| /* |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #include <drm_fourcc.h> |
| |
| #include "anv_private.h" |
| #include "util/debug.h" |
| #include "vk_util.h" |
| #include "util/u_math.h" |
| |
| #include "vk_format_info.h" |
| |
| static isl_surf_usage_flags_t |
| choose_isl_surf_usage(VkImageCreateFlags vk_create_flags, |
| VkImageUsageFlags vk_usage, |
| isl_surf_usage_flags_t isl_extra_usage, |
| VkImageAspectFlagBits aspect) |
| { |
| isl_surf_usage_flags_t isl_usage = isl_extra_usage; |
| |
| if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| |
| if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) |
| isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| |
| if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) |
| isl_usage |= ISL_SURF_USAGE_CUBE_BIT; |
| |
| /* Even if we're only using it for transfer operations, clears to depth and |
| * stencil images happen as depth and stencil so they need the right ISL |
| * usage bits or else things will fall apart. |
| */ |
| switch (aspect) { |
| case VK_IMAGE_ASPECT_DEPTH_BIT: |
| isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; |
| break; |
| case VK_IMAGE_ASPECT_STENCIL_BIT: |
| isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; |
| break; |
| case VK_IMAGE_ASPECT_COLOR_BIT: |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| break; |
| default: |
| unreachable("bad VkImageAspect"); |
| } |
| |
| if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { |
| /* blorp implements transfers by sampling from the source image. */ |
| isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; |
| } |
| |
| if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && |
| aspect == VK_IMAGE_ASPECT_COLOR_BIT) { |
| /* blorp implements transfers by rendering into the destination image. |
| * Only request this with color images, as we deal with depth/stencil |
| * formats differently. */ |
| isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| } |
| |
| return isl_usage; |
| } |
| |
| static isl_tiling_flags_t |
| choose_isl_tiling_flags(const struct anv_image_create_info *anv_info, |
| const struct isl_drm_modifier_info *isl_mod_info, |
| bool legacy_scanout) |
| { |
| const VkImageCreateInfo *base_info = anv_info->vk_info; |
| isl_tiling_flags_t flags = 0; |
| |
| switch (base_info->tiling) { |
| default: |
| unreachable("bad VkImageTiling"); |
| case VK_IMAGE_TILING_OPTIMAL: |
| flags = ISL_TILING_ANY_MASK; |
| break; |
| case VK_IMAGE_TILING_LINEAR: |
| flags = ISL_TILING_LINEAR_BIT; |
| break; |
| } |
| |
| if (anv_info->isl_tiling_flags) |
| flags &= anv_info->isl_tiling_flags; |
| |
| if (legacy_scanout) |
| flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT; |
| |
| if (isl_mod_info) |
| flags &= 1 << isl_mod_info->tiling; |
| |
| assert(flags); |
| |
| return flags; |
| } |
| |
| static struct anv_surface * |
| get_surface(struct anv_image *image, VkImageAspectFlagBits aspect) |
| { |
| uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); |
| return &image->planes[plane].surface; |
| } |
| |
| static void |
| add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane) |
| { |
| assert(surf->isl.size_B > 0); /* isl surface must be initialized */ |
| |
| if (image->disjoint) { |
| surf->offset = align_u32(image->planes[plane].size, |
| surf->isl.alignment_B); |
| /* Plane offset is always 0 when it's disjoint. */ |
| } else { |
| surf->offset = align_u32(image->size, surf->isl.alignment_B); |
| /* Determine plane's offset only once when the first surface is added. */ |
| if (image->planes[plane].size == 0) |
| image->planes[plane].offset = image->size; |
| } |
| |
| image->size = surf->offset + surf->isl.size_B; |
| image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset; |
| |
| image->alignment = MAX2(image->alignment, surf->isl.alignment_B); |
| image->planes[plane].alignment = MAX2(image->planes[plane].alignment, |
| surf->isl.alignment_B); |
| } |
| |
| |
| static bool |
| all_formats_ccs_e_compatible(const struct gen_device_info *devinfo, |
| const struct VkImageCreateInfo *vk_info) |
| { |
| enum isl_format format = |
| anv_get_isl_format(devinfo, vk_info->format, |
| VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling); |
| |
| if (!isl_format_supports_ccs_e(devinfo, format)) |
| return false; |
| |
| if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) |
| return true; |
| |
| const VkImageFormatListCreateInfoKHR *fmt_list = |
| vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR); |
| |
| if (!fmt_list || fmt_list->viewFormatCount == 0) |
| return false; |
| |
| for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { |
| enum isl_format view_format = |
| anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], |
| VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling); |
| |
| if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * For color images that have an auxiliary surface, request allocation for an |
| * additional buffer that mainly stores fast-clear values. Use of this buffer |
| * allows us to access the image's subresources while being aware of their |
| * fast-clear values in non-trivial cases (e.g., outside of a render pass in |
| * which a fast clear has occurred). |
| * |
| * In order to avoid having multiple clear colors for a single plane of an |
| * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on |
| * the first slice (level 0, layer 0). At the time of our testing (Jan 17, |
| * 2018), there were no known applications which would benefit from fast- |
| * clearing more than just the first slice. |
| * |
| * The fast clear portion of the image is laid out in the following order: |
| * |
| * * 1 or 4 dwords (depending on hardware generation) for the clear color |
| * * 1 dword for the anv_fast_clear_type of the clear color |
| * * On gen9+, 1 dword per level and layer of the image (3D levels count |
| * multiple layers) in level-major order for compression state. |
| * |
| * For the purpose of discoverability, the algorithm used to manage |
| * compression and fast-clears is described here: |
| * |
| * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout, |
| * all of the values in the fast clear portion of the image are initialized |
| * to default values. |
| * |
| * * On fast-clear, the clear value is written into surface state and also |
| * into the buffer and the fast clear type is set appropriately. Both |
| * setting the fast-clear value in the buffer and setting the fast-clear |
| * type happen from the GPU using MI commands. |
| * |
| * * Whenever a render or blorp operation is performed with CCS_E, we call |
| * genX(cmd_buffer_mark_image_written) to set the compression state to |
| * true (which is represented by UINT32_MAX). |
| * |
| * * On pipeline barrier transitions, the worst-case transition is computed |
