blob: b1a2db47deac76fdba4b05fbebd743bc27a9e09c [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef ANV_PRIVATE_H
#define ANV_PRIVATE_H
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <pthread.h>
#include <assert.h>
#include <stdint.h>
#include <i915_drm.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#ifndef NDEBUG
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#endif
#else
#define VG(x)
#endif
#include "common/gen_clflush.h"
#include "common/gen_gem.h"
#include "dev/gen_device_info.h"
#include "blorp/blorp.h"
#include "compiler/brw_compiler.h"
#include "util/macros.h"
#include "util/hash_table.h"
#include "util/list.h"
#include "util/set.h"
#include "util/u_atomic.h"
#include "util/u_vector.h"
#include "util/u_math.h"
#include "util/vma.h"
#include "vk_alloc.h"
#include "vk_debug_report.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
struct anv_buffer;
struct anv_buffer_view;
struct anv_image_view;
struct anv_instance;
struct gen_l3_config;
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_intel.h>
#include <vulkan/vk_icd.h>
#include "anv_android.h"
#include "anv_entrypoints.h"
#include "anv_extensions.h"
#include "isl/isl.h"
#include "common/gen_debug.h"
#include "common/intel_log.h"
#include "wsi_common.h"
/* anv Virtual Memory Layout
* =========================
*
* When the anv driver is determining the virtual graphics addresses of memory
* objects itself using the softpin mechanism, the following memory ranges
* will be used.
*
* Three special considerations to notice:
*
* (1) the dynamic state pool is located within the same 4 GiB as the low
* heap. This is to work around a VF cache issue described in a comment in
* anv_physical_device_init_heaps.
*
* (2) the binding table pool is located at lower addresses than the surface
* state pool, within a 4 GiB range. This allows surface state base addresses
* to cover both binding tables (16 bit offsets) and surface states (32 bit
* offsets).
*
* (3) the last 4 GiB of the address space is withheld from the high
* heap. Various hardware units will read past the end of an object for
* various reasons. This healthy margin prevents reads from wrapping around
* 48-bit addresses.
*/
#define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
#define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
#define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
#define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
#define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
#define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
#define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
#define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
#define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
#define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
#define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
#define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
#define LOW_HEAP_SIZE \
(LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
#define HIGH_HEAP_SIZE \
(HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
#define DYNAMIC_STATE_POOL_SIZE \
(DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
#define BINDING_TABLE_POOL_SIZE \
(BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
#define SURFACE_STATE_POOL_SIZE \
(SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
#define INSTRUCTION_STATE_POOL_SIZE \
(INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
/* Allowing different clear colors requires us to perform a depth resolve at
* the end of certain render passes. This is because while slow clears store
* the clear color in the HiZ buffer, fast clears (without a resolve) don't.
* See the PRMs for examples describing when additional resolves would be
* necessary. To enable fast clears without requiring extra resolves, we set
* the clear value to a globally-defined one. We could allow different values
* if the user doesn't expect coherent data during or after a render passes
* (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
* don't seem to exist yet. In almost all Vulkan applications tested thus far,
* 1.0f seems to be the only value used. The only application that doesn't set
* this value does so through the usage of an seemingly uninitialized clear
* value.
*/
#define ANV_HZ_FC_VAL 1.0f
#define MAX_VBS 28
#define MAX_SETS 8
#define MAX_RTS 8
#define MAX_VIEWPORTS 16
#define MAX_SCISSORS 16
#define MAX_PUSH_CONSTANTS_SIZE 128
#define MAX_DYNAMIC_BUFFERS 16
#define MAX_IMAGES 8
#define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
/* The kernel relocation API has a limitation of a 32-bit delta value
* applied to the address before it is written which, in spite of it being
* unsigned, is treated as signed . Because of the way that this maps to
* the Vulkan API, we cannot handle an offset into a buffer that does not
* fit into a signed 32 bits. The only mechanism we have for dealing with
* this at the moment is to limit all VkDeviceMemory objects to a maximum
* of 2GB each. The Vulkan spec allows us to do this:
*
* "Some platforms may have a limit on the maximum size of a single
* allocation. For example, certain systems may fail to create
* allocations with a size greater than or equal to 4GB. Such a limit is
* implementation-dependent, and if such a failure occurs then the error
* VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
*
* We don't use vk_error here because it's not an error so much as an
* indication to the application that the allocation is too large.
*/
#define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
#define ANV_SVGS_VB_INDEX MAX_VBS
#define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
#define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
static inline uint32_t
align_down_npot_u32(uint32_t v, uint32_t a)
{
return v - (v % a);
}
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
anv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
anv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
anv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
static inline union isl_color_value
vk_to_isl_color(VkClearColorValue color)
{
return (union isl_color_value) {
.u32 = {
color.uint32[0],
color.uint32[1],
color.uint32[2],
color.uint32[3],
},
};
}
#define for_each_bit(b, dword) \
for (uint32_t __dword = (dword); \
(b) = __builtin_ffs(__dword) - 1, __dword; \
__dword &= ~(1 << (b)))
#define typed_memcpy(dest, src, count) ({ \
STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
memcpy((dest), (src), (count) * sizeof(*(src))); \
})
/* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
* to be added here in order to utilize mapping in debug/error/perf macros.
*/
#define REPORT_OBJECT_TYPE(o) \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_device*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_image*), \
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_event*), \
VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
__builtin_choose_expr ( \
__builtin_types_compatible_p (__typeof (o), void*), \
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
/* The void expression results in a compile-time error \
when assigning the result to something. */ \
(void)0)))))))))))))))))))))))))))))))
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
VkResult __vk_errorv(struct anv_instance *instance, const void *object,
VkDebugReportObjectTypeEXT type, VkResult error,
const char *file, int line, const char *format,
va_list args);
VkResult __vk_errorf(struct anv_instance *instance, const void *object,
VkDebugReportObjectTypeEXT type, VkResult error,
const char *file, int line, const char *format, ...);
#ifdef DEBUG
#define vk_error(error) __vk_errorf(NULL, NULL,\
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
error, __FILE__, __LINE__, NULL)
#define vk_errorv(instance, obj, error, format, args)\
__vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
__FILE__, __LINE__, format, args)
#define vk_errorf(instance, obj, error, format, ...)\
__vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
__FILE__, __LINE__, format, ## __VA_ARGS__)
#else
#define vk_error(error) error
#define vk_errorf(instance, obj, error, format, ...) error
#endif
/**
* Warn on ignored extension structs.
*
* The Vulkan spec requires us to ignore unsupported or unknown structs in
* a pNext chain. In debug mode, emitting warnings for ignored structs may
* help us discover structs that we should not have ignored.
*
*
* From the Vulkan 1.0.38 spec:
*
* Any component of the implementation (the loader, any enabled layers,
* and drivers) must skip over, without processing (other than reading the
* sType and pNext members) any chained structures with sType values not
* defined by extensions supported by that component.
*/
#define anv_debug_ignored_stype(sType) \
intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
void __anv_perf_warn(struct anv_instance *instance, const void *object,
VkDebugReportObjectTypeEXT type, const char *file,
int line, const char *format, ...)
anv_printflike(6, 7);
void anv_loge(const char *format, ...) anv_printflike(1, 2);
void anv_loge_v(const char *format, va_list va);
/**
* Print a FINISHME message, including its source location.
*/
#define anv_finishme(format, ...) \
do { \
static bool reported = false; \
if (!reported) { \
intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/**
* Print a perf warning message. Set INTEL_DEBUG=perf to see these.
*/
#define anv_perf_warn(instance, obj, format, ...) \
do { \
static bool reported = false; \
if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
__anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
format, ##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/* A non-fatal assert. Useful for debugging. */
#ifdef DEBUG
#define anv_assert(x) ({ \
if (unlikely(!(x))) \
intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
})
#else
#define anv_assert(x)
#endif
/* A multi-pointer allocator
*
* When copying data structures from the user (such as a render pass), it's
* common to need to allocate data for a bunch of different things. Instead
* of doing several allocations and having to handle all of the error checking
* that entails, it can be easier to do a single allocation. This struct
* helps facilitate that. The intended usage looks like this:
*
* ANV_MULTIALLOC(ma)
* anv_multialloc_add(&ma, &main_ptr, 1);
* anv_multialloc_add(&ma, &substruct1, substruct1Count);
* anv_multialloc_add(&ma, &substruct2, substruct2Count);
*
* if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
* return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
*/
struct anv_multialloc {
size_t size;
size_t align;
uint32_t ptr_count;
void **ptrs[8];
};
#define ANV_MULTIALLOC_INIT \
((struct anv_multialloc) { 0, })
#define ANV_MULTIALLOC(_name) \
struct anv_multialloc _name = ANV_MULTIALLOC_INIT
__attribute__((always_inline))
static inline void
_anv_multialloc_add(struct anv_multialloc *ma,
void **ptr, size_t size, size_t align)
{
size_t offset = align_u64(ma->size, align);
ma->size = offset + size;
ma->align = MAX2(ma->align, align);
/* Store the offset in the pointer. */
*ptr = (void *)(uintptr_t)offset;
assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
ma->ptrs[ma->ptr_count++] = ptr;
}
#define anv_multialloc_add_size(_ma, _ptr, _size) \
_anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
#define anv_multialloc_add(_ma, _ptr, _count) \
anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
__attribute__((always_inline))
static inline void *
anv_multialloc_alloc(struct anv_multialloc *ma,
const VkAllocationCallbacks *alloc,
VkSystemAllocationScope scope)
{
void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
if (!ptr)
return NULL;
/* Fill out each of the pointers with their final value.
