANV_FROM_HANDLE(anv_device, device, _device);
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
const struct isl_drm_modifier_info *isl_mod_info = NULL;
struct anv_image *image = NULL;
VkResult r;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
const struct wsi_image_create_info *wsi_info =
vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
if (wsi_info && wsi_info->modifier_count > 0) {
isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice,
wsi_info->modifier_count,
wsi_info->modifiers);
assert(isl_mod_info);
}
anv_assert(pCreateInfo->mipLevels > 0);
anv_assert(pCreateInfo->arrayLayers > 0);
anv_assert(pCreateInfo->samples > 0);
anv_assert(pCreateInfo->extent.width > 0);
anv_assert(pCreateInfo->extent.height > 0);
anv_assert(pCreateInfo->extent.depth > 0);
image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!image)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
image->type = pCreateInfo->imageType;
image->extent = pCreateInfo->extent;
image->vk_format = pCreateInfo->format;
image->format = anv_get_format(pCreateInfo->format);
image->aspects = vk_format_aspects(image->vk_format);
image->levels = pCreateInfo->mipLevels;
image->array_size = pCreateInfo->arrayLayers;
image->samples = pCreateInfo->samples;
image->usage = pCreateInfo->usage;
image->tiling = pCreateInfo->tiling;
image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
image->needs_set_tiling = wsi_info && wsi_info->scanout;
image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
DRM_FORMAT_MOD_INVALID;
const struct anv_format *format = anv_get_format(image->vk_format);
assert(format != NULL);
const isl_tiling_flags_t isl_tiling_flags =
choose_isl_tiling_flags(create_info, isl_mod_info,
image->needs_set_tiling);
image->n_planes = format->n_planes;
uint32_t b;
for_each_bit(b, image->aspects) {
r = make_surface(device, image, create_info, isl_tiling_flags,
(1 << b));
if (r != VK_SUCCESS)
goto fail;
}
*pImage = anv_image_to_handle(image);
return VK_SUCCESS;
fail:
if (image)
vk_free2(&device->alloc, alloc, image);
return r;
}
VkResult
anv_CreateImage(VkDevice device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
const VkNativeBufferANDROID *gralloc_info =
vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
if (gralloc_info)
return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
pAllocator, pImage);
return anv_image_create(device,
&(struct anv_image_create_info) {
.vk_info = pCreateInfo,
},
pAllocator,
pImage);
}
void
anv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, _image);
if (!image)
return;
for (uint32_t p = 0; p < image->n_planes; ++p) {
if (image->planes[p].bo_is_owned) {
assert(image->planes[p].address.bo != NULL);
anv_bo_cache_release(device, &device->bo_cache,
image->planes[p].address.bo);
}
}
vk_free2(&device->alloc, pAllocator, image);
}
static void anv_image_bind_memory_plane(struct anv_device *device,
struct anv_image *image,
uint32_t plane,
struct anv_device_memory *memory,
uint32_t memory_offset)
{
assert(!image->planes[plane].bo_is_owned);
if (!memory) {
image->planes[plane].address = ANV_NULL_ADDRESS;
return;
}
image->planes[plane].address = (struct anv_address) {
.bo = memory->bo,
.offset = memory_offset,
};
}
VkResult anv_BindImageMemory(
VkDevice _device,
VkImage _image,
VkDeviceMemory _memory,
VkDeviceSize memoryOffset)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
ANV_FROM_HANDLE(anv_image, image, _image);
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
uint32_t plane =
anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
}
return VK_SUCCESS;
}
VkResult anv_BindImageMemory2(
VkDevice _device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos)
{
ANV_FROM_HANDLE(anv_device, device, _device);
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
ANV_FROM_HANDLE(anv_image, image, bind_info->image);
VkImageAspectFlags aspects = image->aspects;
vk_foreach_struct_const(s, bind_info->pNext) {
switch (s->sType) {
case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
const VkBindImagePlaneMemoryInfo *plane_info =
(const VkBindImagePlaneMemoryInfo *) s;
aspects = plane_info->planeAspect;
