blob: f2ef4eb77716edf58c40515b479f78d1f2780d1b [file] [log] [blame]
//===-- AMDILUtilityFunctions.cpp - AMDIL Utility Functions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
// This file provides the implementations of functions that are declared in the
// AMDILUtilityFUnctions.h file.
//
//===----------------------------------------------------------------------===//
#include "AMDILUtilityFunctions.h"
#include "AMDILISelLowering.h"
#include "llvm/ADT/ValueMap.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Type.h"
#include <cstdio>
#include <list>
#include <queue>
#define GET_OPCODE_NAME(TII, MI) \
TII->getName(MI->getOpcode())
using namespace llvm;
int64_t GET_SCALAR_SIZE(llvm::Type *A) {
return A->getScalarSizeInBits();
}
const TargetRegisterClass * getRegClassFromID(unsigned int ID) {
switch (ID) {
default:
assert(0 && "Passed in ID does not match any register classes.");
return NULL;
case AMDIL::GPRI8RegClassID:
return &AMDIL::GPRI8RegClass;
case AMDIL::GPRI16RegClassID:
return &AMDIL::GPRI16RegClass;
case AMDIL::GPRI32RegClassID:
return &AMDIL::GPRI32RegClass;
case AMDIL::GPRF32RegClassID:
return &AMDIL::GPRF32RegClass;
case AMDIL::GPRI64RegClassID:
return &AMDIL::GPRI64RegClass;
case AMDIL::GPRF64RegClassID:
return &AMDIL::GPRF64RegClass;
case AMDIL::GPRV4F32RegClassID:
return &AMDIL::GPRV4F32RegClass;
case AMDIL::GPRV4I8RegClassID:
return &AMDIL::GPRV4I8RegClass;
case AMDIL::GPRV4I16RegClassID:
return &AMDIL::GPRV4I16RegClass;
case AMDIL::GPRV4I32RegClassID:
return &AMDIL::GPRV4I32RegClass;
case AMDIL::GPRV2F32RegClassID:
return &AMDIL::GPRV2F32RegClass;
case AMDIL::GPRV2I8RegClassID:
return &AMDIL::GPRV2I8RegClass;
case AMDIL::GPRV2I16RegClassID:
return &AMDIL::GPRV2I16RegClass;
case AMDIL::GPRV2I32RegClassID:
return &AMDIL::GPRV2I32RegClass;
case AMDIL::GPRV2F64RegClassID:
return &AMDIL::GPRV2F64RegClass;
case AMDIL::GPRV2I64RegClassID:
return &AMDIL::GPRV2I64RegClass;
};
}
unsigned int getMoveInstFromID(unsigned int ID) {
switch (ID) {
default:
assert(0 && "Passed in ID does not match any move instructions.");
case AMDIL::GPRI8RegClassID:
return AMDIL::MOVE_i8;
case AMDIL::GPRI16RegClassID:
return AMDIL::MOVE_i16;
case AMDIL::GPRI32RegClassID:
return AMDIL::MOVE_i32;
case AMDIL::GPRF32RegClassID:
return AMDIL::MOVE_f32;
case AMDIL::GPRI64RegClassID:
return AMDIL::MOVE_i64;
case AMDIL::GPRF64RegClassID:
return AMDIL::MOVE_f64;
case AMDIL::GPRV4F32RegClassID:
return AMDIL::MOVE_v4f32;
case AMDIL::GPRV4I8RegClassID:
return AMDIL::MOVE_v4i8;
case AMDIL::GPRV4I16RegClassID:
return AMDIL::MOVE_v4i16;
case AMDIL::GPRV4I32RegClassID:
return AMDIL::MOVE_v4i32;
case AMDIL::GPRV2F32RegClassID:
return AMDIL::MOVE_v2f32;
case AMDIL::GPRV2I8RegClassID:
return AMDIL::MOVE_v2i8;
case AMDIL::GPRV2I16RegClassID:
return AMDIL::MOVE_v2i16;
case AMDIL::GPRV2I32RegClassID:
return AMDIL::MOVE_v2i32;
case AMDIL::GPRV2F64RegClassID:
return AMDIL::MOVE_v2f64;
case AMDIL::GPRV2I64RegClassID:
return AMDIL::MOVE_v2i64;
};
return -1;
}
unsigned int getPHIMoveInstFromID(unsigned int ID) {
switch (ID) {
default:
assert(0 && "Passed in ID does not match any move instructions.");
case AMDIL::GPRI8RegClassID:
return AMDIL::PHIMOVE_i8;
case AMDIL::GPRI16RegClassID:
return AMDIL::PHIMOVE_i16;
case AMDIL::GPRI32RegClassID:
return AMDIL::PHIMOVE_i32;
case AMDIL::GPRF32RegClassID:
return AMDIL::PHIMOVE_f32;
case AMDIL::GPRI64RegClassID:
return AMDIL::PHIMOVE_i64;
case AMDIL::GPRF64RegClassID:
return AMDIL::PHIMOVE_f64;
case AMDIL::GPRV4F32RegClassID:
return AMDIL::PHIMOVE_v4f32;
case AMDIL::GPRV4I8RegClassID:
return AMDIL::PHIMOVE_v4i8;
case AMDIL::GPRV4I16RegClassID:
return AMDIL::PHIMOVE_v4i16;
case AMDIL::GPRV4I32RegClassID:
return AMDIL::PHIMOVE_v4i32;
case AMDIL::GPRV2F32RegClassID:
return AMDIL::PHIMOVE_v2f32;