*
* for (uint32_t i = 0; i < ma->ptr_count; i++)
* *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
*
* Unfortunately, even though ma->ptr_count is basically guaranteed to be a
* constant, GCC is incapable of figuring this out and unrolling the loop
* so we have to give it a little help.
*/
STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
#define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
if ((_i) < ma->ptr_count) \
*ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
_ANV_MULTIALLOC_UPDATE_POINTER(0);
_ANV_MULTIALLOC_UPDATE_POINTER(1);
_ANV_MULTIALLOC_UPDATE_POINTER(2);
_ANV_MULTIALLOC_UPDATE_POINTER(3);
_ANV_MULTIALLOC_UPDATE_POINTER(4);
_ANV_MULTIALLOC_UPDATE_POINTER(5);
_ANV_MULTIALLOC_UPDATE_POINTER(6);
_ANV_MULTIALLOC_UPDATE_POINTER(7);
#undef _ANV_MULTIALLOC_UPDATE_POINTER
return ptr;
}
__attribute__((always_inline))
static inline void *
anv_multialloc_alloc2(struct anv_multialloc *ma,
const VkAllocationCallbacks *parent_alloc,
const VkAllocationCallbacks *alloc,
VkSystemAllocationScope scope)
{
return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
}
/* Extra ANV-defined BO flags which won't be passed to the kernel */
#define ANV_BO_EXTERNAL (1ull << 31)
#define ANV_BO_FLAG_MASK (1ull << 31)
struct anv_bo {
uint32_t gem_handle;
/* Index into the current validation list. This is used by the
* validation list building alrogithm to track which buffers are already
* in the validation list so that we can ensure uniqueness.
*/
uint32_t index;
/* Last known offset. This value is provided by the kernel when we
* execbuf and is used as the presumed offset for the next bunch of
* relocations.
*/
uint64_t offset;
uint64_t size;
void *map;
/** Flags to pass to the kernel through drm_i915_exec_object2::flags */
uint32_t flags;
};
static inline void
anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
{
bo->gem_handle = gem_handle;
bo->index = 0;
bo->offset = -1;
bo->size = size;
bo->map = NULL;
bo->flags = 0;
}
/* Represents a lock-free linked list of "free" things. This is used by
* both the block pool and the state pools. Unfortunately, in order to
* solve the ABA problem, we can't use a single uint32_t head.
*/
union anv_free_list {
struct {
int32_t offset;
/* A simple count that is incremented every time the head changes. */
uint32_t count;
};
uint64_t u64;
};
#define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
struct anv_block_state {
union {
struct {
uint32_t next;
uint32_t end;
};
uint64_t u64;
};
};
struct anv_block_pool {
struct anv_device *device;
uint64_t bo_flags;
struct anv_bo bo;
/* The address where the start of the pool is pinned. The various bos that
* are created as the pool grows will have addresses in the range
* [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
*/
uint64_t start_address;
/* The offset from the start of the bo to the "center" of the block
* pool. Pointers to allocated blocks are given by
* bo.map + center_bo_offset + offsets.
*/
uint32_t center_bo_offset;
/* Current memory map of the block pool. This pointer may or may not
* point to the actual beginning of the block pool memory. If
* anv_block_pool_alloc_back has ever been called, then this pointer
* will point to the "center" position of the buffer and all offsets
* (negative or positive) given out by the block pool alloc functions
* will be valid relative to this pointer.
*
* In particular, map == bo.map + center_offset
*/
void *map;
int fd;
/**
* Array of mmaps and gem handles owned by the block pool, reclaimed when
* the block pool is destroyed.
*/
struct u_vector mmap_cleanups;
struct anv_block_state state;
struct anv_block_state back_state;
};
/* Block pools are backed by a fixed-size 1GB memfd */
#define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
/* The center of the block pool is also the middle of the memfd. This may
* change in the future if we decide differently for some reason.
*/
#define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
static inline uint32_t
anv_block_pool_size(struct anv_block_pool *pool)
{
return pool->state.end + pool->back_state.end;
}
struct anv_state {
int32_t offset;
uint32_t alloc_size;
void *map;
};
#define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
struct anv_fixed_size_state_pool {
union anv_free_list free_list;
struct anv_block_state block;
};
#define ANV_MIN_STATE_SIZE_LOG2 6
#define ANV_MAX_STATE_SIZE_LOG2 20
#define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
struct anv_state_pool {
struct anv_block_pool block_pool;
/* The size of blocks which will be allocated from the block pool */
uint32_t block_size;
/** Free list for "back" allocations */
union anv_free_list back_alloc_free_list;
struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
};
struct anv_state_stream_block;
struct anv_state_stream {
struct anv_state_pool *state_pool;
/* The size of blocks to allocate from the state pool */
uint32_t block_size;
/* Current block we're allocating from */
struct anv_state block;
/* Offset into the current block at which to allocate the next state */
uint32_t next;
/* List of all blocks allocated from this pool */
struct anv_state_stream_block *block_list;
};
/* The block_pool functions exported for testing only. The block pool should
* only be used via a state pool (see below).
*/
VkResult anv_block_pool_init(struct anv_block_pool *pool,
struct anv_device *device,
uint64_t start_address,
uint32_t initial_size,
uint64_t bo_flags);
void anv_block_pool_finish(struct anv_block_pool *pool);
int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
uint32_t block_size);
int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
uint32_t block_size);
VkResult anv_state_pool_init(struct anv_state_pool *pool,
struct anv_device *device,
uint64_t start_address,
uint32_t block_size,
uint64_t bo_flags);
void anv_state_pool_finish(struct anv_state_pool *pool);
struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
uint32_t state_size, uint32_t alignment);
struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
void anv_state_stream_init(struct anv_state_stream *stream,
struct anv_state_pool *state_pool,
uint32_t block_size);
void anv_state_stream_finish(struct anv_state_stream *stream);
struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
uint32_t size, uint32_t alignment);
/**
* Implements a pool of re-usable BOs. The interface is identical to that
* of block_pool except that each block is its own BO.
*/
struct anv_bo_pool {
struct anv_device *device;
uint64_t bo_flags;
void *free_list[16];
};
void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
uint64_t bo_flags);
void anv_bo_pool_finish(struct anv_bo_pool *pool);
VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
uint32_t size);
void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
struct anv_scratch_bo {
bool exists;
struct anv_bo bo;
};
struct anv_scratch_pool {
/* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
};
void anv_scratch_pool_init(struct anv_device *device,
struct anv_scratch_pool *pool);
void anv_scratch_pool_finish(struct anv_device *device,
struct anv_scratch_pool *pool);
struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
struct anv_scratch_pool *pool,
gl_shader_stage stage,
unsigned per_thread_scratch);
/** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
struct anv_bo_cache {
struct hash_table *bo_map;
pthread_mutex_t mutex;
};
VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
void anv_bo_cache_finish(struct anv_bo_cache *cache);
VkResult anv_bo_cache_alloc(struct anv_device *device,
struct anv_bo_cache *cache,
uint64_t size, uint64_t bo_flags,
struct anv_bo **bo);
VkResult anv_bo_cache_import(struct anv_device *device,
struct anv_bo_cache *cache,
int fd, uint64_t bo_flags,
struct anv_bo **bo);
VkResult anv_bo_cache_export(struct anv_device *device,
struct anv_bo_cache *cache,
struct anv_bo *bo_in, int *fd_out);
void anv_bo_cache_release(struct anv_device *device,
struct anv_bo_cache *cache,
struct anv_bo *bo);
struct anv_memory_type {
/* Standard bits passed on to the client */
VkMemoryPropertyFlags propertyFlags;
uint32_t heapIndex;
/* Driver-internal book-keeping */
VkBufferUsageFlags valid_buffer_usage;
};
struct anv_memory_heap {
/* Standard bits passed on to the client */
VkDeviceSize size;
VkMemoryHeapFlags flags;
/* Driver-internal book-keeping */
bool supports_48bit_addresses;
};
struct anv_physical_device {
VK_LOADER_DATA _loader_data;
struct anv_instance * instance;
uint32_t chipset_id;
bool no_hw;
char path[20];
const char * name;
struct {
uint16_t domain;
uint8_t bus;
uint8_t device;
uint8_t function;
} pci_info;
struct gen_device_info info;
/** Amount of "GPU memory" we want to advertise
*
* Clearly, this value is bogus since Intel is a UMA architecture. On
* gen7 platforms, we are limited by GTT size unless we want to implement
* fine-grained tracking and GTT splitting. On Broadwell and above we are
* practically unlimited. However, we will never report more than 3/4 of
* the total system ram to try and avoid running out of RAM.