break;
}
default:
anv_debug_ignored_stype(s->sType);
break;
}
}
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
uint32_t plane =
anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
anv_image_bind_memory_plane(device, image, plane,
mem, bind_info->memoryOffset);
}
}
return VK_SUCCESS;
}
void anv_GetImageSubresourceLayout(
VkDevice device,
VkImage _image,
const VkImageSubresource* subresource,
VkSubresourceLayout* layout)
{
ANV_FROM_HANDLE(anv_image, image, _image);
const struct anv_surface *surface;
if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT_KHR &&
image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
isl_drm_modifier_has_aux(image->drm_format_mod))
surface = &image->planes[0].aux_surface;
else
surface = get_surface(image, subresource->aspectMask);
assert(__builtin_popcount(subresource->aspectMask) == 1);
layout->offset = surface->offset;
layout->rowPitch = surface->isl.row_pitch_B;
layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
assert(surface->isl.tiling == ISL_TILING_LINEAR);
uint32_t offset_B;
isl_surf_get_image_offset_B_tile_sa(&surface->isl,
subresource->mipLevel,
subresource->arrayLayer,
0 /* logical_z_offset_px */,
&offset_B, NULL, NULL);
layout->offset += offset_B;
layout->size = layout->rowPitch * anv_minify(image->extent.height,
subresource->mipLevel);
} else {
layout->size = surface->isl.size_B;
}
}
/**
* This function determines the optimal buffer to use for a given
* VkImageLayout and other pieces of information needed to make that
* determination. This does not determine the optimal buffer to use
* during a resolve operation.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_usage
anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout)
{
/* Validate the inputs. */
/* The devinfo is needed as the optimal buffer varies across generations. */
assert(devinfo != NULL);
/* The layout of a NULL image is not properly defined. */
assert(image != NULL);
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
/* Determine the optimal buffer. */
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
/* If there is no auxiliary surface allocated, we must use the one and only
* main buffer.
*/
if (image->planes[plane].aux_surface.isl.size_B == 0)
return ISL_AUX_USAGE_NONE;
/* All images that use an auxiliary surface are required to be tiled. */
assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
/* Stencil has no aux */
assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
switch (layout) {
/* Invalid Layouts */
case VK_IMAGE_LAYOUT_RANGE_SIZE:
case VK_IMAGE_LAYOUT_MAX_ENUM:
unreachable("Invalid image layout.");
/* Undefined layouts
*
* The pre-initialized layout is equivalent to the undefined layout for
* optimally-tiled images. We can only do color compression (CCS or HiZ)
* on tiled images.
*/
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_PREINITIALIZED:
return ISL_AUX_USAGE_NONE;
/* Transfer Layouts
*/
case VK_IMAGE_LAYOUT_GENERAL:
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
/* This buffer could be a depth buffer used in a transfer operation.
* BLORP currently doesn't use HiZ for transfer operations so we must
* use the main buffer for this layout. TODO: Enable HiZ in BLORP.
*/
assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
return ISL_AUX_USAGE_NONE;
} else {
assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
return image->planes[plane].aux_usage;
}
/* Sampling Layouts */
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
/* Fall-through */
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
if (anv_can_sample_with_hiz(devinfo, image))
return ISL_AUX_USAGE_HIZ;
else
return ISL_AUX_USAGE_NONE;
} else {
return image->planes[plane].aux_usage;
}
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
/* When handing the image off to the presentation engine, we need to
* ensure that things are properly resolved. For images with no
* modifier, we assume that they follow the old rules and always need
* a full resolve because the PE doesn't understand any form of
* compression. For images with modifiers, we use the aux usage from
* the modifier.