case AMDIL::GPRV2I8RegClassID:
return AMDIL::PHIMOVE_v2i8;
case AMDIL::GPRV2I16RegClassID:
return AMDIL::PHIMOVE_v2i16;
case AMDIL::GPRV2I32RegClassID:
return AMDIL::PHIMOVE_v2i32;
case AMDIL::GPRV2F64RegClassID:
return AMDIL::PHIMOVE_v2f64;
case AMDIL::GPRV2I64RegClassID:
return AMDIL::PHIMOVE_v2i64;
};
return -1;
}
const TargetRegisterClass* getRegClassFromType(unsigned int type) {
switch (type) {
default:
assert(0 && "Passed in type does not match any register classes.");
case MVT::i8:
return &AMDIL::GPRI8RegClass;
case MVT::i16:
return &AMDIL::GPRI16RegClass;
case MVT::i32:
return &AMDIL::GPRI32RegClass;
case MVT::f32:
return &AMDIL::GPRF32RegClass;
case MVT::i64:
return &AMDIL::GPRI64RegClass;
case MVT::f64:
return &AMDIL::GPRF64RegClass;
case MVT::v4f32:
return &AMDIL::GPRV4F32RegClass;
case MVT::v4i8:
return &AMDIL::GPRV4I8RegClass;
case MVT::v4i16:
return &AMDIL::GPRV4I16RegClass;
case MVT::v4i32:
return &AMDIL::GPRV4I32RegClass;
case MVT::v2f32:
return &AMDIL::GPRV2F32RegClass;
case MVT::v2i8:
return &AMDIL::GPRV2I8RegClass;
case MVT::v2i16:
return &AMDIL::GPRV2I16RegClass;
case MVT::v2i32:
return &AMDIL::GPRV2I32RegClass;
case MVT::v2f64:
return &AMDIL::GPRV2F64RegClass;
case MVT::v2i64:
return &AMDIL::GPRV2I64RegClass;
}
}
void printSDNode(const SDNode *N) {
printf("Opcode: %d isTargetOpcode: %d isMachineOpcode: %d\n",
N->getOpcode(), N->isTargetOpcode(), N->isMachineOpcode());
printf("Empty: %d OneUse: %d Size: %d NodeID: %d\n",
N->use_empty(), N->hasOneUse(), (int)N->use_size(), N->getNodeId());
for (unsigned int i = 0; i < N->getNumOperands(); ++i) {
printf("OperandNum: %d ValueCount: %d ValueType: %d\n",
i, N->getNumValues(), N->getValueType(0) .getSimpleVT().SimpleTy);
printSDValue(N->getOperand(i), 0);
}
}
void printSDValue(const SDValue &Op, int level) {
printf("\nOp: %p OpCode: %d NumOperands: %d ", (void*)&Op, Op.getOpcode(),
Op.getNumOperands());
printf("IsTarget: %d IsMachine: %d ", Op.isTargetOpcode(),
Op.isMachineOpcode());
if (Op.isMachineOpcode()) {
printf("MachineOpcode: %d\n", Op.getMachineOpcode());
} else {
printf("\n");
}
EVT vt = Op.getValueType();
printf("ValueType: %d \n", vt.getSimpleVT().SimpleTy);
printf("UseEmpty: %d OneUse: %d\n", Op.use_empty(), Op.hasOneUse());
if (level) {
printf("Children for %d:\n", level);
for (unsigned int i = 0; i < Op.getNumOperands(); ++i) {
printf("Child %d->%d:", level, i);
printSDValue(Op.getOperand(i), level - 1);
}
}
}
bool isPHIMove(unsigned int opcode) {
switch (opcode) {
default:
return false;
ExpandCaseToAllTypes(AMDIL::PHIMOVE);
return true;
}
return false;
}
bool isMove(unsigned int opcode) {
switch (opcode) {
default:
return false;
ExpandCaseToAllTypes(AMDIL::MOVE);
return true;
}
return false;
}
bool isMoveOrEquivalent(unsigned int opcode) {
switch (opcode) {
default:
return isMove(opcode) || isPHIMove(opcode);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASCHAR);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASSHORT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASINT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASLONG);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASDOUBLE);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASFLOAT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2CHAR);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2SHORT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2INT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2FLOAT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2LONG);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV2DOUBLE);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV4CHAR);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV4SHORT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV4INT);
ExpandCaseToAllScalarTypes(AMDIL::IL_ASV4FLOAT);