*/
bool supports_48bit_addresses;
struct brw_compiler * compiler;
struct isl_device isl_dev;
int cmd_parser_version;
bool has_exec_async;
bool has_exec_capture;
bool has_exec_fence;
bool has_syncobj;
bool has_syncobj_wait;
bool has_context_priority;
bool use_softpin;
bool has_context_isolation;
struct anv_device_extension_table supported_extensions;
uint32_t eu_total;
uint32_t subslice_total;
struct {
uint32_t type_count;
struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
uint32_t heap_count;
struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
} memory;
uint8_t driver_build_sha1[20];
uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
struct disk_cache * disk_cache;
struct wsi_device wsi_device;
int local_fd;
int master_fd;
};
struct anv_app_info {
const char* app_name;
uint32_t app_version;
const char* engine_name;
uint32_t engine_version;
uint32_t api_version;
};
struct anv_instance {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
struct anv_app_info app_info;
struct anv_instance_extension_table enabled_extensions;
struct anv_instance_dispatch_table dispatch;
struct anv_device_dispatch_table device_dispatch;
int physicalDeviceCount;
struct anv_physical_device physicalDevice;
bool pipeline_cache_enabled;
struct vk_debug_report_instance debug_report_callbacks;
};
VkResult anv_init_wsi(struct anv_physical_device *physical_device);
void anv_finish_wsi(struct anv_physical_device *physical_device);
uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
const char *name);
struct anv_queue {
VK_LOADER_DATA _loader_data;
struct anv_device * device;
VkDeviceQueueCreateFlags flags;
};
struct anv_pipeline_cache {
struct anv_device * device;
pthread_mutex_t mutex;
struct hash_table * nir_cache;
struct hash_table * cache;
};
struct anv_pipeline_bind_map;
void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
struct anv_device *device,
bool cache_enabled);
void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
struct anv_shader_bin *
anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
const void *key, uint32_t key_size);
struct anv_shader_bin *
anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const void *constant_data,
uint32_t constant_data_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct anv_pipeline_bind_map *bind_map);
struct anv_shader_bin *
anv_device_search_for_kernel(struct anv_device *device,
struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size);
struct anv_shader_bin *
anv_device_upload_kernel(struct anv_device *device,
struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const void *constant_data,
uint32_t constant_data_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct anv_pipeline_bind_map *bind_map);
struct nir_shader;
struct nir_shader_compiler_options;
struct nir_shader *
anv_device_search_for_nir(struct anv_device *device,
struct anv_pipeline_cache *cache,
const struct nir_shader_compiler_options *nir_options,
unsigned char sha1_key[20],
void *mem_ctx);
void
anv_device_upload_nir(struct anv_device *device,
struct anv_pipeline_cache *cache,
const struct nir_shader *nir,
unsigned char sha1_key[20]);
struct anv_device {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
struct anv_instance * instance;
uint32_t chipset_id;
bool no_hw;
struct gen_device_info info;
struct isl_device isl_dev;
int context_id;
int fd;
bool can_chain_batches;
bool robust_buffer_access;
struct anv_device_extension_table enabled_extensions;
struct anv_device_dispatch_table dispatch;
pthread_mutex_t vma_mutex;
struct util_vma_heap vma_lo;
struct util_vma_heap vma_hi;
uint64_t vma_lo_available;
uint64_t vma_hi_available;
struct anv_bo_pool batch_bo_pool;
struct anv_bo_cache bo_cache;
struct anv_state_pool dynamic_state_pool;
struct anv_state_pool instruction_state_pool;
struct anv_state_pool binding_table_pool;
struct anv_state_pool surface_state_pool;
struct anv_bo workaround_bo;
struct anv_bo trivial_batch_bo;
struct anv_bo hiz_clear_bo;
struct anv_pipeline_cache default_pipeline_cache;
struct blorp_context blorp;
struct anv_state border_colors;
struct anv_queue queue;
struct anv_scratch_pool scratch_pool;
uint32_t default_mocs;
uint32_t external_mocs;
pthread_mutex_t mutex;
pthread_cond_t queue_submit;
bool _lost;
};
static inline struct anv_state_pool *
anv_binding_table_pool(struct anv_device *device)
{
if (device->instance->physicalDevice.use_softpin)
return &device->binding_table_pool;
else
return &device->surface_state_pool;
}
static inline struct anv_state
anv_binding_table_pool_alloc(struct anv_device *device) {
if (device->instance->physicalDevice.use_softpin)
return anv_state_pool_alloc(&device->binding_table_pool,
device->binding_table_pool.block_size, 0);
else
return anv_state_pool_alloc_back(&device->surface_state_pool);
}
static inline void
anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
anv_state_pool_free(anv_binding_table_pool(device), state);
}
static inline uint32_t
anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
{
if (bo->flags & ANV_BO_EXTERNAL)
return device->external_mocs;
else
return device->default_mocs;
}
static void inline
anv_state_flush(struct anv_device *device, struct anv_state state)
{
if (device->info.has_llc)
return;
gen_flush_range(state.map, state.alloc_size);
}
void anv_device_init_blorp(struct anv_device *device);
void anv_device_finish_blorp(struct anv_device *device);
VkResult _anv_device_set_lost(struct anv_device *device,
const char *file, int line,
const char *msg, ...);
#define anv_device_set_lost(dev, ...) \
_anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
static inline bool
anv_device_is_lost(struct anv_device *device)
{
return unlikely(device->_lost);
}
VkResult anv_device_execbuf(struct anv_device *device,
struct drm_i915_gem_execbuffer2 *execbuf,
struct anv_bo **execbuf_bos);
VkResult anv_device_query_status(struct anv_device *device);
VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
int64_t timeout);
void* anv_gem_mmap(struct anv_device *device,
uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
void anv_gem_munmap(void *p, uint64_t size);
uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
int anv_gem_execbuffer(struct anv_device *device,
struct drm_i915_gem_execbuffer2 *execbuf);
int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
uint32_t stride, uint32_t tiling);
int anv_gem_create_context(struct anv_device *device);
bool anv_gem_has_context_priority(int fd);
int anv_gem_destroy_context(struct anv_device *device, int context);
int anv_gem_set_context_param(int fd, int context, uint32_t param,
uint64_t value);
int anv_gem_get_context_param(int fd, int context, uint32_t param,
uint64_t *value);
int anv_gem_get_param(int fd, uint32_t param);
int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
int anv_gem_get_aperture(int fd, uint64_t *size);
int anv_gem_gpu_get_reset_stats(struct anv_device *device,
uint32_t *active, uint32_t *pending);
int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
int anv_gem_reg_read(struct anv_device *device,
uint32_t offset, uint64_t *result);
uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
uint32_t read_domains, uint32_t write_domain);
int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
int anv_gem_syncobj_export_sync_file(struct anv_device *device,
uint32_t handle);
int anv_gem_syncobj_import_sync_file(struct anv_device *device,
uint32_t handle, int fd);
void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
bool anv_gem_supports_syncobj_wait(int fd);
int anv_gem_syncobj_wait(struct anv_device *device,
uint32_t *handles, uint32_t num_handles,
int64_t abs_timeout_ns, bool wait_all);
bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
struct anv_reloc_list {
uint32_t num_relocs;
uint32_t array_length;
struct drm_i915_gem_relocation_entry * relocs;
struct anv_bo ** reloc_bos;
struct set * deps;
};
VkResult anv_reloc_list_init(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
void anv_reloc_list_finish(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
VkResult anv_reloc_list_add(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc,
uint32_t offset, struct anv_bo *target_bo,
uint32_t delta);
struct anv_batch_bo {
/* Link in the anv_cmd_buffer.owned_batch_bos list */
struct list_head link;
struct anv_bo bo;
/* Bytes actually consumed in this batch BO */
uint32_t length;
struct anv_reloc_list relocs;
};
struct anv_batch {
const VkAllocationCallbacks * alloc;
void * start;
void * end;
void * next;
struct anv_reloc_list * relocs;
/* This callback is called (with the associated user data) in the event
* that the batch runs out of space.
*/
VkResult (*extend_cb)(struct anv_batch *, void *);
void * user_data;
/**
* Current error status of the command buffer. Used to track inconsistent
* or incomplete command buffer states that are the consequence of run-time
* errors such as out of memory scenarios. We want to track this in the
* batch because the command buffer object is not visible to some parts
* of the driver.
*/
VkResult status;
};
void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
void *location, struct anv_bo *bo, uint32_t offset);
VkResult anv_device_submit_simple_batch(struct anv_device *device,
struct anv_batch *batch);
static inline VkResult
anv_batch_set_error(struct anv_batch *batch, VkResult error)
{
assert(error != VK_SUCCESS);
if (batch->status == VK_SUCCESS)
batch->status = error;
return batch->status;
}
static inline bool
anv_batch_has_error(struct anv_batch *batch)
{
return batch->status != VK_SUCCESS;
}
struct anv_address {
struct anv_bo *bo;
uint32_t offset;
};
#define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
static inline bool
anv_address_is_null(struct anv_address addr)
{
return addr.bo == NULL && addr.offset == 0;
}
static inline uint64_t
anv_address_physical(struct anv_address addr)
{
if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
return gen_canonical_address(addr.bo->offset + addr.offset);
else
return gen_canonical_address(addr.offset);
}
static inline struct anv_address
anv_address_add(struct anv_address addr, uint64_t offset)
{
addr.offset += offset;
return addr;
}
static inline void
write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
{
unsigned reloc_size = 0;
if (device->info.gen >= 8) {
reloc_size = sizeof(uint64_t);
*(uint64_t *)p = gen_canonical_address(v);
} else {
reloc_size = sizeof(uint32_t);
*(uint32_t *)p = v;
}
if (flush && !device->info.has_llc)
gen_flush_range(p, reloc_size);
}
static inline uint64_t
_anv_combine_address(struct anv_batch *batch, void *location,
const struct anv_address address, uint32_t delta)
{
if (address.bo == NULL) {
return address.offset + delta;
} else {
assert(batch->start <= location && location < batch->end);
return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
}
}
#define __gen_address_type struct anv_address
#define __gen_user_data struct anv_batch
#define __gen_combine_address _anv_combine_address
/* Wrapper macros needed to work around preprocessor argument issues. In
* particular, arguments don't get pre-evaluated if they are concatenated.