*/
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(image->drm_format_mod);
return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE;
}
/* Rendering Layouts */
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
assert(image->samples == 1);
return ISL_AUX_USAGE_CCS_D;
} else {
assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
return image->planes[plane].aux_usage;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
return ISL_AUX_USAGE_HIZ;
case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
unreachable("VK_KHR_shared_presentable_image is unsupported");
case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
unreachable("VK_NV_shading_rate_image is unsupported");
}
/* If the layout isn't recognized in the exhaustive switch above, the
* VkImageLayout value is not defined in vulkan.h.
*/
unreachable("layout is not a VkImageLayout enumeration member.");
}
/**
* This function returns the level of unresolved fast-clear support of the
* given image in the given VkImageLayout.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspect The aspect of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*/
enum anv_fast_clear_type
anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout)
{
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
/* If there is no auxiliary surface allocated, there are no fast-clears */
if (image->planes[plane].aux_surface.isl.size_B == 0)
return ANV_FAST_CLEAR_NONE;
/* All images that use an auxiliary surface are required to be tiled. */
assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
/* Stencil has no aux */
assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
/* For depth images (with HiZ), the layout supports fast-clears if and
* only if it supports HiZ. However, we only support fast-clears to the
* default depth value.
*/
enum isl_aux_usage aux_usage =
anv_layout_to_aux_usage(devinfo, image, aspect, layout);
return aux_usage == ISL_AUX_USAGE_HIZ ?
ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
}
assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
/* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
* lack the MI ALU which we need to determine the predicates.
*/
if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
return ANV_FAST_CLEAR_NONE;
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
return ANV_FAST_CLEAR_ANY;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
#ifndef NDEBUG
/* We do not yet support any modifiers which support clear color so we
* just always return NONE. One day, this will change.
*/
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(image->drm_format_mod);
assert(!mod_info || !mod_info->supports_clear_color);
#endif
return ANV_FAST_CLEAR_NONE;
}
default:
/* If the image has MCS or CCS_E enabled all the time then we can use
* fast-clear as long as the clear color is the default value of zero
* since this is the default value we program into every surface state
* used for texturing.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
return ANV_FAST_CLEAR_DEFAULT_VALUE;
else
return ANV_FAST_CLEAR_NONE;
}
}
static struct anv_state
alloc_surface_state(struct anv_device *device)
{
return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
}
static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
struct isl_swizzle format_swizzle)
{
if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
swizzle = component;
switch (swizzle) {
case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
default:
unreachable("Invalid swizzle");
}
}
void
anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view_in,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout,
struct brw_image_param *image_param_out)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
const struct anv_surface *surface = &image->planes[plane].surface,
*aux_surface = &image->planes[plane].aux_surface;
struct isl_view view = *view_in;
view.usage |= view_usage;
/* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
* compressed surface with a shadow surface, we use the shadow instead of
* the primary surface. The shadow surface will be tiled, unlike the main
* surface, so it should get significantly better performance.
*/
if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
isl_format_is_compressed(view.format) &&
(flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
assert(isl_format_is_compressed(surface->isl.format));
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
surface = &image->planes[plane].shadow_surface;
}
if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
view.swizzle = anv_swizzle_for_render(view.swizzle);
/* If this is a HiZ buffer we can sample from with a programmable clear
* value (SKL+), define the clear value to the optimal constant.
*/
union isl_color_value default_clear_color = { .u32 = { 0, } };
if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
default_clear_color.f32[0] = ANV_HZ_FC_VAL;
if (!clear_color)
clear_color = &default_clear_color;
const struct anv_address address =
anv_address_add(image->planes[plane].address, surface->offset);
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
!(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
!isl_has_matching_typed_storage_image_format(&device->info,
view.format)) {
/* In this case, we are a writeable storage buffer which needs to be
* lowered to linear. All tiling and offset calculations will be done in
* the shader.