case AMDIL::INTTOANY_i8:
case AMDIL::INTTOANY_i16:
case AMDIL::INTTOANY_i32:
case AMDIL::INTTOANY_f32:
case AMDIL::DLO:
case AMDIL::LLO:
case AMDIL::LLO_v2i64:
return true;
};
return false;
}
bool check_type(const Value *ptr, unsigned int addrspace) {
if (!ptr) {
return false;
}
Type *ptrType = ptr->getType();
return dyn_cast<PointerType>(ptrType)->getAddressSpace() == addrspace;
}
size_t getTypeSize(Type * const T, bool dereferencePtr) {
size_t size = 0;
if (!T) {
return size;
}
switch (T->getTypeID()) {
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
case Type::LabelTyID:
assert(0 && "These types are not supported by this backend");
default:
case Type::FloatTyID:
case Type::DoubleTyID:
size = T->getPrimitiveSizeInBits() >> 3;
break;
case Type::PointerTyID:
size = getTypeSize(dyn_cast<PointerType>(T), dereferencePtr);
break;
case Type::IntegerTyID:
size = getTypeSize(dyn_cast<IntegerType>(T), dereferencePtr);
break;
case Type::StructTyID:
size = getTypeSize(dyn_cast<StructType>(T), dereferencePtr);
break;
case Type::ArrayTyID:
size = getTypeSize(dyn_cast<ArrayType>(T), dereferencePtr);
break;
case Type::FunctionTyID:
size = getTypeSize(dyn_cast<FunctionType>(T), dereferencePtr);
break;
case Type::VectorTyID:
size = getTypeSize(dyn_cast<VectorType>(T), dereferencePtr);
break;
};
return size;
}
size_t getTypeSize(StructType * const ST, bool dereferencePtr) {
size_t size = 0;
if (!ST) {
return size;
}
Type *curType;
StructType::element_iterator eib;
StructType::element_iterator eie;
for (eib = ST->element_begin(), eie = ST->element_end(); eib != eie; ++eib) {
curType = *eib;
size += getTypeSize(curType, dereferencePtr);
}
return size;
}
size_t getTypeSize(IntegerType * const IT, bool dereferencePtr) {
return IT ? (IT->getBitWidth() >> 3) : 0;
}
size_t getTypeSize(FunctionType * const FT, bool dereferencePtr) {
assert(0 && "Should not be able to calculate the size of an function type");
return 0;
}
size_t getTypeSize(ArrayType * const AT, bool dereferencePtr) {
return (size_t)(AT ? (getTypeSize(AT->getElementType(),
dereferencePtr) * AT->getNumElements())
: 0);
}
size_t getTypeSize(VectorType * const VT, bool dereferencePtr) {
return VT ? (VT->getBitWidth() >> 3) : 0;
}
size_t getTypeSize(PointerType * const PT, bool dereferencePtr) {
if (!PT) {
return 0;
}
Type *CT = PT->getElementType();
if (CT->getTypeID() == Type::StructTyID &&
PT->getAddressSpace() == AMDILAS::PRIVATE_ADDRESS) {
return getTypeSize(dyn_cast<StructType>(CT));
} else if (dereferencePtr) {
size_t size = 0;
for (size_t x = 0, y = PT->getNumContainedTypes(); x < y; ++x) {
size += getTypeSize(PT->getContainedType(x), dereferencePtr);
}
return size;
} else {
return 4;
}
}
size_t getTypeSize(OpaqueType * const OT, bool dereferencePtr) {
//assert(0 && "Should not be able to calculate the size of an opaque type");
return 4;
}
size_t getNumElements(Type * const T) {
size_t size = 0;
if (!T) {
return size;
}
switch (T->getTypeID()) {
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
case Type::LabelTyID:
assert(0 && "These types are not supported by this backend");
default:
case Type::FloatTyID:
case Type::DoubleTyID:
size = 1;
break;
case Type::PointerTyID:
size = getNumElements(dyn_cast<PointerType>(T));
break;
case Type::IntegerTyID:
size = getNumElements(dyn_cast<IntegerType>(T));
break;
case Type::StructTyID:
size = getNumElements(dyn_cast<StructType>(T));
break;
case Type::ArrayTyID:
size = getNumElements(dyn_cast<ArrayType>(T));
break;
case Type::FunctionTyID:
size = getNumElements(dyn_cast<FunctionType>(T));
break;
case Type::VectorTyID:
size = getNumElements(dyn_cast<VectorType>(T));
break;
};
return size;
}
size_t getNumElements(StructType * const ST) {
size_t size = 0;
if (!ST) {
return size;
}
Type *curType;
StructType::element_iterator eib;