* This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
* GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
* We can work around this easily enough with these helpers.
*/
#define __anv_cmd_length(cmd) cmd ## _length
#define __anv_cmd_length_bias(cmd) cmd ## _length_bias
#define __anv_cmd_header(cmd) cmd ## _header
#define __anv_cmd_pack(cmd) cmd ## _pack
#define __anv_reg_num(reg) reg ## _num
#define anv_pack_struct(dst, struc, ...) do { \
struct struc __template = { \
__VA_ARGS__ \
}; \
__anv_cmd_pack(struc)(NULL, dst, &__template); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
} while (0)
#define anv_batch_emitn(batch, n, cmd, ...) ({ \
void *__dst = anv_batch_emit_dwords(batch, n); \
if (__dst) { \
struct cmd __template = { \
__anv_cmd_header(cmd), \
.DWordLength = n - __anv_cmd_length_bias(cmd), \
__VA_ARGS__ \
}; \
__anv_cmd_pack(cmd)(batch, __dst, &__template); \
} \
__dst; \
})
#define anv_batch_emit_merge(batch, dwords0, dwords1) \
do { \
uint32_t *dw; \
\
STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
if (!dw) \
break; \
for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
dw[i] = (dwords0)[i] | (dwords1)[i]; \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
} while (0)
#define anv_batch_emit(batch, cmd, name) \
for (struct cmd name = { __anv_cmd_header(cmd) }, \
*_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
__builtin_expect(_dst != NULL, 1); \
({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
_dst = NULL; \
}))
/* MEMORY_OBJECT_CONTROL_STATE:
* .GraphicsDataTypeGFDT = 0,
* .LLCCacheabilityControlLLCCC = 0,
* .L3CacheabilityControlL3CC = 1,
*/
#define GEN7_MOCS 1
/* MEMORY_OBJECT_CONTROL_STATE:
* .LLCeLLCCacheabilityControlLLCCC = 0,
* .L3CacheabilityControlL3CC = 1,
*/
#define GEN75_MOCS 1
/* MEMORY_OBJECT_CONTROL_STATE:
* .MemoryTypeLLCeLLCCacheabilityControl = WB,
* .TargetCache = L3DefertoPATforLLCeLLCselection,
* .AgeforQUADLRU = 0
*/
#define GEN8_MOCS 0x78
/* MEMORY_OBJECT_CONTROL_STATE:
* .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
* .TargetCache = L3DefertoPATforLLCeLLCselection,
* .AgeforQUADLRU = 0
*/
#define GEN8_EXTERNAL_MOCS 0x18
/* Skylake: MOCS is now an index into an array of 62 different caching
* configurations programmed by the kernel.
*/
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
#define GEN9_MOCS 2
/* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
#define GEN9_EXTERNAL_MOCS 1
/* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
#define GEN10_MOCS GEN9_MOCS
#define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
/* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
#define GEN11_MOCS GEN9_MOCS
#define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
struct anv_device_memory {
struct anv_bo * bo;
struct anv_memory_type * type;
VkDeviceSize map_size;
void * map;
/* If set, we are holding reference to AHardwareBuffer
* which we must release when memory is freed.
*/
struct AHardwareBuffer * ahw;
};
/**
* Header for Vertex URB Entry (VUE)
*/
struct anv_vue_header {
uint32_t Reserved;
uint32_t RTAIndex; /* RenderTargetArrayIndex */
uint32_t ViewportIndex;
float PointWidth;
};
struct anv_descriptor_set_binding_layout {
#ifndef NDEBUG
/* The type of the descriptors in this binding */
VkDescriptorType type;
#endif
/* Number of array elements in this binding */
uint16_t array_size;
/* Index into the flattend descriptor set */
uint16_t descriptor_index;
/* Index into the dynamic state array for a dynamic buffer */
int16_t dynamic_offset_index;
/* Index into the descriptor set buffer views */
int16_t buffer_index;
struct {
/* Index into the binding table for the associated surface */
int16_t surface_index;
/* Index into the sampler table for the associated sampler */
int16_t sampler_index;
/* Index into the image table for the associated image */
int16_t image_index;
} stage[MESA_SHADER_STAGES];
/* Immutable samplers (or NULL if no immutable samplers) */
struct anv_sampler **immutable_samplers;
};
struct anv_descriptor_set_layout {
/* Descriptor set layouts can be destroyed at almost any time */
uint32_t ref_cnt;
/* Number of bindings in this descriptor set */
uint16_t binding_count;
/* Total size of the descriptor set with room for all array entries */
uint16_t size;
/* Shader stages affected by this descriptor set */
uint16_t shader_stages;
/* Number of buffers in this descriptor set */
uint16_t buffer_count;
/* Number of dynamic offsets used by this descriptor set */
uint16_t dynamic_offset_count;
/* Bindings in this descriptor set */
struct anv_descriptor_set_binding_layout binding[0];
};
static inline void
anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
{
assert(layout && layout->ref_cnt >= 1);
p_atomic_inc(&layout->ref_cnt);
}
static inline void
anv_descriptor_set_layout_unref(struct anv_device *device,
struct anv_descriptor_set_layout *layout)
{
assert(layout && layout->ref_cnt >= 1);
if (p_atomic_dec_zero(&layout->ref_cnt))
vk_free(&device->alloc, layout);
}
struct anv_descriptor {
VkDescriptorType type;
union {
struct {
VkImageLayout layout;
struct anv_image_view *image_view;
struct anv_sampler *sampler;
};
struct {
struct anv_buffer *buffer;
uint64_t offset;
uint64_t range;
};
struct anv_buffer_view *buffer_view;
};
};
struct anv_descriptor_set {
struct anv_descriptor_set_layout *layout;
uint32_t size;
uint32_t buffer_count;
struct anv_buffer_view *buffer_views;
struct anv_descriptor descriptors[0];
};
struct anv_buffer_view {
enum isl_format format; /**< VkBufferViewCreateInfo::format */
uint64_t range; /**< VkBufferViewCreateInfo::range */
struct anv_address address;
struct anv_state surface_state;
struct anv_state storage_surface_state;
struct anv_state writeonly_storage_surface_state;
struct brw_image_param storage_image_param;
};
struct anv_push_descriptor_set {
struct anv_descriptor_set set;
/* Put this field right behind anv_descriptor_set so it fills up the
* descriptors[0] field. */
struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
};
struct anv_descriptor_pool {
uint32_t size;
uint32_t next;
uint32_t free_list;
struct anv_state_stream surface_state_stream;
void *surface_state_free_list;
char data[0];
};
enum anv_descriptor_template_entry_type {
ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
};
struct anv_descriptor_template_entry {
/* The type of descriptor in this entry */
VkDescriptorType type;
/* Binding in the descriptor set */
uint32_t binding;
/* Offset at which to write into the descriptor set binding */
uint32_t array_element;
/* Number of elements to write into the descriptor set binding */
uint32_t array_count;
/* Offset into the user provided data */
size_t offset;
/* Stride between elements into the user provided data */
size_t stride;
};
struct anv_descriptor_update_template {
VkPipelineBindPoint bind_point;
/* The descriptor set this template corresponds to. This value is only
* valid if the template was created with the templateType
* VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
*/
uint8_t set;
/* Number of entries in this template */
uint32_t entry_count;
/* Entries of the template */
struct anv_descriptor_template_entry entries[0];
};
size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
void
anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
const struct gen_device_info * const devinfo,
const VkDescriptorImageInfo * const info,
VkDescriptorType type,
uint32_t binding,
uint32_t element);
void
anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
VkDescriptorType type,
struct anv_buffer_view *buffer_view,
uint32_t binding,
uint32_t element);
void
anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
struct anv_device *device,
struct anv_state_stream *alloc_stream,
VkDescriptorType type,
struct anv_buffer *buffer,
uint32_t binding,
uint32_t element,
VkDeviceSize offset,
VkDeviceSize range);
void
anv_descriptor_set_write_template(struct anv_descriptor_set *set,
struct anv_device *device,
struct anv_state_stream *alloc_stream,
const struct anv_descriptor_update_template *template,
const void *data);
VkResult
anv_descriptor_set_create(struct anv_device *device,
struct anv_descriptor_pool *pool,
struct anv_descriptor_set_layout *layout,
struct anv_descriptor_set **out_set);
void
anv_descriptor_set_destroy(struct anv_device *device,
struct anv_descriptor_pool *pool,
struct anv_descriptor_set *set);
#define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
#define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
struct anv_pipeline_binding {
/* The descriptor set this surface corresponds to. The special value of
* ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
* to a color attachment and not a regular descriptor.