*/
assert(aux_usage == ISL_AUX_USAGE_NONE);
isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
.address = anv_address_physical(address),
.size_B = surface->isl.size_B,
.format = ISL_FORMAT_RAW,
.stride_B = 1,
.mocs = anv_mocs_for_bo(device, address.bo));
state_inout->address = address,
state_inout->aux_address = ANV_NULL_ADDRESS;
state_inout->clear_address = ANV_NULL_ADDRESS;
} else {
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
!(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
/* Typed surface reads support a very limited subset of the shader
* image formats. Translate it into the closest format the hardware
* supports.
*/
assert(aux_usage == ISL_AUX_USAGE_NONE);
view.format = isl_lower_storage_image_format(&device->info,
view.format);
}
const struct isl_surf *isl_surf = &surface->isl;
struct isl_surf tmp_surf;
uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
if (isl_format_is_compressed(surface->isl.format) &&
!isl_format_is_compressed(view.format)) {
/* We're creating an uncompressed view of a compressed surface. This
* is allowed but only for a single level/layer.
*/
assert(surface->isl.samples == 1);
assert(view.levels == 1);
assert(view.array_len == 1);
isl_surf_get_image_surf(&device->isl_dev, isl_surf,
view.base_level,
surface->isl.dim == ISL_SURF_DIM_3D ?
0 : view.base_array_layer,
surface->isl.dim == ISL_SURF_DIM_3D ?
view.base_array_layer : 0,
&tmp_surf,
&offset_B, &tile_x_sa, &tile_y_sa);
/* The newly created image represents the one subimage we're
* referencing with this view so it only has one array slice and
* miplevel.
*/
view.base_array_layer = 0;
view.base_level = 0;
/* We're making an uncompressed view here. The image dimensions need
* to be scaled down by the block size.
*/
const struct isl_format_layout *fmtl =
isl_format_get_layout(surface->isl.format);
tmp_surf.format = view.format;
tmp_surf.logical_level0_px.width =
DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
tmp_surf.logical_level0_px.height =
DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
tmp_surf.phys_level0_sa.width /= fmtl->bw;
tmp_surf.phys_level0_sa.height /= fmtl->bh;
tile_x_sa /= fmtl->bw;
tile_y_sa /= fmtl->bh;
isl_surf = &tmp_surf;
if (device->info.gen <= 8) {
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(tile_x_sa == 0);
assert(tile_y_sa == 0);
}
}
state_inout->address = anv_address_add(address, offset_B);
struct anv_address aux_address = ANV_NULL_ADDRESS;
if (aux_usage != ISL_AUX_USAGE_NONE) {
aux_address = anv_address_add(image->planes[plane].address,
aux_surface->offset);
}
state_inout->aux_address = aux_address;
struct anv_address clear_address = ANV_NULL_ADDRESS;
if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
if (aux_usage == ISL_AUX_USAGE_HIZ) {
clear_address = (struct anv_address) {
.bo = &device->hiz_clear_bo,
.offset = 0,
};
} else {
clear_address = anv_image_get_clear_color_addr(device, image, aspect);
}
}
state_inout->clear_address = clear_address;
isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
.surf = isl_surf,
.view = &view,
.address = anv_address_physical(state_inout->address),
.clear_color = *clear_color,
.aux_surf = &aux_surface->isl,
.aux_usage = aux_usage,
.aux_address = anv_address_physical(aux_address),
.clear_address = anv_address_physical(clear_address),
.use_clear_address = !anv_address_is_null(clear_address),
.mocs = anv_mocs_for_bo(device,
state_inout->address.bo),
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa);
/* With the exception of gen8, the bottom 12 bits of the MCS base address
* are used to store other information. This should be ok, however,
* because the surface buffer addresses are always 4K page aligned.