| * from the image layouts. The command streamer inspects the fast clear |
| * type and compression state dwords and constructs a predicate. The |
| * worst-case resolve is performed with the given predicate and the fast |
| * clear and compression state is set accordingly. |
| * |
| * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for |
| * details on exactly what is allowed in what layouts. |
| * |
| * On gen7-9, we do not have a concept of indirect clear colors in hardware. |
| * In order to deal with this, we have to do some clear color management. |
| * |
| * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear |
| * value from the buffer into the surface state with MI commands. |
| * |
| * * For any blorp operations, we pass the address to the clear value into |
| * blorp and it knows to copy the clear color. |
| */ |
| static void |
| add_aux_state_tracking_buffer(struct anv_image *image, |
| uint32_t plane, |
| const struct anv_device *device) |
| { |
| assert(image && device); |
| assert(image->planes[plane].aux_surface.isl.size_B > 0 && |
| image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); |
| |
| /* Compressed images must be tiled and therefore everything should be 4K |
| * aligned. The CCS has the same alignment requirements. This is good |
| * because we need at least dword-alignment for MI_LOAD/STORE operations. |
| */ |
| assert(image->alignment % 4 == 0); |
| assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0); |
| |
| /* This buffer should be at the very end of the plane. */ |
| if (image->disjoint) { |
| assert(image->planes[plane].size == |
| (image->planes[plane].offset + image->planes[plane].size)); |
| } else { |
| assert(image->size == |
| (image->planes[plane].offset + image->planes[plane].size)); |
| } |
| |
| const unsigned clear_color_state_size = device->info.gen >= 10 ? |
| device->isl_dev.ss.clear_color_state_size : |
| device->isl_dev.ss.clear_value_size; |
| |
| /* Clear color and fast clear type */ |
| unsigned state_size = clear_color_state_size + 4; |
| |
| /* We only need to track compression on CCS_E surfaces. */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { |
| if (image->type == VK_IMAGE_TYPE_3D) { |
| for (uint32_t l = 0; l < image->levels; l++) |
| state_size += anv_minify(image->extent.depth, l) * 4; |
| } else { |
| state_size += image->levels * image->array_size * 4; |
| } |
| } |
| |
| image->planes[plane].fast_clear_state_offset = |
| image->planes[plane].offset + image->planes[plane].size; |
| |
| image->planes[plane].size += state_size; |
| image->size += state_size; |
| } |
| |
| /** |
| * Initialize the anv_image::*_surface selected by \a aspect. Then update the |
| * image's memory requirements (that is, the image's size and alignment). |
| */ |
| static VkResult |
| make_surface(const struct anv_device *dev, |
| struct anv_image *image, |
| const struct anv_image_create_info *anv_info, |
| isl_tiling_flags_t tiling_flags, |
| VkImageAspectFlagBits aspect) |
| { |
| const VkImageCreateInfo *vk_info = anv_info->vk_info; |
| bool ok; |
| |
| static const enum isl_surf_dim vk_to_isl_surf_dim[] = { |
| [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, |
| [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, |
| [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, |
| }; |
| |
| image->extent = anv_sanitize_image_extent(vk_info->imageType, |
| vk_info->extent); |
| |
| const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect); |
| const struct anv_format_plane plane_format = |
| anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling); |
| struct anv_surface *anv_surf = &image->planes[plane].surface; |
| |
| const isl_surf_usage_flags_t usage = |
| choose_isl_surf_usage(vk_info->flags, image->usage, |
| anv_info->isl_extra_usage_flags, aspect); |
| |
| /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to |
| * fall back to linear on Broadwell and earlier because we aren't |
| * guaranteed that we can handle offsets correctly. On Sky Lake, the |
| * horizontal and vertical alignments are sufficiently high that we can |
| * just use RENDER_SURFACE_STATE::X/Y Offset. |
| */ |
| bool needs_shadow = false; |
| if (dev->info.gen <= 8 && |
| (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) && |
| vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) { |
| assert(isl_format_is_compressed(plane_format.isl_format)); |
| tiling_flags = ISL_TILING_LINEAR_BIT; |
| needs_shadow = true; |
| } |
| |
| ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl, |
| .dim = vk_to_isl_surf_dim[vk_info->imageType], |
| .format = plane_format.isl_format, |
| .width = image->extent.width / plane_format.denominator_scales[0], |
| .height = image->extent.height / plane_format.denominator_scales[1], |
| .depth = image->extent.depth, |
| .levels = vk_info->mipLevels, |
| .array_len = vk_info->arrayLayers, |
| .samples = vk_info->samples, |
| .min_alignment_B = 0, |
| .row_pitch_B = anv_info->stride, |
| .usage = usage, |
| .tiling_flags = tiling_flags); |
| |
| if (!ok) |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; |
| |
| add_surface(image, anv_surf, plane); |
| |
| /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to |
| * create an identical tiled shadow surface for use while texturing so we |
| * don't get garbage performance. |
| */ |
| if (needs_shadow) { |
| assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); |
| assert(tiling_flags == ISL_TILING_LINEAR_BIT); |
| |
| ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl, |
| .dim = vk_to_isl_surf_dim[vk_info->imageType], |
| .format = plane_format.isl_format, |
| .width = image->extent.width, |
| .height = image->extent.height, |
| .depth = image->extent.depth, |
| .levels = vk_info->mipLevels, |
| .array_len = vk_info->arrayLayers, |
| .samples = vk_info->samples, |
| .min_alignment_B = 0, |
| .row_pitch_B = anv_info->stride, |
| .usage = usage, |
| .tiling_flags = ISL_TILING_ANY_MASK); |
| |
| /* isl_surf_init() will fail only if provided invalid input. Invalid input |
| * is illegal in Vulkan. |
| */ |
| assert(ok); |
| |
| add_surface(image, &image->planes[plane].shadow_surface, plane); |
| } |
| |
| /* Add a HiZ surface to a depth buffer that will be used for rendering. |
| */ |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| /* We don't advertise that depth buffers could be used as storage |
| * images. |
| */ |
| assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); |
| |
| /* Allow the user to control HiZ enabling. Disable by default on gen7 |
| * because resolves are not currently implemented pre-BDW. |
| */ |
| if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { |
| /* It will never be used as an attachment, HiZ is pointless. */ |
| } else if (dev->info.gen == 7) { |
| anv_perf_warn(dev->instance, image, "Implement gen7 HiZ"); |