*/
uint8_t set;
/* Binding in the descriptor set */
uint32_t binding;
/* Index in the binding */
uint32_t index;
/* Plane in the binding index */
uint8_t plane;
/* Input attachment index (relative to the subpass) */
uint8_t input_attachment_index;
/* For a storage image, whether it is write-only */
bool write_only;
};
struct anv_pipeline_layout {
struct {
struct anv_descriptor_set_layout *layout;
uint32_t dynamic_offset_start;
} set[MAX_SETS];
uint32_t num_sets;
struct {
bool has_dynamic_offsets;
} stage[MESA_SHADER_STAGES];
unsigned char sha1[20];
};
struct anv_buffer {
struct anv_device * device;
VkDeviceSize size;
VkBufferUsageFlags usage;
/* Set when bound */
struct anv_address address;
};
static inline uint64_t
anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
{
assert(offset <= buffer->size);
if (range == VK_WHOLE_SIZE) {
return buffer->size - offset;
} else {
assert(range + offset >= range);
assert(range + offset <= buffer->size);
return range;
}
}
enum anv_cmd_dirty_bits {
ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
ANV_CMD_DIRTY_PIPELINE = 1 << 9,
ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
};
typedef uint32_t anv_cmd_dirty_mask_t;
enum anv_pipe_bits {
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
ANV_PIPE_CS_STALL_BIT = (1 << 20),
/* This bit does not exist directly in PIPE_CONTROL. Instead it means that
* a flush has happened but not a CS stall. The next time we do any sort
* of invalidation we need to insert a CS stall at that time. Otherwise,
* we would have to CS stall on every flush which could be bad.
*/
ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
/* This bit does not exist directly in PIPE_CONTROL. It means that render
* target operations are ongoing. Some operations like copies on the
* command streamer might need to be aware of this to trigger the
* appropriate stall before they can proceed with the copy.
*/
ANV_PIPE_RENDER_TARGET_WRITES = (1 << 22),
};
#define ANV_PIPE_FLUSH_BITS ( \
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
#define ANV_PIPE_STALL_BITS ( \
ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
ANV_PIPE_DEPTH_STALL_BIT | \
ANV_PIPE_CS_STALL_BIT)
#define ANV_PIPE_INVALIDATE_BITS ( \
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
static inline enum anv_pipe_bits
anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
{
enum anv_pipe_bits pipe_bits = 0;
unsigned b;
for_each_bit(b, flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_SHADER_WRITE_BIT:
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_TRANSFER_WRITE_BIT:
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_MEMORY_WRITE_BIT:
pipe_bits |= ANV_PIPE_FLUSH_BITS;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
static inline enum anv_pipe_bits
anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
{
enum anv_pipe_bits pipe_bits = 0;
unsigned b;
for_each_bit(b, flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
case VK_ACCESS_INDEX_READ_BIT:
case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_UNIFORM_READ_BIT:
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_SHADER_READ_BIT:
case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_TRANSFER_READ_BIT:
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_MEMORY_READ_BIT:
pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
break;
case VK_ACCESS_MEMORY_WRITE_BIT:
pipe_bits |= ANV_PIPE_FLUSH_BITS;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
#define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
VK_IMAGE_ASPECT_COLOR_BIT | \
VK_IMAGE_ASPECT_PLANE_0_BIT | \
VK_IMAGE_ASPECT_PLANE_1_BIT | \
VK_IMAGE_ASPECT_PLANE_2_BIT)
#define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
VK_IMAGE_ASPECT_PLANE_0_BIT | \
VK_IMAGE_ASPECT_PLANE_1_BIT | \
VK_IMAGE_ASPECT_PLANE_2_BIT)
struct anv_vertex_binding {
struct anv_buffer * buffer;
VkDeviceSize offset;
};
#define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
#define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
struct anv_push_constants {
/* Current allocated size of this push constants data structure.
* Because a decent chunk of it may not be used (images on SKL, for
* instance), we won't actually allocate the entire structure up-front.
*/
uint32_t size;
/* Push constant data provided by the client through vkPushConstants */
uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
/* Used for vkCmdDispatchBase */
uint32_t base_work_group_id[3];
/* Image data for image_load_store on pre-SKL */
struct brw_image_param images[MAX_IMAGES];
};
struct anv_dynamic_state {
struct {
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
} viewport;
struct {
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
} scissor;
float line_width;
struct {
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct {
float min;
float max;
} depth_bounds;
struct {
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_reference;
};
extern const struct anv_dynamic_state default_dynamic_state;
void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
const struct anv_dynamic_state *src,
uint32_t copy_mask);
struct anv_surface_state {
struct anv_state state;
/** Address of the surface referred to by this state
*
* This address is relative to the start of the BO.
*/
struct anv_address address;
/* Address of the aux surface, if any
*
* This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
*
* With the exception of gen8, the bottom 12 bits of this address' offset
* include extra aux information.
*/
struct anv_address aux_address;
/* Address of the clear color, if any
*
* This address is relative to the start of the BO.
*/
struct anv_address clear_address;
};
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct anv_attachment_state {
enum isl_aux_usage aux_usage;
enum isl_aux_usage input_aux_usage;
struct anv_surface_state color;
struct anv_surface_state input;
VkImageLayout current_layout;
VkImageAspectFlags pending_clear_aspects;
VkImageAspectFlags pending_load_aspects;
bool fast_clear;
VkClearValue clear_value;
bool clear_color_is_zero_one;
bool clear_color_is_zero;
/* When multiview is active, attachments with a renderpass clear
* operation have their respective layers cleared on the first
* subpass that uses them, and only in that subpass. We keep track
* of this using a bitfield to indicate which layers of an attachment
* have not been cleared yet when multiview is active.
*/
uint32_t pending_clear_views;
};
/** State tracking for particular pipeline bind point
*
* This struct is the base struct for anv_cmd_graphics_state and
* anv_cmd_compute_state. These are used to track state which is bound to a
* particular type of pipeline. Generic state that applies per-stage such as
* binding table offsets and push constants is tracked generically with a
* per-stage array in anv_cmd_state.
*/
struct anv_cmd_pipeline_state {
struct anv_pipeline *pipeline;
struct anv_pipeline_layout *layout;
struct anv_descriptor_set *descriptors[MAX_SETS];
uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
};
/** State tracking for graphics pipeline
*
* This has anv_cmd_pipeline_state as a base struct to track things which get
* bound to a graphics pipeline. Along with general pipeline bind point state
* which is in the anv_cmd_pipeline_state base struct, it also contains other
* state which is graphics-specific.
*/
struct anv_cmd_graphics_state {
struct anv_cmd_pipeline_state base;
anv_cmd_dirty_mask_t dirty;
uint32_t vb_dirty;
struct anv_dynamic_state dynamic;
struct {
struct anv_buffer *index_buffer;
uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
uint32_t index_offset;
} gen7;
};
/** State tracking for compute pipeline
*
* This has anv_cmd_pipeline_state as a base struct to track things which get
* bound to a compute pipeline. Along with general pipeline bind point state
* which is in the anv_cmd_pipeline_state base struct, it also contains other
* state which is compute-specific.
*/
struct anv_cmd_compute_state {
struct anv_cmd_pipeline_state base;
bool pipeline_dirty;
struct anv_address num_workgroups;
};
/** State required while building cmd buffer */
struct anv_cmd_state {
/* PIPELINE_SELECT.PipelineSelection */
uint32_t current_pipeline;
const struct gen_l3_config * current_l3_config;
struct anv_cmd_graphics_state gfx;
struct anv_cmd_compute_state compute;
enum anv_pipe_bits pending_pipe_bits;
VkShaderStageFlags descriptors_dirty;
VkShaderStageFlags push_constants_dirty;
struct anv_framebuffer * framebuffer;
struct anv_render_pass * pass;
struct anv_subpass * subpass;
VkRect2D render_area;
uint32_t restart_index;
struct anv_vertex_binding vertex_bindings[MAX_VBS];
VkShaderStageFlags push_constant_stages;
struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
struct anv_state binding_tables[MESA_SHADER_STAGES];
struct anv_state samplers[MESA_SHADER_STAGES];
/**
* Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
* of any command buffer it is disabled by disabling it in EndCommandBuffer
* and before invoking the secondary in ExecuteCommands.
*/
bool pma_fix_enabled;
/**
* Whether or not we know for certain that HiZ is enabled for the current
* subpass. If, for whatever reason, we are unsure as to whether HiZ is
* enabled or not, this will be false.
*/
bool hiz_enabled;
/**
* Array length is anv_cmd_state::pass::attachment_count. Array content is
* valid only when recording a render pass instance.
*/
struct anv_attachment_state * attachments;
/**
* Surface states for color render targets. These are stored in a single
* flat array. For depth-stencil attachments, the surface state is simply
* left blank.
*/
struct anv_state render_pass_states;
/**
* A null surface state of the right size to match the framebuffer. This
* is one of the states in render_pass_states.
*/
struct anv_state null_surface_state;
};
struct anv_cmd_pool {
VkAllocationCallbacks alloc;
struct list_head cmd_buffers;
};
#define ANV_CMD_BUFFER_BATCH_SIZE 8192
enum anv_cmd_buffer_exec_mode {
ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
ANV_CMD_BUFFER_EXEC_MODE_EMIT,
ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
};
struct anv_cmd_buffer {
VK_LOADER_DATA _loader_data;
struct anv_device * device;
struct anv_cmd_pool * pool;
struct list_head pool_link;
struct anv_batch batch;
/* Fields required for the actual chain of anv_batch_bo's.