*/
uint32_t *aux_addr_dw = state_inout->state.map +
device->isl_dev.ss.aux_addr_offset;
assert((aux_address.offset & 0xfff) == 0);
state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
if (device->info.gen >= 10 && clear_address.bo) {
uint32_t *clear_addr_dw = state_inout->state.map +
device->isl_dev.ss.clear_color_state_offset;
assert((clear_address.offset & 0x3f) == 0);
state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
}
}
anv_state_flush(device, state_inout->state);
if (image_param_out) {
assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
isl_surf_fill_image_param(&device->isl_dev, image_param_out,
&surface->isl, &view);
}
}
static VkImageAspectFlags
remap_aspect_flags(VkImageAspectFlags view_aspects)
{
if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
if (util_bitcount(view_aspects) == 1)
return VK_IMAGE_ASPECT_COLOR_BIT;
VkImageAspectFlags color_aspects = 0;
for (uint32_t i = 0; i < util_bitcount(view_aspects); i++)
color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
return color_aspects;
}
/* No special remapping needed for depth & stencil aspects. */
return view_aspects;
}
VkResult
anv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
struct anv_image_view *iview;
iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (iview == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
assert(range->layerCount > 0);
assert(range->baseMipLevel < image->levels);
const VkImageViewUsageCreateInfo *usage_info =
vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
/* View usage should be a subset of image usage */
assert((view_usage & ~image->usage) == 0);
assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
switch (image->type) {
default:
unreachable("bad VkImageType");
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
break;
case VK_IMAGE_TYPE_3D:
assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
<= anv_minify(image->extent.depth, range->baseMipLevel));
break;
}
/* First expand aspects to the image's ones (for example
* VK_IMAGE_ASPECT_COLOR_BIT will be converted to
* VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
* VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
* VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
*/
VkImageAspectFlags expanded_aspects =
anv_image_expand_aspects(image, range->aspectMask);
iview->image = image;
/* Remap the expanded aspects for the image view. For example if only
* VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
* convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
* the image view, it only has a single plane.
*/
iview->aspect_mask = remap_aspect_flags(expanded_aspects);
iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
iview->vk_format = pCreateInfo->format;
iview->extent = (VkExtent3D) {
.width = anv_minify(image->extent.width , range->baseMipLevel),
.height = anv_minify(image->extent.height, range->baseMipLevel),
.depth = anv_minify(image->extent.depth , range->baseMipLevel),
};
/* Now go through the underlying image selected planes (computed in
* expanded_aspects) and map them to planes in the image view.
*/
uint32_t iaspect_bit, vplane = 0;
anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
uint32_t iplane =
anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit);
VkImageAspectFlags vplane_aspect =
anv_plane_to_aspect(iview->aspect_mask, vplane);
struct anv_format_plane format =
anv_get_format_plane(&device->info, pCreateInfo->format,
vplane_aspect, image->tiling);
iview->planes[vplane].image_plane = iplane;
iview->planes[vplane].isl = (struct isl_view) {
.format = format.isl_format,
.base_level = range->baseMipLevel,
.levels = anv_get_levelCount(image, range),
.base_array_layer = range->baseArrayLayer,
.array_len = anv_get_layerCount(image, range),
.swizzle = {
.r = remap_swizzle(pCreateInfo->components.r,
VK_COMPONENT_SWIZZLE_R, format.swizzle),
.g = remap_swizzle(pCreateInfo->components.g,
VK_COMPONENT_SWIZZLE_G, format.swizzle),
.b = remap_swizzle(pCreateInfo->components.b,
VK_COMPONENT_SWIZZLE_B, format.swizzle),
.a = remap_swizzle(pCreateInfo->components.a,
VK_COMPONENT_SWIZZLE_A, format.swizzle),
},
};
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
iview->planes[vplane].isl.base_array_layer = 0;
iview->planes[vplane].isl.array_len = iview->extent.depth;
}
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
} else {
iview->planes[vplane].isl.usage = 0;
}
if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
(view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
!(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
VK_IMAGE_LAYOUT_GENERAL);
enum isl_aux_usage optimal_aux_usage =
anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
optimal_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
&iview->planes[vplane].optimal_sampler_surface_state,
NULL);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_TEXTURE_BIT,
general_aux_usage, NULL,
0,
&iview->planes[vplane].general_sampler_surface_state,
NULL);
}