| } else if (vk_info->mipLevels > 1) { |
| anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ"); |
| } else if (vk_info->arrayLayers > 1) { |
| anv_perf_warn(dev->instance, image, |
| "Implement multi-arrayLayer HiZ clears and resolves"); |
| } else if (dev->info.gen == 8 && vk_info->samples > 1) { |
| anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ"); |
| } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) { |
| assert(image->planes[plane].aux_surface.isl.size_B == 0); |
| ok = isl_surf_get_hiz_surf(&dev->isl_dev, |
| &image->planes[plane].surface.isl, |
| &image->planes[plane].aux_surface.isl); |
| assert(ok); |
| add_surface(image, &image->planes[plane].aux_surface, plane); |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ; |
| } |
| } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) { |
| /* TODO: Disallow compression with : |
| * |
| * 1) non multiplanar images (We appear to hit a sampler bug with |
| * CCS & R16G16 format. Putting the clear state a page/4096bytes |
| * further fixes the issue). |
| * |
| * 2) alias images, because they might be aliases of images |
| * described in 1) |
| * |
| * 3) compression disabled by debug |
| */ |
| const bool allow_compression = |
| image->n_planes == 1 && |
| (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 && |
| likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0); |
| |
| if (allow_compression) { |
| assert(image->planes[plane].aux_surface.isl.size_B == 0); |
| ok = isl_surf_get_ccs_surf(&dev->isl_dev, |
| &image->planes[plane].surface.isl, |
| &image->planes[plane].aux_surface.isl, 0); |
| if (ok) { |
| |
| /* Disable CCS when it is not useful (i.e., when you can't render |
| * to the image with CCS enabled). |
| */ |
| if (!isl_format_supports_rendering(&dev->info, |
| plane_format.isl_format)) { |
| /* While it may be technically possible to enable CCS for this |
| * image, we currently don't have things hooked up to get it |
| * working. |
| */ |
| anv_perf_warn(dev->instance, image, |
| "This image format doesn't support rendering. " |
| "Not allocating an CCS buffer."); |
| image->planes[plane].aux_surface.isl.size_B = 0; |
| return VK_SUCCESS; |
| } |
| |
| add_surface(image, &image->planes[plane].aux_surface, plane); |
| add_aux_state_tracking_buffer(image, plane, dev); |
| |
| /* For images created without MUTABLE_FORMAT_BIT set, we know that |
| * they will always be used with the original format. In |
| * particular, they will always be used with a format that |
| * supports color compression. If it's never used as a storage |
| * image, then it will only be used through the sampler or the as |
| * a render target. This means that it's safe to just leave |
| * compression on at all times for these formats. |
| */ |
| if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && |
| all_formats_ccs_e_compatible(&dev->info, vk_info)) { |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; |
| } |
| } |
| } |
| } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) { |
| assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT)); |
| assert(image->planes[plane].aux_surface.isl.size_B == 0); |
| ok = isl_surf_get_mcs_surf(&dev->isl_dev, |
| &image->planes[plane].surface.isl, |
| &image->planes[plane].aux_surface.isl); |
| if (ok) { |
| add_surface(image, &image->planes[plane].aux_surface, plane); |
| add_aux_state_tracking_buffer(image, plane, dev); |
| image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; |
| } |
| } |
| |
| assert((image->planes[plane].offset + image->planes[plane].size) == image->size); |
| |
| /* Upper bound of the last surface should be smaller than the plane's |
| * size. |
| */ |
| assert((MAX2(image->planes[plane].surface.offset, |
| image->planes[plane].aux_surface.offset) + |
| (image->planes[plane].aux_surface.isl.size_B > 0 ? |
| image->planes[plane].aux_surface.isl.size_B : |
| image->planes[plane].surface.isl.size_B)) <= |
| (image->planes[plane].offset + image->planes[plane].size)); |
| |
| if (image->planes[plane].aux_surface.isl.size_B) { |
| /* assert(image->planes[plane].fast_clear_state_offset == */ |
| /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */ |
| assert(image->planes[plane].fast_clear_state_offset < |
| (image->planes[plane].offset + image->planes[plane].size)); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static uint32_t |
| score_drm_format_mod(uint64_t modifier) |
| { |
| switch (modifier) { |
| case DRM_FORMAT_MOD_LINEAR: return 1; |
| case I915_FORMAT_MOD_X_TILED: return 2; |
| case I915_FORMAT_MOD_Y_TILED: return 3; |
| case I915_FORMAT_MOD_Y_TILED_CCS: return 4; |
| default: unreachable("bad DRM format modifier"); |
| } |
| } |
| |
| static const struct isl_drm_modifier_info * |
| choose_drm_format_mod(const struct anv_physical_device *device, |
| uint32_t modifier_count, const uint64_t *modifiers) |
| { |
| uint64_t best_mod = UINT64_MAX; |
| uint32_t best_score = 0; |
| |
| for (uint32_t i = 0; i < modifier_count; ++i) { |
| uint32_t score = score_drm_format_mod(modifiers[i]); |
| if (score > best_score) { |
| best_mod = modifiers[i]; |
| best_score = score; |
| } |
| } |
| |
| if (best_score > 0) |
| return isl_drm_modifier_get_info(best_mod); |
| else |
| return NULL; |
| } |
| |
| VkResult |
| anv_image_create(VkDevice _device, |
| const struct anv_image_create_info *create_info, |
| const VkAllocationCallbacks* alloc, |
| VkImage *pImage) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| const VkImageCreateInfo *pCreateInfo = create_info->vk_info; |
| const struct isl_drm_modifier_info *isl_mod_info = NULL; |
| struct anv_image *image = NULL; |
| VkResult r; |
| |
| assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); |
| |
| const struct wsi_image_create_info *wsi_info = |
| vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA); |
| if (wsi_info && wsi_info->modifier_count > 0) { |
| isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice, |
| wsi_info->modifier_count, |
| wsi_info->modifiers); |
| assert(isl_mod_info); |
| } |
| |
| anv_assert(pCreateInfo->mipLevels > 0); |
| anv_assert(pCreateInfo->arrayLayers > 0); |
| anv_assert(pCreateInfo->samples > 0); |
| anv_assert(pCreateInfo->extent.width > 0); |
| anv_assert(pCreateInfo->extent.height > 0); |
| anv_assert(pCreateInfo->extent.depth > 0); |
| |
| image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!image) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| image->type = pCreateInfo->imageType; |
| image->extent = pCreateInfo->extent; |
| image->vk_format = pCreateInfo->format; |
| image->format = anv_get_format(pCreateInfo->format); |
| image->aspects = vk_format_aspects(image->vk_format); |
| image->levels = pCreateInfo->mipLevels; |
| image->array_size = pCreateInfo->arrayLayers; |
| image->samples = pCreateInfo->samples; |