*
* These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
*/
struct list_head batch_bos;
enum anv_cmd_buffer_exec_mode exec_mode;
/* A vector of anv_batch_bo pointers for every batch or surface buffer
* referenced by this command buffer
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct u_vector seen_bbos;
/* A vector of int32_t's for every block of binding tables.
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct u_vector bt_block_states;
uint32_t bt_next;
struct anv_reloc_list surface_relocs;
/** Last seen surface state block pool center bo offset */
uint32_t last_ss_pool_center;
/* Serial for tracking buffer completion */
uint32_t serial;
/* Stream objects for storing temporary data */
struct anv_state_stream surface_state_stream;
struct anv_state_stream dynamic_state_stream;
VkCommandBufferUsageFlags usage_flags;
VkCommandBufferLevel level;
struct anv_cmd_state state;
};
VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
struct anv_cmd_buffer *secondary);
void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
struct anv_cmd_buffer *cmd_buffer,
const VkSemaphore *in_semaphores,
uint32_t num_in_semaphores,
const VkSemaphore *out_semaphores,
uint32_t num_out_semaphores,
VkFence fence);
VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
VkResult
anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage, uint32_t size);
#define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
(offsetof(struct anv_push_constants, field) + \
sizeof(cmd_buffer->state.push_constants[0]->field)))
struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
const void *data, uint32_t size, uint32_t alignment);
struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t *b,
uint32_t dwords, uint32_t alignment);
struct anv_address
anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t entries, uint32_t *state_offset);
struct anv_state
anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
uint32_t size, uint32_t alignment);
VkResult
anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
bool depth_clamp_enable);
void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
struct anv_render_pass *pass,
struct anv_framebuffer *framebuffer,
const VkClearValue *clear_values);
void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage);
struct anv_state
anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
const struct anv_image_view *
anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
VkResult
anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t num_entries,
uint32_t *state_offset,
struct anv_state *bt_state);
void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
enum anv_fence_type {
ANV_FENCE_TYPE_NONE = 0,
ANV_FENCE_TYPE_BO,
ANV_FENCE_TYPE_SYNCOBJ,
ANV_FENCE_TYPE_WSI,
};
enum anv_bo_fence_state {
/** Indicates that this is a new (or newly reset fence) */
ANV_BO_FENCE_STATE_RESET,
/** Indicates that this fence has been submitted to the GPU but is still
* (as far as we know) in use by the GPU.
*/
ANV_BO_FENCE_STATE_SUBMITTED,
ANV_BO_FENCE_STATE_SIGNALED,
};
struct anv_fence_impl {
enum anv_fence_type type;
union {
/** Fence implementation for BO fences
*
* These fences use a BO and a set of CPU-tracked state flags. The BO
* is added to the object list of the last execbuf call in a QueueSubmit
* and is marked EXEC_WRITE. The state flags track when the BO has been
* submitted to the kernel. We need to do this because Vulkan lets you
* wait on a fence that has not yet been submitted and I915_GEM_BUSY
* will say it's idle in this case.
*/
struct {
struct anv_bo bo;
enum anv_bo_fence_state state;
} bo;
/** DRM syncobj handle for syncobj-based fences */
uint32_t syncobj;
/** WSI fence */
struct wsi_fence *fence_wsi;
};
};
struct anv_fence {
/* Permanent fence state. Every fence has some form of permanent state
* (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
* cross-process fences) or it could just be a dummy for use internally.
*/
struct anv_fence_impl permanent;
/* Temporary fence state. A fence *may* have temporary state. That state
* is added to the fence by an import operation and is reset back to
* ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
* state cannot be signaled because the fence must already be signaled
* before the temporary state can be exported from the fence in the other
* process and imported here.
*/
struct anv_fence_impl temporary;
};
struct anv_event {
uint64_t semaphore;
struct anv_state state;
};
enum anv_semaphore_type {
ANV_SEMAPHORE_TYPE_NONE = 0,
ANV_SEMAPHORE_TYPE_DUMMY,
ANV_SEMAPHORE_TYPE_BO,
ANV_SEMAPHORE_TYPE_SYNC_FILE,
ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
};
struct anv_semaphore_impl {
enum anv_semaphore_type type;
union {
/* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
* This BO will be added to the object list on any execbuf2 calls for
* which this semaphore is used as a wait or signal fence. When used as
* a signal fence, the EXEC_OBJECT_WRITE flag will be set.
*/
struct anv_bo *bo;
/* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
* If the semaphore is in the unsignaled state due to either just being
* created or because it has been used for a wait, fd will be -1.
*/
int fd;
/* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
* Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
* import so we don't need to bother with a userspace cache.
*/
uint32_t syncobj;
};
};
struct anv_semaphore {
/* Permanent semaphore state. Every semaphore has some form of permanent
* state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
* (for cross-process semaphores0 or it could just be a dummy for use
* internally.
*/
struct anv_semaphore_impl permanent;
/* Temporary semaphore state. A semaphore *may* have temporary state.
* That state is added to the semaphore by an import operation and is reset
* back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
* semaphore with temporary state cannot be signaled because the semaphore
* must already be signaled before the temporary state can be exported from
* the semaphore in the other process and imported here.
*/
struct anv_semaphore_impl temporary;
};
void anv_semaphore_reset_temporary(struct anv_device *device,
struct anv_semaphore *semaphore);
struct anv_shader_module {
unsigned char sha1[20];
uint32_t size;
char data[0];
};
static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
{
assert(__builtin_popcount(vk_stage) == 1);
return ffs(vk_stage) - 1;
}
static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
{
return (1 << mesa_stage);
}
#define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
#define anv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, \
__tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
stage = __builtin_ffs(__tmp) - 1, __tmp; \
__tmp &= ~(1 << (stage)))
struct anv_pipeline_bind_map {
uint32_t surface_count;
uint32_t sampler_count;
uint32_t image_count;
struct anv_pipeline_binding * surface_to_descriptor;
struct anv_pipeline_binding * sampler_to_descriptor;
};
struct anv_shader_bin_key {
uint32_t size;
uint8_t data[0];
};
struct anv_shader_bin {
uint32_t ref_cnt;
const struct anv_shader_bin_key *key;
struct anv_state kernel;
uint32_t kernel_size;
struct anv_state constant_data;
uint32_t constant_data_size;
const struct brw_stage_prog_data *prog_data;
uint32_t prog_data_size;
struct anv_pipeline_bind_map bind_map;
};
struct anv_shader_bin *
anv_shader_bin_create(struct anv_device *device,
const void *key, uint32_t key_size,
const void *kernel, uint32_t kernel_size,
const void *constant_data, uint32_t constant_data_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size, const void *prog_data_param,
const struct anv_pipeline_bind_map *bind_map);
void
anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
static inline void
anv_shader_bin_ref(struct anv_shader_bin *shader)
{
assert(shader && shader->ref_cnt >= 1);
p_atomic_inc(&shader->ref_cnt);
}
static inline void
anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
{
assert(shader && shader->ref_cnt >= 1);
if (p_atomic_dec_zero(&shader->ref_cnt))
anv_shader_bin_destroy(device, shader);
}
struct anv_pipeline {
struct anv_device * device;
struct anv_batch batch;
uint32_t batch_data[512];
struct anv_reloc_list batch_relocs;
uint32_t dynamic_state_mask;
struct anv_dynamic_state dynamic_state;
struct anv_subpass * subpass;
bool needs_data_cache;
struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
struct {
const struct gen_l3_config * l3_config;
uint32_t total_size;
} urb;
VkShaderStageFlags active_stages;
struct anv_state blend_state;
uint32_t vb_used;
struct anv_pipeline_vertex_binding {
uint32_t stride;
bool instanced;
uint32_t instance_divisor;
} vb[MAX_VBS];
bool primitive_restart;
uint32_t topology;
uint32_t cs_right_mask;
bool writes_depth;
bool depth_test_enable;
bool writes_stencil;
bool stencil_test_enable;
bool depth_clamp_enable;
bool sample_shading_enable;
bool kill_pixel;
struct {
uint32_t sf[7];
uint32_t depth_stencil_state[3];
} gen7;
struct {
uint32_t sf[4];
uint32_t raster[5];
uint32_t wm_depth_stencil[3];
} gen8;
struct {
uint32_t wm_depth_stencil[4];
} gen9;
uint32_t interface_descriptor_data[8];
};
static inline bool
anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
gl_shader_stage stage)
{
return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
}
#define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
static inline const struct brw_##prefix##_prog_data * \
get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
{ \
if (anv_pipeline_has_stage(pipeline, stage)) { \
return (const struct brw_##prefix##_prog_data *) \
pipeline->shaders[stage]->prog_data; \
} else { \
return NULL; \
} \
}
ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
static inline const struct brw_vue_prog_data *
anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
{
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
return &get_gs_prog_data(pipeline)->base;
else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
return &get_tes_prog_data(pipeline)->base;
else
return &get_vs_prog_data(pipeline)->base;
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc);
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
const struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info);
struct anv_format_plane {
enum isl_format isl_format:16;
struct isl_swizzle swizzle;
/* Whether this plane contains chroma channels */
bool has_chroma;
/* For downscaling of YUV planes */
uint8_t denominator_scales[2];
/* How to map sampled ycbcr planes to a single 4 component element. */
struct isl_swizzle ycbcr_swizzle;
/* What aspect is associated to this plane */
VkImageAspectFlags aspect;
};
struct anv_format {
struct anv_format_plane planes[3];
VkFormat vk_format;
uint8_t n_planes;
bool can_ycbcr;
};
static inline uint32_t
anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
VkImageAspectFlags aspect_mask)
{
switch (aspect_mask) {
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_DEPTH_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
return 0;
case VK_IMAGE_ASPECT_STENCIL_BIT:
if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
return 0;
/* Fall-through */
case VK_IMAGE_ASPECT_PLANE_1_BIT:
return 1;
case VK_IMAGE_ASPECT_PLANE_2_BIT:
return 2;
default:
/* Purposefully assert with depth/stencil aspects. */
unreachable("invalid image aspect");
}
}
static inline VkImageAspectFlags
anv_plane_to_aspect(VkImageAspectFlags image_aspects,
uint32_t plane)
{
if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
if (util_bitcount(image_aspects) > 1)
return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
return VK_IMAGE_ASPECT_COLOR_BIT;
}
if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
return VK_IMAGE_ASPECT_STENCIL_BIT;
}
#define anv_foreach_image_aspect_bit(b, image, aspects) \
for_each_bit(b, anv_image_expand_aspects(image, aspects))
const struct anv_format *
anv_get_format(VkFormat format);
static inline uint32_t
anv_get_format_planes(VkFormat vk_format)
{
const struct anv_format *format = anv_get_format(vk_format);
return format != NULL ? format->n_planes : 0;
}
struct anv_format_plane
anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
VkImageAspectFlagBits aspect, VkImageTiling tiling);
static inline enum isl_format
anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
VkImageAspectFlags aspect, VkImageTiling tiling)
{
return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
}
static inline struct isl_swizzle
anv_swizzle_for_render(struct isl_swizzle swizzle)
{
/* Sometimes the swizzle will have alpha map to one. We do this to fake
* RGB as RGBA for texturing
*/
assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
/* But it doesn't matter what we render to that channel */
swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
return swizzle;
}
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
/**
* Subsurface of an anv_image.