/* NOTE: This one needs to go last since it may stomp isl_view.format */
if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_STORAGE_BIT,
ISL_AUX_USAGE_NONE, NULL,
0,
&iview->planes[vplane].storage_surface_state,
&iview->planes[vplane].storage_image_param);
anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
&iview->planes[vplane].isl,
ISL_SURF_USAGE_STORAGE_BIT,
ISL_AUX_USAGE_NONE, NULL,
ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
&iview->planes[vplane].writeonly_storage_surface_state,
NULL);
}
vplane++;
}
*pView = anv_image_view_to_handle(iview);
return VK_SUCCESS;
}
void
anv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image_view, iview, _iview);
if (!iview)
return;
for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->planes[plane].optimal_sampler_surface_state.state);
}
if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->planes[plane].general_sampler_surface_state.state);
}
if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->planes[plane].storage_surface_state.state);
}
if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->planes[plane].writeonly_storage_surface_state.state);
}
}
vk_free2(&device->alloc, pAllocator, iview);
}
VkResult
anv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
struct anv_buffer_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!view)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
/* TODO: Handle the format swizzle? */
view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_TILING_LINEAR);
const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
pCreateInfo->range);
view->range = align_down_npot_u32(view->range, format_bs);
view->address = anv_address_add(buffer->address, pCreateInfo->offset);
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
view->surface_state = alloc_surface_state(device);
anv_fill_buffer_surface_state(device, view->surface_state,
view->format,
view->address, view->range, format_bs);
} else {
view->surface_state = (struct anv_state){ 0 };
}
if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
view->storage_surface_state = alloc_surface_state(device);
view->writeonly_storage_surface_state = alloc_surface_state(device);
enum isl_format storage_format =
isl_has_matching_typed_storage_image_format(&device->info,
view->format) ?
isl_lower_storage_image_format(&device->info, view->format) :
ISL_FORMAT_RAW;
anv_fill_buffer_surface_state(device, view->storage_surface_state,
storage_format,
view->address, view->range,
(storage_format == ISL_FORMAT_RAW ? 1 :
isl_format_get_layout(storage_format)->bpb / 8));
/* Write-only accesses should use the original format. */
anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
view->format,
view->address, view->range,
isl_format_get_layout(view->format)->bpb / 8);
isl_buffer_fill_image_param(&device->isl_dev,
&view->storage_image_param,
view->format, view->range);
} else {
view->storage_surface_state = (struct anv_state){ 0 };
view->writeonly_storage_surface_state = (struct anv_state){ 0 };
}
*pView = anv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
void
anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
if (!view)
return;
if (view->surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->surface_state);
if (view->storage_surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->storage_surface_state);
if (view->writeonly_storage_surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->writeonly_storage_surface_state);
vk_free2(&device->alloc, pAllocator, view);
}
const struct anv_surface *
anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
VkImageAspectFlags aspect_mask)
{
VkImageAspectFlags sanitized_mask;
switch (aspect_mask) {
case VK_IMAGE_ASPECT_COLOR_BIT:
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
break;
case VK_IMAGE_ASPECT_DEPTH_BIT:
assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
break;
case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
/* FINISHME: The Vulkan spec (git a511ba2) requires support for
* combined depth stencil formats. Specifically, it states:
*
* At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
* ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
*
* Image views with both depth and stencil aspects are only valid for
* render target attachments, in which case
* cmd_buffer_emit_depth_stencil() will pick out both the depth and
* stencil surfaces from the underlying surface.
*/
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
} else {
assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
}
break;
case VK_IMAGE_ASPECT_PLANE_0_BIT:
assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT;
break;
case VK_IMAGE_ASPECT_PLANE_1_BIT:
assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT;
break;
case VK_IMAGE_ASPECT_PLANE_2_BIT:
assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT;
break;
default:
unreachable("image does not have aspect");
return NULL;
}
uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
return &image->planes[plane].surface;
}