StructType::element_iterator eie;
for (eib = ST->element_begin(), eie = ST->element_end();
eib != eie; ++eib) {
curType = *eib;
size += getNumElements(curType);
}
return size;
}
size_t getNumElements(IntegerType * const IT) {
return (!IT) ? 0 : 1;
}
size_t getNumElements(FunctionType * const FT) {
assert(0 && "Should not be able to calculate the number of "
"elements of a function type");
return 0;
}
size_t getNumElements(ArrayType * const AT) {
return (!AT) ? 0
: (size_t)(getNumElements(AT->getElementType()) *
AT->getNumElements());
}
size_t getNumElements(VectorType * const VT) {
return (!VT) ? 0
: VT->getNumElements() * getNumElements(VT->getElementType());
}
size_t getNumElements(PointerType * const PT) {
size_t size = 0;
if (!PT) {
return size;
}
for (size_t x = 0, y = PT->getNumContainedTypes(); x < y; ++x) {
size += getNumElements(PT->getContainedType(x));
}
return size;
}
const llvm::Value *getBasePointerValue(const llvm::Value *V)
{
if (!V) {
return NULL;
}
const Value *ret = NULL;
ValueMap<const Value *, bool> ValueBitMap;
std::queue<const Value *, std::list<const Value *> > ValueQueue;
ValueQueue.push(V);
while (!ValueQueue.empty()) {
V = ValueQueue.front();
if (ValueBitMap.find(V) == ValueBitMap.end()) {
ValueBitMap[V] = true;
if (dyn_cast<Argument>(V) && dyn_cast<PointerType>(V->getType())) {
ret = V;
break;
} else if (dyn_cast<GlobalVariable>(V)) {
ret = V;
break;
} else if (dyn_cast<Constant>(V)) {
const ConstantExpr *CE = dyn_cast<ConstantExpr>(V);
if (CE) {
ValueQueue.push(CE->getOperand(0));
}
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
ret = AI;
break;
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
uint32_t numOps = I->getNumOperands();
for (uint32_t x = 0; x < numOps; ++x) {
ValueQueue.push(I->getOperand(x));
}
} else {
// assert(0 && "Found a Value that we didn't know how to handle!");
}
}
ValueQueue.pop();
}
return ret;
}
const llvm::Value *getBasePointerValue(const llvm::MachineInstr *MI) {
const Value *moVal = NULL;
if (!MI->memoperands_empty()) {
const MachineMemOperand *memOp = (*MI->memoperands_begin());
moVal = memOp ? memOp->getValue() : NULL;
moVal = getBasePointerValue(moVal);
}
return moVal;
}
bool commaPrint(int i, llvm::raw_ostream &O) {
O << ":" << i;
return false;
}
bool isLoadInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
if (strstr(GET_OPCODE_NAME(TII, MI), "LOADCONST")) {
return false;
}
return strstr(GET_OPCODE_NAME(TII, MI), "LOAD");
}
bool isSWSExtLoadInst(MachineInstr *MI)
{
switch (MI->getOpcode()) {
default:
break;
ExpandCaseToByteShortTypes(AMDIL::LOCALLOAD);
ExpandCaseToByteShortTypes(AMDIL::GLOBALLOAD);
ExpandCaseToByteShortTypes(AMDIL::REGIONLOAD);
ExpandCaseToByteShortTypes(AMDIL::PRIVATELOAD);
ExpandCaseToByteShortTypes(AMDIL::CPOOLLOAD);
ExpandCaseToByteShortTypes(AMDIL::CONSTANTLOAD);
return true;
};
return false;
}
bool isExtLoadInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "EXTLOAD");
}
bool isSExtLoadInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "SEXTLOAD");
}
bool isAExtLoadInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "AEXTLOAD");
}
bool isZExtLoadInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "ZEXTLOAD");
}
bool isStoreInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "STORE");
}
bool isTruncStoreInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "TRUNCSTORE");
}
bool isAtomicInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
return strstr(GET_OPCODE_NAME(TII, MI), "ATOM");
}
bool isVolatileInst(const llvm::TargetInstrInfo * TII, MachineInstr *MI) {
if (!MI->memoperands_empty()) {
for (MachineInstr::mmo_iterator mob = MI->memoperands_begin(),
moe = MI->memoperands_end(); mob != moe; ++mob) {
// If there is a volatile mem operand, this is a volatile instruction.