*/
struct anv_surface {
/** Valid only if isl_surf::size_B > 0. */
struct isl_surf isl;
/**
* Offset from VkImage's base address, as bound by vkBindImageMemory().
*/
uint32_t offset;
};
struct anv_image {
VkImageType type;
/* The original VkFormat provided by the client. This may not match any
* of the actual surface formats.
*/
VkFormat vk_format;
const struct anv_format *format;
VkImageAspectFlags aspects;
VkExtent3D extent;
uint32_t levels;
uint32_t array_size;
uint32_t samples; /**< VkImageCreateInfo::samples */
uint32_t n_planes;
VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
VkImageCreateFlags create_flags; /* Flags used when creating image. */
VkImageTiling tiling; /** VkImageCreateInfo::tiling */
/** True if this is needs to be bound to an appropriately tiled BO.
*
* When not using modifiers, consumers such as X11, Wayland, and KMS need
* the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
* we require a dedicated allocation so that we can know to allocate a
* tiled buffer.
*/
bool needs_set_tiling;
/**
* Must be DRM_FORMAT_MOD_INVALID unless tiling is
* VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
*/
uint64_t drm_format_mod;
VkDeviceSize size;
uint32_t alignment;
/* Whether the image is made of several underlying buffer objects rather a
* single one with different offsets.
*/
bool disjoint;
/* All the formats that can be used when creating views of this image
* are CCS_E compatible.
*/
bool ccs_e_compatible;
/* Image was created with external format. */
bool external_format;
/**
* Image subsurfaces
*
* For each foo, anv_image::planes[x].surface is valid if and only if
* anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
* to figure the number associated with a given aspect.
*
* The hardware requires that the depth buffer and stencil buffer be
* separate surfaces. From Vulkan's perspective, though, depth and stencil
* reside in the same VkImage. To satisfy both the hardware and Vulkan, we
* allocate the depth and stencil buffers as separate surfaces in the same
* bo.
*
* Memory layout :
*
* -----------------------
* | surface0 | /|\
* ----------------------- |
* | shadow surface0 | |
* ----------------------- | Plane 0
* | aux surface0 | |
* ----------------------- |
* | fast clear colors0 | \|/
* -----------------------
* | surface1 | /|\
* ----------------------- |
* | shadow surface1 | |
* ----------------------- | Plane 1
* | aux surface1 | |
* ----------------------- |
* | fast clear colors1 | \|/
* -----------------------
* | ... |
* | |
* -----------------------
*/
struct {
/**
* Offset of the entire plane (whenever the image is disjoint this is
* set to 0).
*/
uint32_t offset;
VkDeviceSize size;
uint32_t alignment;
struct anv_surface surface;
/**
* A surface which shadows the main surface and may have different
* tiling. This is used for sampling using a tiling that isn't supported
* for other operations.
*/
struct anv_surface shadow_surface;
/**
* For color images, this is the aux usage for this image when not used
* as a color attachment.
*
* For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
* image has a HiZ buffer.
*/
enum isl_aux_usage aux_usage;
struct anv_surface aux_surface;
/**
* Offset of the fast clear state (used to compute the
* fast_clear_state_offset of the following planes).
*/
uint32_t fast_clear_state_offset;
/**
* BO associated with this plane, set when bound.
*/
struct anv_address address;
/**
* When destroying the image, also free the bo.
* */
bool bo_is_owned;
} planes[3];
};
/* The ordering of this enum is important */
enum anv_fast_clear_type {
/** Image does not have/support any fast-clear blocks */
ANV_FAST_CLEAR_NONE = 0,
/** Image has/supports fast-clear but only to the default value */
ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
/** Image has/supports fast-clear with an arbitrary fast-clear value */
ANV_FAST_CLEAR_ANY = 2,
};
/* Returns the number of auxiliary buffer levels attached to an image. */
static inline uint8_t
anv_image_aux_levels(const struct anv_image * const image,
VkImageAspectFlagBits aspect)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
return image->planes[plane].aux_surface.isl.size_B > 0 ?
image->planes[plane].aux_surface.isl.levels : 0;
}
/* Returns the number of auxiliary buffer layers attached to an image. */
static inline uint32_t
anv_image_aux_layers(const struct anv_image * const image,
VkImageAspectFlagBits aspect,
const uint8_t miplevel)
{
assert(image);
/* The miplevel must exist in the main buffer. */
assert(miplevel < image->levels);
if (miplevel >= anv_image_aux_levels(image, aspect)) {
/* There are no layers with auxiliary data because the miplevel has no
* auxiliary data.
*/
return 0;
} else {
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
}
}
static inline struct anv_address
anv_image_get_clear_color_addr(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
return anv_address_add(image->planes[plane].address,
image->planes[plane].fast_clear_state_offset);
}
static inline struct anv_address
anv_image_get_fast_clear_type_addr(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
struct anv_address addr =
anv_image_get_clear_color_addr(device, image, aspect);
const unsigned clear_color_state_size = device->info.gen >= 10 ?
device->isl_dev.ss.clear_color_state_size :
device->isl_dev.ss.clear_value_size;
return anv_address_add(addr, clear_color_state_size);
}
static inline struct anv_address
anv_image_get_compression_state_addr(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer)
{
assert(level < anv_image_aux_levels(image, aspect));
assert(array_layer < anv_image_aux_layers(image, aspect, level));
UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
struct anv_address addr =
anv_image_get_fast_clear_type_addr(device, image, aspect);
addr.offset += 4; /* Go past the fast clear type */
if (image->type == VK_IMAGE_TYPE_3D) {
for (uint32_t l = 0; l < level; l++)
addr.offset += anv_minify(image->extent.depth, l) * 4;
} else {
addr.offset += level * image->array_size * 4;
}
addr.offset += array_layer * 4;
return addr;
}
/* Returns true if a HiZ-enabled depth buffer can be sampled from. */
static inline bool
anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
const struct anv_image *image)
{
if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return false;
if (devinfo->gen < 8)
return false;
return image->samples == 1;
}
void
anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
uint32_t level,
uint32_t base_layer,
uint32_t layer_count);
void
anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t base_layer, uint32_t layer_count,
VkRect2D area, union isl_color_value clear_color);
void
anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
enum isl_aux_usage depth_aux_usage,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area,
float depth_value, uint8_t stencil_value);
void
anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *src_image,
enum isl_aux_usage src_aux_usage,
uint32_t src_level, uint32_t src_base_layer,
const struct anv_image *dst_image,
enum isl_aux_usage dst_aux_usage,
uint32_t dst_level, uint32_t dst_base_layer,
VkImageAspectFlagBits aspect,
uint32_t src_x, uint32_t src_y,
uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height,
uint32_t layer_count,
enum blorp_filter filter);
void
anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op hiz_op);
void
anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area, uint8_t stencil_value);
void
anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
VkImageAspectFlagBits aspect,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op mcs_op, union isl_color_value *clear_value,
bool predicate);
void
anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op ccs_op, union isl_color_value *clear_value,
bool predicate);
void
anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count);
enum isl_aux_usage
anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
const struct anv_image *image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout);
enum anv_fast_clear_type
anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout);
/* This is defined as a macro so that it works for both
* VkImageSubresourceRange and VkImageSubresourceLayers
*/
#define anv_get_layerCount(_image, _range) \
((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
(_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
static inline uint32_t
anv_get_levelCount(const struct anv_image *image,
const VkImageSubresourceRange *range)
{
return range->levelCount == VK_REMAINING_MIP_LEVELS ?