| image->usage = pCreateInfo->usage; |
| image->tiling = pCreateInfo->tiling; |
| image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT; |
| image->needs_set_tiling = wsi_info && wsi_info->scanout; |
| image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier : |
| DRM_FORMAT_MOD_INVALID; |
| |
| const struct anv_format *format = anv_get_format(image->vk_format); |
| assert(format != NULL); |
| |
| const isl_tiling_flags_t isl_tiling_flags = |
| choose_isl_tiling_flags(create_info, isl_mod_info, |
| image->needs_set_tiling); |
| |
| image->n_planes = format->n_planes; |
| |
| uint32_t b; |
| for_each_bit(b, image->aspects) { |
| r = make_surface(device, image, create_info, isl_tiling_flags, |
| (1 << b)); |
| if (r != VK_SUCCESS) |
| goto fail; |
| } |
| |
| *pImage = anv_image_to_handle(image); |
| |
| return VK_SUCCESS; |
| |
| fail: |
| if (image) |
| vk_free2(&device->alloc, alloc, image); |
| |
| return r; |
| } |
| |
| VkResult |
| anv_CreateImage(VkDevice device, |
| const VkImageCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImage *pImage) |
| { |
| const VkNativeBufferANDROID *gralloc_info = |
| vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); |
| |
| if (gralloc_info) |
| return anv_image_from_gralloc(device, pCreateInfo, gralloc_info, |
| pAllocator, pImage); |
| |
| return anv_image_create(device, |
| &(struct anv_image_create_info) { |
| .vk_info = pCreateInfo, |
| }, |
| pAllocator, |
| pImage); |
| } |
| |
| void |
| anv_DestroyImage(VkDevice _device, VkImage _image, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| if (!image) |
| return; |
| |
| for (uint32_t p = 0; p < image->n_planes; ++p) { |
| if (image->planes[p].bo_is_owned) { |
| assert(image->planes[p].address.bo != NULL); |
| anv_bo_cache_release(device, &device->bo_cache, |
| image->planes[p].address.bo); |
| } |
| } |
| |
| vk_free2(&device->alloc, pAllocator, image); |
| } |
| |
| static void anv_image_bind_memory_plane(struct anv_device *device, |
| struct anv_image *image, |
| uint32_t plane, |
| struct anv_device_memory *memory, |
| uint32_t memory_offset) |
| { |
| assert(!image->planes[plane].bo_is_owned); |
| |
| if (!memory) { |
| image->planes[plane].address = ANV_NULL_ADDRESS; |
| return; |
| } |
| |
| image->planes[plane].address = (struct anv_address) { |
| .bo = memory->bo, |
| .offset = memory_offset, |
| }; |
| } |
| |
| VkResult anv_BindImageMemory( |
| VkDevice _device, |
| VkImage _image, |
| VkDeviceMemory _memory, |
| VkDeviceSize memoryOffset) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_device_memory, mem, _memory); |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| uint32_t aspect_bit; |
| anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) { |
| uint32_t plane = |
| anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); |
| anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult anv_BindImageMemory2( |
| VkDevice _device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| |
| for (uint32_t i = 0; i < bindInfoCount; i++) { |
| const VkBindImageMemoryInfo *bind_info = &pBindInfos[i]; |
| ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory); |
| ANV_FROM_HANDLE(anv_image, image, bind_info->image); |
| VkImageAspectFlags aspects = image->aspects; |
| |
| vk_foreach_struct_const(s, bind_info->pNext) { |
| switch (s->sType) { |
| case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: { |
| const VkBindImagePlaneMemoryInfo *plane_info = |
| (const VkBindImagePlaneMemoryInfo *) s; |
| |
| aspects = plane_info->planeAspect; |
| break; |
| } |
| default: |
| anv_debug_ignored_stype(s->sType); |
| break; |
| } |
| } |
| |
| uint32_t aspect_bit; |
| anv_foreach_image_aspect_bit(aspect_bit, image, aspects) { |
| uint32_t plane = |
| anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); |
| anv_image_bind_memory_plane(device, image, plane, |
| mem, bind_info->memoryOffset); |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| void anv_GetImageSubresourceLayout( |
| VkDevice device, |
| VkImage _image, |
| const VkImageSubresource* subresource, |
| VkSubresourceLayout* layout) |
| { |
| ANV_FROM_HANDLE(anv_image, image, _image); |
| |
| const struct anv_surface *surface; |
| if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT_KHR && |
| image->drm_format_mod != DRM_FORMAT_MOD_INVALID && |
| isl_drm_modifier_has_aux(image->drm_format_mod)) |
| surface = &image->planes[0].aux_surface; |
| else |
| surface = get_surface(image, subresource->aspectMask); |
| |
| assert(__builtin_popcount(subresource->aspectMask) == 1); |
| |
| layout->offset = surface->offset; |
| layout->rowPitch = surface->isl.row_pitch_B; |
| layout->depthPitch = isl_surf_get_array_pitch(&surface->isl); |
| layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl); |
| |
| if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) { |
| assert(surface->isl.tiling == ISL_TILING_LINEAR); |
| |
| uint32_t offset_B; |
| isl_surf_get_image_offset_B_tile_sa(&surface->isl, |
| subresource->mipLevel, |
| subresource->arrayLayer, |
| 0 /* logical_z_offset_px */, |
| &offset_B, NULL, NULL); |
| layout->offset += offset_B; |
| layout->size = layout->rowPitch * anv_minify(image->extent.height, |
| subresource->mipLevel); |
| } else { |
| layout->size = surface->isl.size_B; |
| } |
| } |
| |
| /** |
| * This function determines the optimal buffer to use for a given |
| * VkImageLayout and other pieces of information needed to make that |
| * determination. This does not determine the optimal buffer to use |
| * during a resolve operation. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param layout The current layout of the image aspect(s). |
| * |
| * @return The primary buffer that should be used for the given layout. |
| */ |
| enum isl_aux_usage |
| anv_layout_to_aux_usage(const struct gen_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageLayout layout) |
| { |
| /* Validate the inputs. */ |
| |
| /* The devinfo is needed as the optimal buffer varies across generations. */ |
| assert(devinfo != NULL); |
| |
| /* The layout of a NULL image is not properly defined. */ |
| assert(image != NULL); |
| |
| /* The aspect must be exactly one of the image aspects. */ |
| assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); |
| |
| /* Determine the optimal buffer. */ |
| |
| uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); |
| |
| /* If there is no auxiliary surface allocated, we must use the one and only |
| * main buffer. |
| */ |
| if (image->planes[plane].aux_surface.isl.size_B == 0) |
| return ISL_AUX_USAGE_NONE; |
| |
| /* All images that use an auxiliary surface are required to be tiled. */ |
| assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); |
| |
| /* Stencil has no aux */ |
| assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT); |
| |
| switch (layout) { |
| |