if ((*mob)->isVolatile()) {
return true;
}
}
}
return false;
}
bool isGlobalInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "GLOBAL");
}
bool isPrivateInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "PRIVATE");
}
bool isConstantInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "CONSTANT")
|| strstr(GET_OPCODE_NAME(TII, MI), "CPOOL");
}
bool isRegionInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "REGION");
}
bool isLocalInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "LOCAL");
}
bool isImageInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "IMAGE");
}
bool isAppendInst(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "APPEND");
}
bool isRegionAtomic(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "ATOM_R");
}
bool isLocalAtomic(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "ATOM_L");
}
bool isGlobalAtomic(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "ATOM_G")
|| isArenaAtomic(TII, MI);
}
bool isArenaAtomic(const llvm::TargetInstrInfo * TII, llvm::MachineInstr *MI)
{
return strstr(GET_OPCODE_NAME(TII, MI), "ATOM_A");
}
const char* getSrcSwizzle(unsigned idx) {
const char *srcSwizzles[] = {
"", ".x000", ".0x00", ".00x0", ".000x", ".y000", ".0y00", ".00y0", ".000y",
".z000", ".0z00", ".00z0", ".000z", ".w000", ".0w00", ".00w0", ".000w",
".xy00", ".00xy", ".zw00", ".00zw", ".xyz0", ".0xyz", ".xyzw", ".0000",
".xxxx", ".yyyy", ".zzzz", ".wwww", ".xyxy", ".zwzw", ".xzxz", ".ywyw",
".x0y0", ".0x0y", ".xy_neg(y)", "_neg(yw)", "_neg(x)", ".xy_neg(xy)",
"_neg(xyzw)", ".0yzw", ".x0zw", ".xy0w", ".x", ".y", ".z", ".w", ".xy",
".zw"
};
assert(idx < sizeof(srcSwizzles)/sizeof(srcSwizzles[0])
&& "Idx passed in is invalid!");
return srcSwizzles[idx];
}
const char* getDstSwizzle(unsigned idx) {
const char *dstSwizzles[] = {
"", ".x___", ".xy__", ".xyz_", ".xyzw", "._y__", "._yz_", "._yzw", ".__z_",
".__zw", ".___w", ".x_zw", ".xy_w", ".x_z_", ".x__w", "._y_w",
};
assert(idx < sizeof(dstSwizzles)/sizeof(dstSwizzles[0])
&& "Idx passed in is invalid!");
return dstSwizzles[idx];
}
/// Helper function to get the currently set flags
void getAsmPrinterFlags(MachineInstr *MI, AMDILAS::InstrResEnc &curRes)
{
// We need 16 bits of information, but LLVMr127097 cut the field in half.
// So we have to use two different fields to store all of our information.
uint16_t upper = MI->getFlags() << 8;
uint16_t lower = MI->getAsmPrinterFlags();
curRes.u16all = upper | lower;
}
/// Helper function to clear the currently set flags and add the new flags.
void setAsmPrinterFlags(MachineInstr *MI, AMDILAS::InstrResEnc &curRes)
{
// We need 16 bits of information, but LLVMr127097 cut the field in half.
// So we have to use two different fields to store all of our information.
MI->clearAsmPrinterFlags();
MI->setFlags(0);
uint8_t lower = curRes.u16all & 0xFF;
uint8_t upper = (curRes.u16all >> 8) & 0xFF;
MI->setFlags(upper);
MI->setAsmPrinterFlag((llvm::MachineInstr::CommentFlag)lower);
}