image->levels - range->baseMipLevel : range->levelCount;
}
static inline VkImageAspectFlags
anv_image_expand_aspects(const struct anv_image *image,
VkImageAspectFlags aspects)
{
/* If the underlying image has color plane aspects and
* VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
* the underlying image. */
if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
aspects == VK_IMAGE_ASPECT_COLOR_BIT)
return image->aspects;
return aspects;
}
static inline bool
anv_image_aspects_compatible(VkImageAspectFlags aspects1,
VkImageAspectFlags aspects2)
{
if (aspects1 == aspects2)
return true;
/* Only 1 color aspects are compatibles. */
if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
(aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
util_bitcount(aspects1) == util_bitcount(aspects2))
return true;
return false;
}
struct anv_image_view {
const struct anv_image *image; /**< VkImageViewCreateInfo::image */
VkImageAspectFlags aspect_mask;
VkFormat vk_format;
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
unsigned n_planes;
struct {
uint32_t image_plane;
struct isl_view isl;
/**
* RENDER_SURFACE_STATE when using image as a sampler surface with an
* image layout of SHADER_READ_ONLY_OPTIMAL or
* DEPTH_STENCIL_READ_ONLY_OPTIMAL.
*/
struct anv_surface_state optimal_sampler_surface_state;
/**
* RENDER_SURFACE_STATE when using image as a sampler surface with an
* image layout of GENERAL.
*/
struct anv_surface_state general_sampler_surface_state;
/**
* RENDER_SURFACE_STATE when using image as a storage image. Separate
* states for write-only and readable, using the real format for
* write-only and the lowered format for readable.
*/
struct anv_surface_state storage_surface_state;
struct anv_surface_state writeonly_storage_surface_state;
struct brw_image_param storage_image_param;
} planes[3];
};
enum anv_image_view_state_flags {
ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
};
void anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout,
struct brw_image_param *image_param_out);
struct anv_image_create_info {
const VkImageCreateInfo *vk_info;
/** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
isl_tiling_flags_t isl_tiling_flags;
/** These flags will be added to any derived from VkImageCreateInfo. */
isl_surf_usage_flags_t isl_extra_usage_flags;
uint32_t stride;
bool external_format;
};
VkResult anv_image_create(VkDevice _device,
const struct anv_image_create_info *info,
const VkAllocationCallbacks* alloc,
VkImage *pImage);
const struct anv_surface *
anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
VkImageAspectFlags aspect_mask);
enum isl_format
anv_isl_format_for_descriptor_type(VkDescriptorType type);
static inline struct VkExtent3D
anv_sanitize_image_extent(const VkImageType imageType,
const struct VkExtent3D imageExtent)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkExtent3D) { imageExtent.width, 1, 1 };
case VK_IMAGE_TYPE_2D:
return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
case VK_IMAGE_TYPE_3D:
return imageExtent;
default:
unreachable("invalid image type");
}
}
static inline struct VkOffset3D
anv_sanitize_image_offset(const VkImageType imageType,
const struct VkOffset3D imageOffset)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkOffset3D) { imageOffset.x, 0, 0 };
case VK_IMAGE_TYPE_2D:
return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
case VK_IMAGE_TYPE_3D:
return imageOffset;
default:
unreachable("invalid image type");
}
}
VkFormatFeatureFlags
anv_get_image_format_features(const struct gen_device_info *devinfo,
VkFormat vk_format,
const struct anv_format *anv_format,
VkImageTiling vk_tiling);
void anv_fill_buffer_surface_state(struct anv_device *device,
struct anv_state state,
enum isl_format format,
struct anv_address address,
uint32_t range, uint32_t stride);
static inline void
anv_clear_color_from_att_state(union isl_color_value *clear_color,
const struct anv_attachment_state *att_state,
const struct anv_image_view *iview)
{
const struct isl_format_layout *view_fmtl =
isl_format_get_layout(iview->planes[0].isl.format);
#define COPY_CLEAR_COLOR_CHANNEL(c, i) \
if (view_fmtl->channels.c.bits) \
clear_color->u32[i] = att_state->clear_value.color.uint32[i]
COPY_CLEAR_COLOR_CHANNEL(r, 0);
COPY_CLEAR_COLOR_CHANNEL(g, 1);
COPY_CLEAR_COLOR_CHANNEL(b, 2);
COPY_CLEAR_COLOR_CHANNEL(a, 3);
#undef COPY_CLEAR_COLOR_CHANNEL
}
struct anv_ycbcr_conversion {
const struct anv_format * format;
VkSamplerYcbcrModelConversion ycbcr_model;
VkSamplerYcbcrRange ycbcr_range;
VkComponentSwizzle mapping[4];
VkChromaLocation chroma_offsets[2];
VkFilter chroma_filter;
bool chroma_reconstruction;
};
struct anv_sampler {
uint32_t state[3][4];
uint32_t n_planes;
struct anv_ycbcr_conversion *conversion;
};
struct anv_framebuffer {
uint32_t width;
uint32_t height;
uint32_t layers;
uint32_t attachment_count;
struct anv_image_view * attachments[0];
};
struct anv_subpass_attachment {
VkImageUsageFlagBits usage;
uint32_t attachment;
VkImageLayout layout;
};
struct anv_subpass {
uint32_t attachment_count;
/**
* A pointer to all attachment references used in this subpass.
* Only valid if ::attachment_count > 0.
*/
struct anv_subpass_attachment * attachments;
uint32_t input_count;
struct anv_subpass_attachment * input_attachments;
uint32_t color_count;
struct anv_subpass_attachment * color_attachments;
struct anv_subpass_attachment * resolve_attachments;
struct anv_subpass_attachment * depth_stencil_attachment;
uint32_t view_mask;
/** Subpass has a depth/stencil self-dependency */
bool has_ds_self_dep;
/** Subpass has at least one color resolve attachment */
bool has_color_resolve;
};
static inline unsigned
anv_subpass_view_count(const struct anv_subpass *subpass)
{
return MAX2(1, util_bitcount(subpass->view_mask));
}
struct anv_render_pass_attachment {
/* TODO: Consider using VkAttachmentDescription instead of storing each of
* its members individually.
*/
VkFormat format;
uint32_t samples;
VkImageUsageFlags usage;
VkAttachmentLoadOp load_op;
VkAttachmentStoreOp store_op;
VkAttachmentLoadOp stencil_load_op;
VkImageLayout initial_layout;
VkImageLayout final_layout;
VkImageLayout first_subpass_layout;
/* The subpass id in which the attachment will be used last. */
uint32_t last_subpass_idx;
};
struct anv_render_pass {
uint32_t attachment_count;
uint32_t subpass_count;
/* An array of subpass_count+1 flushes, one per subpass boundary */
enum anv_pipe_bits * subpass_flushes;
struct anv_render_pass_attachment * attachments;
struct anv_subpass subpasses[0];
};
#define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
struct anv_query_pool {
VkQueryType type;
VkQueryPipelineStatisticFlags pipeline_statistics;
/** Stride between slots, in bytes */
uint32_t stride;
/** Number of slots in this query pool */
uint32_t slots;
struct anv_bo bo;
};
int anv_get_instance_entrypoint_index(const char *name);
int anv_get_device_entrypoint_index(const char *name);
bool
anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
const struct anv_instance_extension_table *instance);
bool
anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
const struct anv_instance_extension_table *instance,
const struct anv_device_extension_table *device);
void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
const char *name);
void anv_dump_image_to_ppm(struct anv_device *device,
struct anv_image *image, unsigned miplevel,
unsigned array_layer, VkImageAspectFlagBits aspect,
const char *filename);
enum anv_dump_action {
ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
};
void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
void anv_dump_finish(void);
void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
struct anv_framebuffer *fb);
static inline uint32_t
anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
{
/* This function must be called from within a subpass. */
assert(cmd_state->pass && cmd_state->subpass);
const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
/* The id of this subpass shouldn't exceed the number of subpasses in this
* render pass minus 1.
*/
assert(subpass_id < cmd_state->pass->subpass_count);
return subpass_id;
}
#define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
\
static inline struct __anv_type * \
__anv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __anv_type *) _handle; \
} \
\
static inline __VkType \
__anv_type ## _to_handle(struct __anv_type *_obj) \
{ \
return (__VkType) _obj; \
}
#define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
\
static inline struct __anv_type * \
__anv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __anv_type *)(uintptr_t) _handle; \
} \
\
static inline __VkType \
__anv_type ## _to_handle(struct __anv_type *_obj) \
{ \
return (__VkType)(uintptr_t) _obj; \
}
#define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
struct __anv_type *__name = __anv_type ## _from_handle(__handle)
ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
/* Gen-specific function declarations */
#ifdef genX
# include "anv_genX.h"
#else
# define genX(x) gen7_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gen75_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gen8_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gen9_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gen10_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gen11_##x
# include "anv_genX.h"
# undef genX
#endif
#endif /* ANV_PRIVATE_H */