| /* Invalid Layouts */ |
| case VK_IMAGE_LAYOUT_RANGE_SIZE: |
| case VK_IMAGE_LAYOUT_MAX_ENUM: |
| unreachable("Invalid image layout."); |
| |
| /* Undefined layouts |
| * |
| * The pre-initialized layout is equivalent to the undefined layout for |
| * optimally-tiled images. We can only do color compression (CCS or HiZ) |
| * on tiled images. |
| */ |
| case VK_IMAGE_LAYOUT_UNDEFINED: |
| case VK_IMAGE_LAYOUT_PREINITIALIZED: |
| return ISL_AUX_USAGE_NONE; |
| |
| |
| /* Transfer Layouts |
| */ |
| case VK_IMAGE_LAYOUT_GENERAL: |
| case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: |
| case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| /* This buffer could be a depth buffer used in a transfer operation. |
| * BLORP currently doesn't use HiZ for transfer operations so we must |
| * use the main buffer for this layout. TODO: Enable HiZ in BLORP. |
| */ |
| assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ); |
| return ISL_AUX_USAGE_NONE; |
| } else { |
| assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); |
| return image->planes[plane].aux_usage; |
| } |
| |
| |
| /* Sampling Layouts */ |
| case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: |
| case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL: |
| assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); |
| /* Fall-through */ |
| case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| if (anv_can_sample_with_hiz(devinfo, image)) |
| return ISL_AUX_USAGE_HIZ; |
| else |
| return ISL_AUX_USAGE_NONE; |
| } else { |
| return image->planes[plane].aux_usage; |
| } |
| |
| |
| case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: { |
| assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); |
| |
| /* When handing the image off to the presentation engine, we need to |
| * ensure that things are properly resolved. For images with no |
| * modifier, we assume that they follow the old rules and always need |
| * a full resolve because the PE doesn't understand any form of |
| * compression. For images with modifiers, we use the aux usage from |
| * the modifier. |
| */ |
| const struct isl_drm_modifier_info *mod_info = |
| isl_drm_modifier_get_info(image->drm_format_mod); |
| return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE; |
| } |
| |
| |
| /* Rendering Layouts */ |
| case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: |
| assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) { |
| assert(image->samples == 1); |
| return ISL_AUX_USAGE_CCS_D; |
| } else { |
| assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D); |
| return image->planes[plane].aux_usage; |
| } |
| |
| case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: |
| case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL: |
| assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT); |
| return ISL_AUX_USAGE_HIZ; |
| |
| case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: |
| unreachable("VK_KHR_shared_presentable_image is unsupported"); |
| |
| case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV: |
| unreachable("VK_NV_shading_rate_image is unsupported"); |
| } |
| |
| /* If the layout isn't recognized in the exhaustive switch above, the |
| * VkImageLayout value is not defined in vulkan.h. |
| */ |
| unreachable("layout is not a VkImageLayout enumeration member."); |
| } |
| |
| /** |
| * This function returns the level of unresolved fast-clear support of the |
| * given image in the given VkImageLayout. |
| * |
| * @param devinfo The device information of the Intel GPU. |
| * @param image The image that may contain a collection of buffers. |
| * @param aspect The aspect of the image to be accessed. |
| * @param layout The current layout of the image aspect(s). |
| */ |
| enum anv_fast_clear_type |
| anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo, |
| const struct anv_image * const image, |
| const VkImageAspectFlagBits aspect, |
| const VkImageLayout layout) |
| { |
| /* The aspect must be exactly one of the image aspects. */ |
| assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); |
| |
| uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); |
| |
| /* If there is no auxiliary surface allocated, there are no fast-clears */ |
| if (image->planes[plane].aux_surface.isl.size_B == 0) |
| return ANV_FAST_CLEAR_NONE; |
| |
| /* All images that use an auxiliary surface are required to be tiled. */ |
| assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); |
| |
| /* Stencil has no aux */ |
| assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT); |
| |
| if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| /* For depth images (with HiZ), the layout supports fast-clears if and |
| * only if it supports HiZ. However, we only support fast-clears to the |
| * default depth value. |
| */ |
| enum isl_aux_usage aux_usage = |
| anv_layout_to_aux_usage(devinfo, image, aspect, layout); |
| return aux_usage == ISL_AUX_USAGE_HIZ ? |
| ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE; |
| } |
| |
| assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); |
| |
| /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they |
| * lack the MI ALU which we need to determine the predicates. |
| */ |
| if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1) |
| return ANV_FAST_CLEAR_NONE; |
| |
| switch (layout) { |
| case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: |
| return ANV_FAST_CLEAR_ANY; |
| |
| case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: { |
| assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); |
| #ifndef NDEBUG |
| /* We do not yet support any modifiers which support clear color so we |
| * just always return NONE. One day, this will change. |
| */ |
| const struct isl_drm_modifier_info *mod_info = |
| isl_drm_modifier_get_info(image->drm_format_mod); |
| assert(!mod_info || !mod_info->supports_clear_color); |
| #endif |
| return ANV_FAST_CLEAR_NONE; |
| } |
| |
| default: |
| /* If the image has MCS or CCS_E enabled all the time then we can use |
| * fast-clear as long as the clear color is the default value of zero |
| * since this is the default value we program into every surface state |
| * used for texturing. |
| */ |
| if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS || |
| image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) |
| return ANV_FAST_CLEAR_DEFAULT_VALUE; |
| else |
| return ANV_FAST_CLEAR_NONE; |
| } |
| } |
| |
| |
| static struct anv_state |
| alloc_surface_state(struct anv_device *device) |
| { |
| return anv_state_pool_alloc(&device->surface_state_pool, 64, 64); |
| } |
| |
| static enum isl_channel_select |
| remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component, |
| struct isl_swizzle format_swizzle) |
| { |
| if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY) |
| swizzle = component; |
| |
| switch (swizzle) { |
| case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO; |
| case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE; |
| case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r; |
| case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g; |
| case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b; |
| case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a; |
| default: |
| unreachable("Invalid swizzle"); |
| } |
| } |
| |
| void |
| anv_image_fill_surface_state(struct anv_device *device, |
| const struct anv_image *image, |
| VkImageAspectFlagBits aspect, |
| const struct isl_view *view_in, |
| isl_surf_usage_flags_t view_usage, |
| enum isl_aux_usage aux_usage, |
| const union isl_color_value *clear_color, |
| enum anv_image_view_state_flags flags, |
| struct anv_surface_state *state_inout, |
| struct brw_image_param *image_param_out) |
| { |
| uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); |
| |
| const struct anv_surface *surface = &image->planes[plane].surface, |
| *aux_surface = &image->planes[plane].aux_surface; |
| |
| struct isl_view view = *view_in; |
| view.usage |= view_usage; |
| |
| /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a |
| * compressed surface with a shadow surface, we use the shadow instead of |
| * the primary surface. The shadow surface will be tiled, unlike the main |
| * surface, so it should get significantly better performance. |
| */ |
| if (image->planes[plane].shadow_surface.isl.size_B > 0 && |
| isl_format_is_compressed(view.format) && |
| (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) { |
| assert(isl_format_is_compressed(surface->isl.format)); |
| assert(surface->isl.tiling == ISL_TILING_LINEAR); |
| assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); |
| surface = &image->planes[plane].shadow_surface; |
| } |
| |
| if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) |
| view.swizzle = anv_swizzle_for_render(view.swizzle); |
| |
| /* If this is a HiZ buffer we can sample from with a programmable clear |
| * value (SKL+), define the clear value to the optimal constant. |
| */ |
| union isl_color_value default_clear_color = { .u32 = { 0, } }; |
| if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ) |
| default_clear_color.f32[0] = ANV_HZ_FC_VAL; |
| if (!clear_color) |
| clear_color = &default_clear_color; |
| |
| const struct anv_address address = |
| anv_address_add(image->planes[plane].address, surface->offset); |
| |
| if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && |
| !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) && |
| !isl_has_matching_typed_storage_image_format(&device->info, |
| view.format)) { |
| /* In this case, we are a writeable storage buffer which needs to be |
| * lowered to linear. All tiling and offset calculations will be done in |
| * the shader. |
| */ |
| assert(aux_usage == ISL_AUX_USAGE_NONE); |
| isl_buffer_fill_state(&device->isl_dev, state_inout->state.map, |
| .address = anv_address_physical(address), |
| .size_B = surface->isl.size_B, |
| .format = ISL_FORMAT_RAW, |
| .stride_B = 1, |
| .mocs = anv_mocs_for_bo(device, address.bo)); |
| state_inout->address = address, |
| state_inout->aux_address = ANV_NULL_ADDRESS; |
| state_inout->clear_address = ANV_NULL_ADDRESS; |
| } else { |
| if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && |
| !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) { |
| /* Typed surface reads support a very limited subset of the shader |
| * image formats. Translate it into the closest format the hardware |
| * supports. |
| */ |
| assert(aux_usage == ISL_AUX_USAGE_NONE); |
| view.format = isl_lower_storage_image_format(&device->info, |
| view.format); |
| } |
| |
| const struct isl_surf *isl_surf = &surface->isl; |
| |
| struct isl_surf tmp_surf; |
| uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0; |
| if (isl_format_is_compressed(surface->isl.format) && |
| !isl_format_is_compressed(view.format)) { |
| /* We're creating an uncompressed view of a compressed surface. This |
| * is allowed but only for a single level/layer. |
| */ |
| assert(surface->isl.samples == 1); |
| assert(view.levels == 1); |
| assert(view.array_len == 1); |
| |
| isl_surf_get_image_surf(&device->isl_dev, isl_surf, |
| view.base_level, |
| surface->isl.dim == ISL_SURF_DIM_3D ? |
| 0 : view.base_array_layer, |
| surface->isl.dim == ISL_SURF_DIM_3D ? |
| view.base_array_layer : 0, |
| &tmp_surf, |
| &offset_B, &tile_x_sa, &tile_y_sa); |
| |
| /* The newly created image represents the one subimage we're |
| * referencing with this view so it only has one array slice and |
| * miplevel. |
| */ |
| view.base_array_layer = 0; |
| view.base_level = 0; |
| |
| /* We're making an uncompressed view here. The image dimensions need |
| * to be scaled down by the block size. |
| */ |
| const struct isl_format_layout *fmtl = |
| isl_format_get_layout(surface->isl.format); |
| tmp_surf.format = view.format; |
| tmp_surf.logical_level0_px.width = |
| DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw); |
| tmp_surf.logical_level0_px.height = |
| DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh); |
| tmp_surf.phys_level0_sa.width /= fmtl->bw; |
| tmp_surf.phys_level0_sa.height /= fmtl->bh; |
| tile_x_sa /= fmtl->bw; |
| tile_y_sa /= fmtl->bh; |
| |
| isl_surf = &tmp_surf; |
| |
| if (device->info.gen <= 8) { |
| assert(surface->isl.tiling == ISL_TILING_LINEAR); |
| assert(tile_x_sa == 0); |
| assert(tile_y_sa == 0); |
| } |
| } |
| |
| state_inout->address = anv_address_add(address, offset_B); |
| |
| struct anv_address aux_address = ANV_NULL_ADDRESS; |
| if (aux_usage != ISL_AUX_USAGE_NONE) { |
| aux_address = anv_address_add(image->planes[plane].address, |
| aux_surface->offset); |
| } |
| state_inout->aux_address = aux_address; |
| |
| struct anv_address clear_address = ANV_NULL_ADDRESS; |
| if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) { |
| if (aux_usage == ISL_AUX_USAGE_HIZ) { |
| clear_address = (struct anv_address) { |
| .bo = &device->hiz_clear_bo, |
| .offset = 0, |
| }; |
| } else { |
| clear_address = anv_image_get_clear_color_addr(device, image, aspect); |
| } |
| } |
| state_inout->clear_address = clear_address; |
| |
| isl_surf_fill_state(&device->isl_dev, state_inout->state.map, |
| .surf = isl_surf, |
| .view = &view, |
| .address = anv_address_physical(state_inout->address), |
| .clear_color = *clear_color, |
| .aux_surf = &aux_surface->isl, |
| .aux_usage = aux_usage, |
| .aux_address = anv_address_physical(aux_address), |
| .clear_address = anv_address_physical(clear_address), |
| .use_clear_address = !anv_address_is_null(clear_address), |
| .mocs = anv_mocs_for_bo(device, |
| state_inout->address.bo), |
| .x_offset_sa = tile_x_sa, |
| .y_offset_sa = tile_y_sa); |
| |
| /* With the exception of gen8, the bottom 12 bits of the MCS base address |
| * are used to store other information. This should be ok, however, |
| * because the surface buffer addresses are always 4K page aligned. |
| */ |
| uint32_t *aux_addr_dw = state_inout->state.map + |
| device->isl_dev.ss.aux_addr_offset; |
| assert((aux_address.offset & 0xfff) == 0); |
| state_inout->aux_address.offset |= *aux_addr_dw & 0xfff; |
| |
| if (device->info.gen >= 10 && clear_address.bo) { |
| uint32_t *clear_addr_dw = state_inout->state.map + |
| device->isl_dev.ss.clear_color_state_offset; |
| assert((clear_address.offset & 0x3f) == 0); |
| state_inout->clear_address.offset |= *clear_addr_dw & 0x3f; |
| } |
| } |
| |
| anv_state_flush(device, state_inout->state); |
| |
| if (image_param_out) { |
| assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT); |
| isl_surf_fill_image_param(&device->isl_dev, image_param_out, |
| &surface->isl, &view); |
| } |
| } |
| |
| static VkImageAspectFlags |
| remap_aspect_flags(VkImageAspectFlags view_aspects) |
| { |
| if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { |
| if (util_bitcount(view_aspects) == 1) |
| return VK_IMAGE_ASPECT_COLOR_BIT; |
| |
| VkImageAspectFlags color_aspects = 0; |
| for (uint32_t i = 0; i < util_bitcount(view_aspects); i++) |
| color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i; |
| return color_aspects; |
| } |
| /* No special remapping needed for depth & stencil aspects. */ |
| return view_aspects; |
| } |
| |
| VkResult |
| anv_CreateImageView(VkDevice _device, |
| const VkImageViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImageView *pView) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); |
| struct anv_image_view *iview; |
| |
| iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (iview == NULL) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; |
| |
| assert(range->layerCount > 0); |
| assert(range->baseMipLevel < image->levels); |
| |
| const VkImageViewUsageCreateInfo *usage_info = |
| vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO); |
| VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage; |
| /* View usage should be a subset of image usage */ |
| assert((view_usage & ~image->usage) == 0); |
| assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_STORAGE_BIT | |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)); |
| |
| switch (image->type) { |
| default: |
| unreachable("bad VkImageType"); |
| case VK_IMAGE_TYPE_1D: |
| case VK_IMAGE_TYPE_2D: |
| assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size); |
| break; |
| case VK_IMAGE_TYPE_3D: |
| assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 |
| <= anv_minify(image->extent.depth, range->baseMipLevel)); |
| break; |
| } |
| |
| /* First expand aspects to the image's ones (for example |
| * VK_IMAGE_ASPECT_COLOR_BIT will be converted to |
| * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | |
| * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format |
| * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR. |
| */ |
| VkImageAspectFlags expanded_aspects = |
| anv_image_expand_aspects(image, range->aspectMask); |
| |
| iview->image = image; |
| |
| /* Remap the expanded aspects for the image view. For example if only |
| * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will |
| * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of |
| * the image view, it only has a single plane. |
| */ |
| iview->aspect_mask = remap_aspect_flags(expanded_aspects); |
| iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask); |
| iview->vk_format = pCreateInfo->format; |
| |
| iview->extent = (VkExtent3D) { |
| .width = anv_minify(image->extent.width , range->baseMipLevel), |
| .height = anv_minify(image->extent.height, range->baseMipLevel), |
| .depth = anv_minify(image->extent.depth , range->baseMipLevel), |
| }; |
| |
| /* Now go through the underlying image selected planes (computed in |
| * expanded_aspects) and map them to planes in the image view. |
| */ |
| uint32_t iaspect_bit, vplane = 0; |
| anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) { |
| uint32_t iplane = |
| anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit); |
| VkImageAspectFlags vplane_aspect = |
| anv_plane_to_aspect(iview->aspect_mask, vplane); |
| struct anv_format_plane format = |
| anv_get_format_plane(&device->info, pCreateInfo->format, |
| vplane_aspect, image->tiling); |
| |
| iview->planes[vplane].image_plane = iplane; |
| |
| iview->planes[vplane].isl = (struct isl_view) { |
| .format = format.isl_format, |
| .base_level = range->baseMipLevel, |
| .levels = anv_get_levelCount(image, range), |
| .base_array_layer = range->baseArrayLayer, |
| .array_len = anv_get_layerCount(image, range), |
| .swizzle = { |
| .r = remap_swizzle(pCreateInfo->components.r, |
| VK_COMPONENT_SWIZZLE_R, format.swizzle), |
| .g = remap_swizzle(pCreateInfo->components.g, |
| VK_COMPONENT_SWIZZLE_G, format.swizzle), |
| .b = remap_swizzle(pCreateInfo->components.b, |
| VK_COMPONENT_SWIZZLE_B, format.swizzle), |
| .a = remap_swizzle(pCreateInfo->components.a, |
| VK_COMPONENT_SWIZZLE_A, format.swizzle), |
| }, |
| }; |
| |
| if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) { |
| iview->planes[vplane].isl.base_array_layer = 0; |
| iview->planes[vplane].isl.array_len = iview->extent.depth; |
| } |
| |
| if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE || |
| pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { |
| iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT; |
| } else { |
| iview->planes[vplane].isl.usage = 0; |
| } |
| |
| if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT || |
| (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT && |
| !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) { |
| iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device); |
| iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device); |
| |
| enum isl_aux_usage general_aux_usage = |
| anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, |
| VK_IMAGE_LAYOUT_GENERAL); |
| enum isl_aux_usage optimal_aux_usage = |
| anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_TEXTURE_BIT, |
| optimal_aux_usage, NULL, |
| ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL, |
| &iview->planes[vplane].optimal_sampler_surface_state, |
| NULL); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_TEXTURE_BIT, |
| general_aux_usage, NULL, |
| 0, |
| &iview->planes[vplane].general_sampler_surface_state, |
| NULL); |
| } |
| |
| /* NOTE: This one needs to go last since it may stomp isl_view.format */ |
| if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) { |
| iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device); |
| iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_STORAGE_BIT, |
| ISL_AUX_USAGE_NONE, NULL, |
| 0, |
| &iview->planes[vplane].storage_surface_state, |
| &iview->planes[vplane].storage_image_param); |
| |
| anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, |
| &iview->planes[vplane].isl, |
| ISL_SURF_USAGE_STORAGE_BIT, |
| ISL_AUX_USAGE_NONE, NULL, |
| ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY, |
| &iview->planes[vplane].writeonly_storage_surface_state, |
| NULL); |
| } |
| |
| vplane++; |
| } |
| |
| *pView = anv_image_view_to_handle(iview); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_DestroyImageView(VkDevice _device, VkImageView _iview, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_image_view, iview, _iview); |
| |
| if (!iview) |
| return; |
| |
| for (uint32_t plane = 0; plane < iview->n_planes; plane++) { |
| if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) { |
| anv_state_pool_free(&device->surface_state_pool, |
| iview->planes[plane].optimal_sampler_surface_state.state); |
| } |
| |
| if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) { |
| anv_state_pool_free(&device->surface_state_pool, |
| iview->planes[plane].general_sampler_surface_state.state); |
| } |
| |
| if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) { |
| anv_state_pool_free(&device->surface_state_pool, |
| iview->planes[plane].storage_surface_state.state); |
| } |
| |
| if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) { |
| anv_state_pool_free(&device->surface_state_pool, |
| iview->planes[plane].writeonly_storage_surface_state.state); |
| } |
| } |
| |
| vk_free2(&device->alloc, pAllocator, iview); |
| } |
| |
| |
| VkResult |
| anv_CreateBufferView(VkDevice _device, |
| const VkBufferViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkBufferView *pView) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer); |
| struct anv_buffer_view *view; |
| |
| view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!view) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| /* TODO: Handle the format swizzle? */ |
| |
| view->format = anv_get_isl_format(&device->info, pCreateInfo->format, |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| VK_IMAGE_TILING_LINEAR); |
| const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8; |
| view->range = anv_buffer_get_range(buffer, pCreateInfo->offset, |
| pCreateInfo->range); |
| view->range = align_down_npot_u32(view->range, format_bs); |
| |
| view->address = anv_address_add(buffer->address, pCreateInfo->offset); |
| |
| if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) { |
| view->surface_state = alloc_surface_state(device); |
| |
| anv_fill_buffer_surface_state(device, view->surface_state, |
| view->format, |
| view->address, view->range, format_bs); |
| } else { |
| view->surface_state = (struct anv_state){ 0 }; |
| } |
| |
| if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) { |
| view->storage_surface_state = alloc_surface_state(device); |
| view->writeonly_storage_surface_state = alloc_surface_state(device); |
| |
| enum isl_format storage_format = |
| isl_has_matching_typed_storage_image_format(&device->info, |
| view->format) ? |
| isl_lower_storage_image_format(&device->info, view->format) : |
| ISL_FORMAT_RAW; |
| |
| anv_fill_buffer_surface_state(device, view->storage_surface_state, |
| storage_format, |
| view->address, view->range, |
| (storage_format == ISL_FORMAT_RAW ? 1 : |
| isl_format_get_layout(storage_format)->bpb / 8)); |
| |
| /* Write-only accesses should use the original format. */ |
| anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state, |
| view->format, |
| view->address, view->range, |
| isl_format_get_layout(view->format)->bpb / 8); |
| |
| isl_buffer_fill_image_param(&device->isl_dev, |
| &view->storage_image_param, |
| view->format, view->range); |
| } else { |
| view->storage_surface_state = (struct anv_state){ 0 }; |
| view->writeonly_storage_surface_state = (struct anv_state){ 0 }; |
| } |
| |
| *pView = anv_buffer_view_to_handle(view); |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| ANV_FROM_HANDLE(anv_device, device, _device); |
| ANV_FROM_HANDLE(anv_buffer_view, view, bufferView); |
| |
| if (!view) |
| return; |
| |
| if (view->surface_state.alloc_size > 0) |
| anv_state_pool_free(&device->surface_state_pool, |
| view->surface_state); |
| |
| if (view->storage_surface_state.alloc_size > 0) |
| anv_state_pool_free(&device->surface_state_pool, |
| view->storage_surface_state); |
| |
| if (view->writeonly_storage_surface_state.alloc_size > 0) |
| anv_state_pool_free(&device->surface_state_pool, |
| view->writeonly_storage_surface_state); |
| |
| vk_free2(&device->alloc, pAllocator, view); |
| } |
| |
| const struct anv_surface * |
| anv_image_get_surface_for_aspect_mask(const struct anv_image *image, |
| VkImageAspectFlags aspect_mask) |
| { |
| VkImageAspectFlags sanitized_mask; |
| |
| switch (aspect_mask) { |
| case VK_IMAGE_ASPECT_COLOR_BIT: |
| assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); |
| sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT; |
| break; |
| case VK_IMAGE_ASPECT_DEPTH_BIT: |
| assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT); |
| sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| break; |
| case VK_IMAGE_ASPECT_STENCIL_BIT: |
| assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT); |
| sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| break; |
| case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: |
| /* FINISHME: The Vulkan spec (git a511ba2) requires support for |
| * combined depth stencil formats. Specifically, it states: |
| * |
| * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or |
| * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported. |
| * |
| * Image views with both depth and stencil aspects are only valid for |
| * render target attachments, in which case |
| * cmd_buffer_emit_depth_stencil() will pick out both the depth and |
| * stencil surfaces from the underlying surface. |
| */ |
| if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { |
| sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else { |
| assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT); |
| sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| } |
| break; |
| case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); |
| sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT; |
| break; |
| case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); |
| sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT; |
| break; |
| case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); |
| sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT; |
| break; |
| default: |
| unreachable("image does not have aspect"); |
| return NULL; |
| } |
| |
| uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask); |
| return &image->planes[plane].surface; |
| } |